Science.gov

Sample records for radiation dose avoided

  1. Value of public health and safety actions and radiation dose avoided

    SciTech Connect

    Baum, J.W.

    1994-05-01

    The values judged best to reflect the willingness of society to pay for the avoidance or reduction of risk were deduced from studies of costs of health care, transportation safety, consumer product safety, government agency actions, wage-risk compensation, consumer behavior (market) studies, and willingness-to-pay surveys. The results ranged from $1,400,000 to $2,700,000 per life saved. Applying the mean of these values ($2,100,000) and the latest risk per unit dose coefficients used by the ICRP (1991), which take into account risks to the general public, including genetic effects and nonfatal cancers, yields a value of dose avoided of $750 to $1,500 per person-cSv for public exposures. The lower value applies if adjustments are made for years of life lost per fatality. A nominal value of $1,000 per person-cSv seems appropriate in light of the many uncertainties involved in deducing these values. These values are consistent with values recommended by several European countries for individual doses in the region of 1 mSv/y (100 mrem/y). Below this dose rate, most countries have values a factor of 7 to 10 lower, based on the assumption that society is less concerned with fatality risks below about 10{sup {minus}4}/y.

  2. Radiation for Hodgkin's Lymphoma in Young Female Patients: A New Technique to Avoid the Breasts and Decrease the Dose to the Heart

    SciTech Connect

    Dabaja, Bouthaina S.; Rebueno, Neal C.S.; Mazloom, Ali; Thorne, Scott; Perrin, Kelly J.; Tolani, Naresh; Das, Pragnan; Delclos, Marc E.; Iyengar, Puneeth; Reed, Valerie K.; Horace, Patrecia; Salehpour, Mohammad R.

    2011-02-01

    Purpose: To demonstrate how, in young female patients with Hodgkin's lymphoma, using an inclined board technique can further decrease the volume of breasts and heart in the treatment field. Methods and Materials: An inclined board was constructed with the ability to mount an Aquaplast face mask, a Vacu-Lock, and a hip stopper. Eight female patients with early-stage Hodgkin's lymphoma were planned and compared using the conventional flat position and the inclined board position. All patients on the inclined board were planned with 90{sup o} degree table position and 15{sup o} gantry angle rotation to compensate for the beam divergence resulting from the patient's position on the inclined board. Dose-volume histograms were generated, as well as the mean V30 and V5 of both breasts and heart using both treatment positions. Results: The mean value of V30 of the right breast, left breast, and heart decreased from 3%, 3%, and 13%, respectively, using the flat position to 0, 0.4%, and 5%, respectively, using the inclined board. The mean value of V5 of the right breast, left breast, and heart decreased from 6%, 13%, and 36%, respectively, using the flat position to 2%, 8%, and 29%, respectively, using the inclined board. Conclusions: Compared with conventional flat positioning, this simple device and technique allows better sparing of the breasts and the heart while maintaining comparable target coverage and total lung dose.

  3. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  4. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  5. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  6. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  7. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  8. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  9. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  10. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  11. Patient perspectives on radiation dose.

    PubMed

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  12. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    SciTech Connect

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  13. Dose selection for optimal treatment results and avoidance of complications.

    PubMed

    Nagano, Hisato; Nakayama, Satoshi; Shuto, Takashi; Asada, Hiroyuki; Inomori, Shigeo

    2009-01-01

    What is the optimal treatment for metastatic brain tumors (MBTs)? We present our experience with gamma knife (GK) treatments for patients with five or more MBTs. Our new formula for predicting patient survival time (ST), which was derived by combining tumor control probability (TCP) calculated by Colombo's formula and normal tissue complication probability (NTCP) estimated by Flickinger's integrated logistic formula, was also evaluated. ST=a*[(C-NTCP)*TCP]+b; a, b, C: const. Forty-one patients (23 male, 18 female) with more than five MBTs were treated between March 1992 and February 2000. The tumors originated in the lung in 15 cases, in the breast in 8. Four patients had previously undergone whole brain irradiation (WBI). Ten patients were given concomitant WBI. Thirteen patients had additional extracranial metastatic lesions. TCP and NTCP were calculated using Excel add-in software. Cox's proportional hazards model was used to evaluate correlations between certain variables and ST. The independent variables evaluated were patient factors (age in years and performance status), tumor factors (total volume and number of tumors in each patient), treatment factors (TCP, NTCP and marginal dose) and the values of (C-NTCP)*TCP. Total tumor number was 403 (median 7, range 5-56). The median total tumor volume was 9.8 cm3 (range 0.8-111.8 cm3). The marginal dose ranged from 8 to 22 Gy (median 16.0Gy), TCP from 0.0% to 83% (median 15%) and NTCP from 0.0% to 31% (median 6.0%). (0.39-NTCP)*TCP ranged from 0.0 to 0.21 (median 0.055). Follow-up was 0.2 to 26.2 months, with a median of 5.4 months. Multiple-sample tests revealed no differences in STs among patients with MBTs of different origins (p=0.50). The 50% STs of patients with MBTs originating from the breast, lung and other sites were 5.9, 7.8 and 3.5 months, respectively. Only TCP and (0.39-NTCP)*TCP were statistically significant covariates (p=0.014, 0.001, respectively), and the latter was a more important predictor of

  14. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (ESTSC)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  15. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  16. Occupational radiation doses during interventional procedures

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  17. Patient Radiation Doses in Interventional Cardiology Procedures

    PubMed Central

    Pantos, Ioannis; Patatoukas, Georgios; Katritsis, Demosthenes G; Efstathopoulos, Efstathios

    2009-01-01

    Interventional cardiology procedures result in substantial patient radiation doses due to prolonged fluoroscopy time and radiographic exposure. The procedures that are most frequently performed are coronary angiography, percutaneous coronary interventions, diagnostic electrophysiology studies and radiofrequency catheter ablation. Patient radiation dose in these procedures can be assessed either by measurements on a series of patients in real clinical practice or measurements using patient-equivalent phantoms. In this article we review the derived doses at non-pediatric patients from 72 relevant studies published during the last 22 years in international scientific literature. Published results indicate that patient radiation doses vary widely among the different interventional cardiology procedures but also among equivalent studies. Discrepancies of the derived results are patient-, procedure-, physician-, and fluoroscopic equipmentrelated. Nevertheless, interventional cardiology procedures can subject patients to considerable radiation doses. Efforts to minimize patient exposure should always be undertaken. PMID:20066141

  18. Dose assurance in radiation processing plants

    NASA Astrophysics Data System (ADS)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  19. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. PMID:26769857

  20. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  1. Gamma Radiation Doses In Sweden

    NASA Astrophysics Data System (ADS)

    Almgren, Sara; Barregârd, Lars; Isaksson, Mats

    2008-08-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  2. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  3. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  4. Doses from Medical Radiation Sources

    MedlinePlus

    ... radiation dosimetry. Continuing Medical Education Article, Journal of Nuclear Medicine 41(5):863–873; 2000. © 2016 Health Physics Society Site Map | Privacy Statement | Disclaimer | Webmaster

  5. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  6. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  7. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  8. Radiation Dose from Cigarette Tobacco

    NASA Astrophysics Data System (ADS)

    Papastefanou, C.

    2008-08-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made produced radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv y-1 (average 79.7 μSv y-1), while for 228Ra from 19.3 to 116.0 μSv y-1 (average 67.1 μSv y-1) and for 210Pb from 47.0 to 134.9 μSv y-1 (average 104.7 μSv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y-1 (average 251.5 μSv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1).

  9. Single dose testosterone administration alleviates gaze avoidance in women with Social Anxiety Disorder.

    PubMed

    Enter, Dorien; Terburg, David; Harrewijn, Anita; Spinhoven, Philip; Roelofs, Karin

    2016-01-01

    Gaze avoidance is one of the most characteristic and persistent social features in people with Social Anxiety Disorder (SAD). It signals social submissiveness and hampers adequate social interactions. Patients with SAD typically show reduced testosterone levels, a hormone that facilitates socially dominant gaze behavior. Therefore we tested as a proof of principle whether single dose testosterone administration can reduce gaze avoidance in SAD. In a double-blind, within-subject design, 18 medication-free female participants with SAD and 19 female healthy control participants received a single dose of 0.5mg testosterone and a matched placebo, at two separate days. On each day, their spontaneous gaze behavior was recorded using eye-tracking, while they looked at angry, happy, and neutral facial expressions. Testosterone enhanced the percentage of first fixations to the eye-region in participants with SAD compared to healthy controls. In addition, SAD patients' initial gaze avoidance in the placebo condition was associated with more severe social anxiety symptoms and this relation was no longer present after testosterone administration. These findings indicate that single dose testosterone administration can alleviate gaze avoidance in SAD. They support theories on the dominance enhancing effects of testosterone and extend those by showing that effects are particularly strong in individuals featured by socially submissive behavior. The finding that this core characteristic of SAD can be directly influenced by single dose testosterone administration calls for future inquiry into the clinical utility of testosterone in the treatment of SAD. PMID:26402923

  10. Dose specification for radiation therapy: dose to water or dose to medium?

    PubMed

    Ma, C-M; Li, Jinsheng

    2011-05-21

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis. PMID:21508447

  11. Determining radiation dose to residents of radiation-contaminated buildings

    SciTech Connect

    Lee, J.J.S.; Wu, T.H.; Chong, N.S.; Dong, S.L.

    1999-08-01

    There are more than one thousand residents who lived in about 140 radiation-contaminated buildings and received the assessed radiation dose equivalent over 5 mSv/year. In this paper, a systematic approach to dose reconstruction is proposed for evaluating radiation dose equivalent to the residents. The approach includes area survey and exposure measurement, source identification and energy spectrum analysis, special designed TLD-embedded badges for residents to wear and organ dose estimation with Rando phantom simulation. From the study, it is concluded that the ionization chamber should still be considered as the primary modality for external dose measurement. However, lacking of accurate daily activity patterns of the residents, the dose equivalent estimation with the chamber measurements would be somehow overestimated. The encountered limitation could be compensated with the use of the TLD badges and Rando phantom simulation that could also provide more information for internal organ dose equivalent estimations. As the radiation patterns in the buildings are highly anisotropic, which strongly depends on the differences of structural and indoor layouts, it demands a mathematical model dealing with the above concerns. Also, further collaborations with studies on biological markers of the residents would make the entire dose equivalent estimation more helpful and reliable.

  12. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  13. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  14. Differential hepatic avoidance radiation therapy: Proof of concept in hepatocellular carcinoma patients

    PubMed Central

    Bowen, Stephen R.; Saini, Jatinder; Chapman, Tobias R.; Miyaoka, Robert S.; Kinahan, Paul E.; Sandison, George A.; Wong, Tony; Vesselle, Hubert J.; Nyflot, Matthew J.; Apisarnthanarax, Smith

    2015-01-01

    Purpose To evaluate the feasibility of a novel planning concept that differentially redistributes RT dose away from functional liver regions as defined by 99mTc-sulphur colloid (SC) uptake on patient SPECT/ CT images. Materials and methods Ten HCC patients with different Child–Turcotte–Pugh scores (A5-B9) underwent SC SPECT/CT scans in treatment position prior to RT that were registered to planning CT scans. Proton pencil beam scanning (PBS) therapy plans were optimized to deliver 37.5–60.0 Gy (RBE) over 5–15 fractions using single field uniform dose technique robust to range and setup uncertainty. Photon volumetrically modulated arc therapy (VMAT) plans were optimized to the same prescribed dose and minimum target coverage. For both treatment modalities, differential hepatic avoidance RT (DHART) plans were generated to decrease dose to functional liver volumes (FLV) defined by a range of thresholds relative to maximum SC uptake (43–90%) in the tumor-subtracted liver. Radiation dose was redistributed away from regions of increased SC uptake in each FLV by linearly scaling mean dose objectives during PBS or VMAT optimization. DHART planning feasibility was assessed by a significantly negative Spearman’s rank correlation (RS) between dose difference and SC uptake. Patient, tumor, and treatment planning characteristics were tested for association to DHART planning feasibility using non-parametric Kruskal–Wallis ANOVA. Results Compared to conventional plans, DHART plans achieved a 3% FLV dose reduction for every 10% SC uptake increase. DHART planning was feasible in the majority of patients with 60% of patients having RS < −0.5 (p < 0.01, range −1.0 to 0.2) and was particularly effective in 30% of patients (RS < −0.9). Mean dose to FLV was reduced by up to 20% in these patients. Only fractionation regimen was associated with DHART planning feasibility: 15 fraction courses were more feasible than 5–6 fraction courses (RS < −0.93 vs. RS > −0

  15. Radiation dose in temporomandibular joint zonography

    SciTech Connect

    Coucke, M.E.; Bourgoignie, R.R.; Dermaut, L.R.; Bourgoignie, K.A.; Jacobs, R.J. )

    1991-06-01

    Temporomandibular joint morphology and function can be evaluated by panoramic zonography. Thermoluminescent dosimetry was applied to evaluate the radiation dose to predetermined sites on a phantom eye, thyroid, pituitary, and parotid, and the dose distribution on the skin of the head and neck when the TMJ program of the Zonarc panoramic x-ray unit was used. Findings are discussed with reference to similar radiographic techniques.

  16. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    PubMed

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  17. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  18. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  19. [Evaluation of radiation doses in mammography].

    PubMed

    Lee, S K; Hwang, S K; Lee, L N; Lou, G C; Wang, C A; Hsu, W J

    1993-03-01

    A dedicated X-ray mammography was introduced to our hospital from 1987 and an imaging receptor of xeroradiography was applied. We reported previously that the average air exposure was 0.79R and that the absorption dose of skin was 1.00 rad. These data are similar to literature reports. Screen-film mammography was introduced recently. To select the best breast imaging and the least radiation exposure, diverse methods were investigated. A dosimetry (Capintec model 192) and a PS-033 parallel ionization chamber were applied to compare the absorption dose on polystyrene phantom between various exposure factors, the application of breast clamp and the size of exposure field. Retrospective estimation of the radiation dose was obtained from the exposure factors of previous mammography since July, 1990 to May, 1992. There were 1035 xeromammographic examinations and 358 examinations with medium-speed screen-film mammography. Another 61 craniocaudal and 96 mediolateral projections with high-speed screen-film mammography were recruited during the recent two months. An ionization chamber (Exradin, Shonka-Wyckoff A5) with an electrometer (Keithley 617) wer selected to obtain the dose equivalent from air exposure between selected exposure factors. The radiation dose of mammography is linearly correlated with voltage/kV and current/mAs. The application of a breast clump reduces 10% of the skin dose. The average exposure factors of xeromammography are 45.6 kV, 163.5 mAs. These results remain the same as in our previous report. Xeromammography has a greater exposure to air, estimated average glandular dose and absorbed dose than screen-film mammography. The mean exposure factor of rapid screen-film mammography gains half the value of medium screen-film mammography, ie. 26.6 kV, 87.0 mAs vs. 26.0 kV, 164.5 mAs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8490794

  20. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  1. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the

  2. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  3. Scientific issues in radiation dose reconstruction.

    PubMed

    Toohey, Richard E

    2008-07-01

    Stakeholders have raised numerous issues regarding the scientific basis of radiation dose reconstruction for compensation. These issues can be grouped into three broad categories: data issues, dosimetry issues, and compensation issues. Data issues include demographic data of the worker, changes in site operations over time (both production and exposure control), characterization of episodic vs. chronic exposures, and the use of coworker data. Dosimetry issues include methods for assessment of ambient exposures, missed dose, unmonitored dose, and medical x-ray dose incurred as a condition of employment. Specific issues related to external dose include the sensitivity, angular and energy dependence of personal monitors, exposure geometries, and the accompanying uncertainties. Those related to internal dose include sensitivity of bioassay methods, uncertainties in biokinetic models, appropriate dose coefficients, and modeling uncertainties. Compensation issues include uncertainties in the risk models and use of the 99th percentile of the distribution of probability of causation for awarding compensation. A review of the scientific literature and analysis of each of these issues distinguishes factors that play a major role in the compensation decision from those that do not. PMID:18545027

  4. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  5. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  6. Early dose assessment following severe radiation accidents

    SciTech Connect

    Goans, R.E.; Holloway, E.C.; Berger, M.E.; Ricks, R.C.

    1997-04-01

    Early treatment of victims of high level acute whole-body x-ray or gamma exposure has been shown to improve their likelihood of survival. However, in such cases, both the magnitude of the exposure and the dosimetry profile(s) of the victim(s) are often not known in detail for days to weeks. A simple dose-prediction algorithm based on lymphocyte kinetics as documented in prior radiation accidents is presented here. This algorithm provides an estimate of dose within the first 8 h following an acute whole-body exposure. Early lymphocyte depletion kinetics after a severe radiation accident follow a single exponential, L(t) = L{sub o}e{sup -k(D)t}, where k(D) is a rate constant, dependent primarily on the average dose, D. Within the first 8 h post-accident, K(D) may be calculated utilizing serial lymphocyte counts. Data from the REAC/TS Radiation Accident Registry were used to develop a dose-prediction algorithm from 43 gamma exposure cases where both lymphocyte kinetics and dose reconstruction were felt to be reasonably reliable. The inverse relationship D(K) may be molded by a simple two parameter curve of the form D = a/(1 + b/K) in the range 0 {le} D {le} 15 Gy, with fitting parameters (mean {+-} SD): a = 13.6 {+-} 1.7 Gy, and b = 1.0 {+-} 0.20 d{sup -1}. Dose estimated in this manner is intended to serve only as a first approximation to guide initial medical management. 31 refs., 4 figs., 2 tabs.

  7. Radiation dose and second breast cancer.

    PubMed Central

    Basco, V. E.; Coldman, A. J.; Elwood, J. M.; Young, M. E.

    1985-01-01

    Amongst 14,000 women with breast cancer treated between 1946 and 1982, 194 developed a second primary tumour in the contralateral breast more than one year after diagnosis of the first primary. The radiation dose to the contralateral breast was calculated for each member of this group and also for members of a control group matched for age, year of diagnosis and survival time. Comparison of the groups provides no evidence for radiation induced carcinogenesis on the contralateral breast in these patients. PMID:4041361

  8. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  9. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray (Gy) is the SI unit of absorbed dose. One...

  10. Evaluation of the Stochastic Effects of Low-Dose Radiation: Dose Reconstruction for the Techa River Cohort in Russia

    SciTech Connect

    Degteva, M O.; Kozheurov, V P.; Tolstykh, E I.; Vorobiova, M I.; Anspaugh, L R.; Napier, Bruce A. )

    2001-06-01

    Persons traveling in space can accumulate fairly large doses of radiation, up to several Sv, at low-to-moderate dose rates. In general these dose rates are low enough so that deterministic effects can be avoided, although shielding may be necessary. An important question, however, is the stochastic effects (induction of cancer and genetic defects) of these doses. Most radiation-risk estimates are based on dose reconstruction and epidemiologic follow-up of the survivors of the atomic bombings on Japan, events that delivered doses nearly instantaneously. It has been hoped that stochastic effects would be less probable for radiation delivered at lower dose rates, but few opportunities have been available to examine this question in humans. The Mayak Production Association (MPA) was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days there were high occupational doses as well as technological failures that resulted in the release of large amounts of waste (about 10^17 Bq of liquid wastes) into the rather small Techa River. Residents along the Techa River were exposed to external radiation, and they ingested foods contaminated with 90Sr and other radionuclides. The?Techa River Cohort? has been studied for several years by scientists from the Urals Research Center for Radiation Medicine (URCRM). The purpose of the project considered here is to improve the dose-reconstruction system for the Techa River Cohort that has been under development for many years by Russian scientists at the URCRM. This, and the companion epidemiologic studies, are deemed to be unique and important, as members of the Techa River Cohort received red bone marrow doses of up to 3 Gy, but at low-to-moderate-dose rates. An increase in leukemia and cancer mortality has already been noted for this population, and further study should allow the evaluation of dose-rate-reduction factors for this situation.

  11. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  12. Early dose assessment following severe radiation accidents

    SciTech Connect

    Goans, R.E.; Holloway, E.C.

    1996-06-01

    Prompt and aggressive treatment of victims to high level whole-body gamma exposure has been shown to improve their likelihood of survival. However, in such cases, both the magnitude of the accident and the dosimetry profile(s) of the victim(s) are often not known in detail for days to weeks. Medical intervention could therefore be delayed after a major accident because of uncertainties in the initial dose estimate. A simple dose-prediction algorithm based on lymphocyte kinetics as documented in prior radiation accidents is presented here. This algorithm provides an estimate of marrow dose within the first 12-18 h following an acute whole-body gamma exposure. Early lymphocyte depletion curves post-accident follow a single exponential, L(t) = L{sub o}e{sup -k(D)t}, where L{sub o} is the pre- accident lymphocyte count and k(D) is a rate constant, dependent on the average dose, D. Within the first 12-18 h post-accident, K(D) may be calculated utilizing serial lymphocyte counts. Data from the REAC/TS Accident Registry were used to develop a dose prediction algorithm from 43 gamma exposure cases where both lymphocyte kinetics and dose reconstruction were felt to be reasonably reliable. The relationship D(K) is shown to follow a logistic dose response curve of the form D = a/[1 + (K/b){sup c}] in the range 0 {le} D {le} 15 Gy. The fitting parameters (mean {+-} SD) are found to be a = 21.5 {+-} 5.8 Gy, b = 1.75 {+-} 0.99 d{sup -1}, and c = -0.98 {+-} 0.14, respectively. The coefficient of determination r{sup 2} for the fit is 0.90 with an F-value of 174.7. Dose estimated in this manner is intended to serve only as a first approximation to guide initial medical-management. The treatment regimen may then be modified as needed after more exact dosimetry has become available.

  13. Avoiding OHSS: Controlled Ovarian Low-Dose Stimulation in Women with PCOS

    PubMed Central

    Fischer, D.; Reisenbüchler, C.; Rösner, S.; Haussmann, J.; Wimberger, P.; Goeckenjan, M.

    2016-01-01

    The polycystic ovary syndrome is a common endocrine disorder which influences outcome and potential risks involved with controlled ovarian stimulation for artificial reproductive techniques (ART). Concrete practical recommendations for the dosage of gonadotropins, the preferred protocol and preventive methods to avoid ovarian hyperstimulation syndrome (OHSS) are lacking. We present retrospective data of 235 individually calculated gonadotropin low-dose stimulations for ART in a single center from 2012 to 2014. Clinical data and outcome parameter of patients diagnosed with PCOS according to Rotterdam criteria (n = 39) were compared with patients without PCOS (n = 196). The starting dose of gonadotropins was individually calculated depending on patientsʼ age, BMI, ovarian reserve, ovarian response in previous cycles, and diagnostic criteria of PCOS. Mean age and duration of infertility did not differ between the groups, whereas mean BMI (p = 0.007) and AMH (p < 0.001) were higher in the PCOS-group. A lower mean FSH-starting and maximum dose was administered to women with PCOS (p < 0.001). The biochemical pregnancy rate of 42.4 % and the clinical pregnancy rate of 32.2 % for PCOS-patients did not differ from those of the control group (42.2 % and 34.4 % respectively). Neither mild, nor moderate or severe manifestation of OHSS occurred significantly more often in patients with PCOS. Our study supports the use of a calculated low-dose FSH-stimulation strategy in ART for patients with PCOS. Further randomized clinical trials should confirm this strategy and lead to define individual risk factors for OHSS, which can be used for recommendation of safer ART-techniques like in vitro maturation. PMID:27365543

  14. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  15. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  16. Dosimetric study and in-vivo dose verification for conformal avoidance treatment of anal adenocarcinoma using helical tomotherapy

    SciTech Connect

    Han Chunhui . E-mail: chan@coh.org; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2007-04-01

    This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurements were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.

  17. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  18. Clinically Relevant Doses of Enalapril Mitigate Multiple Organ Radiation Injury.

    PubMed

    Cohen, Eric P; Fish, Brian L; Moulder, John E

    2016-03-01

    Angiotensin-converting enzyme inhibitors (ACEi) are effective mitigators of radiation nephropathy. To date, their experimental use has been in fixed-dose regimens. In clinical use, doses of ACEi and other medication may be escalated to achieve greater benefit. We therefore used a rodent model to test the ACEi enalapril as a mitigator of radiation injury in an escalating-dose regimen. Single-fraction partial-body irradiation (PBI) with one hind limb out of the radiation field was used to model accidental or belligerent radiation exposures. PBI doses of 12.5, 12.75 and 13 Gy were used to establish multi-organ injury. One third of the rats underwent PBI alone, and two thirds of the rats had enalapril started five days after PBI at a dose of 30 mg/l in the drinking water. When there was established azotemic renal injury enalapril was escalated to a 60 mg/l dose in half of the animals and then later to a 120 mg/l dose. Irradiated rats on enalapril had significant mitigation of combined pulmonary and renal morbidity and had significantly less azotemia. Dose escalation of enalapril did not significantly improve outcomes compared to fixed-dose enalapril. The current data support use of the ACEi enalapril at a fixed and clinically usable dose to mitigate radiation injury after partial-body radiation exposure. PMID:26934483

  19. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    NASA Astrophysics Data System (ADS)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  20. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  1. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  2. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  3. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  4. Occupational radiation doses to operators performing cardiac catheterization procedures.

    PubMed

    Kim, Kwang Pyo; Miller, Donald L; Balter, Stephen; Kleinerman, Ruth A; Linet, Martha S; Kwon, Deukwoo; Simon, Steven L

    2008-03-01

    Cardiac catheterization procedures using fluoroscopy reduce patient morbidity and mortality compared to operative procedures. These diagnostic and therapeutic procedures require radiation exposure to patients and physicians. The objectives of the present investigation were to provide a systematic comprehensive summary of the reported radiation doses received by operators due to diagnostic or interventional fluoroscopically-guided procedures, to identify the primary factors influencing operator radiation dose, and to evaluate whether there have been temporal changes in the radiation doses received by operators performing these procedures. Using PubMed, we identified all English-language journal articles and other published data reporting radiation exposures to operators from diagnostic or interventional fluoroscopically-guided cardiovascular procedures from the early 1970's through the present. We abstracted the reported radiation doses, dose measurement methods, fluoroscopy system used, operational features, radiation protection features, and other relevant data. We calculated effective doses to operators in each study to facilitate comparisons. The effective doses ranged from 0.02-38.0 microSv for DC (diagnostic catheterizations), 0.17-31.2 microSv for PCI (percutaneous coronary interventions), 0.24-9.6 microSv for ablations, and 0.29-17.4 microSv for pacemaker or intracardiac defibrillator implantations. The ratios of doses between various anatomic sites and the thyroid, measured over protective shields, were 0.9 +/- 1.0 for the eye, 1.0 +/- 1.5 for the trunk, and 1.3 +/- 2.0 for the hand. Generally, radiation dose is higher on the left side of an operator's body, because the operator's left side is closer to the primary beam when standing at the patient's right side. Modest operator dose reductions over time were observed for DC and ablation, primarily due to reduction in patient doses due to decreased fluoroscopy/cineradiography time and dose rate by technology

  5. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies. PMID:26943164

  6. Radiation dose estimates for copper-64 citrate in man

    SciTech Connect

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs.

  7. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  8. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  9. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  10. The Measurement of Radiation Dose in SJ-10 satellite

    NASA Astrophysics Data System (ADS)

    Shenyi, Zhang

    SJ-10 scientific satellite will be launched after a few years in china. The SJ-10 satellite is a recoverable satellite researching for materials and life science. Orbit altitude of 600 km circular orbit with an inclination of 63 " Space Radiation Biology Researching " is a sub-project in SJ-10 satellite, which will research the relation between the biological effect and space particle's radiation. The project include the biological materials for biological effect researching and "The Detector of Space Radiation Biology " for measurement the dose in the space. In SJ-10 satellite's orbit, The source of the particle radiation is from earth radiation-belt and galaxy cosmic ray . The propose of "The Detector of space radiation biology " is monitor the particle radiation, service to the scientific analysis. The instrument include the semiconductor particle radiation monitoring package and Tissue-equivalent particle radiation monitoring package. The semiconductor particle radiation monitoring package is used to detect the flux of the protons, electrons and heavy ions, also the linear energy transfer(LET) in the silicon material. The element composition of Tissue-equivalent particle radiation monitoring package is similar to the biology issue. It can measure the space particles in biological materials, the value of the LET, dose, dose equivalent, and more Keywords: SJ-10 satellites; radiation biological effects; semiconductor particle radiation moni-toring package; Tissue-equivalent particle radiation monitoring package

  11. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  12. Low-dose radiation: a cause of breast cancer

    SciTech Connect

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.

  13. Commentary 2 to Cox and Little: radiation-induced oncogenic transformation: the interplay between dose, dose protraction, and radiation quality

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Hall, E. J.

    1992-01-01

    There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.

  14. Do changes in biomarkers from space radiation reflect dose or risk?

    NASA Astrophysics Data System (ADS)

    Brooks, A.

    . Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.

  15. Space radiation protection: comparison of effective dose to bone marrow dose equivalent.

    PubMed

    Hoff, Jennifer L; Townsend, Lawrence W; Zapp, E Neal

    2002-12-01

    In many instances, bone marrow dose equivalents averaged over the entire body have been used as a surrogate for whole-body dose equivalents in space radiation protection studies. However, career radiation limits for space missions are expressed as effective doses. This study compares calculations of effective doses to average bone marrow dose equivalents for several large solar particle events (SPEs) and annual galactic cosmic ray (GCR) spectra, in order to examine the suitability of substituting bone marrow dose equivalents for effective doses. Organ dose equivalents are computed for all radiosensitive organs listed in NCRP Report 116 using the BRYNTRN and HZETRN space radiation transport codes and the Computerized Anatomical Man (CAM) model. These organ dose equivalents are then weighted with the appropriate tissue weighting factors to obtain effective doses. Various thicknesses of aluminum shielding, which are representative of nominal spacecraft and SPE storm shelter configurations, are used in the analyses. For all SPE configurations, the average bone marrow dose equivalent is considerably less than the calculated effective dose. For comparisons of the GCR, there is less than a ten percent difference between the two methods. In all cases, the gonads made up the largest percentage of the effective dose. PMID:12793744

  16. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  17. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  18. Radiation dose reduction in computed tomography: techniques and future perspective

    PubMed Central

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2011-01-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169

  19. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  20. [Low-dose radiation effects and intracellular signaling pathways].

    PubMed

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2006-10-01

    Accumulated evidence has shown that exposure to low-dose radiation, especially doses less than 0.1 Gy, induces observable effects on mammalian cells. However, the underlying molecular mechanisms have not yet been clarified. Recently, it has been shown that low-dose radiation stimulates growth factor receptor, which results in a sequential activation of the mitogen-activated protein kinase pathway. In addition to the activation of the membrane-bound pathways, it is becoming evident that nuclear pathways are also activated by low-dose radiation. Ionizing radiation has detrimental effects on chromatin structure, since radiation-induced DNA double-strand breaks result in discontinuity of nucleosomes. Recently, it has been shown that ATM protein, the product of the ATM gene mutated in ataxia-telangiectasia, recognizes alteration in the chromatin structure, and it is activated through intermolecular autophosphorylation at serine 1981. Using antibodies against phosphorylated ATM, we found that the activated and phosphorylated ATM protein is detected as discrete foci in the nucleus between doses of 10 mGy and 1 Gy. Interestingly, the size of the foci induced by low-dose radiation was equivalent to the foci induced by high-dose radiation. These results indicate that the initial signal is amplified through foci growth, and cells evolve a system by which they can respond to a small number of DNA double-strand breaks. From these results, it can be concluded that low-dose radiation is sensed both in the membrane and in the nucleus, and activation of multiple signal transduction pathways could be involved in manifestations of low-dose effects. PMID:17016017

  1. Radiation doses in chest, abdomen and pelvis CT procedures.

    PubMed

    Manssor, E; Abuderman, A; Osman, S; Alenezi, S B; Almehemeid, S; Babikir, E; Alkhorayef, M; Sulieman, A

    2015-07-01

    Computed tomography (CT) scanning is recognised as a high-radiation dose modality and estimated to be 17 % of the radiological procedure and responsible for 70 % of medical radiation exposure. Although diagnostic X rays provide great benefits, their use involves some risk for developing cancer. The objectives of this study are to estimate radiation doses during chest, abdomen and pelvis CT. A total of 51 patients were examined for the evaluation of metastasis of a diagnosed primary tumour during 4 months. A calibrated CT machine from Siemens 64 slice was used. The mean age was 48.0 ± 18.6 y. The mean patient weight was 73.8 ± 16.1 kg. The mean dose-length product was 1493.8 ± 392.1 mGy cm, Volume CT dose index (CTDI vol) was 22.94 ± 5.64 mGy and the mean effective dose was 22.4 ± 5.9 mSv per procedure. The radiation dose per procedure was higher as compared with previous studies. Therefore, the optimisation of patient's radiation doses is required in order to reduce the radiation risk. PMID:25852181

  2. Kinetics of avoidance of simulated solar uv radiation by two arthropods

    SciTech Connect

    Barcelo, J.A.; Calkins, J.

    1980-12-01

    There is an increasing likelihood that the solar uv-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar uv-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar uv-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar uv-B. We have investigated the dynamics of biological reactions to simulated solar uv-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar uv-B effects, even organisms which specifically reduce their uv-B exposure would encounter additional stress if ozone depletion does occur.

  3. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  4. Galactic cosmic radiation doses to astronauts outside the magnetosphere

    SciTech Connect

    Letaw, J.R.

    1987-12-06

    The dose and dose equivalent from galactic cosmic radiation outside the magnetosphere were computed. The principal radiation components considered include primary cosmic rays, spallation fragments of the heavy ions, and secondary products (protons, neutrons, alphas, and recoil nuclei) from interactions in tissue. Three mission environments were considered: free space, the lunar surface, and the martian surface. The annual dose equivalents to the blood-forming organs in these environments are approximately 500 mSv, 250 mSv, and 120 mSv, respectively (1 mSv = 0.1 rem). The dose on the lunar surface is one-half of free space because there is only a single hemisphere of exposure. The dose on the martian surface is half again the dose on the moon because of the shielding provided by a thin, carbon dioxide atmosphere. Dose versus aluminum shielding thickness functions have been computed for the free space exposure. Galactic cosmic radiation is energetic and highly penetrating. 30 cm of aluminum shielding reduces the dose equivalent 25% to 40% (depending on the phase of the solar cycle). Aiming for conformity with the draft NCRP annual dose limit for space station crew members, which is 500 mSv/yr, we recommend 7.5 cm of aluminum shielding in all habitable areas of spacecraft designed for long-duration missions outside Earth's magnetosphere. This shielding thickness reduces the galactic cosmic ray dose and diminishes the risk to astronauts from energetic particle events.

  5. TU-F-12A-04: Differential Radiation Avoidance of Functional Liver Regions Defined by 99mTc-Sulfur Colloid SPECT/CT with Proton Therapy

    SciTech Connect

    Bowen, S; Miyaoka, R; Kinahan, P; Sandison, G; Vesselle, H; Nyflot, M; Apisarnthanarax, S; Saini, J; Wong, T

    2014-06-15

    Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined by liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton

  6. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  7. Radiation dose modeling using IGRIP and Deneb/ERGO

    SciTech Connect

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-12-31

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

  8. Radiation dose to the lens and cataract formation

    SciTech Connect

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M. )

    1993-04-02

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab.

  9. Fetal radiation dose in computed tomography.

    PubMed

    Kelaranta, Anna; Kaasalainen, Touko; Seuri, Raija; Toroi, Paula; Kortesniemi, Mika

    2015-07-01

    The connection between recorded volumetric CT dose index (CTDI vol) and determined mean fetal dose (Df) was examined from metal-oxide-semiconductor field-effect transistor dose measurements on an anthropomorphic female phantom in four stages of pregnancy in a 64-slice CT scanner. Automated tube current modulation kept the mean Df fairly constant through all pregnancy stages in trauma (4.4-4.9 mGy) and abdomino-pelvic (2.1-2.4 mGy) protocols. In pulmonary angiography protocol, the mean Df increased exponentially as the distance from the end of the scan range decreased (0.01-0.09 mGy). For trauma protocol, the relative mean Df as a function of gestational age were in the range 0.80-0.97 compared with the mean CTDI vol. For abdomino-pelvic protocol, the relative mean Df was 0.57-0.79 and for pulmonary angiography protocol, 0.01-0.05 compared with the mean CTDI vol, respectively. In conclusion, if the fetus is in the primary beam, the CTDI vol can be used as an upper estimate of the fetal dose. If the fetus is not in the primary beam, the fetal dose can be estimated by considering also the distance of the fetus from the scan range. PMID:25836690

  10. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  11. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  12. Malignant melanoma of the tongue following low-dose radiation

    SciTech Connect

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  13. Treatment planning and dose calculation in radiation ecology

    SciTech Connect

    Bentel, G.C.; Nelson, C.E.; Noell, K.T.

    1989-01-01

    This book focuses on treatment planning of cancer therapy. The following topics are discussed: elements of clinical radiation oncology; radiation physics; dose calculation for external beams; pretreatment procedures; brachytherapy; principles of external beam treatment planning; practical treatment planning; and normal tissue consequences. Eight chapters have been processed separately for inclusion in the appropriate data bases.

  14. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  15. Individual and collective doses from cosmic radiation in Ireland.

    PubMed

    Colgan, P A; Synnott, H; Fenton, D

    2007-01-01

    This paper assesses the individual and collective doses in Ireland due to cosmic radiation. Information on the exposure to cosmic radiation at ground level is reviewed and published data on the frequency of routes flown by Irish residents is used to calculate the dose due to air travel. Occupational exposure of aircrew is also evaluated. Experimental data on cosmic radiation exposure at ground level is in good agreement with international estimates and the average individual dose is calculated as 300 microSv annually. Published data on international air travel by Irish residents shows a 50% increase in the number of flights taken between 2001 and 2005. This increase is primarily on short-haul flights to Europe, but there have been significant percentage increases in all long-haul flights, with the exception of flights to Africa. The additional per capita dose due to air travel is estimated to be 45 muSv, of which 51% is accumulated on European routes and 34% on routes to the United States. Exposure of aircrew to cosmic radiation is now controlled by legislation and all airlines holding an Air Operator's Certificate issued by the Irish Aviation Authority are required to report annually the doses received by their employees in the previous year. There has been a 75% increase in the number of aircrew receiving doses >1 mSv since 2002. In 2004 and 2005 the average individual doses received by Irish aircrew were 1.8 and 2.0, mSv, respectively. The corresponding per caput dose for the entire population is <3 muSv. While this is low compared with the per caput doses from other sources of cosmic radiation, aircrew exposure represents a higher collective dose than any other identified group of exposed workers in Ireland. PMID:17223639

  16. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  17. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  18. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21). PMID:24378501

  19. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. PMID:21040869

  20. Effective UV radiation dose in polyethylene exposed to weather

    NASA Astrophysics Data System (ADS)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  1. Status of eye lens radiation dose monitoring in European hospitals.

    PubMed

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. PMID:25222935

  2. Investigation of radiation doses in open space using TLD detectors.

    PubMed

    Reitz, G; Facius, R; Bilski, P; Olko, P

    2002-01-01

    The low energy component of the cosmic radiation field is strongly modified by the shielding of the spacecraft and it is time and location dependent. Thermoluminescent lithium fluoride detectors have been applied to determine the radiation doses inside the ESA-Facility BIOPAN. The BIOPAN facility was mounted outside and launched on a Foton spacecraft and opened to space to allow exposure of several experiments to open space. Standard TLD-600. TLD-700 chips, two layers MTS-Ns sintered pellets with different effective thickness of the sensitive layer and MTS-N of different thickness have been exposed with different shielding thicknesses in front of them. The measured TL signal in the 0.1 mm thick detector just shielded by an aluminised Kapton foil of 25 microm thickness in front yielded a dose of 29.8 Gy (calibrated with 137Cs gamma rays) for an exposure time of 12.7 days: after 2.5 g.cm(-2) shielding the doses dropped to 3 mGy. The monitoring of radiation doses and its depth dose distribution outside the spacecraft are of great interest for radiation protection of astronauts working in open space. The knowledge of depth-dose distribution is a prerequisite to determine the organ doses an astronaut will receive during an extravehicular activity (EVA). The BIOPAN experiments are to be continued in the future. PMID:12382937

  3. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    SciTech Connect

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  4. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  5. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  6. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  7. Overview of ICRP Committee 2: doses from radiation exposure.

    PubMed

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  8. Peripheral Doses from Noncoplanar IMRT for Pediatric Radiation Therapy

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Kwong, Dora L.W.; Wong, Wicger; Lam, Nelson

    2010-01-01

    The use of noncoplanar intensity-modulated radiation therapy (IMRT) might result in better sparing of some critical organs because of a higher degree of freedom in beam angle optimization. However, this can lead to a potential increase in peripheral dose compared with coplanar IMRT. The peripheral dose from noncoplanar IMRT has not been previously quantified. This study examines the peripheral dose from noncoplanar IMRT compared with coplanar IMRT for pediatric radiation therapy. Five cases with different pediatric malignancies in head and neck were planned with both coplanar and noncoplanar IMRT techniques. The plans were performed such that the tumor coverage, conformality, and dose uniformity were comparable for both techniques. To measure the peripheral doses of the 2 techniques, thermoluminescent dosimeters (TLD) were placed in 10 different organs of a 5-year-old pediatric anthropomorphic phantom. With the use of noncoplanar beams, the peripheral doses to the spinal cord, bone marrow, lung, and breast were found to be 1.8-2.5 times of those using the coplanar technique. This is mainly because of the additional internal scatter dose from the noncoplanar beams. Although the use of noncoplanar technique can result in better sparing of certain organs such as the optic nerves, lens, or inner ears depending on how the beam angles were optimized on each patient, oncologists should be alert of the possibility of significantly increasing the peripheral doses to certain radiation-sensitive organs such as bone marrow and breast. This might increase the secondary cancer risk to patients at young age.

  9. Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Hu, Shaowen

    2016-10-01

    In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios. PMID:27575346

  10. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  11. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    SciTech Connect

    Kageji, Teruyoshi . E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-08-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively.

  12. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  13. Capture and analysis of radiation dose reports for radiology.

    PubMed

    Midgley, S M

    2014-12-01

    Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy. PMID:25315104

  14. Radiation dose reconstruction for epidemiologic uses. Final report

    SciTech Connect

    1995-05-12

    The report presents specific and practical recommendations for whether, when, and how dose-reconstruction studies should be conducted, with an emphasis on public participation. The book provides an overview of the basic requirements and technical aspects of dose reconstruction; presents lessons to be learned from dose reconstructions after Chernobyl, Three Mile Island, and elsewhere; explores the potential benefits and limitations of using current available biological markers; discusses how to establish the source term determining what was released; explores methods for identifying the environmental pathways by which radiation reaches the body; offers details on three major categories of dose assessment; and examines priority-setting and strengths and limitations of epidemiological studies.

  15. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  16. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Antunes, Ricardo N; Wensveen, Paul J; Samarra, Filipa I P; Alves, Ana Catarina; Tyack, Peter L; Kvadsheim, Petter H; Kleivane, Lars; Lam, Frans-Peter A; Ainslie, Michael A; Thomas, Len

    2014-02-01

    Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 μPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales. PMID:25234905

  17. The 3D Radiation Dose Analysis For Satellite

    NASA Astrophysics Data System (ADS)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  18. Low radiation doses; are they harmful in infancy?

    PubMed

    Asteriadis, Ioannis

    2004-01-01

    Adults usually ask their physician about the kind of treatment they will be given and especially whether ionizing radiation applied for therapeutic purposes is harmful. When these treatments are applied to children and especially to infants of <18 months of age, parents should be more reluctant to give their consent for such a treatment. A paper under the title "Effect of low doses of ionizing radiation in infancy on cognitive function in adulthood: Swedish population based cohort study" written by Hall P, Adami HO, Trichopoulos D, et al. and published in the British Journal of Medicine 2004, 328:19-21 presents new and important data referring to 3094 males who at an age of <18 months had undergone radiation treatment for haemangiomas of the head and other dermatological lesions. The doses they received in their brain were from 20 mGy to > 250 mGy. Findings were exciting. 17%-32% of these infants did not attend highschool lessons. Many failed to pass tests related to cognitive tests for learning ability or logical reasoning. On the contrary spatial recognition was intact. As the authors state it is important to know that a cranial tomography examination administers to the brain of infants about 120 mGy. These doses are relevant to the doses tested above and found harmful. More radiation protection studies about the possible harmful effects on humans who receive doses of radiation for diagnostic and/or therapeutic purposes, are necessary. PMID:16868634

  19. Reducing ionizing radiation doses during cardiac interventions in pregnant women

    PubMed Central

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-01-01

    Background There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Methods Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. Results The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48–13.7), the median radiation dose was 66 (8.9–1501) Gy/cm2. The median radiation dose to uterus was 1.92 (0.59–5.47) μGy, and the patient estimated dose was 0.24 (0.095–0.80) mSv. Conclusions Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  20. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    PubMed Central

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  1. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  2. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  3. Metaphase chromosome aberrations as markers of radiation exposure and dose

    SciTech Connect

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ``paints`` to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with {sup 144}Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to {sup 60}Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  4. Metaphase chromosome aberrations as markers of radiation exposure and dose

    SciTech Connect

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with [sup 144]Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to [sup 60]Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  5. Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee

    2011-01-01

    The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission

  6. Radiation dose to personnel during percutaneous renal calculus removal

    SciTech Connect

    Bush, W.H.; Jones, D.; Brannen, G.E.

    1985-12-01

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel.

  7. Review of standards for limitation of radiation dose to radiation workers and members of the public

    SciTech Connect

    Kocher, D.C.

    1992-01-01

    Topics covered in the review include: current radiation protection standards for workers; current radiation protection standards for the routine exposures of the public; environmental radiation standards for specific practices or sources; protective action guides for accidental releases of radioactivity to the environment; de minimis dose, exempt levels of radioactivity, and below regulatory concern.

  8. Review of standards for limitation of radiation dose to radiation workers and members of the public

    SciTech Connect

    Kocher, D.C.

    1992-07-01

    Topics covered in the review include: current radiation protection standards for workers; current radiation protection standards for the routine exposures of the public; environmental radiation standards for specific practices or sources; protective action guides for accidental releases of radioactivity to the environment; de minimis dose, exempt levels of radioactivity, and below regulatory concern.

  9. Radiation dose to physicians’ eye lens during interventional radiology

    NASA Astrophysics Data System (ADS)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  10. Assessment of radiation doses downwind of the Nevada Test Site

    SciTech Connect

    Anspaugh, L.R.; Church, B.W.

    1983-11-01

    The Department of Energy's Off-Site Radiation Exposure Review Project has the goal of reconstructing both individual and population doses via all pathways including the ingestion and inhalation of radionuclides. As this is a reconstruction and not a prediction for safety purposes, the desired output is the best estimate of radiation dose with an appropriate expression of uncertainty. For the 80 events of interest, the data consistently available are external ..gamma.. exposure-rate measurements, measurements of airborne gross ..beta.. activity, and measurements of fission yield and of activation products created in the device environment. For most organs, the external ..gamma.. dose is much greater than the dose from ingestion which, in turn, is much greater than the dose from inhalation. The gastrointestinal tract may receive as large a dose from ingestion as from external exposure, depending upon dietary habits. The dose to the thyroid gland is usually dominated by ingestion and the dose from inhalation can be nearly as large as that from external exposure. Several example calculations are presented for specific individuals.

  11. Radiation dose study in nuclear medicine using GATE

    NASA Astrophysics Data System (ADS)

    Aguwa, Kasarachi

    Dose as a result of radiation exposure is the notion generally used to disclose the imparted energy in a volume of tissue to a potential biological effect. The basic unit defined by the international system of units (SI system) is the radiation absorbed dose, which is expressed as the mean imparted energy in a mass element of the tissue known as "gray" (Gy) or J/kg. The procedure for ascertaining the absorbed dose is complicated since it involves the radiation transport of numerous types of charged particles and coupled photon interactions. The most precise method is to perform a full 3D Monte Carlo simulation of the radiation transport. There are various Monte Carlo toolkits that have tool compartments for dose calculations and measurements. The dose studies in this thesis were performed using the GEANT4 Application for Emission Tomography (GATE) software (Jan et al., 2011) GATE simulation toolkit has been used extensively in the medical imaging community, due to the fact that it uses the full capabilities of GEANT4. It also utilizes an easy to-learn GATE macro language, which is more accessible than learning the GEANT4/C++ programming language. This work combines GATE with digital phantoms generated using the NCAT (NURBS-based cardiac-torso phantom) toolkit (Segars et al., 2004) to allow efficient and effective estimation of 3D radiation dose maps. The GATE simulation tool has developed into a beneficial tool for Monte Carlo simulations involving both radiotherapy and imaging experiments. This work will present an overview of absorbed dose of common radionuclides used in nuclear medicine and serve as a guide to a user who is setting up a GATE simulation for a PET and SPECT study.

  12. Overview of ICRP Committee 2 'Doses from Radiation Exposure'.

    PubMed

    Harrison, J

    2015-06-01

    Over many years, Committee 2 of the International Commission on Radiological Protection (ICRP) has provided sets of dose coefficients to allow users to evaluate equivalent and effective doses for intakes of radionuclides or exposure to external radiation for comparison with dose limits, constraints, and reference levels as recommended by ICRP. Following the 2007 Recommendations, Committee 2 and its task groups are engaged in a substantial programme of work to provide new dose coefficients for various conditions of radiation exposure. The methodology being applied in the calculation of doses can be regarded as state-of-the-art in terms of the biokinetic models used to describe the behaviour of inhaled and ingested radionuclides, and the dosimetric models used to model radiation transport for external and internal exposures. The level of sophistication of these models is greater than required for calculation of the protection quantities with their inherent simplifications and approximations, which were introduced necessarily, for example by the use of radiation and tissue weighting factors. However, ICRP is at the forefront of developments in this area, and its models are used for scientific as well as protection purposes. This overview provides an outline of recent work and future plans, including publications on dose coefficients for adults, children, and in-utero exposures, with new dosimetric phantoms in each case. The Committee has also recently finished a report on radiation exposures of astronauts in space, and is working with members of the other ICRP committees on the development of advice on the use of effective dose. PMID:25816256

  13. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    SciTech Connect

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A.

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  14. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    SciTech Connect

    Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  15. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  16. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  17. Radiation Dose and Safety in Cardiac Computed Tomography

    PubMed Central

    Gerber, Thomas C; Kantor, Birgit; McCollough, Cynthia H.

    2009-01-01

    Synopsis As a result of the changes in utilization of imaging procedures that rely on ionizing radiation, the collective dose has increased by over 700% and the annual per-capita dose, by almost 600% over recent years. It is certainly possible that this growing use may have significant effects on public health. Although there are uncertainties related to the accuracy of calculated radiation exposure and the estimated biologic risk, there are measures that can be taken to reduce any potential risks while maintaining diagnostic accuracy. This article will review the existing data regarding biological hazards of radiation exposure associated to medical diagnostic testing, the methodology used to estimate radiation exposure and the measures that can be taken to effectively reduce it. PMID:19766923

  18. Study of UV radiation dose received by the Spanish population.

    PubMed

    Gurrea, Gonzalo; Cañada, Javier

    2007-01-01

    Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year. PMID:18028210

  19. A New Era of Low-Dose Radiation Epidemiology.

    PubMed

    Kitahara, Cari M; Linet, Martha S; Rajaraman, Preetha; Ntowe, Estelle; Berrington de González, Amy

    2015-09-01

    The last decade has introduced a new era of epidemiologic studies of low-dose radiation facilitated by electronic record linkage and pooling of cohorts that allow for more direct and powerful assessments of cancer and other stochastic effects at doses below 100 mGy. Such studies have provided additional evidence regarding the risks of cancer, particularly leukemia, associated with lower-dose radiation exposures from medical, environmental, and occupational radiation sources, and have questioned the previous findings with regard to possible thresholds for cardiovascular disease and cataracts. Integrated analysis of next generation genomic and epigenetic sequencing of germline and somatic tissues could soon propel our understanding further regarding disease risk thresholds, radiosensitivity of population subgroups and individuals, and the mechanisms of radiation carcinogenesis. These advances in low-dose radiation epidemiology are critical to our understanding of chronic disease risks from the burgeoning use of newer and emerging medical imaging technologies, and the continued potential threat of nuclear power plant accidents or other radiological emergencies. PMID:26231501

  20. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  1. Obstructive urination problems after high-dose-rate brachytherapy boost treatment for prostate cancer are avoidable

    PubMed Central

    Kragelj, Borut

    2016-01-01

    Background Aiming at improving treatment individualization in patients with prostate cancer treated with combination of external beam radiotherapy and high-dose-rate brachytherapy to boost the dose to prostate (HDRB-B), the objective was to evaluate factors that have potential impact on obstructive urination problems (OUP) after HDRB-B. Patients and methods In the follow-up study 88 patients consecutively treated with HDRB-B at the Institute of Oncology Ljubljana in the period 2006-2011 were included. The observed outcome was deterioration of OUP (DOUP) during the follow-up period longer than 1 year. Univariate and multivariate relationship analysis between DOUP and potential risk factors (treatment factors, patients’ characteristics) was carried out by using binary logistic regression. ROC curve was constructed on predicted values and the area under the curve (AUC) calculated to assess the performance of the multivariate model. Results Analysis was carried out on 71 patients who completed 3 years of follow-up. DOUP was noted in 13/71 (18.3%) of them. The results of multivariate analysis showed statistically significant relationship between DOUP and anti-coagulation treatment (OR 4.86, 95% C.I. limits: 1.21-19.61, p = 0.026). Also minimal dose received by 90% of the urethra volume was close to statistical significance (OR = 1.23; 95% C.I. limits: 0.98-1.07, p = 0.099). The value of AUC was 0.755. Conclusions The study emphasized the relationship between DOUP and anticoagulation treatment, and suggested the multivariate model with fair predictive performance. This model potentially enables a reduction of DOUP after HDRB-B. It supports the belief that further research should be focused on urethral sphincter as a critical structure for OUP. PMID:27069455

  2. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. [Calculation of the dose of low-intensity laser radiation: the need or the harm?].

    PubMed

    Moskvin, S V

    2012-01-01

    This study showed that it is highly undesirable to equip the devices for laser therapy with the dose-calculation function. In order to avoid mistakes, the operator should perform a strict sequence of actions as follows: to choose the needed wavelength and operating regime (the laser head block) of the LILR source, to set and measure the radiation power, the time and frequency of treatment, turn on the apparatus, control its operation and switch it off at the scheduled time. Meeting all these requirements eventually ensures obtaining a certain optimal dose density and guarantees that the entire procedure of laser irradiation is performed in a proper way. The equipment of the apparatus with the dose-calculation function is nothing more than a marketing ploy intended to earn extra money that apart from everything else creates additional problems for the customer. PMID:23373298

  5. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  6. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  7. National Survey of Radiation Doses of Pediatric Chest Radiography in Korea: Analysis of the Factors Affecting Radiation Doses

    PubMed Central

    Kim, Bo Hyun; Goo, Hyun Woo; Yang, Dong Hyun; Oh, Sang Young; Kim, Hyeog Ju; Lee, Kwang Yong; Lee, Jung Eun

    2012-01-01

    Objective To investigate radiation doses in pediatric chest radiography in a national survey and to analyze the factors that affect radiation doses. Materials and Methods The study was based on the results of 149 chest radiography machines in 135 hospitals nationwide. For each machine, a chest radiograph was obtained by using a phantom representing a 5-year-old child (ATOM® dosimetry phantom, model 705-D, CIRS, Norfolk, VA, USA) with each hospital's own protocol. Five glass dosimeters (M-GD352M, Asahi Techno Glass Corporation, Shizuoka, Japan) were horizontally installed at the center of the phantom to measure the dose. Other factors including machine's radiography system, presence of dedicated pediatric radiography machine, presence of an attending pediatric radiologist, and the use of automatic exposure control (AEC) were also evaluated. Results The average protocol for pediatric chest radiography examination in Korea was 94.9 peak kilovoltage and 4.30 milliampere second. The mean entrance surface dose (ESD) during a single examination was 140.4 microgray (µGy). The third quartile, median, minimum and maximum value of ESD were 160.8 µGy, 93.4 µGy, 18.8 µGy, and 2334.6 µGy, respectively. There was no significant dose difference between digital and non-digital radiography systems. The use of AEC significantly reduced radiation doses of pediatric chest radiographs (p < 0.001). Conclusion Our nationwide survey shows that the third quartile, median, and mean ESD for pediatric chest radiograph is 160.8 µGy, 93.4 µGy, and 140.4 µGy, respectively. No significant dose difference is noticed between digital and non-digital radiography systems, and the use of AEC helps significantly reduce radiation doses. PMID:22977329

  8. Oxycodone IV?; Eliminate Teaspoonfuls; Avoid Vitamin D Products Dosed and Measured in Drops.

    PubMed

    Cohen, Michael R; Smetzer, Judy L

    2015-10-01

    These medication errors have occurred in health care facilities at least once. They will happen again-perhaps where you work. Through education and alertness of personnel and procedural safeguards, they can be avoided. You should consider publishing accounts of errors in your newsletters and/or presenting them at your inservice training programs. Your assistance is required to continue this feature. The reports described here were received through the Institute for Safe Medication Practices (ISMP) Medication Errors Reporting Program. Any reports published by ISMP will be anonymous. Comments are also invited; the writers' names will be published if desired. ISMP may be contacted at the address shown below. Errors, close calls, or hazardous conditions may be reported directly to ISMP through the ISMP Web site (www.ismp.org), by calling 800-FAIL-SAFE, or via e-mail at ismpinfo@ismp.org. ISMP guarantees the confidentiality and security of the information received and respects reporters' wishes as to the level of detail included in publications. PMID:26912913

  9. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  10. Pathology effects at radiation doses below those causing increased mortality

    NASA Technical Reports Server (NTRS)

    Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas

    2002-01-01

    Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.

  11. Global forecast model to predict the daily dose of the solar erythemally effective UV radiation.

    PubMed

    Schmalwieser, Alois W; Schauberger, Günther; Janouch, Michal; Nunez, Manuel; Koskela, Tapani; Berger, Daniel; Karamanian, Gabriel

    2005-01-01

    A worldwide forecast of the erythemally effective ultraviolet (UV) radiation is presented. The forecast was established to inform the public about the expected amount of erythemally effective UV radiation for the next day. Besides the irradiance, the daily dose is forecasted to enable people to choose the appropriate sun protection tools. Following the UV Index as the measure of global erythemally effective irradiance, the daily dose is expressed in units of UV Index hours. In this study, we have validated the model and the forecast against measurements from broadband UV radiometers of the Robertson-Berger type. The measurements were made at four continents ranging from the northern polar circle (67.4 degrees N) to the Antarctic coast (61.1 degrees S). As additional quality criteria the frequency of underestimation was taken into account because the forecast is a tool of radiation protection and made to avoid overexposure. A value closer than one minimal erythemal dose for the most sensitive skin type 1 to the observed value was counted as hit and greater deviations as underestimation or overestimation. The Austrian forecast model underestimates the daily dose in 3.7% of all cases, whereas 1.7% results from the model and 2.0% from the assumed total ozone content. The hit rate could be found in the order of 40%. PMID:15453822

  12. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem; Cucinotta, Francis A.

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts be-cause organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user-friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations direc-torate (MOD), and space biophysics researchers. Assessment of astronauts' organ doses and ARS from the exposure to historically large SPEs is in support of mission design and opera-tion planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI prod-uct, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  13. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  14. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  15. Monte Carlo dose enhancement studies in microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Prezado, Y.

    2011-07-15

    Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further

  16. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  17. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  18. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere. PMID:11537609

  19. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Uchino, Yoshio; Itami, Makiko; Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa; Hara, Ryusuke

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  20. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  1. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  2. Radiation dose to the embryo/fetus: Draft Regulatory Guide DG-8011

    SciTech Connect

    Not Available

    1992-02-01

    Section 20.1208 of 10 CFR Part 20, ``Standards for Protection Against Radiation,`` requires that each licensee ensure that the dose to an embryo/fetus during the entire pregnancy, from occupational exposure of a declared pregnant woman, does not exceed 0.5 rem (5 mSv). Paragraph 20.1208(b) requires the licensee to make efforts to avoid substantial variation above a uniform monthly exposure rate to a declared pregnant woman that would satisfy the 0.5 rem limit. The dose to the embryo/fetus is to be the sum of (1) the deep-dose equivalent to the declared pregnant woman (10 CFR 10.1208(c)(1)) and (2) the dose to the embryo/fetus from radionuclides in the embryo/fetus and radionuclides in the declared pregnant woman (10 CFR 20.1208(c)(2)). This guide is being developed to provide guidance on calculating the radiation dose to the embryo/fetus.

  3. Radiation dose to the embryo/fetus: Draft Regulatory Guide DG-8011

    SciTech Connect

    Not Available

    1992-02-01

    Section 20.1208 of 10 CFR Part 20, Standards for Protection Against Radiation,'' requires that each licensee ensure that the dose to an embryo/fetus during the entire pregnancy, from occupational exposure of a declared pregnant woman, does not exceed 0.5 rem (5 mSv). Paragraph 20.1208(b) requires the licensee to make efforts to avoid substantial variation above a uniform monthly exposure rate to a declared pregnant woman that would satisfy the 0.5 rem limit. The dose to the embryo/fetus is to be the sum of (1) the deep-dose equivalent to the declared pregnant woman (10 CFR 10.1208(c)(1)) and (2) the dose to the embryo/fetus from radionuclides in the embryo/fetus and radionuclides in the declared pregnant woman (10 CFR 20.1208(c)(2)). This guide is being developed to provide guidance on calculating the radiation dose to the embryo/fetus.

  4. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  5. Radiation dose estimation of patients undergoing lumbar spine radiography

    PubMed Central

    Gyekye, Prince Kwabena; Simon, Adu; Geoffrey, Emi-Reynolds; Johnson, Yeboah; Stephen, Inkoom; Engmann, Cynthia Kaikor; Samuel, Wotorchi-Gordon

    2013-01-01

    Radiation dose to organs of 100 adult patients undergoing lumbar spine (LS) radiography at a University Hospital have been assessed. Free in air kerma measurement using an ionization chamber was used for the patient dosimetry. Organ and effective dose to the patients were estimated using PCXMC (version 1.5) software. The organs that recorded significant dose due to LS radiography were lungs, stomach, liver, adrenals, kidney, pancreas, spleen, galbladder, and the heart. It was observed that the stomach recorded the highest dose (48.2 ± 1.2 μGy) for LS anteroposterior (AP). The spleen also recorded the highest dose (41.2 ± 0.5 μGy) for LS lateral (LAT). The mean entrance surface air kerma (ESAK) of LS LAT (122.2 μGy) was approximately twice that of LS AP (76.3 μGy), but the effective dose for both examinations were approximately the same (LS LAT = 8.6 μSv and LS AP = 10.4 μSv). The overall stochastic health effect of radiation to patients due to LS radiography in the University Hospital is independent of the projection of the examination (AP or LAT). PMID:24672153

  6. The effect of radiation dose on mouse skeletal muscle remodeling

    PubMed Central

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    Background The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Materials and methods. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. Results The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Conclusions Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism. PMID:25177239

  7. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  8. Comparison of precise ionising Radiation Dose Measurements on board Aircraft

    NASA Astrophysics Data System (ADS)

    Lindborg, L.; Beck, P.; Bottollier, J. F.; Roos, H.; Spurny, F.; Wissman, F.

    2003-04-01

    The cosmic radiation makes aircrew one of the most exposed occupational groups. The European Council has therefore in its Directive 96/29Euratom on basic safety standards for radiation protection a particular article (42) for the protection of aircrew. One of the measures to be taken is to assess the exposure of the crew. This is, however, not a trivial task. The radiation consists of many different types of radiation with energies that are hardly met on ground. The knowledge on the dose levels on board aircraft has improved gradually during the last decade as several groups around the world have performed measurements on board civil aircraft in cooperation with airlines. Only occasionally has more than one instrument been able to fly at the same time for practical reasons. The statistical uncertainty in a measurement of the dose equivalent rate is typically ±15 % (1 relative standard deviation) if determined during half an hour. Systematic uncertainties add to this. The dose rate depends on flight altitude, geographic coordinates of the flight, the phase of the solar cycle and the prevailing solar wind. For that reason the possibility to fly on the same flight will eliminate some of the systematic uncertainties that limits an evaluation of the measurement techniques. The proposal aims at measurements on board the aircraft on a geographically limited area for a few hours to decrease the statistical uncertainty of the measurements and thereby get an excellent opportunity to look for possible systematic differences between the different measurement systems. As the dose equivalent rate will be quite well established it will also be possible to compare the measured values with calculated ones. The dose rate increases towards the geomagnetic poles and decreases towards the equator. The composition of the radiation components varies also with altitude. For that reason measurements both at southern latitude and at northern latitude are planned.

  9. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  10. Contribution of maternal radionuclide burdens to prenatal radiation doses

    SciTech Connect

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  11. Optimal Treatment for Intracranial Germinoma: Can We Lower Radiation Dose Without Chemotherapy?

    SciTech Connect

    Yen, Sang-Hue; Chen, Yi-Wei; Huang, Pin-I

    2010-07-15

    Purpose: To review the effectiveness of reduced-dose and restricted-volume radiation-only therapy in the treatment of intracranial germinoma and to assess the feasibility of reducing or eliminating the use of chemotherapy. Methods and Materials: Between January 1996 and March 2007, a retrospective analysis was performed that included 38 patients who received either reduced radiation alone (30 Gy for 26 patients) or reduced radiation with chemotherapy (n = 12 patients). All 38 patients received extended focal (including whole-ventricle) irradiation and were followed up until February 2008. Overall survival (OS) and relapse-free survival (RFS) rates were calculated. Variables associated with survival were evaluated by univariate Cox proportional hazards regression. Results: Median follow-up was 62.4 months (range, 10.1-142.5 months). The total 5-year OS rate was 93.7%. The 5-year OS and RFS rates for patients receiving radiation only were 100% and 96.2%, respectively. The rates for those receiving radiation plus chemotherapy were 83.3 % and 91.7%, respectively (not statistically significant). No predictive factor was significantly associated with the OS or RFS rate. Chemotherapy had no significant effect on survival but was associated with a higher incidence of treatment-related toxicity. Conclusions: A further decrease in the radiation dose to 30 Gy with whole-ventricle irradiation is sufficient to treat selected patients with intracranial germinoma. Wide-field irradiation or chemotherapy should be avoided as these methods are unnecessary. Thus, reduction of the radiation dose to 30 Gy may be feasible, even without chemotherapy.

  12. Detection and selective avoidance of near ultraviolet radiation by an aquatic annelid: the medicinal leech

    PubMed Central

    Jellies, John

    2014-01-01

    Medicinal leeches are aquatic predators that inhabit surface waters during daylight and also leave the water where they might be exposed to less screened light. Whereas the leech visual system has been shown to respond to visible light, leeches in the genus Hirudo do not appear to be as negatively phototactic as one might expect in order to avoid potential ultraviolet radiation (UVR)-induced damage. I used high intensity light emitting diodes to test the hypothesis that leeches could detect and specifically avoid near UVR (395–405 nm). Groups of unfed juvenile leeches exhibited a robust negative phototaxis to UVR, but had no behavioral response to blue or red and only a slight negative phototaxis to green and white light. Individual leeches also exhibited a vigorous negative phototaxis to UVR; responding in 100% of trials compared with modest negative responses to visible light (responding in ~8% of the trials). The responses in fed and unfed leeches were comparable for UVR stimuli. The responses depended upon the stimulus site: leeches shortened away from UV light to the head, and extended away from UV light to the tail. Electrophysiological nerve recordings showed that the cephalic eyes responded vigorously to UVR. Additionally, individual leech photoreceptors also showed strong responses to UVR, and a higher-order neuron associated with shortening and rapid behavioral responses, the S-cell, was activated by UVR, on both the head and tail. These results demonstrate that the leech can detect UVR and is able to discriminate behaviorally between UVR and visible light. PMID:24265432

  13. Radiation doses to staff in a department of nuclear medicine.

    PubMed

    Harbottle, E A; Parker, R P; Davis, R

    1976-07-01

    A survey of data concerning radiation protection of staff working in the Nuclear Medicine Department and associated sections of the Physics Department at the Royal Marsden Hospital (Surrey Branch) is given for the period 1972 to 1975 inclusive. Results of routine film monitoring and whole-body counting are presented. Additional film monitors were used to check working areas, finger doses and any discrepancies between doses to the upper and lower trunk of personnel. In general, exposure to staff in the Nuclear Medicine Department is below 220 mrad per person per year, and below 1,000 mrad per person per year in the Radioisotope Dispensary. The dose received by radiographers is primarily due to spending time close to patients. Since about 5,000 intravenous injections of radionuclides are given each year in our department, the resulting finger doses to the staff involved may give rise to concern unless the task is shared. PMID:824004

  14. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process

    PubMed Central

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    Background: The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. Aim: To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). Materials and Methods: The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of F-18 FDG. The F18-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. Results: The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44±0.22 μSv/injection (3.71±0.48 nSv/MBq), for doctors the dose values were 2.44±0.25 μSv/injection (6.29±0.49 nSv/MBq) and for technologists the doses were 0.61±0.10 μSv/injection (1.58±0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the F18-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). Conclusion: This study confirms that low levels of radiation dose are

  15. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-02-01

    Radiation therapy is one of the important treatment procedures of cancer. The day-to-day delivered dose to the tissue in radiation therapy often deviates from the planned fixed dose per fraction. This day-to-day variation of radiation dose is stochastic. Here, we have developed the mathematical formulation to represent the day-to-day stochastic dose variation effect in radiation therapy. Our analysis shows that that the fixed dose delivery approximation under-estimates the biological effective dose, even if the average delivered dose per fraction is equal to the planned dose per fraction. The magnitude of the under-estimation effect relies upon the day-to-day stochastic dose variation level, the dose fraction size and the values of the radiobiological parameters of the tissue. We have further explored the application of our mathematical formulation for adaptive dose calculation. Our analysis implies that, compared to the premise of the Linear Quadratic Linear (LQL) framework, the Linear Quadratic framework based analytical formulation under-estimates the required dose per fraction necessary to produce the same biological effective dose as originally planned. Our study provides analytical formulation to calculate iso-effect in adaptive radiation therapy considering day-to-day stochastic dose deviation from planned dose and also indicates the potential utility of LQL framework in this context. PMID:26776265

  16. Radiation doses from Hanford site releases to the atmosphere

    SciTech Connect

    Farris, W.T.; Napier, B.A.; Ikenberry, T.A.

    1994-06-01

    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow`s milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65.

  17. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  18. Reduction of the radiation dose for intracranial germinoma: a prospective study.

    PubMed Central

    Shibamoto, Y.; Takahashi, M.; Abe, M.

    1994-01-01

    Intracranial germinoma has usually been treated with radiation doses of 50 Gy or more, but it is unclear whether such doses are actually necessary to cure this radiosensitive tumour. At our institution, the standard radiation dose for intracranial germinoma was 60 Gy in the 1960s, but the dose has prospectively been reduced stepwise to 40-45 Gy. In this paper, the treatment outcome was assessed in 84 patients (47 with histologically confirmed disease and 37 diagnosed clinically in the post-computerised tomography era) enrolled in both prospective and retrospective series. The 5 and 10 years survival rates for all 84 patients were 88% and 83% respectively, and the corresponding relapse-free survival rates were 88% and 85%. The 10-year relapse-free survival rate was 88% for 31 patients receiving 19-47 Gy (median 42 Gy) to the primary tumour, 92% for 28 patients receiving 48-52 Gy (median 50 Gy), and 83% for 25 patients receiving 54-62 Gy (median 60 Gy), and there was no significant difference among the three groups. In-field local recurrence only developed in one patient who received 40 Gy over a protracted period and one patient who received 60 Gy. A tumour size < 3 cm and treatment in the post-computerised tomography era were associated with a better prognosis according to univariate analysis, while age, sex, tumour site, treatment volume, the radiation dose to both the primary and the spinal cord and the extent of surgical resection did not influence the prognosis. In contrast, none of these factors had a significant influence in multivariate analysis. In conclusion, intracranial germinomas < or = 4 cm in size can usually be cured with 40-45 Gy of radiation, thus avoiding the major adverse effects of brain irradiation. PMID:7947108

  19. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere. PMID:24143867

  20. Occupational doses in radiation oncology in Manitoba--1980 to 1986

    SciTech Connect

    Huda, W.; Bews, J.; Sourkes, A.M. )

    1989-10-01

    The province of Manitoba (population of 1.0 million) has two radiotherapy centers employing a number of people, of whom about 60 are exposed to radiation during the course of their work. The individual and collective radiation doses to these workers, as recorded by thermoluminescent dosimeter plaques, were reviewed for the period 1980 to 1986. Whole-body doses to radiotherapy technologists responsible for operating the treatment machines and brachytherapy afterloading procedures ranged from 0.5 to 2.5 mSv y-1, whereas the corresponding doses to nursing staff working on a hospital brachytherapy ward were about 1.0 mSv y-1. The collective occupational dose from radiotherapy in Manitoba was approximately 70 person-mSv. Trends show individual operator and collective doses to be increasing at a higher rate than the number of patients undergoing radiotherapy. Occupational exposure in radiotherapy in this province was found to be comparable to that encountered in nuclear medicine in Manitoba and greater than that in diagnostic radiology.

  1. Biological detection of low radiation doses with integrated photothermal assay

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Viegas, Mark; Soderberg, Lee S. F.

    2005-04-01

    The goal of this paper was to evaluate the diagnostic value of integrated photothermal (PT) assay with additional fluorescent and photoacoustic (PA) modules to assess both the "safety limit" of exposure to ionizing γ-radiation and optimal therapeutic doses for cancer treatment. With this assay, the influences of γ irradiation on cancer cells (pancreatic-AR42J and hepatocytes-hepG2) and healthy cells (mouse lymphocytes and erythrocytes) was examined as a function of exposure dose (0.6-5 Gy) and time after irradiation, in vitro and in vivo. Independent verification of data obtained with conventional assays revealed that integrated PT assay allowed us to detect the different stages of radiation impact, including changes in cell metabolism at low dose, or stages related to cell death (apoptosis and necrosis) at high doses with a threshold sensitivity of at least three orders of magnitude better than existing assays. Also, PT assay was capable of quantitatively differentiating the biological action of γ irradiation alone and in combination with drug and nicotine impact. Finally, we demonstrated on an animal model that IPT assay has the potential for use in routine rapid evaluation of biological consequences of low-dose exposure a few days after irradiation.

  2. Non-uniform dose distributions in cranial radiation therapy

    NASA Astrophysics Data System (ADS)

    Bender, Edward T.

    Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.

  3. Radiation dose to patients during endoscopic retrograde cholangiopancreatography

    PubMed Central

    Boix, Jaume; Lorenzo-Zúñiga, Vicente

    2011-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is an important tool for the diagnosis and treatment of the hepatobiliary system. The use of fluoroscopy to aid ERCP places both the patient and the endoscopy staff at risk of radiation-induced injury. Radiation dose to patients during ERCP depends on many factors, and the endoscopist cannot control some variables, such as patient size, procedure type, or fluoroscopic equipment used. Previous reports have demonstrated a linear relationship between radiation dose and fluoroscopy duration. When fluoroscopy is used to assist ERCP, the shortest fluoroscopy time possible is recommended. Pulsed fluoroscopy and monitoring the length of fluoroscopy have been suggested for an overall reduction in both radiation exposure and fluoroscopy times. Fluoroscopy time is shorter when ERCP is performed by an endoscopist who has many years experience of performing ERCP and carried out a large number of ERCPs in the preceding year. In general, radiation exposure is greater during therapeutic ERCP than during diagnostic ERCP. Factors associated with prolonged fluoroscopy have been delineated recently, but these have not been validated. PMID:21860683

  4. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. PMID:27302731

  5. Staff Radiation Doses to the Lower Extremities in Interventional Radiology

    SciTech Connect

    Shortt, C. P.; Al-Hashimi, H.; Malone, L.; Lee, M. J.

    2007-11-15

    The purpose of this study was to investigate the radiation doses to the lower extremities in interventional radiology suites and evaluate the benefit of installation of protective lead shielding. After an alarmingly increased dose to the lower extremity in a preliminary study, nine interventional radiologists wore thermoluminescent dosimeters (TLDs) just above the ankle, over a 4-week period. Two different interventional suites were used with Siemens undercouch fluoroscopy systems. A range of procedures was carried out including angiography, embolization, venous access, drainages, and biopsies. A second identical 4-week study was then performed after the installation of a 0.25-mm lead curtain on the working side of each interventional table. Equivalent doses for all nine radiologists were calculated. One radiologist exceeded the monthly dose limit for a Category B worker (12.5 mSv) for both lower extremities before lead shield placement but not afterward. The averages of both lower extremities showed a statistically significant dose reduction of 64% (p < 0.004) after shield placement. The left lower extremity received a higher dose than the right, 6.49 vs. 4.57 mSv, an increase by a factor of 1.42. Interventional radiology is here to stay but the benefits of interventional radiology should never distract us from the important issue of radiation protection. All possible measures should be taken to optimize working conditions for staff. This study showed a significant lower limb extremity dose reduction with the use of a protective lead curtain. This curtain should be used routinely on all C-arm interventional radiologic equipment.

  6. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  7. Concurrent image and dose reconstruction for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Sheng, Ke

    The importance of knowing the patient actual position is essential for intensity modulated radiation therapy (IMRT). This procedure uses tightened margin and escalated tumor dose. In order to eliminate the uncertainty of the geometry in IMRT, daily imaging is prefered. The imaging dose, limited field of view and the imaging concurrency of the MVCT (mega-voltage computerized tomography) are investigated in this work. By applying partial volume imaging (PVI), imaging dose can be reduced for a region of interest (ROI) imaging. The imaging dose and the image quality are quantitatively balanced with inverse imaging dose planning. With PVI, 72% average imaging dose reduction was observed on a typical prostate patient case. The algebraic reconstruction technique (ART) based projection onto convex sets (POCS) shows higher robustness than filtered back projection when available imaging data is not complete and continuous. However, when the projection is continuous as in the actual delivery, a non-iterative wavelet based multiresolution local tomography (WMLT) is able to achieve 1% accuracy within the ROI. The reduction of imaging dose is dependent on the size of ROI. The improvement of concurrency is also discussed based on the combination of PVI and WMLT. Useful target images were acquired with treatment beams and the temporal resolution can be increased to 20 seconds in tomotherapy. The data truncation problem with the portal imager was also studied. Results show that the image quality is not adversely affected by truncation when WMLT is employed. When the online imaging is available, a perturbation dose calculation (PDC) that estimates the actual delivered dose is proposed. Corrected from the Fano's theorem, PDC counts the first order term in the density variation to calculate the internal and external anatomy change. Although change in the dose distribution that is caused by the internal organ motion is less than 1% for 6 MV beams, the external anatomy change has

  8. Update on radiation safety and dose reduction in pediatric neuroradiology.

    PubMed

    Mahesh, Mahadevappa

    2015-09-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. PMID:26346142

  9. Measurement of three-dimensional radiation dose distributions using MRI.

    PubMed

    Prasad, P V; Nalcioglu, O; Rabbani, B

    1991-10-01

    Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry. PMID:1924718

  10. Patient radiation dose audits for fluoroscopically guided interventional procedures

    SciTech Connect

    Balter, Stephen; Rosenstein, Marvin; Miller, Donald L.; Schueler, Beth; Spelic, David

    2011-03-15

    Purpose: Quality management for any use of medical x-ray imaging should include monitoring of radiation dose. Fluoroscopically guided interventional (FGI) procedures are inherently clinically variable and have the potential for inducing deterministic injuries in patients. The use of a conventional diagnostic reference level is not appropriate for FGI procedures. A similar but more detailed quality process for management of radiation dose in FGI procedures is described. Methods: A method that takes into account both the inherent variability of FGI procedures and the risk of deterministic injuries from these procedures is suggested. The substantial radiation dose level (SRDL) is an absolute action level (with regard to patient follow-up) below which skin injury is highly unlikely and above which skin injury is possible. The quality process for FGI procedures collects data from all instances of a given procedure from a number of facilities into an advisory data set (ADS). An individual facility collects a facility data set (FDS) comprised of all instances of the same procedure at that facility. The individual FDS is then compared to the multifacility ADS with regard to the overall shape of the dose distributions and the percent of instances in both the ADS and the FDS that exceed the SRDL. Results: Samples of an ADS and FDS for percutaneous coronary intervention, using the dose metric of reference air kerma (K{sub a,r}) (i.e., the cumulative air kerma at the reference point), are used to illustrate the proposed quality process for FGI procedures. Investigation is warranted whenever the FDS is noticeably different from the ADS for the specific FGI procedure and particularly in two circumstances: (1) When the facility's local median K{sub a,r} exceeds the 75th percentile of the ADS and (2) when the percent of instances where K{sub a,r} exceeds the facility-selected SRDL is greater for the FDS than for the ADS. Conclusions: Analysis of the two data sets (ADS and FDS) and

  11. Single-Dose Radiation-Induced Oral Mucositis Mouse Model

    PubMed Central

    Maria, Osama Muhammad; Syme, Alasdair; Eliopoulos, Nicoletta; Muanza, Thierry

    2016-01-01

    The generation of a self-resolved radiation-induced oral mucositis (RIOM) mouse model using the highest possibly tolerable single ionizing radiation (RT) dose was needed in order to study RIOM management solutions. We used 10-week-old male BALB/c mice with average weight of 23 g for model production. Mice were treated with an orthovoltage X-ray irradiator to induce the RIOM ulceration at the intermolar eminence of the animal tongue. General anesthesia was injected intraperitoneally for proper animal immobilization during the procedure. Ten days after irradiation, a single RT dose of 10, 15, 18, 20, and 25 Gy generated a RIOM ulcer at the intermolar eminence (posterior upper tongue surface) with mean ulcer floor (posterior epithelium) heights of 190, 150, 25, 10, and 10 μm, respectively, compared to 200 μm in non-irradiated animals. The mean RIOM ulcer size % of the total epithelialized upper surface of the animal tongue was RT dose dependent. At day 10, the ulcer size % was 2, 5, 27, and 31% for 15, 18, 20, and 25 Gy RT, respectively. The mean relative surface area of the total epithelialized upper surface of the tongue was RT dose dependent, since it was significantly decreased to 97, 95, 88, and 38% with 15, 18, 20, and 25 Gy doses, respectively, at day 10 after RT. Subcutaneous injection of 1 mL of 0.9% saline/6 h for 24 h yielded a 100% survival only with 18 Gy self-resolved RIOM, which had 5.6 ± 0.3 days ulcer duration. In conclusion, we have generated a 100% survival self-resolved single-dose RIOM male mouse model with long enough duration for application in RIOM management research. Oral mucositis ulceration was radiation dose dependent. Sufficient hydration of animals after radiation exposure significantly improved their survival. PMID:27446800

  12. Radiation dose to patients from the Philips CT scanner

    SciTech Connect

    Badcock, P.C.

    1985-07-01

    While the anthropomorphic phantom is useful in radiotherapy dosimetry, corrections for diagnostic qualities of radiation are necessary for departures from tissue-equivalence. TLD measurements were performed for this reason in the rectum of patients undergoing CT scanning of the pelvis. At high slice densities the energy imparted becomes comparable with that associated with fluoroscopic examinations of the abdomen. At low slice densities the average dose is ca 12 mGy.

  13. Recent Updates to Radiation Organ Dose Estimation Tool PIMAL

    SciTech Connect

    Akkurt, Hatice; Wiarda, Dorothea; Eckerman, Keith F

    2011-01-01

    A computational phantom with moving arms and legs and an accompanying graphical user interface, PIMAL, was previously developed to enable radiation dose estimation for different postures in a user-friendly manner. This initial version of the software was useful in adjusting the posture, generating the corresponding MCNP input file, and performing the radiation transport simulations for dose calculations using MCNP5 or MCNPX. However, it only included one mathematical phantom model (hermaphrodite) and allowed only isotropic point sources. Recently, the software was enhanced by adding two more mathematical phantom models, a male and female, and the source features were enhanced significantly by adding internal and external source options in a pull-down menu. Although the initial version of the software included only a mathematical hermaphrodite phantom, the features and models in the software are constantly being enhanced by adding more phantoms as well as other options to enable dose assessment for different configurations/cases in a user-friendly manner. In this latest version of the software, ICRP's recently released reference male and female voxel phantoms are included in a pull-down menu. The male and female models are described using 7 and 14 million voxels, respectively. Currently, the software is being modified further to include the International Commission on Radiation Protection's (ICRP) reference male and female voxel phantoms. Additionally, some case studies are being implemented and included in a library of input files. This paper describes recent updates to the software.

  14. Radiation dose reduction in pediatric abdominal CT scanning

    SciTech Connect

    Kamel, I.R.

    1993-01-01

    A clinical trial was designed to test whether a significantly lower radiation dose technique could be used for pediatric abdominal CT scanning without loss of diagnostic image quality. The study included pediatric patients referred to radiology from the Children's Hospital and clinics at The University of Michigan. Seventy-eight cases were included in the study, 36 cases in the experimental group and 42 in the control group. Patient characteristics in both groups were comparable in every respect except for the technical factors used to expose the pelvis. Patients in the experimental group were scanned with a technique using 80 mAs while those in the control group were scanned with the conventional technique of 240 mAs. Therefore, the radiation dose to the pelvis was three times higher in the control group than in the experimental group. Scans were evaluated by two experienced pediatric radiologists who assessed anatomical details, image resolution and the degree of confidence in reaching a diagnosis. The low-mAs technique did not result in reduction of diagnostic image quality or the confidence in reaching a diagnosis. In conclusion, the radiation dose resulting from pediatric CT of the pelvis may be reduced by a factor of three with equivalent medical benefit.

  15. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  16. Avoidance of tolerance and lack of rebound with intermittent dose titrated transdermal glyceryl trinitrate. The Transdermal Nitrate Investigators.

    PubMed Central

    Fox, K M; Dargie, H J; Deanfield, J; Maseri, A

    1991-01-01

    OBJECTIVES--To investigate the efficacy of transdermal glyceryl trinitrate given continuously and with a nocturnal nitrate free period. DESIGN--Double blind placebo controlled study with two parallel limbs. SETTING--Multicentre trial. PATIENTS--52 patients randomised to receive either continuous treatment (23 patients) or intermittent treatment with an individually titrated dose (29 patients) for 14 days: both treatments were compared with placebo in a cross-over fashion. INTERVENTION--Continuous treatment with 10 mg per 24 hours of transdermal glyceryl trinitrate or intermittent transdermal glyceryl trinitrate titrated to give an arbitrary 10 mm Hg drop in systolic blood pressure (mean dose 18.2 mg) given over approximately 16 hours. MAIN OUTCOME MEASURE--Treadmill exercise stress testing and ambulatory monitoring of the ST segment after 14 days' treatment. RESULTS--After 14 days' intermittent treatment resting supine and standing systolic blood pressure fell by 7.5 mm Hg (95% confidence interval 2.7 to 12.2) and 9.0 mm Hg (95% CI 3.4 to 14.5) respectively (p less than 0.01); resting heart rate was unchanged. Mean heart rate at 1 mm ST segment depression rose by 11.9 beats/min (CI 1.1 to 23.7) (p less than 0.05), mean time to onset of angina increased by 59 seconds (CI 10.8 to 108) (p less than 0.05), and total exercise duration increased by 40 seconds (p less than 0.05). These changes were not seen after continuous treatment. The frequency of ischaemic episodes was not reduced with either regimen nor was the circadian distribution of these episodes altered, in particular nocturnal episodes did not increase during intermittent treatment. CONCLUSION--Tolerance to glyceryl trinitrate was avoided by the use of individually titrated doses administered with a nocturnal nitrate free period. There was no evidence of "rebound" on ambulatory monitoring during this treatment. PMID:1909152

  17. Measurement of patient radiation doses in certain urography procedures.

    PubMed

    Sulieman, A; Barakat, H; Zailae, A; Abuderman, A; Theodorou, K

    2015-07-01

    Patients are exposed to significant radiation doses during diagnostic and interventional urologic procedures. This study aimed to measure patient entrance surface air kerma (ESAK) and to estimate the effective dose during intravenous urography (IVU), extracorporeal shock-wave lithotripsy (ESWL), and ascending urethogram (ASU) procedures. ESAK was measured in patients using calibrated thermo luminance dosimeters, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 179 procedures were investigated. 27.9 % of the patients underwent IVU procedures, 27.9 % underwent ESWL procedures and 44.2 % underwent ASU procedures. The mean ESAK was 2.1, 4.18 and 4.9 mGy for IVU, ESWL, and ASU procedures, respectively. Differences in patient ESAK for the same procedure were observed. The mean ESAK values were comparable with those in previous studies. PMID:25899610

  18. Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers

    SciTech Connect

    Umisedo, Nancy K.; Okuno, Emico; Medina, Nilberto H.; Colacioppo, Sergio; Hiodo, Francisco Y.

    2008-08-07

    The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of {sup 40}K, {sup 238}U and {sup 232}Th show that there is no significant transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of {sup 40}K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 {mu}Sv.

  19. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  20. Glandular dose in breast computed tomography with synchrotron radiation.

    PubMed

    Mettivier, G; Fedon, C; Di Lillo, F; Longo, R; Sarno, A; Tromba, G; Russo, P

    2016-01-21

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported. PMID:26683710

  1. Glandular dose in breast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Fedon, C.; Di Lillo, F.; Longo, R.; Sarno, A.; Tromba, G.; Russo, P.

    2016-01-01

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  2. Radiation Dose-Volume Effects in the Brain

    SciTech Connect

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-03-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of <2.5 Gy, an incidence of radiation necrosis of 5% and 10% is predicted to occur at a biologically effective dose of 120 Gy (range, 100-140) and 150 Gy (range, 140-170), respectively. For twice-daily fractionation, a steep increase in toxicity appears to occur when the biologically effective dose is >80 Gy. For large fraction sizes (>=2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of >=18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  3. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  4. The Radiation Dose-Response of the Human Spinal Cord

    SciTech Connect

    Schultheiss, Timothy E.

    2008-08-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.

  5. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions. PMID:11754644

  6. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  7. Radiation Dose to the Lens of the Eye from Computed Tomography Scans of the Head

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie Ann

    dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit. The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group. This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.

  8. [The issue of low doses in radiation therapy and impact on radiation-induced secondary malignancies].

    PubMed

    Chargari, Cyrus; Cosset, Jean-Marc

    2013-12-01

    Several studies have well documented that the risk of secondary neoplasms is increasing among patients having received radiation therapy as part of their primary anticancer treatment. Most frequently, radiation-induced neoplasms occur in volume exposed to high doses. However, the impact of "low" doses (<5 Gy) in radiation-induced carcinogenesis should be clinically considered because modern techniques of intensity-modulated radiation therapy (IMRT) or stereotactic irradiation significantly increase tissue volumes receiving low doses. The risk inherent to these technologies remains uncertain and estimates closely depend on the chosen risk model. According to the (debated) linear no-threshold model, the risk of secondary neoplasms could be twice higher with IMRT, as compared to conformal radiation therapy. It seems that only proton therapy could decrease both high and low doses delivered to non-target volumes. Except for pediatric tumors, for which the unequivocal risk of second malignancies (much higher than in adults) should be taken into account, epidemiological data suggest that the risk of secondary cancer related to low doses could be very low, even negligible in some cases. However, clinical follow-up remains insufficient and a marginal increase in secondary tumors could counterbalance the benefit of a highly sophisticated irradiation technique. It therefore remains necessary to integrate the potential risk of new irradiation modalities in a risk-adapted strategy taking into account therapeutic objectives but also associated risk factors, such as age (essentially), chemotherapy, or life style. PMID:24257106

  9. Optimization of radiation dosing schedules for proneural glioblastoma.

    PubMed

    Badri, H; Pitter, K; Holland, E C; Michor, F; Leder, K

    2016-04-01

    Glioblastomas are the most aggressive primary brain tumor. Despite treatment with surgery, radiation and chemotherapy, these tumors remain uncurable and few significant increases in survival have been observed over the last half-century. We recently employed a combined theoretical and experimental approach to predict the effectiveness of radiation administration schedules, identifying two schedules that led to superior survival in a mouse model of the disease (Leder et al., Cell 156(3):603-616, 2014). Here we extended this approach to consider fractionated schedules to best minimize toxicity arising in early- and late-responding tissues. To this end, we decomposed the problem into two separate solvable optimization tasks: (i) optimization of the amount of radiation per dose, and (ii) optimization of the amount of time that passes between radiation doses. To ensure clinical applicability, we then considered the impact of clinical operating hours by incorporating time constraints consistent with operational schedules of the radiology clinic. We found that there was no significant loss incurred by restricting dosage to an 8:00 a.m. to 5:00 p.m. window. Our flexible approach is also applicable to other tumor types treated with radiotherapy. PMID:26094055

  10. Main Sources and Doses of Space Radiation during Mars Missions and Total Radiation Risk for Cosmonauts

    NASA Astrophysics Data System (ADS)

    Mitrikas, Victor; Aleksandr, Shafirkin; Shurshakov, Vyacheslav

    This work contains calculation data of generalized doses and dose equivalents in critical organs and tissues of cosmonauts produces by galactic cosmic rays (GCR), solar cosmic rays (SCR) and the Earth’s radiation belts (ERB) that will impact crewmembers during a flight to Mars, while staying in the landing module and on the Martian surface, and during the return to Earth. Also calculated total radiation risk values during whole life of cosmonauts after the flight are presented. Radiation risk (RR) calculations are performed on the basis of a radiobiological model of radiation damage to living organisms, while taking into account reparation processes acting during continuous long-term exposure at various dose rates and under acute recurrent radiation impact. The calculations of RR are performed for crewmembers of various ages implementing a flight to Mars over 2 - 3 years in maximum and minimum of the solar cycle. The total carcinogenic and non-carcinogenic RR and possible life-span shortening are estimated on the basis of a model of the radiation death probability for mammals. This model takes into account the decrease in compensatory reserve of an organism as well as the increase in mortality rate and descent of the subsequent lifetime of the cosmonaut. The analyzed dose distributions in the shielding and body areas are applied to making model calculations of tissue equivalent spherical and anthropomorphic phantoms.

  11. Characterization of radiation-induced performance decrement using a two-lever shock-avoidance task

    SciTech Connect

    Burghardt, W.F. Jr.; Hunt, W.A.

    1985-07-01

    Rats were trained to perform a task involving responses on two levers. Responding on an avoidance lever delayed the onset of electrical footshock for 20 sec and responding on a warning lever turned on a light for 60 sec. When the light was on, the task on the avoidance lever was changed from unsignaled shock avoidance to signaled shock avoidance by preceding the shocks with 5-sec warning tones. The animals preferred the signaled avoidance condition. After 100 Gy of /sup 60/Co irradiation, the animals were less able to avoid shock, an effect from which the animals recovered somewhat over 90 min. The response rate on the avoidance lever remained at or above control rates, while the response rate on the warning lever showed an initial increase, followed by a decrease below baseline. The data suggest that under these experimental conditions a subject will not respond appropriately to avoid shock or acquire cues that can facilitate the avoidance of shock. The effects, however, do not reflect an inability to perform the required movements but instead appear to reflect some characteristic of the task associated with a particular lever.

  12. Small Bowel Dose Tolerance for Stereotactic Body Radiation Therapy.

    PubMed

    LaCouture, Tamara A; Xue, Jinyu; Subedi, Gopal; Xu, Qianyi; Lee, Justin T; Kubicek, Gregory; Asbell, Sucha O

    2016-04-01

    Inconsistencies permeate the literature regarding small bowel dose tolerance limits for stereotactic body radiation therapy (SBRT) treatments. In this review, we organized these diverse published limits with MD Anderson at Cooper data into a unified framework, constructing the dose-volume histogram (DVH) Risk Map, demonstrating low-risk and high-risk SBRT dose tolerance limits for small bowel. Statistical models of clinical data from 2 institutions were used to assess the safety spectrum of doses used in the exposure of the gastrointestinal tract in SBRT; 30% of the analyzed cases had vascular endothelial growth factor inhibitors (VEGFI) or other biological agents within 2 years before or after SBRT. For every dose tolerance limit in the DVH Risk Map, the probit dose-response model was used to estimate the risk level from our clinical data. Using the current literature, 21Gy to 5cc of small bowel in 3 fractions has low toxicity and is reasonably safe, with 6.5% estimated risk of grade 3 or higher complications, per Common Terminology Criteria for Adverse Events version 4.0. In the same fractionation for the same volume, if lower risk is required, 16.2Gy has an estimated risk of only 2.5%. Other volumes and fractionations are also reviewed; for all analyzed high-risk small bowel limits, the risk is 8.2% or less, and the low-risk limits have 4% or lower estimated risk. The results support current clinical practice, with some possibility for dose escalation. PMID:27000513

  13. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... monitoring and calculating occupational radiation doses. On December 4, 2007 (72 FR 68043), the NRC revised... COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear... Criteria and Methods to Calculate Occupational Radiation Doses.'' This guide describes methods that the...

  14. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  15. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  16. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  17. Problems in evaluating radiation dose via terrestrial and aquatic pathways.

    PubMed Central

    Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H

    1981-01-01

    This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being. PMID:7037381

  18. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung

    SciTech Connect

    Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J.H.

    1981-04-01

    The acute radiation pneumonitis syndrome is a major complication for patients receiving total thoracic irradiation in a large single dose. Previous studies have evaluated the onset of radiation pneumonitis on the basis of radiation doses calculated assuming unit density tissues. In this report, the incidence of radiation pneumonitis is determined as a function of absolute dose to lung. A simple algorithm relating dose correction factor to anterior-posterior patient diameter has been derived using a CT-aided treatment planning system. This algorithm was used to determine, retrospectively, the dose to lung for a group of 303 patients who had been treated with large field irradiation techniques. Of this group, 150 patients had no previous lung disease and had virtually no additional lung irradiation prior or subsequent to their large field treatment. The actuarial incidence of radiation pneumonitis versus dose to lung was evaluated using a simplified probit analysis. The resultant best fit sigmoidal complication curve demonstrates the onset of radiation pneumonitis to occur at about 750 rad with the 5% actuarial incidence occurring at approximately 820 rad. The errors associated with the dose determination procedure as well as the actuarial incidence calculations are considered. The time of onset of radiation pneumonitis occurs between 1 to 7 months after irradiation for 90% of the patients who developed pneumonitis with the peak incidence occurring at 2 at 3 months. No correlation was found between time of onset and the dose to lung over a dose range of 650 to 1250 rad.

  19. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  20. The determination of the penetrating radiation dose at Hanford

    SciTech Connect

    Rathbun, L.A.

    1989-09-01

    Most of the thermoluminescent dosimeters (TLDs) and other devices that have been used to measure environmental radiation on the Hanford Site have measured natural background levels of radiation. Measurements of offsite environmental radiation near the boundary of the Hanford Site have often indicated higher doses than onsite measurements have. However, the converse has been found when radiation measurements from the cities and communities of southeastern Washington were compared with onsite measurements. The historical trends described for environmental TLD data have been better defined in this study by compiling the TLD data for selected locations over a 6-year period (1983 to 1988). The ongoing Hanford Environmental Surveillance Program also provides radionuclide concentrations in soil based on samples collected by technicians at Pacific Northwest Laboratory (PNL) and sent to a commercial laboratory for analyses. As part of the study described in this report, a portable gamma spectroscopy system was used in the field to identify concentrations of gamma-emitting radionuclides in the soil at various locations on the Hanford Site and in the surrounding area. This work began in 1986. Supplemental radiation measurements were made with a microprocessor-based survey meter and large NaI detector. 20 refs., 4 figs., 3 tabs.

  1. Radiation Dose Estimation Using Realistic Postures with PIMAL

    SciTech Connect

    Akkurt, Hatice; Wiarda, Dorothea; Eckerman, Keith F

    2010-12-01

    For correct radiation dose assessment, it is important to take the posture into account. A computational phantom with moving arms and legs was previously developed to address this need. Further, an accompanying graphical user interface (GUI), called PIMAL, was developed to enable dose estimation using realistic postures in a user-friendly manner such that the analyst's time could be substantially reduced. The importance of the posture for correct dose estimation has been demonstrated with a few case studies in earlier analyses. The previous version of PIMAL was somewhat limited in its features (i.e., it contained only a hermaphrodite phantom model and allowed only isotropic source definition). Currently GUI is being further enhanced by incorporating additional phantom models, improving the features, and increasing the user friendliness in general. This paper describes recent updates to the PIMAL software. In this summary recent updates to the PIMAL software, which aims to perform radiation transport simulations for phantom models in realistic postures in a user-friendly manner, are described. In future work additional phantom models, including hybrid phantom models, will be incorporated. In addition to further enhancements, a library of input files for the case studies that have been analyzed to date will be included in the PIMAL.

  2. Radiation dose and shielding for the space station

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.

    1988-01-01

    Significant differences in dose prediction for Space Station arise depending on whether or not the magnetic field model is extrapolated into the future. The basis for these calculations is examined in detail, and the importance of the residual atmospheric layer at altitudes below 1000 km, with respect to radiation attenuation, is emphasized. Dosimetry results from Shuttle flights are presented and compared with the computed results. It is recommended that, at this stage, no extrapolation of the magnetic field into the future be included in the calculations. A model adjustment, to replace this arbitrary procedure, is presented. Dose predictions indicate that, at altitudes below 500 km and at low inclination, and with nominal module wall thickness (0.125 in. aluminum), orbit stay times of 90 days in Space Station would result in quarterly radiation doses to the crew, which are well within present limits for both males and females. Countermeasures would be required for stay times of a year or more and the measure of increasing shielding is examined.

  3. Evaluation of Radiation Dose Effects on Rat Bones Using Synchrotron Radiation Computed Microtomography

    SciTech Connect

    Nogueira, Liebert Parreiras; Braz, Delson

    2011-12-13

    In this work, we investigated the consequences of irradiation in the femora and ribs of rats submitted to radiation doses of 5 Gy. Three different sites in femur specimens (head, distal metaphysis and distal epiphysis) and one in ribs (ventral) were imaged using synchrotron radiation microcomputed tomography to assess trabecular bone microarchitecture. Histomorphometric quantification was calculated directly from the 3D microtomographic images using synchrotron radiation. The 3D microtomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. A better understanding of the biological interactions that occur after exposure to photon radiation is needed in order to optimize therapeutic regimens and facilitate development and strategies that decrease radiation-induced side effects in humans. Results showed significant differences between irradiated and non-irradiated specimens, mostly in head and distal metaphysis bone sites.

  4. Radiation signature on exposed cells: Relevance in dose estimation.

    PubMed

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  5. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  6. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  7. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  8. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  9. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  10. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  11. Population doses from environmental gamma radiation in Iraq

    SciTech Connect

    Marouf, B.A.; Mohamad, A.S.; Taha, J.S.; al-Haddad, I.K. )

    1992-05-01

    The exposure rates due to external gamma radiation were measured in 11 Iraqi governerates. Measurements were performed with an Environmental Monitoring System (RSS-111) in open air 1 m above the ground. The average absorbed dose rate in each governerate was as follows (number x 10(-2) microGy h-1): Babylon (6.0), Kerbala (5.3), Al-Najaf (5.4), Al-Kadysia (6.5), Wasit (6.5), Diala (6.5), Al-Anbar (6.5), Al-Muthana (6.6), Maisan (6.8), Thee-Kar (6.6), and Al-Basrah (6.5). The collective doses to the population living in these governerates were 499, 187, 239, 269, 262, 458, 384, 153, 250, 450, and 419 person-Sv, respectively.

  12. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  13. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  14. Optimized Fluoroscopy Setting and Appropriate Project Position Can Reduce X-ray Radiation Doses Rates during Electrophysiology Procedures

    PubMed Central

    Hou, Bing-Bo; Yao, Yan; Wu, Ling-Min; Qiao, Yu; Zheng, Li-Hui; Ding, Li-Gang; Chen, Gang; Zhang, Shu

    2015-01-01

    Background: Nonfluoroscopic three-dimensional electroanatomical system is widely used nowadays, but X-ray remains indispensable for complex electrophysiology procedures. This study aimed to evaluate the value of optimized parameter setting and different projection position to reduce X-ray radiation dose rates. Methods: From June 2013 to October 2013, 105 consecutive patients who underwent complex ablation were enrolled in the study. After the ablation, the radiation dose rates were measured by two different settings (default setting and optimized setting) with three projection positions (posteroanterior [PA] projection; left anterior oblique [LAO] 30° projection; and LAO 45° projection). The parameter of preset voltage, pulse width, critical voltage, peak voltage, noise reduction, edge enhancement, pulse rate, and dose per frame was modified in the optimized setting. Results: The optimized setting reduced radiation dose rates by 87.5% (1.7 Gy/min vs. 13.6 Gy/min, P < 0.001) in PA, 87.3% (2.5 Gy/min vs. 19.7 Gy/min, P < 0.001) in LAO 30°, 85.9% (3.1 Gy/min vs. 22.1 Gy/min, P < 0.001) in LAO 45°. Increase the angle of projection position will increase the radiation dose rate. Conclusions: We can reduce X-ray radiation dose rates by adjusting the parameter setting of X-ray system. Avoiding oblique projection of large angle is another way to reduce X-ray radiation dose rates. PMID:25947395

  15. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  16. Radiation Doses to Hanford Workers from Natural Potassium-40

    SciTech Connect

    Strom, Daniel J.; Lynch, Timothy P.; Weier, Dennis R.

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  17. The spectrum of mutation produced by low dose radiation

    SciTech Connect

    Morley,Alexander,A; Turner, David,R

    2004-10-31

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  18. Monte Carlo modeling of the scatter radiation doses in IR

    NASA Astrophysics Data System (ADS)

    Mah, Eugene; He, Wenjun; Huda, Walter; Yao, Hai; Selby, Bayne

    2011-03-01

    Purpose: To use Monte Carlo techniques to compute the scatter radiation dose distribution patterns around patients undergoing Interventional Radiological (IR) examinations. Method: MCNP was used to model the scatter radiation air kerma (AK) per unit kerma area product (KAP) distribution around a 24 cm diameter water cylinder irradiated with monoenergetic x-rays. Normalized scatter fractions (SF) were generated defined as the air kerma at a point of interest that has been normalized by the Kerma Area Product incident on the phantom (i.e., AK/KAP). Three regions surrounding the water cylinder were investigated consisting of the area below the water cylinder (i.e., backscatter), above the water cylinder (i.e., forward scatter) and to the sides of the water cylinder (i.e., side scatter). Results: Immediately above and below the water cylinder and in the side scatter region, values of normalized SF decreased with the inverse square of the distance. For z-planes further away, the decrease was exponential. Values of normalized SF around the phantom were generally less than 10-4. Changes in normalized SF with x-ray energy were less than 20% and generally decreased with increasing x-ray energy. At a given distance from region where the x-ray beam enters the phantom, the normalized SF was higher in the backscatter regions, and smaller in the forward scatter regions. The ratio of forward to back scatter normalized SF was lowest at 60 keV and highest at 120 keV. Conclusion: Computed SF values quantify the normalized fractional radiation intensities at the operator location relative to the radiation intensities incident on the patient, where the normalization refers to the beam area that is incident on the patient. SF values can be used to estimate the radiation dose received by personnel within the procedure room, and which depend on the imaging geometry, patient size and location within the room. Monte Carlo techniques have the potential for simulating normalized SF values

  19. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  20. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  1. Reduction of radiation dose to patients undergoing barium enema by dose audit.

    PubMed

    Yu, S K; Cheung, Y K; Chan, T L; Kung, C M; Yuen, M K

    2001-02-01

    Nowadays, new fluoroscopic machines are usually equipped with a dose-area product (DAP) meter for dose measurement. In our hospital, DAP meters have been used in the Diagnostic Radiology Department for dose audit since June 1997. Demographic patient data, name of radiologist, fluoroscopic duration and DAP readings of every case were recorded by radiographers. In early 1999, questionnaires were distributed to radiologists who had performed fluoroscopic examinations during the auditing period. 23 radiologists with varying years of experience completed the questionnaire and their practice was analysed. Since familiarization with the examination technique would affect radiologists' practice, these radiologists were divided into two groups for analysis. Radiologists with less than 3 years of experience were grouped together as junior radiologists, whilst others were grouped as senior radiologists. Results of the questionnaire indicated that radiologists generally found DAP meters useful for dose evaluation in the process of technique refinement. Radiologists aware of being under continuous surveillance of their practice showed significant reduction of doses (junior radiologists 25%, p<0.005; senior radiologists 36%, p<0.05) and fluoroscopic times (junior radiologists 36%, p<0.001; senior radiologists 18%, p<0.05) compared with radiologists who were unaware that they were under surveillance but with similar radiological experience. This effect is believed to be because of increased awareness of radiation dose through audit. In addition, this "audit effect" may also affect junior radiologists in decision-making regarding the number of radiographs (p<0.05), but no effect was found for senior radiologists (p>0.5). PMID:11718389

  2. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell culture media at concentrations of 0.25 mg Fe/mL and 1.0 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for 72 hours. Extracellular iron was then removed and cells were irradiated at either 662 keV or 10 MV. At the 0.25 mg Fe/mL dose (4 pg Fe/cell), radiation energy did not affect the level of cytotoxicity. However with 1.0 mg Fe/mL (9 pg Fe/cell), the higher 10 MV radiation energy resulted in 50% greater cytotoxicity as compared to cells without IONPs irradiated at this energy. These results suggest IONPs may be able to significantly enhance the cytotoxic effects of radiation and improve therapeutic ratio if they can be selectively associated with cancer cells and/or tumors. Ongoing in vivo studies of IONP radiation enhancement in a murine tumor model are too immature to draw conclusions from at this time, however preliminary data suggests similar effectiveness of IONP radiation enhancement at 6 MV and 18 MV energy levels. In addition to the IONP-based radiation enhancement demonstrated here, the use of tumor-localized IONP with an externally delivered, non-toxic alternating magnetic field affords the opportunity to selectively heat and kill tumor cells. Combining IONP-based radiation sensitization and heat-based cytotoxicity provides a unique and potentially highly effective opportunity for therapeutic ratio enhancement.

  3. Implications of radiation dose and exposed populations on radiation protection in the 21st century.

    PubMed

    Boice, John D

    2014-02-01

    Radiation is in the public eye because of Fukushima, computed tomography examinations, airport screenings, and possible terrorist attacks. What if the Boston Marathon pressure cooker had also contained a radioactive source? Nuclear power may be on the resurgence. Because of the increasing uses of radiation, the increases in population exposures, and the increasing knowledge of radiation effects, constant vigilance is needed to keep up with the changing times. Psychosocial disorders associated with the inappropriate (but real) fear of radiation need to be recognized as radiation detriments. Radiation risk communication, radiation education, and communication must improve at all levels: to members of the public, to the media, to other scientists, and to radiation professionals. Stakeholders must continue to be involved in all radiation protection initiatives. Finally, we are at a crisis as the number of war babies (me) and baby boomers (you?) who are also radiation professionals continues its rapid decline, and there are few in the pipeline to fill the current and looming substantial need: "The old road is rapidly agin'" (Dylan). NCRP has begun the WARP initiative-Where Are the Radiation Professionals?-an attempt to rejuvenate the pipeline of future professionals before the trickle becomes tiny drops. A Workshop was held in July 2013 with government agencies, military, private sector, universities, White House representatives, and societies to develop a coordinated and national action plan. A "Manhattan Project" is needed to get us "Back to the Future" in terms of the funding levels that existed in years past that provided the necessary resources to train, engage, and retain (a.k.a., jobs) the radiation professionals needed for the nation. If we don't keep swimmin' (Disney's Nemo) we'll "sink like a stone" (Dylan).Introduction of Implications of Radiation Dose and Exposed Populations (Video 2:06, http://links.lww.com/HP/A25). PMID:24378509

  4. RADIATION DOSE IN PAEDIATRIC COMPUTED TOMOGRAPHY: RISKS AND BENEFITS

    PubMed Central

    Ogbole, G.I.

    2010-01-01

    Computed tomography (CT) is a powerful tool for the accurate and effective diagnosis and treatment of a variety of conditions because it allows high-resolution three-dimensional images to be acquired very quickly. However as the number of CT procedures performed globally have continued to increase; with growing concerns about patient protection. Currently, no system is in place to track patient doses and the lifetime cumulative dose from medical sources. The widespread use of CT even in developing countries has raised questions regarding the possible threat to public health especially in children. The best available risk estimates suggest that paediatric CT will result in significantly increased lifetime radiation risk over adult CT. Studies have shown that lower milliampere-second (mAs) settings can be used for children without significant loss of information. Although the risk–benefit balance is still strongly tilted toward benefit, there is still need for caution. Furthermore since the frequency of paediatric CT examinations is rapidly increasing, and estimates suggest that quantitative lifetime radiation risks for children are not negligible, efforts should be made toward more active reduction of CT exposure settings in paediatric patients. This article hopes to address this concerns and draw attention to the fact that children are not ‘small adults ’ and should therefore be treated differently. PMID:25161479

  5. Thyroid neoplasia following low-dose radiation in childhood

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1989-12-01

    The thyroid gland is highly sensitive to the carcinogenic effects of ionizing radiation. Previously, we reported a significant increase of thyroid cancer and adenomas among 10,834 persons in Israel who received radiotherapy to the scalp for ringworm. These findings have now been extended with further follow-up and revised dosimetry. Overall, 98 thyroid tumors were identified among the exposed and 57 among 10,834 nonexposed matched population and 5392 sibling comparison subjects. An estimated thyroid dose of 9 cGy was linked to a fourfold (95% Cl = 2.3-7.9) increase of malignant tumors and a twofold (95% Cl = 1.3-3.0) increase of benign tumors. The dose-response relationship was consistent with linearity. Age was an important modifier of risk with those exposed under 5 years being significantly more prone to develop thyroid tumors than older children. The pattern of radiation risk over time could be described on the basis of a constant multiplication of the background rate, and an absolute risk model was not compatible with the observed data. Overall, the excess relative risk per cGy for thyroid cancer development after childhood exposure is estimated as 0.3, and the absolute excess risk as 13 per 10(6) PY-cGy. For benign tumors the estimated excess relative risk was 0.1 per cGy and the absolute risk was 15 per 10(6) PY-cGy.

  6. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  7. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  8. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  9. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  10. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.