Science.gov

Sample records for radiation doses obtained

  1. Analysis of the space radiation doses obtained simultaneously at two different locations outside the ISS

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.

    2013-12-01

    Space weather and related ionizing radiation has been recognized as one of the main health concerns for the International Space Station (ISS) crew. The estimation of the radiation effect on humans outside the ISS requires at first order accurate knowledge of their accumulated absorbed dose rates, which depend on the global space radiation distribution, solar cycle and local variations generated by the 3D mass distribution surrounding the ISS. The R3DE (Radiation Risks Radiometer-Dosimeter for the EXPOSE-E platform) on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. A very similar instrument named R3DR for the EXPOSE-R platform worked outside the Russian Zvezda module of the ISS between March 2009 and August 2010. Both are Liulin-type detectors, Bulgarian-built miniature spectrometer-dosimeters. The acquired approximately 5 million deposited energy spectra from which the flux and absorbed dose rate were calculated with 10 s resolution behind less than 0.41 g cm-2 shielding. This paper analyses the spectra collected in 2009 by the R3DE/R instruments and the long-term variations in the different radiation environments of Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and relativistic electrons from the Outer Radiation Belt (ORB). The R3DE instrument, heavily shielded by the surrounding structures, measured smaller primary fluxes and dose rates from energetic protons from the SAA and relativistic electrons from the ORB but higher values from GCRs because of the contribution from secondary particles. The main conclusion from this investigation is that the dose rates from different radiation sources around the International Space Station (ISS) have a large special and temporal dynamic range. The collected data can be interpreted as possible doses obtained by the cosmonauts and astronauts during

  2. Dose assurance in radiation processing plants

    NASA Astrophysics Data System (ADS)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  3. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  4. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  5. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  6. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  7. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  8. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  9. [Evaluation of radiation doses in mammography].

    PubMed

    Lee, S K; Hwang, S K; Lee, L N; Lou, G C; Wang, C A; Hsu, W J

    1993-03-01

    A dedicated X-ray mammography was introduced to our hospital from 1987 and an imaging receptor of xeroradiography was applied. We reported previously that the average air exposure was 0.79R and that the absorption dose of skin was 1.00 rad. These data are similar to literature reports. Screen-film mammography was introduced recently. To select the best breast imaging and the least radiation exposure, diverse methods were investigated. A dosimetry (Capintec model 192) and a PS-033 parallel ionization chamber were applied to compare the absorption dose on polystyrene phantom between various exposure factors, the application of breast clamp and the size of exposure field. Retrospective estimation of the radiation dose was obtained from the exposure factors of previous mammography since July, 1990 to May, 1992. There were 1035 xeromammographic examinations and 358 examinations with medium-speed screen-film mammography. Another 61 craniocaudal and 96 mediolateral projections with high-speed screen-film mammography were recruited during the recent two months. An ionization chamber (Exradin, Shonka-Wyckoff A5) with an electrometer (Keithley 617) wer selected to obtain the dose equivalent from air exposure between selected exposure factors. The radiation dose of mammography is linearly correlated with voltage/kV and current/mAs. The application of a breast clump reduces 10% of the skin dose. The average exposure factors of xeromammography are 45.6 kV, 163.5 mAs. These results remain the same as in our previous report. Xeromammography has a greater exposure to air, estimated average glandular dose and absorbed dose than screen-film mammography. The mean exposure factor of rapid screen-film mammography gains half the value of medium screen-film mammography, ie. 26.6 kV, 87.0 mAs vs. 26.0 kV, 164.5 mAs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8490794

  10. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  11. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  12. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (ESTSC)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  13. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  14. Patient Radiation Doses in Interventional Cardiology Procedures

    PubMed Central

    Pantos, Ioannis; Patatoukas, Georgios; Katritsis, Demosthenes G; Efstathopoulos, Efstathios

    2009-01-01

    Interventional cardiology procedures result in substantial patient radiation doses due to prolonged fluoroscopy time and radiographic exposure. The procedures that are most frequently performed are coronary angiography, percutaneous coronary interventions, diagnostic electrophysiology studies and radiofrequency catheter ablation. Patient radiation dose in these procedures can be assessed either by measurements on a series of patients in real clinical practice or measurements using patient-equivalent phantoms. In this article we review the derived doses at non-pediatric patients from 72 relevant studies published during the last 22 years in international scientific literature. Published results indicate that patient radiation doses vary widely among the different interventional cardiology procedures but also among equivalent studies. Discrepancies of the derived results are patient-, procedure-, physician-, and fluoroscopic equipmentrelated. Nevertheless, interventional cardiology procedures can subject patients to considerable radiation doses. Efforts to minimize patient exposure should always be undertaken. PMID:20066141

  15. Occupational radiation doses during interventional procedures

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  16. Space radiation protection: comparison of effective dose to bone marrow dose equivalent.

    PubMed

    Hoff, Jennifer L; Townsend, Lawrence W; Zapp, E Neal

    2002-12-01

    In many instances, bone marrow dose equivalents averaged over the entire body have been used as a surrogate for whole-body dose equivalents in space radiation protection studies. However, career radiation limits for space missions are expressed as effective doses. This study compares calculations of effective doses to average bone marrow dose equivalents for several large solar particle events (SPEs) and annual galactic cosmic ray (GCR) spectra, in order to examine the suitability of substituting bone marrow dose equivalents for effective doses. Organ dose equivalents are computed for all radiosensitive organs listed in NCRP Report 116 using the BRYNTRN and HZETRN space radiation transport codes and the Computerized Anatomical Man (CAM) model. These organ dose equivalents are then weighted with the appropriate tissue weighting factors to obtain effective doses. Various thicknesses of aluminum shielding, which are representative of nominal spacecraft and SPE storm shelter configurations, are used in the analyses. For all SPE configurations, the average bone marrow dose equivalent is considerably less than the calculated effective dose. For comparisons of the GCR, there is less than a ten percent difference between the two methods. In all cases, the gonads made up the largest percentage of the effective dose. PMID:12793744

  17. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  18. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. PMID:26769857

  19. Gamma Radiation Doses In Sweden

    NASA Astrophysics Data System (ADS)

    Almgren, Sara; Barregârd, Lars; Isaksson, Mats

    2008-08-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  20. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  1. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  2. Doses from Medical Radiation Sources

    MedlinePlus

    ... radiation dosimetry. Continuing Medical Education Article, Journal of Nuclear Medicine 41(5):863–873; 2000. © 2016 Health Physics Society Site Map | Privacy Statement | Disclaimer | Webmaster

  3. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  4. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  5. Radiation Dose from Cigarette Tobacco

    NASA Astrophysics Data System (ADS)

    Papastefanou, C.

    2008-08-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made produced radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv y-1 (average 79.7 μSv y-1), while for 228Ra from 19.3 to 116.0 μSv y-1 (average 67.1 μSv y-1) and for 210Pb from 47.0 to 134.9 μSv y-1 (average 104.7 μSv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y-1 (average 251.5 μSv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1).

  6. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  7. Dose specification for radiation therapy: dose to water or dose to medium?

    PubMed

    Ma, C-M; Li, Jinsheng

    2011-05-21

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis. PMID:21508447

  8. Determining radiation dose to residents of radiation-contaminated buildings

    SciTech Connect

    Lee, J.J.S.; Wu, T.H.; Chong, N.S.; Dong, S.L.

    1999-08-01

    There are more than one thousand residents who lived in about 140 radiation-contaminated buildings and received the assessed radiation dose equivalent over 5 mSv/year. In this paper, a systematic approach to dose reconstruction is proposed for evaluating radiation dose equivalent to the residents. The approach includes area survey and exposure measurement, source identification and energy spectrum analysis, special designed TLD-embedded badges for residents to wear and organ dose estimation with Rando phantom simulation. From the study, it is concluded that the ionization chamber should still be considered as the primary modality for external dose measurement. However, lacking of accurate daily activity patterns of the residents, the dose equivalent estimation with the chamber measurements would be somehow overestimated. The encountered limitation could be compensated with the use of the TLD badges and Rando phantom simulation that could also provide more information for internal organ dose equivalent estimations. As the radiation patterns in the buildings are highly anisotropic, which strongly depends on the differences of structural and indoor layouts, it demands a mathematical model dealing with the above concerns. Also, further collaborations with studies on biological markers of the residents would make the entire dose equivalent estimation more helpful and reliable.

  9. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  10. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  11. Patient perspectives on radiation dose.

    PubMed

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  12. Radiation dose in temporomandibular joint zonography

    SciTech Connect

    Coucke, M.E.; Bourgoignie, R.R.; Dermaut, L.R.; Bourgoignie, K.A.; Jacobs, R.J. )

    1991-06-01

    Temporomandibular joint morphology and function can be evaluated by panoramic zonography. Thermoluminescent dosimetry was applied to evaluate the radiation dose to predetermined sites on a phantom eye, thyroid, pituitary, and parotid, and the dose distribution on the skin of the head and neck when the TMJ program of the Zonarc panoramic x-ray unit was used. Findings are discussed with reference to similar radiographic techniques.

  13. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    PubMed

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  14. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  15. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  16. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  17. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  18. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  19. [HEALTH PREDICTION INDICES OBTAINED WITH LOW-DOSE COMPUTER TOMOGRAPHY SCANS].

    PubMed

    Matkevich, E i; Sinitsyn, V e; Ivanov LV

    2015-01-01

    Purpose of the investigation was to make prognostic estimations of reductions in somatic morbidity and temporal disability, and tumor pathology using low-dose computer tomography (CT) scans and to compare with standard protocols. Mean effective radiation doses were determined based on the results of 1627 diagnostic CT investigations made in 2012-2014 at the Treatment and Rehabilitation Center of the Russian Ministry of Health. Low-dose CT scans of the head and thoracic, abdominal and small pelvis organs were obtained on a GE Discovery CT750 HD, and with the help of the ASIR and MBIR algorithms of iterative reconstruction. In comparison with a standard dose, a single CT scan with a dose reduced by 10-12 mSv predicts a decrease in total morbidity by 0.84-5.52% and temporal disability by 0.55-1.65% per 100 employees over a year; total risk of tumors and genetic effects reduced in 5 to 10 times, which may be equal to 40-90 cases per 100,000 of 30 y.o. males. PMID:26934792

  20. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  1. Scientific issues in radiation dose reconstruction.

    PubMed

    Toohey, Richard E

    2008-07-01

    Stakeholders have raised numerous issues regarding the scientific basis of radiation dose reconstruction for compensation. These issues can be grouped into three broad categories: data issues, dosimetry issues, and compensation issues. Data issues include demographic data of the worker, changes in site operations over time (both production and exposure control), characterization of episodic vs. chronic exposures, and the use of coworker data. Dosimetry issues include methods for assessment of ambient exposures, missed dose, unmonitored dose, and medical x-ray dose incurred as a condition of employment. Specific issues related to external dose include the sensitivity, angular and energy dependence of personal monitors, exposure geometries, and the accompanying uncertainties. Those related to internal dose include sensitivity of bioassay methods, uncertainties in biokinetic models, appropriate dose coefficients, and modeling uncertainties. Compensation issues include uncertainties in the risk models and use of the 99th percentile of the distribution of probability of causation for awarding compensation. A review of the scientific literature and analysis of each of these issues distinguishes factors that play a major role in the compensation decision from those that do not. PMID:18545027

  2. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  3. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    SciTech Connect

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A.

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  4. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  5. Early dose assessment following severe radiation accidents

    SciTech Connect

    Goans, R.E.; Holloway, E.C.; Berger, M.E.; Ricks, R.C.

    1997-04-01

    Early treatment of victims of high level acute whole-body x-ray or gamma exposure has been shown to improve their likelihood of survival. However, in such cases, both the magnitude of the exposure and the dosimetry profile(s) of the victim(s) are often not known in detail for days to weeks. A simple dose-prediction algorithm based on lymphocyte kinetics as documented in prior radiation accidents is presented here. This algorithm provides an estimate of dose within the first 8 h following an acute whole-body exposure. Early lymphocyte depletion kinetics after a severe radiation accident follow a single exponential, L(t) = L{sub o}e{sup -k(D)t}, where k(D) is a rate constant, dependent primarily on the average dose, D. Within the first 8 h post-accident, K(D) may be calculated utilizing serial lymphocyte counts. Data from the REAC/TS Radiation Accident Registry were used to develop a dose-prediction algorithm from 43 gamma exposure cases where both lymphocyte kinetics and dose reconstruction were felt to be reasonably reliable. The inverse relationship D(K) may be molded by a simple two parameter curve of the form D = a/(1 + b/K) in the range 0 {le} D {le} 15 Gy, with fitting parameters (mean {+-} SD): a = 13.6 {+-} 1.7 Gy, and b = 1.0 {+-} 0.20 d{sup -1}. Dose estimated in this manner is intended to serve only as a first approximation to guide initial medical management. 31 refs., 4 figs., 2 tabs.

  6. The 3D Radiation Dose Analysis For Satellite

    NASA Astrophysics Data System (ADS)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.

  7. Radiation dose and second breast cancer.

    PubMed Central

    Basco, V. E.; Coldman, A. J.; Elwood, J. M.; Young, M. E.

    1985-01-01

    Amongst 14,000 women with breast cancer treated between 1946 and 1982, 194 developed a second primary tumour in the contralateral breast more than one year after diagnosis of the first primary. The radiation dose to the contralateral breast was calculated for each member of this group and also for members of a control group matched for age, year of diagnosis and survival time. Comparison of the groups provides no evidence for radiation induced carcinogenesis on the contralateral breast in these patients. PMID:4041361

  8. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  9. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  10. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray (Gy) is the SI unit of absorbed dose. One...

  11. National Survey of Radiation Doses of Pediatric Chest Radiography in Korea: Analysis of the Factors Affecting Radiation Doses

    PubMed Central

    Kim, Bo Hyun; Goo, Hyun Woo; Yang, Dong Hyun; Oh, Sang Young; Kim, Hyeog Ju; Lee, Kwang Yong; Lee, Jung Eun

    2012-01-01

    Objective To investigate radiation doses in pediatric chest radiography in a national survey and to analyze the factors that affect radiation doses. Materials and Methods The study was based on the results of 149 chest radiography machines in 135 hospitals nationwide. For each machine, a chest radiograph was obtained by using a phantom representing a 5-year-old child (ATOM® dosimetry phantom, model 705-D, CIRS, Norfolk, VA, USA) with each hospital's own protocol. Five glass dosimeters (M-GD352M, Asahi Techno Glass Corporation, Shizuoka, Japan) were horizontally installed at the center of the phantom to measure the dose. Other factors including machine's radiography system, presence of dedicated pediatric radiography machine, presence of an attending pediatric radiologist, and the use of automatic exposure control (AEC) were also evaluated. Results The average protocol for pediatric chest radiography examination in Korea was 94.9 peak kilovoltage and 4.30 milliampere second. The mean entrance surface dose (ESD) during a single examination was 140.4 microgray (µGy). The third quartile, median, minimum and maximum value of ESD were 160.8 µGy, 93.4 µGy, 18.8 µGy, and 2334.6 µGy, respectively. There was no significant dose difference between digital and non-digital radiography systems. The use of AEC significantly reduced radiation doses of pediatric chest radiographs (p < 0.001). Conclusion Our nationwide survey shows that the third quartile, median, and mean ESD for pediatric chest radiograph is 160.8 µGy, 93.4 µGy, and 140.4 µGy, respectively. No significant dose difference is noticed between digital and non-digital radiography systems, and the use of AEC helps significantly reduce radiation doses. PMID:22977329

  12. Contribution of maternal radionuclide burdens to prenatal radiation doses

    SciTech Connect

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  13. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  14. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  15. Early dose assessment following severe radiation accidents

    SciTech Connect

    Goans, R.E.; Holloway, E.C.

    1996-06-01

    Prompt and aggressive treatment of victims to high level whole-body gamma exposure has been shown to improve their likelihood of survival. However, in such cases, both the magnitude of the accident and the dosimetry profile(s) of the victim(s) are often not known in detail for days to weeks. Medical intervention could therefore be delayed after a major accident because of uncertainties in the initial dose estimate. A simple dose-prediction algorithm based on lymphocyte kinetics as documented in prior radiation accidents is presented here. This algorithm provides an estimate of marrow dose within the first 12-18 h following an acute whole-body gamma exposure. Early lymphocyte depletion curves post-accident follow a single exponential, L(t) = L{sub o}e{sup -k(D)t}, where L{sub o} is the pre- accident lymphocyte count and k(D) is a rate constant, dependent on the average dose, D. Within the first 12-18 h post-accident, K(D) may be calculated utilizing serial lymphocyte counts. Data from the REAC/TS Accident Registry were used to develop a dose prediction algorithm from 43 gamma exposure cases where both lymphocyte kinetics and dose reconstruction were felt to be reasonably reliable. The relationship D(K) is shown to follow a logistic dose response curve of the form D = a/[1 + (K/b){sup c}] in the range 0 {le} D {le} 15 Gy. The fitting parameters (mean {+-} SD) are found to be a = 21.5 {+-} 5.8 Gy, b = 1.75 {+-} 0.99 d{sup -1}, and c = -0.98 {+-} 0.14, respectively. The coefficient of determination r{sup 2} for the fit is 0.90 with an F-value of 174.7. Dose estimated in this manner is intended to serve only as a first approximation to guide initial medical-management. The treatment regimen may then be modified as needed after more exact dosimetry has become available.

  16. The Radiation Dose-Response of the Human Spinal Cord

    SciTech Connect

    Schultheiss, Timothy E.

    2008-08-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.

  17. High dose rates obtained outside ISS in June 2015 during SEP event

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7 MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000 μGy h-1, while the inner radiation belt maximum dose was at the level of 2200 μGy h-1. If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84 mGy after 6.5 h, which is similar to the average absorbed dose inside ISS for 15 days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.

  18. High dose rates obtained outside ISS in June 2015 during SEP event.

    PubMed

    Dachev, T P; Tomov, B T; Matviichuk, Yu N; Dimitrov, Pl G; Bankov, N G

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000µGyh(-1), while the inner radiation belt maximum dose was at the level of 2200µGyh(-1). If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84mGy after 6.5h, which is similar to the average absorbed dose inside ISS for 15days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA. PMID:27345205

  19. High dose rates obtained outside ISS in June 2015 during SEP event

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7 MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000 μGy h-1, while the inner radiation belt maximum dose was at the level of 2200 μGy h-1. If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84 mGy after 6.5 h, which is similar to the average absorbed dose inside ISS for 15 days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.

  20. Biological detection of low radiation doses with integrated photothermal assay

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Viegas, Mark; Soderberg, Lee S. F.

    2005-04-01

    The goal of this paper was to evaluate the diagnostic value of integrated photothermal (PT) assay with additional fluorescent and photoacoustic (PA) modules to assess both the "safety limit" of exposure to ionizing γ-radiation and optimal therapeutic doses for cancer treatment. With this assay, the influences of γ irradiation on cancer cells (pancreatic-AR42J and hepatocytes-hepG2) and healthy cells (mouse lymphocytes and erythrocytes) was examined as a function of exposure dose (0.6-5 Gy) and time after irradiation, in vitro and in vivo. Independent verification of data obtained with conventional assays revealed that integrated PT assay allowed us to detect the different stages of radiation impact, including changes in cell metabolism at low dose, or stages related to cell death (apoptosis and necrosis) at high doses with a threshold sensitivity of at least three orders of magnitude better than existing assays. Also, PT assay was capable of quantitatively differentiating the biological action of γ irradiation alone and in combination with drug and nicotine impact. Finally, we demonstrated on an animal model that IPT assay has the potential for use in routine rapid evaluation of biological consequences of low-dose exposure a few days after irradiation.

  1. Evaluation of Radiation Dose Effects on Rat Bones Using Synchrotron Radiation Computed Microtomography

    SciTech Connect

    Nogueira, Liebert Parreiras; Braz, Delson

    2011-12-13

    In this work, we investigated the consequences of irradiation in the femora and ribs of rats submitted to radiation doses of 5 Gy. Three different sites in femur specimens (head, distal metaphysis and distal epiphysis) and one in ribs (ventral) were imaged using synchrotron radiation microcomputed tomography to assess trabecular bone microarchitecture. Histomorphometric quantification was calculated directly from the 3D microtomographic images using synchrotron radiation. The 3D microtomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. A better understanding of the biological interactions that occur after exposure to photon radiation is needed in order to optimize therapeutic regimens and facilitate development and strategies that decrease radiation-induced side effects in humans. Results showed significant differences between irradiated and non-irradiated specimens, mostly in head and distal metaphysis bone sites.

  2. Non-uniform dose distributions in cranial radiation therapy

    NASA Astrophysics Data System (ADS)

    Bender, Edward T.

    Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.

  3. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  4. Measurement of three-dimensional radiation dose distributions using MRI.

    PubMed

    Prasad, P V; Nalcioglu, O; Rabbani, B

    1991-10-01

    Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry. PMID:1924718

  5. Total-dose radiation effects data for semiconductor devices, volume 2

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Total ionizing dose radiation test data on integrated circuits are analyzed. Tests were performed with the electron accelerator (Dynamitron) that provides a steady state 2.5 MeV electron beam. Some radiation exposures were made with a Cobalt-60 gamma ray source. The results obtained with the Cobalt-60 source are considered an approximate measure of the radiation damage that would be incurred by an equivalent dose of electrons.

  6. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  7. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  8. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  9. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  10. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    examinations of impacted lower third molars and retained upper cuspids. It varied between 11-77 microSv. Radiation dose should be evaluated together with image quality. Images of a skull phantom were obtained with both units varying tube voltage, tube current, degree of rotation and FOVs. Seven observers assessed subjective image quality using a six-point rating scale for two diagnostic tasks: periapical diagnosis and implant planning in the posterior part of the jaws. Intra-observer agreement was good and inter-observer agreement moderate. Periapical diagnosis was found to, regardless of jaw, require higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Substantial dose reduction could be made without loss of diagnostic information by using a rotation of 180 degrees, in particular implant planning in upper jaw. CBCT with small FOVs was found to be well-suited for periapical diagnosis and implant planning. The CTDI method is not applicable estimating effective dose for these units. Based on DAP values effective dose varied between 11-77 microSv (ICRP 60, 1991) in a retrospectively selected patient material. Adaptation of exposure parameters to diagnostic task can give substantial dose reduction. PMID:21229915

  11. Clinically Relevant Doses of Enalapril Mitigate Multiple Organ Radiation Injury.

    PubMed

    Cohen, Eric P; Fish, Brian L; Moulder, John E

    2016-03-01

    Angiotensin-converting enzyme inhibitors (ACEi) are effective mitigators of radiation nephropathy. To date, their experimental use has been in fixed-dose regimens. In clinical use, doses of ACEi and other medication may be escalated to achieve greater benefit. We therefore used a rodent model to test the ACEi enalapril as a mitigator of radiation injury in an escalating-dose regimen. Single-fraction partial-body irradiation (PBI) with one hind limb out of the radiation field was used to model accidental or belligerent radiation exposures. PBI doses of 12.5, 12.75 and 13 Gy were used to establish multi-organ injury. One third of the rats underwent PBI alone, and two thirds of the rats had enalapril started five days after PBI at a dose of 30 mg/l in the drinking water. When there was established azotemic renal injury enalapril was escalated to a 60 mg/l dose in half of the animals and then later to a 120 mg/l dose. Irradiated rats on enalapril had significant mitigation of combined pulmonary and renal morbidity and had significantly less azotemia. Dose escalation of enalapril did not significantly improve outcomes compared to fixed-dose enalapril. The current data support use of the ACEi enalapril at a fixed and clinically usable dose to mitigate radiation injury after partial-body radiation exposure. PMID:26934483

  12. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    NASA Astrophysics Data System (ADS)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  13. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  14. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  15. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  16. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  17. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  18. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  19. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  20. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  1. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  2. Occupational radiation doses to operators performing cardiac catheterization procedures.

    PubMed

    Kim, Kwang Pyo; Miller, Donald L; Balter, Stephen; Kleinerman, Ruth A; Linet, Martha S; Kwon, Deukwoo; Simon, Steven L

    2008-03-01

    Cardiac catheterization procedures using fluoroscopy reduce patient morbidity and mortality compared to operative procedures. These diagnostic and therapeutic procedures require radiation exposure to patients and physicians. The objectives of the present investigation were to provide a systematic comprehensive summary of the reported radiation doses received by operators due to diagnostic or interventional fluoroscopically-guided procedures, to identify the primary factors influencing operator radiation dose, and to evaluate whether there have been temporal changes in the radiation doses received by operators performing these procedures. Using PubMed, we identified all English-language journal articles and other published data reporting radiation exposures to operators from diagnostic or interventional fluoroscopically-guided cardiovascular procedures from the early 1970's through the present. We abstracted the reported radiation doses, dose measurement methods, fluoroscopy system used, operational features, radiation protection features, and other relevant data. We calculated effective doses to operators in each study to facilitate comparisons. The effective doses ranged from 0.02-38.0 microSv for DC (diagnostic catheterizations), 0.17-31.2 microSv for PCI (percutaneous coronary interventions), 0.24-9.6 microSv for ablations, and 0.29-17.4 microSv for pacemaker or intracardiac defibrillator implantations. The ratios of doses between various anatomic sites and the thyroid, measured over protective shields, were 0.9 +/- 1.0 for the eye, 1.0 +/- 1.5 for the trunk, and 1.3 +/- 2.0 for the hand. Generally, radiation dose is higher on the left side of an operator's body, because the operator's left side is closer to the primary beam when standing at the patient's right side. Modest operator dose reductions over time were observed for DC and ablation, primarily due to reduction in patient doses due to decreased fluoroscopy/cineradiography time and dose rate by technology

  3. Radiation dose estimates for copper-64 citrate in man

    SciTech Connect

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs.

  4. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  5. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  6. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  7. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  8. The Measurement of Radiation Dose in SJ-10 satellite

    NASA Astrophysics Data System (ADS)

    Shenyi, Zhang

    SJ-10 scientific satellite will be launched after a few years in china. The SJ-10 satellite is a recoverable satellite researching for materials and life science. Orbit altitude of 600 km circular orbit with an inclination of 63 " Space Radiation Biology Researching " is a sub-project in SJ-10 satellite, which will research the relation between the biological effect and space particle's radiation. The project include the biological materials for biological effect researching and "The Detector of Space Radiation Biology " for measurement the dose in the space. In SJ-10 satellite's orbit, The source of the particle radiation is from earth radiation-belt and galaxy cosmic ray . The propose of "The Detector of space radiation biology " is monitor the particle radiation, service to the scientific analysis. The instrument include the semiconductor particle radiation monitoring package and Tissue-equivalent particle radiation monitoring package. The semiconductor particle radiation monitoring package is used to detect the flux of the protons, electrons and heavy ions, also the linear energy transfer(LET) in the silicon material. The element composition of Tissue-equivalent particle radiation monitoring package is similar to the biology issue. It can measure the space particles in biological materials, the value of the LET, dose, dose equivalent, and more Keywords: SJ-10 satellites; radiation biological effects; semiconductor particle radiation moni-toring package; Tissue-equivalent particle radiation monitoring package

  9. MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP).

    PubMed

    Ngwa, Wilfred; Korideck, Houari; Chin, Lee M; Makrigiorgos, G Mike; Berbeco, Ross I

    2011-12-01

    The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice. Surgically implanted metal oxide semiconductor field effect transistors (MOSFET) dosimeters were employed for the dose assessment. The results reveal differences between the calculated and measured dose of -3.5 to 0.5%, -5.2 to -0.7%, -3.9 to 0.5%, -5.9 to 2.5%, -5.5 to 0.5%, and -4.3 to 0% for the left kidney, liver, pancreas, prostate, left lung, and brain, respectively. Overall, the findings show less than 6% difference between the delivered and calculated dose, without tissue heterogeneity corrections. These results provide a useful assessment of the need for tissue heterogeneity corrections in SARRP dose calculations for clinically relevant tumor model sites. PMID:21962005

  10. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  11. Low-dose radiation: a cause of breast cancer

    SciTech Connect

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.

  12. Commentary 2 to Cox and Little: radiation-induced oncogenic transformation: the interplay between dose, dose protraction, and radiation quality

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Hall, E. J.

    1992-01-01

    There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.

  13. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  14. Perception of Radiation Risk by Japanese Radiation Specialists Evaluated as a Safe Dose Before the Fukushima Nuclear Accident.

    PubMed

    Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki

    2016-06-01

    From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident. PMID:27115222

  15. Radiation dose reduction in computed tomography: techniques and future perspective

    PubMed Central

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2011-01-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169

  16. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  17. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy

    SciTech Connect

    Macey, D.J.; DeNardo, S.J.; DeNardo, G.L.; DeNardo, D.A.; Sui Shen

    1995-02-01

    Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contribution from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: (1) marrow; (2) blood; and (3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose form marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin`s lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. 32 refs., 6 figs., 1 tab.

  18. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  19. [Low-dose radiation effects and intracellular signaling pathways].

    PubMed

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2006-10-01

    Accumulated evidence has shown that exposure to low-dose radiation, especially doses less than 0.1 Gy, induces observable effects on mammalian cells. However, the underlying molecular mechanisms have not yet been clarified. Recently, it has been shown that low-dose radiation stimulates growth factor receptor, which results in a sequential activation of the mitogen-activated protein kinase pathway. In addition to the activation of the membrane-bound pathways, it is becoming evident that nuclear pathways are also activated by low-dose radiation. Ionizing radiation has detrimental effects on chromatin structure, since radiation-induced DNA double-strand breaks result in discontinuity of nucleosomes. Recently, it has been shown that ATM protein, the product of the ATM gene mutated in ataxia-telangiectasia, recognizes alteration in the chromatin structure, and it is activated through intermolecular autophosphorylation at serine 1981. Using antibodies against phosphorylated ATM, we found that the activated and phosphorylated ATM protein is detected as discrete foci in the nucleus between doses of 10 mGy and 1 Gy. Interestingly, the size of the foci induced by low-dose radiation was equivalent to the foci induced by high-dose radiation. These results indicate that the initial signal is amplified through foci growth, and cells evolve a system by which they can respond to a small number of DNA double-strand breaks. From these results, it can be concluded that low-dose radiation is sensed both in the membrane and in the nucleus, and activation of multiple signal transduction pathways could be involved in manifestations of low-dose effects. PMID:17016017

  20. Radiation doses in chest, abdomen and pelvis CT procedures.

    PubMed

    Manssor, E; Abuderman, A; Osman, S; Alenezi, S B; Almehemeid, S; Babikir, E; Alkhorayef, M; Sulieman, A

    2015-07-01

    Computed tomography (CT) scanning is recognised as a high-radiation dose modality and estimated to be 17 % of the radiological procedure and responsible for 70 % of medical radiation exposure. Although diagnostic X rays provide great benefits, their use involves some risk for developing cancer. The objectives of this study are to estimate radiation doses during chest, abdomen and pelvis CT. A total of 51 patients were examined for the evaluation of metastasis of a diagnosed primary tumour during 4 months. A calibrated CT machine from Siemens 64 slice was used. The mean age was 48.0 ± 18.6 y. The mean patient weight was 73.8 ± 16.1 kg. The mean dose-length product was 1493.8 ± 392.1 mGy cm, Volume CT dose index (CTDI vol) was 22.94 ± 5.64 mGy and the mean effective dose was 22.4 ± 5.9 mSv per procedure. The radiation dose per procedure was higher as compared with previous studies. Therefore, the optimisation of patient's radiation doses is required in order to reduce the radiation risk. PMID:25852181

  1. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  2. Measurements of individual radiation doses in residents living around the Fukushima Nuclear Power Plant.

    PubMed

    Nagataki, Shigenobu; Takamura, Noboru; Kamiya, Kenji; Akashi, Makoto

    2013-11-01

    At the outset of the accident at Fukushima Daiichi Nuclear Power Plant in March 2011, the radiation doses experienced by residents were calculated from the readings at monitoring posts, with several assumptions being made from the point of view of protection and safety. However, health effects should also be estimated by obtaining measurements of the individual radiation doses. The individual external radiation doses, determined by a behavior survey in the "evacuation and deliberate evacuation area" in the first 4 months, were <5 mSv in 97.4% of residents (maximum: 15 mSv). Doses in Fukushima Prefecture were <3 mSv in 99.3% of 386,572 residents analyzed. External doses in Fukushima City determined by personal dosimeters were <1 mSv/3 months (September-November, 2011) in 99.7% of residents (maximum: 2.7 mSv). Thyroid radiation doses, determined in March using a NaI (TI) scintillation survey meter in children in the evacuation and deliberate evacuation area, were <10 mSv in 95.7% of children (maximum: 35 mSv). Therefore, all doses were less than the intervention level of 50 mSv proposed by international organizations. Internal radiation doses determined by cesium-134 ((134)C) and cesium-137 ((137)C) whole-body counters (WBCs) were <1 mSv in 99% of the residents, and the maximum thyroid equivalent dose by iodine-131 WBCs was 20 mSv. The exploratory committee of the Fukushima Health Management Survey mentions on its website that radiation from the accident is unlikely to be a cause of adverse health effects in the future. In any event, sincere scientific efforts must continue to obtain individual radiation doses that are as accurate as possible. However, observation of the health effects of the radiation doses described above will require reevaluation of the protocol used for determining adverse health effects. The dose-response relationship is crucial, and the aim of the survey should be to collect sufficient data to confirm the presence or absence of radiation health

  3. Toward high-contrast breast CT at low radiation dose.

    PubMed

    Keyriläinen, Jani; Fernández, Manuel; Karjalainen-Lindsberg, Marja-Liisa; Virkkunen, Pekka; Leidenius, Marjut; von Smitten, Karl; Sipilä, Petri; Fiedler, Stefan; Suhonen, Heikki; Suortti, Pekka; Bravin, Alberto

    2008-10-01

    This study was approved by the local research ethics committee, and patient informed consent was obtained. The purpose of this study was to demonstrate that high-spatial-resolution low-dose analyzer-based x-ray computed tomography (CT) can substantially improve the radiographic contrast of breast tissue in vitro when compared with that attained by using diagnostic mammography and CT. An excised human breast tumor was examined by using analyzer-based x-ray imaging with synchrotron radiation. The correspondence between analyzer-based x-ray images and diagnostic mammograms, CT images, and histopathologic findings was determined. Calcifications and fine details of soft tissue, which are at the contrast detection limit on diagnostic mammograms, are clearly visible on planar analyzer-based x-ray images. Analyzer-based x-ray CT yields high contrast from smoothly varying internal structures, such as tumorous mass lesions, corresponding to information on actual structures seen at histopathologic analysis. The mean glandular dose of 1.9 mGy in analyzer-based x-ray CT is approximately equivalent to the dose administered during single-view screening mammography. The improved visibility of mammographically indistinguishable lesions in vitro suggests that analyzer-based x-ray CT may be a valuable method in radiographic evaluation of the breast, thereby justifying further investigations. PMID:18796684

  4. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  5. Galactic cosmic radiation doses to astronauts outside the magnetosphere

    SciTech Connect

    Letaw, J.R.

    1987-12-06

    The dose and dose equivalent from galactic cosmic radiation outside the magnetosphere were computed. The principal radiation components considered include primary cosmic rays, spallation fragments of the heavy ions, and secondary products (protons, neutrons, alphas, and recoil nuclei) from interactions in tissue. Three mission environments were considered: free space, the lunar surface, and the martian surface. The annual dose equivalents to the blood-forming organs in these environments are approximately 500 mSv, 250 mSv, and 120 mSv, respectively (1 mSv = 0.1 rem). The dose on the lunar surface is one-half of free space because there is only a single hemisphere of exposure. The dose on the martian surface is half again the dose on the moon because of the shielding provided by a thin, carbon dioxide atmosphere. Dose versus aluminum shielding thickness functions have been computed for the free space exposure. Galactic cosmic radiation is energetic and highly penetrating. 30 cm of aluminum shielding reduces the dose equivalent 25% to 40% (depending on the phase of the solar cycle). Aiming for conformity with the draft NCRP annual dose limit for space station crew members, which is 500 mSv/yr, we recommend 7.5 cm of aluminum shielding in all habitable areas of spacecraft designed for long-duration missions outside Earth's magnetosphere. This shielding thickness reduces the galactic cosmic ray dose and diminishes the risk to astronauts from energetic particle events.

  6. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  7. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  8. Radiation dose modeling using IGRIP and Deneb/ERGO

    SciTech Connect

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-12-31

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

  9. Estimation of organ dose equivalents from residents of radiation-contaminated buildings with Rando phantom measurements.

    PubMed

    Lee, J S; Dong, S L; Wu, T H

    1999-05-01

    Since August 1996, a dose reconstruction model has been conducted with thermoluminescent dosimeter (TLD)-embedded chains, belts and badges for external dose measurements on the residents in radiation-contaminated buildings. The TLD dosimeters, worn on the front of the torso, would not be adequate for dose measurement in cases when the radiation is anisotropic or the incident angles of radiation sources are not directed in the front-to-back direction. The shielding and attenuation by the body would result in the dose equivalent estimation being somewhat skewed. An organ dose estimation method with a Rando phantom under various exposure geometries is proposed. The conversion factors, obtained from the phantom study, may be applicable to organ dose estimations for residents in the contaminated buildings if the incident angles correspond to the phantom simulation results. There is a great demand for developing a mathematical model or Monte Carlo calculation to deal with complicated indoor layout geometry problems involving ionizing radiation. Further research should be directed toward conducting laboratory simulation by investigating the relationship between doses delivered from multiple radiation sources. It is also necessary to collaborate with experimental biological dosimetry, such as chromosome aberration analysis, fluorescence in situ hybridization (FISH) and retrospective ESR-dosimetry with teeth, applied to the residents, so that the organ dose equivalent estimations may be more reliable for radio-epidemiological studies. PMID:10214706

  10. Radiation dose to the lens and cataract formation

    SciTech Connect

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M. )

    1993-04-02

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab.

  11. Fetal radiation dose in computed tomography.

    PubMed

    Kelaranta, Anna; Kaasalainen, Touko; Seuri, Raija; Toroi, Paula; Kortesniemi, Mika

    2015-07-01

    The connection between recorded volumetric CT dose index (CTDI vol) and determined mean fetal dose (Df) was examined from metal-oxide-semiconductor field-effect transistor dose measurements on an anthropomorphic female phantom in four stages of pregnancy in a 64-slice CT scanner. Automated tube current modulation kept the mean Df fairly constant through all pregnancy stages in trauma (4.4-4.9 mGy) and abdomino-pelvic (2.1-2.4 mGy) protocols. In pulmonary angiography protocol, the mean Df increased exponentially as the distance from the end of the scan range decreased (0.01-0.09 mGy). For trauma protocol, the relative mean Df as a function of gestational age were in the range 0.80-0.97 compared with the mean CTDI vol. For abdomino-pelvic protocol, the relative mean Df was 0.57-0.79 and for pulmonary angiography protocol, 0.01-0.05 compared with the mean CTDI vol, respectively. In conclusion, if the fetus is in the primary beam, the CTDI vol can be used as an upper estimate of the fetal dose. If the fetus is not in the primary beam, the fetal dose can be estimated by considering also the distance of the fetus from the scan range. PMID:25836690

  12. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  13. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  14. Malignant melanoma of the tongue following low-dose radiation

    SciTech Connect

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  15. Treatment planning and dose calculation in radiation ecology

    SciTech Connect

    Bentel, G.C.; Nelson, C.E.; Noell, K.T.

    1989-01-01

    This book focuses on treatment planning of cancer therapy. The following topics are discussed: elements of clinical radiation oncology; radiation physics; dose calculation for external beams; pretreatment procedures; brachytherapy; principles of external beam treatment planning; practical treatment planning; and normal tissue consequences. Eight chapters have been processed separately for inclusion in the appropriate data bases.

  16. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  17. Effect of radiation protraction on BED in the case of large fraction dose

    SciTech Connect

    Kuperman, V. Y.

    2013-08-15

    Purpose: To investigate the effect of radiation protraction on biologically effective dose (BED) in the case when dose per fraction is significantly greater than the standard dose of 2 Gy.Methods: By using the modified linear-quadratic model with monoexponential repair, the authors investigate the effect of long treatment times combined with dose escalation.Results: The dependences of the protraction factor and the corresponding BED on fraction time were determined for different doses per fraction typical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). In the calculations, the authors consider changes in the BED to the normal tissue under the condition of fixed BED to the target.Conclusion: The obtained results demonstrate that simultaneous increase in fraction time and dose per fraction can be beneficial for SRS and SBRT because of the related decrease in BED to normal structures while BED to the target is fixed.

  18. Individual and collective doses from cosmic radiation in Ireland.

    PubMed

    Colgan, P A; Synnott, H; Fenton, D

    2007-01-01

    This paper assesses the individual and collective doses in Ireland due to cosmic radiation. Information on the exposure to cosmic radiation at ground level is reviewed and published data on the frequency of routes flown by Irish residents is used to calculate the dose due to air travel. Occupational exposure of aircrew is also evaluated. Experimental data on cosmic radiation exposure at ground level is in good agreement with international estimates and the average individual dose is calculated as 300 microSv annually. Published data on international air travel by Irish residents shows a 50% increase in the number of flights taken between 2001 and 2005. This increase is primarily on short-haul flights to Europe, but there have been significant percentage increases in all long-haul flights, with the exception of flights to Africa. The additional per capita dose due to air travel is estimated to be 45 muSv, of which 51% is accumulated on European routes and 34% on routes to the United States. Exposure of aircrew to cosmic radiation is now controlled by legislation and all airlines holding an Air Operator's Certificate issued by the Irish Aviation Authority are required to report annually the doses received by their employees in the previous year. There has been a 75% increase in the number of aircrew receiving doses >1 mSv since 2002. In 2004 and 2005 the average individual doses received by Irish aircrew were 1.8 and 2.0, mSv, respectively. The corresponding per caput dose for the entire population is <3 muSv. While this is low compared with the per caput doses from other sources of cosmic radiation, aircrew exposure represents a higher collective dose than any other identified group of exposed workers in Ireland. PMID:17223639

  19. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  20. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  1. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21). PMID:24378501

  2. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. PMID:21040869

  3. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  4. Effective UV radiation dose in polyethylene exposed to weather

    NASA Astrophysics Data System (ADS)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  5. Status of eye lens radiation dose monitoring in European hospitals.

    PubMed

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. PMID:25222935

  6. Investigation of radiation doses in open space using TLD detectors.

    PubMed

    Reitz, G; Facius, R; Bilski, P; Olko, P

    2002-01-01

    The low energy component of the cosmic radiation field is strongly modified by the shielding of the spacecraft and it is time and location dependent. Thermoluminescent lithium fluoride detectors have been applied to determine the radiation doses inside the ESA-Facility BIOPAN. The BIOPAN facility was mounted outside and launched on a Foton spacecraft and opened to space to allow exposure of several experiments to open space. Standard TLD-600. TLD-700 chips, two layers MTS-Ns sintered pellets with different effective thickness of the sensitive layer and MTS-N of different thickness have been exposed with different shielding thicknesses in front of them. The measured TL signal in the 0.1 mm thick detector just shielded by an aluminised Kapton foil of 25 microm thickness in front yielded a dose of 29.8 Gy (calibrated with 137Cs gamma rays) for an exposure time of 12.7 days: after 2.5 g.cm(-2) shielding the doses dropped to 3 mGy. The monitoring of radiation doses and its depth dose distribution outside the spacecraft are of great interest for radiation protection of astronauts working in open space. The knowledge of depth-dose distribution is a prerequisite to determine the organ doses an astronaut will receive during an extravehicular activity (EVA). The BIOPAN experiments are to be continued in the future. PMID:12382937

  7. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    SciTech Connect

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  8. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  9. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  10. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  11. Computation of Radiation Dose at Aircraft Altitudes from Analysis of Cosmic Ray Neutron Monitor Data

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    Relativistic solar proton events GLEs those events with protons having sufficient kinetic energy to initiate a nuclear cascade in the atmosphere can make a contribution to radiation dose at aircraft altitudes We show that it is possible to obtain proper estimates of the expected radiation dose at aircraft altitudes from the analysis of ground-level neutron monitor data Assuming a nominal GLE spectrum the radiation dose at 40 000 feet during a 100 increase at polar latitudes will be in the range of 5 to 10 micro Sieverts per hour depending on the spectral slope An analysis of the large GLE s that have occurred during the past two solar cycles shows that there have been no events where the hourly averaged radiation dose at 40 000 feet would have exceeded 20 micro Sieverts per hour In the past improper GLE analysis was used to estimate the radiation dose at aircraft altitudes The old values derived for the early GLE s resulted in the prediction of high dose rates that persist today as urban legends and contribute to the public concept that the radiation dose at aircraft altitudes is dangerous We demonstrate that modern analytical techniques result in computed radiation doses during high-energy solar cosmic ray events that are orders of magnitude lower than those obtained by the old techniques We show that the use of the old technique of using straight line power law spectra to extrapolate the flux derived at 1 GeV results in order of magnitude errors when these flux values are extrapolated to lower energies and used to

  12. Peripheral Doses from Noncoplanar IMRT for Pediatric Radiation Therapy

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Kwong, Dora L.W.; Wong, Wicger; Lam, Nelson

    2010-01-01

    The use of noncoplanar intensity-modulated radiation therapy (IMRT) might result in better sparing of some critical organs because of a higher degree of freedom in beam angle optimization. However, this can lead to a potential increase in peripheral dose compared with coplanar IMRT. The peripheral dose from noncoplanar IMRT has not been previously quantified. This study examines the peripheral dose from noncoplanar IMRT compared with coplanar IMRT for pediatric radiation therapy. Five cases with different pediatric malignancies in head and neck were planned with both coplanar and noncoplanar IMRT techniques. The plans were performed such that the tumor coverage, conformality, and dose uniformity were comparable for both techniques. To measure the peripheral doses of the 2 techniques, thermoluminescent dosimeters (TLD) were placed in 10 different organs of a 5-year-old pediatric anthropomorphic phantom. With the use of noncoplanar beams, the peripheral doses to the spinal cord, bone marrow, lung, and breast were found to be 1.8-2.5 times of those using the coplanar technique. This is mainly because of the additional internal scatter dose from the noncoplanar beams. Although the use of noncoplanar technique can result in better sparing of certain organs such as the optic nerves, lens, or inner ears depending on how the beam angles were optimized on each patient, oncologists should be alert of the possibility of significantly increasing the peripheral doses to certain radiation-sensitive organs such as bone marrow and breast. This might increase the secondary cancer risk to patients at young age.

  13. Overview of ICRP Committee 2: doses from radiation exposure.

    PubMed

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  14. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  15. Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Hu, Shaowen

    2016-10-01

    In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios. PMID:27575346

  16. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  17. Capture and analysis of radiation dose reports for radiology.

    PubMed

    Midgley, S M

    2014-12-01

    Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy. PMID:25315104

  18. Radiation dose reconstruction for epidemiologic uses. Final report

    SciTech Connect

    1995-05-12

    The report presents specific and practical recommendations for whether, when, and how dose-reconstruction studies should be conducted, with an emphasis on public participation. The book provides an overview of the basic requirements and technical aspects of dose reconstruction; presents lessons to be learned from dose reconstructions after Chernobyl, Three Mile Island, and elsewhere; explores the potential benefits and limitations of using current available biological markers; discusses how to establish the source term determining what was released; explores methods for identifying the environmental pathways by which radiation reaches the body; offers details on three major categories of dose assessment; and examines priority-setting and strengths and limitations of epidemiological studies.

  19. Dual integral glow analysis-evaluation of the method in determination of shallow dose and deep dose in selected beta radiation fields

    SciTech Connect

    Wagner, E.C.; Samei, E.; Kearfott, K.J.

    1996-06-01

    Since introduction of the shallow dose and deep dose by the International Commission on Radiation Units and Measurement (ICRU) in 1985, many efforts have been made to measure these quantities. In an earlier study, we introduced a new method, termed Dual Integral Glow Analysis (DINGA), for evaluation of these quantities. The method is based on obtaining the integrals of the glow curves from opposite sides of a hot gas-heated single or pair of thermoluminescent dosimeters (TLD). In this study, we demonstrate the feasibility of DINGA in determination of the shallow dose and deep dose in selected beta radiation fields using a computational algorithm. The depth-dose distributions in the TLDs are computed for 19 well-defined beta radiation fields using the EGS4 Monte Carlo radiation transport code. Using a mathematical description of depth-dose distribution in the TLD and given the thermophysical and optical parameters of the system, the Randall-Wilkins TL model is used in a computational routine to reconstruct the depth-dose distribution from which the deep dose and shallow dose are evaluated. Introducing a 5% fluctuation in response of the TL elements, the error in the computed deep dose and shallow dose is within {+-}20% for examined beta radiation fields.

  20. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  1. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory, originally developed for analysis of inversion problems associated with the physics of the solid earth, was applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application was made to spectral intervals 2.8/cm wide in the 667/cm band CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2 K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 locale scale height (l.s.h.) in the lower troposphere to greater than 2 l.s.h. in the upper stratosphere with approximately 1 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radioactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  2. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory is applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application is made to spectral intervals 2.8/cm wide in the 667/cm band of CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 local scale height (l.s.h.) in the lower troposphere to 2 l.s.h. in the upper stratosphere with approximately 2 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radiactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  3. Low radiation doses; are they harmful in infancy?

    PubMed

    Asteriadis, Ioannis

    2004-01-01

    Adults usually ask their physician about the kind of treatment they will be given and especially whether ionizing radiation applied for therapeutic purposes is harmful. When these treatments are applied to children and especially to infants of <18 months of age, parents should be more reluctant to give their consent for such a treatment. A paper under the title "Effect of low doses of ionizing radiation in infancy on cognitive function in adulthood: Swedish population based cohort study" written by Hall P, Adami HO, Trichopoulos D, et al. and published in the British Journal of Medicine 2004, 328:19-21 presents new and important data referring to 3094 males who at an age of <18 months had undergone radiation treatment for haemangiomas of the head and other dermatological lesions. The doses they received in their brain were from 20 mGy to > 250 mGy. Findings were exciting. 17%-32% of these infants did not attend highschool lessons. Many failed to pass tests related to cognitive tests for learning ability or logical reasoning. On the contrary spatial recognition was intact. As the authors state it is important to know that a cranial tomography examination administers to the brain of infants about 120 mGy. These doses are relevant to the doses tested above and found harmful. More radiation protection studies about the possible harmful effects on humans who receive doses of radiation for diagnostic and/or therapeutic purposes, are necessary. PMID:16868634

  4. Reducing ionizing radiation doses during cardiac interventions in pregnant women

    PubMed Central

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-01-01

    Background There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Methods Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. Results The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48–13.7), the median radiation dose was 66 (8.9–1501) Gy/cm2. The median radiation dose to uterus was 1.92 (0.59–5.47) μGy, and the patient estimated dose was 0.24 (0.095–0.80) mSv. Conclusions Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  5. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    NASA Astrophysics Data System (ADS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-04-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal.

  6. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  7. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  8. Metaphase chromosome aberrations as markers of radiation exposure and dose

    SciTech Connect

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ``paints`` to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with {sup 144}Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to {sup 60}Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  9. Metaphase chromosome aberrations as markers of radiation exposure and dose

    SciTech Connect

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with [sup 144]Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to [sup 60]Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  10. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose

    SciTech Connect

    Schneider, Uwe . E-mail: uwe.schneider@psi.ch; Zwahlen, Daniel; Ross, Dieter; Kaser-Hotz, Barbara

    2005-04-01

    Purpose: Estimates of secondary cancer risk after radiotherapy are becoming more important for comparative treatment planning. Modern treatment planning systems provide accurate three-dimensional dose distributions for each individual patient. These data open up new possibilities for more precise estimates of secondary cancer incidence rates in the irradiated organs. We report a new method to estimate organ-specific radiation-induced cancer incidence rates. The concept of an organ equivalent dose (OED) for radiation-induced cancer assumes that any two dose distributions in an organ are equivalent if they cause the same radiation-induced cancer incidence. Methods and Materials: The two operational parameters of the OED concept are the organ-specific cancer incidence rate at low doses, which is taken from the data of the atomic bomb survivors, and cell sterilization at higher doses. The effect of cell sterilization in various organs was estimated by analyzing the secondary cancer incidence data of patients with Hodgkin's disease who were treated with radiotherapy in between 1962 and 1993. The radiotherapy plans used at the time the patients had been treated were reconstructed on a fully segmented whole body CT scan. The dose distributions were calculated in individual organs for which cancer incidence data were available. The model parameter that described cell sterilization was obtained by analyzing the dose and cancer incidence rates for the individual organs. Results: We found organ-specific cell radiosensitivities that varied from 0.017 for the mouth and pharynx up to 1.592 for the bladder. Using the two model parameters (organ-specific cancer incidence rate and the parameter characterizing cell sterilization), the OED concept can be applied to any three-dimensional dose distribution to analyze cancer incidence. Conclusion: We believe that the concept of OED presented in this investigation represents a first step in assessing the potential risk of secondary

  11. Radiation dose to personnel during percutaneous renal calculus removal

    SciTech Connect

    Bush, W.H.; Jones, D.; Brannen, G.E.

    1985-12-01

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel.

  12. Review of standards for limitation of radiation dose to radiation workers and members of the public

    SciTech Connect

    Kocher, D.C.

    1992-01-01

    Topics covered in the review include: current radiation protection standards for workers; current radiation protection standards for the routine exposures of the public; environmental radiation standards for specific practices or sources; protective action guides for accidental releases of radioactivity to the environment; de minimis dose, exempt levels of radioactivity, and below regulatory concern.

  13. Review of standards for limitation of radiation dose to radiation workers and members of the public

    SciTech Connect

    Kocher, D.C.

    1992-07-01

    Topics covered in the review include: current radiation protection standards for workers; current radiation protection standards for the routine exposures of the public; environmental radiation standards for specific practices or sources; protective action guides for accidental releases of radioactivity to the environment; de minimis dose, exempt levels of radioactivity, and below regulatory concern.

  14. Assessment of radiation doses downwind of the Nevada Test Site

    SciTech Connect

    Anspaugh, L.R.; Church, B.W.

    1983-11-01

    The Department of Energy's Off-Site Radiation Exposure Review Project has the goal of reconstructing both individual and population doses via all pathways including the ingestion and inhalation of radionuclides. As this is a reconstruction and not a prediction for safety purposes, the desired output is the best estimate of radiation dose with an appropriate expression of uncertainty. For the 80 events of interest, the data consistently available are external ..gamma.. exposure-rate measurements, measurements of airborne gross ..beta.. activity, and measurements of fission yield and of activation products created in the device environment. For most organs, the external ..gamma.. dose is much greater than the dose from ingestion which, in turn, is much greater than the dose from inhalation. The gastrointestinal tract may receive as large a dose from ingestion as from external exposure, depending upon dietary habits. The dose to the thyroid gland is usually dominated by ingestion and the dose from inhalation can be nearly as large as that from external exposure. Several example calculations are presented for specific individuals.

  15. Radiation dose to physicians’ eye lens during interventional radiology

    NASA Astrophysics Data System (ADS)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  16. Radiation dose study in nuclear medicine using GATE

    NASA Astrophysics Data System (ADS)

    Aguwa, Kasarachi

    Dose as a result of radiation exposure is the notion generally used to disclose the imparted energy in a volume of tissue to a potential biological effect. The basic unit defined by the international system of units (SI system) is the radiation absorbed dose, which is expressed as the mean imparted energy in a mass element of the tissue known as "gray" (Gy) or J/kg. The procedure for ascertaining the absorbed dose is complicated since it involves the radiation transport of numerous types of charged particles and coupled photon interactions. The most precise method is to perform a full 3D Monte Carlo simulation of the radiation transport. There are various Monte Carlo toolkits that have tool compartments for dose calculations and measurements. The dose studies in this thesis were performed using the GEANT4 Application for Emission Tomography (GATE) software (Jan et al., 2011) GATE simulation toolkit has been used extensively in the medical imaging community, due to the fact that it uses the full capabilities of GEANT4. It also utilizes an easy to-learn GATE macro language, which is more accessible than learning the GEANT4/C++ programming language. This work combines GATE with digital phantoms generated using the NCAT (NURBS-based cardiac-torso phantom) toolkit (Segars et al., 2004) to allow efficient and effective estimation of 3D radiation dose maps. The GATE simulation tool has developed into a beneficial tool for Monte Carlo simulations involving both radiotherapy and imaging experiments. This work will present an overview of absorbed dose of common radionuclides used in nuclear medicine and serve as a guide to a user who is setting up a GATE simulation for a PET and SPECT study.

  17. Overview of ICRP Committee 2 'Doses from Radiation Exposure'.

    PubMed

    Harrison, J

    2015-06-01

    Over many years, Committee 2 of the International Commission on Radiological Protection (ICRP) has provided sets of dose coefficients to allow users to evaluate equivalent and effective doses for intakes of radionuclides or exposure to external radiation for comparison with dose limits, constraints, and reference levels as recommended by ICRP. Following the 2007 Recommendations, Committee 2 and its task groups are engaged in a substantial programme of work to provide new dose coefficients for various conditions of radiation exposure. The methodology being applied in the calculation of doses can be regarded as state-of-the-art in terms of the biokinetic models used to describe the behaviour of inhaled and ingested radionuclides, and the dosimetric models used to model radiation transport for external and internal exposures. The level of sophistication of these models is greater than required for calculation of the protection quantities with their inherent simplifications and approximations, which were introduced necessarily, for example by the use of radiation and tissue weighting factors. However, ICRP is at the forefront of developments in this area, and its models are used for scientific as well as protection purposes. This overview provides an outline of recent work and future plans, including publications on dose coefficients for adults, children, and in-utero exposures, with new dosimetric phantoms in each case. The Committee has also recently finished a report on radiation exposures of astronauts in space, and is working with members of the other ICRP committees on the development of advice on the use of effective dose. PMID:25816256

  18. The features of radiation dose variations onboard ISS and Mir space station: comparative study.

    PubMed

    Tverskaya, L V; Panasyuk, M I; Reizman, S Ya; Sosnovets, E N; Teltsov, M V; Tsetlin, V V

    2004-01-01

    The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt. PMID:15881786

  19. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    PubMed

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals. PMID:24772825

  20. Study of UV radiation dose received by the Spanish population.

    PubMed

    Gurrea, Gonzalo; Cañada, Javier

    2007-01-01

    Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year. PMID:18028210

  1. Radiation Dose and Safety in Cardiac Computed Tomography

    PubMed Central

    Gerber, Thomas C; Kantor, Birgit; McCollough, Cynthia H.

    2009-01-01

    Synopsis As a result of the changes in utilization of imaging procedures that rely on ionizing radiation, the collective dose has increased by over 700% and the annual per-capita dose, by almost 600% over recent years. It is certainly possible that this growing use may have significant effects on public health. Although there are uncertainties related to the accuracy of calculated radiation exposure and the estimated biologic risk, there are measures that can be taken to reduce any potential risks while maintaining diagnostic accuracy. This article will review the existing data regarding biological hazards of radiation exposure associated to medical diagnostic testing, the methodology used to estimate radiation exposure and the measures that can be taken to effectively reduce it. PMID:19766923

  2. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  3. Radiation dose to the respiratory airway linings from inhalation of (/sup 15/O)-carbon dioxide

    SciTech Connect

    Bigler, R.E.; Sgouros, G.; Zanzonico, P.B.; Cosma, M.; Leonard, R.W.; Dahl, J.R.

    1985-05-01

    Estimates of the radiation dose to the upper airways including the trachea, oropharnyx, and nasal linings from inhalation of oxygen-15 labeled CO/sub 2/ studies are provided. Three air administration procedures were examined; inhalation by nose, by mouth and by mouth through a mouthpiece. Attention is given to the inhaled radioactive gas absorbed and retained in the mucus and saliva layers lining the respiratory passages. The authors estimates from direct measurements in saliva and mucus of the highest total radiation dose is to the oropharnyx (5.2 rads, mouth; 2.8 rads, nose). The dose to the trachea was estimated to be 3.5 rads from mucus measurements from dogs. The comparative dose to lungs is 1.2 rads (Bigler and Sgouros, JNM 24:431, 1983). These doses are for steady-state measurements involving the breathing of 1 mCi/1-air for 1 hr. Single breath estimates can be obtained by dividing by the number of breaths per hr (720). Although this procedure leads to a 10% reduction in the radiation dose to the lung, the radiation dose to the lining of the vein infused is high, ranging from 70 to 430 rads for equal activity administered. The authors recommend considering the lung as the tissue at highest risk for both inhalation and IV administration procedures.

  4. A New Era of Low-Dose Radiation Epidemiology.

    PubMed

    Kitahara, Cari M; Linet, Martha S; Rajaraman, Preetha; Ntowe, Estelle; Berrington de González, Amy

    2015-09-01

    The last decade has introduced a new era of epidemiologic studies of low-dose radiation facilitated by electronic record linkage and pooling of cohorts that allow for more direct and powerful assessments of cancer and other stochastic effects at doses below 100 mGy. Such studies have provided additional evidence regarding the risks of cancer, particularly leukemia, associated with lower-dose radiation exposures from medical, environmental, and occupational radiation sources, and have questioned the previous findings with regard to possible thresholds for cardiovascular disease and cataracts. Integrated analysis of next generation genomic and epigenetic sequencing of germline and somatic tissues could soon propel our understanding further regarding disease risk thresholds, radiosensitivity of population subgroups and individuals, and the mechanisms of radiation carcinogenesis. These advances in low-dose radiation epidemiology are critical to our understanding of chronic disease risks from the burgeoning use of newer and emerging medical imaging technologies, and the continued potential threat of nuclear power plant accidents or other radiological emergencies. PMID:26231501

  5. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  6. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  7. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  8. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  9. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  10. Pathology effects at radiation doses below those causing increased mortality

    NASA Technical Reports Server (NTRS)

    Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas

    2002-01-01

    Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.

  11. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  12. Monte Carlo dose enhancement studies in microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Prezado, Y.

    2011-07-15

    Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further

  13. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  14. A method for estimating occupational radiation dose to individuals, using weekly dosimetry data

    SciTech Connect

    Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

    1993-12-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

  15. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Uchino, Yoshio; Itami, Makiko; Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa; Hara, Ryusuke

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  16. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere. PMID:11537609

  17. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  18. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  19. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. PMID:24787672

  20. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  1. Radiation dose estimation of patients undergoing lumbar spine radiography

    PubMed Central

    Gyekye, Prince Kwabena; Simon, Adu; Geoffrey, Emi-Reynolds; Johnson, Yeboah; Stephen, Inkoom; Engmann, Cynthia Kaikor; Samuel, Wotorchi-Gordon

    2013-01-01

    Radiation dose to organs of 100 adult patients undergoing lumbar spine (LS) radiography at a University Hospital have been assessed. Free in air kerma measurement using an ionization chamber was used for the patient dosimetry. Organ and effective dose to the patients were estimated using PCXMC (version 1.5) software. The organs that recorded significant dose due to LS radiography were lungs, stomach, liver, adrenals, kidney, pancreas, spleen, galbladder, and the heart. It was observed that the stomach recorded the highest dose (48.2 ± 1.2 μGy) for LS anteroposterior (AP). The spleen also recorded the highest dose (41.2 ± 0.5 μGy) for LS lateral (LAT). The mean entrance surface air kerma (ESAK) of LS LAT (122.2 μGy) was approximately twice that of LS AP (76.3 μGy), but the effective dose for both examinations were approximately the same (LS LAT = 8.6 μSv and LS AP = 10.4 μSv). The overall stochastic health effect of radiation to patients due to LS radiography in the University Hospital is independent of the projection of the examination (AP or LAT). PMID:24672153

  2. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  3. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  4. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  5. Comparison of precise ionising Radiation Dose Measurements on board Aircraft

    NASA Astrophysics Data System (ADS)

    Lindborg, L.; Beck, P.; Bottollier, J. F.; Roos, H.; Spurny, F.; Wissman, F.

    2003-04-01

    The cosmic radiation makes aircrew one of the most exposed occupational groups. The European Council has therefore in its Directive 96/29Euratom on basic safety standards for radiation protection a particular article (42) for the protection of aircrew. One of the measures to be taken is to assess the exposure of the crew. This is, however, not a trivial task. The radiation consists of many different types of radiation with energies that are hardly met on ground. The knowledge on the dose levels on board aircraft has improved gradually during the last decade as several groups around the world have performed measurements on board civil aircraft in cooperation with airlines. Only occasionally has more than one instrument been able to fly at the same time for practical reasons. The statistical uncertainty in a measurement of the dose equivalent rate is typically ±15 % (1 relative standard deviation) if determined during half an hour. Systematic uncertainties add to this. The dose rate depends on flight altitude, geographic coordinates of the flight, the phase of the solar cycle and the prevailing solar wind. For that reason the possibility to fly on the same flight will eliminate some of the systematic uncertainties that limits an evaluation of the measurement techniques. The proposal aims at measurements on board the aircraft on a geographically limited area for a few hours to decrease the statistical uncertainty of the measurements and thereby get an excellent opportunity to look for possible systematic differences between the different measurement systems. As the dose equivalent rate will be quite well established it will also be possible to compare the measured values with calculated ones. The dose rate increases towards the geomagnetic poles and decreases towards the equator. The composition of the radiation components varies also with altitude. For that reason measurements both at southern latitude and at northern latitude are planned.

  6. The effect of radiation dose on mouse skeletal muscle remodeling

    PubMed Central

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    Background The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Materials and methods. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. Results The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Conclusions Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism. PMID:25177239

  7. Radiation impact on spaceborne optics: the dose coefficients approach

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Gusarov, Andrei I.; Doyle, Dominic B.; Ulbrich, Gerd J.

    1999-12-01

    During the past 30 years of development of Space optical instrumentation for such missions as METEOSAT, SPOT, HIPPARCOS and SILEX with ESA and CNES, Matra Marcon Space (MMS) has conducted extensive studies on the behavior of optical materials under irradiation such as quantifying transmission losses in optical glasses and measuring the dimensional stability of Zerodur as a substrate for mirror applications. Thanks to this background experience, MMS, in cooperation with SCK-CEN, is conducting a study (under ESA sponsorship) to define the approach for the gathering of a comprehensive data base to quantify these effects through the use of linear sensitivity coefficients (so-called `Dose Coefficients'). This follows recent investigations which have shown that the space radiation environment can affect not only transmission but also other characteristics of refractive optical materials in both classical and Cerium doped glasses. A number of selected examples from specific MMS studies will first be shown. Then, the actual approach being taken to this problem, on the basis of already obtained results from preliminary experiments performed by ESTEC, will be presented.

  8. Methods for analyzing combined data from studies of workers exposed to low doses of radiation.

    PubMed

    Gilbert, E S; Fry, S A; Wiggs, L D; Voelz, G L; Cragle, D L; Petersen, G R

    1990-05-01

    Epidemiologic studies of workers exposed occupationally to protracted low doses of radiation provide a direct assessment of health effects resulting from such exposure and thus supplement information provided by studies of populations exposed at high doses of radiation and high dose rates. Analyses based on combined data from several studies can be expected to provide a more thorough assessment of low dose occupational studies and more precise risk estimates than can be obtained from any single study. Statistical methods for conducting such combined analyses are discussed, and different approaches, such as basing analyses on various levels of aggregation of exposure data, are compared and evaluated. Emphasis is given to methods for obtaining risk estimates and confidence limits that can be appropriately compared with estimates that form the basis for current radiation protection standards; these estimates have been obtained through extrapolation from high dose data. Methods are illustrated using combined data on workers at three US Department of Energy facilities: the Hanford Site, Richland, Washington; the Oak Ridge National Laboratory, Oak Ridge, Tennessee; and the Rocky Flats Nuclear Weapons Plant, Denver, Colorado. PMID:2321632

  9. Radiation doses to staff in a department of nuclear medicine.

    PubMed

    Harbottle, E A; Parker, R P; Davis, R

    1976-07-01

    A survey of data concerning radiation protection of staff working in the Nuclear Medicine Department and associated sections of the Physics Department at the Royal Marsden Hospital (Surrey Branch) is given for the period 1972 to 1975 inclusive. Results of routine film monitoring and whole-body counting are presented. Additional film monitors were used to check working areas, finger doses and any discrepancies between doses to the upper and lower trunk of personnel. In general, exposure to staff in the Nuclear Medicine Department is below 220 mrad per person per year, and below 1,000 mrad per person per year in the Radioisotope Dispensary. The dose received by radiographers is primarily due to spending time close to patients. Since about 5,000 intravenous injections of radionuclides are given each year in our department, the resulting finger doses to the staff involved may give rise to concern unless the task is shared. PMID:824004

  10. Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.

    PubMed

    Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A

    2015-01-01

    The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height. PMID:25966243

  11. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process

    PubMed Central

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    Background: The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. Aim: To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). Materials and Methods: The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of F-18 FDG. The F18-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. Results: The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44±0.22 μSv/injection (3.71±0.48 nSv/MBq), for doctors the dose values were 2.44±0.25 μSv/injection (6.29±0.49 nSv/MBq) and for technologists the doses were 0.61±0.10 μSv/injection (1.58±0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the F18-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). Conclusion: This study confirms that low levels of radiation dose are

  12. Radiation doses from Hanford site releases to the atmosphere

    SciTech Connect

    Farris, W.T.; Napier, B.A.; Ikenberry, T.A.

    1994-06-01

    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow`s milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65.

  13. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-02-01

    Radiation therapy is one of the important treatment procedures of cancer. The day-to-day delivered dose to the tissue in radiation therapy often deviates from the planned fixed dose per fraction. This day-to-day variation of radiation dose is stochastic. Here, we have developed the mathematical formulation to represent the day-to-day stochastic dose variation effect in radiation therapy. Our analysis shows that that the fixed dose delivery approximation under-estimates the biological effective dose, even if the average delivered dose per fraction is equal to the planned dose per fraction. The magnitude of the under-estimation effect relies upon the day-to-day stochastic dose variation level, the dose fraction size and the values of the radiobiological parameters of the tissue. We have further explored the application of our mathematical formulation for adaptive dose calculation. Our analysis implies that, compared to the premise of the Linear Quadratic Linear (LQL) framework, the Linear Quadratic framework based analytical formulation under-estimates the required dose per fraction necessary to produce the same biological effective dose as originally planned. Our study provides analytical formulation to calculate iso-effect in adaptive radiation therapy considering day-to-day stochastic dose deviation from planned dose and also indicates the potential utility of LQL framework in this context. PMID:26776265

  14. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  15. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere. PMID:24143867

  16. Occupational doses in radiation oncology in Manitoba--1980 to 1986

    SciTech Connect

    Huda, W.; Bews, J.; Sourkes, A.M. )

    1989-10-01

    The province of Manitoba (population of 1.0 million) has two radiotherapy centers employing a number of people, of whom about 60 are exposed to radiation during the course of their work. The individual and collective radiation doses to these workers, as recorded by thermoluminescent dosimeter plaques, were reviewed for the period 1980 to 1986. Whole-body doses to radiotherapy technologists responsible for operating the treatment machines and brachytherapy afterloading procedures ranged from 0.5 to 2.5 mSv y-1, whereas the corresponding doses to nursing staff working on a hospital brachytherapy ward were about 1.0 mSv y-1. The collective occupational dose from radiotherapy in Manitoba was approximately 70 person-mSv. Trends show individual operator and collective doses to be increasing at a higher rate than the number of patients undergoing radiotherapy. Occupational exposure in radiotherapy in this province was found to be comparable to that encountered in nuclear medicine in Manitoba and greater than that in diagnostic radiology.

  17. The effect of back scatter radiation on surface dose as measured by TLDs

    SciTech Connect

    Boguslavsky, R.; Gmuer, N.; Thomlinson, W.

    1991-12-01

    A group of scientists at HASYLAB in Germany are doing an Angiography project in parallel with a group of scientists at the Brookhaven National, National Synchrotron Light Source. In order to determine the X-ray dose to a patient, the German group places lithium fluoride thermoluminescent dosimeters (TLD) on the front (upstream) surface of their patient. The found that the TLD dose was higher than the dose calculated from an ionization chamber. An ionization chamber is a device that counts the number of photons when a beam of synchrotron radiation passes through Dr. Wolf-Rainer Dix of HASYLAB found that there is a difference of about 15% between dose data from TLDs put on a water tub and TLDs in the air. The goal of the experiment we did was to understand and maybe match the dose numbers Dix obtained.

  18. Radiation dose to patients during endoscopic retrograde cholangiopancreatography

    PubMed Central

    Boix, Jaume; Lorenzo-Zúñiga, Vicente

    2011-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is an important tool for the diagnosis and treatment of the hepatobiliary system. The use of fluoroscopy to aid ERCP places both the patient and the endoscopy staff at risk of radiation-induced injury. Radiation dose to patients during ERCP depends on many factors, and the endoscopist cannot control some variables, such as patient size, procedure type, or fluoroscopic equipment used. Previous reports have demonstrated a linear relationship between radiation dose and fluoroscopy duration. When fluoroscopy is used to assist ERCP, the shortest fluoroscopy time possible is recommended. Pulsed fluoroscopy and monitoring the length of fluoroscopy have been suggested for an overall reduction in both radiation exposure and fluoroscopy times. Fluoroscopy time is shorter when ERCP is performed by an endoscopist who has many years experience of performing ERCP and carried out a large number of ERCPs in the preceding year. In general, radiation exposure is greater during therapeutic ERCP than during diagnostic ERCP. Factors associated with prolonged fluoroscopy have been delineated recently, but these have not been validated. PMID:21860683

  19. Staff Radiation Doses to the Lower Extremities in Interventional Radiology

    SciTech Connect

    Shortt, C. P.; Al-Hashimi, H.; Malone, L.; Lee, M. J.

    2007-11-15

    The purpose of this study was to investigate the radiation doses to the lower extremities in interventional radiology suites and evaluate the benefit of installation of protective lead shielding. After an alarmingly increased dose to the lower extremity in a preliminary study, nine interventional radiologists wore thermoluminescent dosimeters (TLDs) just above the ankle, over a 4-week period. Two different interventional suites were used with Siemens undercouch fluoroscopy systems. A range of procedures was carried out including angiography, embolization, venous access, drainages, and biopsies. A second identical 4-week study was then performed after the installation of a 0.25-mm lead curtain on the working side of each interventional table. Equivalent doses for all nine radiologists were calculated. One radiologist exceeded the monthly dose limit for a Category B worker (12.5 mSv) for both lower extremities before lead shield placement but not afterward. The averages of both lower extremities showed a statistically significant dose reduction of 64% (p < 0.004) after shield placement. The left lower extremity received a higher dose than the right, 6.49 vs. 4.57 mSv, an increase by a factor of 1.42. Interventional radiology is here to stay but the benefits of interventional radiology should never distract us from the important issue of radiation protection. All possible measures should be taken to optimize working conditions for staff. This study showed a significant lower limb extremity dose reduction with the use of a protective lead curtain. This curtain should be used routinely on all C-arm interventional radiologic equipment.

  20. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. PMID:27302731

  1. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  2. Reevaluation of radiation dose around the JCO site from the criticality accident in Tokai-mura.

    PubMed

    Imanaka, Tetsuji

    2005-04-01

    Based on the monitoring data periodically taken during the JCO criticality accident in Tokai-mura, neutron and gamma-ray doses were evaluated at 13 points around the site boundary ranging from 73 to 540 m from the conversion building where the criticality took place. Radiation doses obtained by the present study were compared with the dose-distance curves developed through the works of the Nuclear Safety Commission Investigation Committee. The latter values are larger by 30 to 120% than the former at the 6 nearest points within 150 m from the conversion building, while they agree well at the points beyond 250 m. It is suggested that the shielding effects by the surrounding buildings around the conversion building contributed to the difference of estimated doses near the JCO boundary. To reconstruct the radiation environment realistically at the residential area near the JCO facilities, it is necessary to employ radiation transport calculations with three-dimensional models of the configuration around the conversion building. Radiation doses evaluated in the present study can be used to check the validity of such calculations based on the three-dimensional model. PMID:15761301

  3. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  4. Radiation dose determines the method for quantification of DNA double strand breaks.

    PubMed

    Bulat, Tanja; Keta, Otilija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-03-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. PMID:26959322

  5. Concurrent image and dose reconstruction for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Sheng, Ke

    The importance of knowing the patient actual position is essential for intensity modulated radiation therapy (IMRT). This procedure uses tightened margin and escalated tumor dose. In order to eliminate the uncertainty of the geometry in IMRT, daily imaging is prefered. The imaging dose, limited field of view and the imaging concurrency of the MVCT (mega-voltage computerized tomography) are investigated in this work. By applying partial volume imaging (PVI), imaging dose can be reduced for a region of interest (ROI) imaging. The imaging dose and the image quality are quantitatively balanced with inverse imaging dose planning. With PVI, 72% average imaging dose reduction was observed on a typical prostate patient case. The algebraic reconstruction technique (ART) based projection onto convex sets (POCS) shows higher robustness than filtered back projection when available imaging data is not complete and continuous. However, when the projection is continuous as in the actual delivery, a non-iterative wavelet based multiresolution local tomography (WMLT) is able to achieve 1% accuracy within the ROI. The reduction of imaging dose is dependent on the size of ROI. The improvement of concurrency is also discussed based on the combination of PVI and WMLT. Useful target images were acquired with treatment beams and the temporal resolution can be increased to 20 seconds in tomotherapy. The data truncation problem with the portal imager was also studied. Results show that the image quality is not adversely affected by truncation when WMLT is employed. When the online imaging is available, a perturbation dose calculation (PDC) that estimates the actual delivered dose is proposed. Corrected from the Fano's theorem, PDC counts the first order term in the density variation to calculate the internal and external anatomy change. Although change in the dose distribution that is caused by the internal organ motion is less than 1% for 6 MV beams, the external anatomy change has

  6. Update on radiation safety and dose reduction in pediatric neuroradiology.

    PubMed

    Mahesh, Mahadevappa

    2015-09-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. PMID:26346142

  7. Patient radiation dose audits for fluoroscopically guided interventional procedures

    SciTech Connect

    Balter, Stephen; Rosenstein, Marvin; Miller, Donald L.; Schueler, Beth; Spelic, David

    2011-03-15

    Purpose: Quality management for any use of medical x-ray imaging should include monitoring of radiation dose. Fluoroscopically guided interventional (FGI) procedures are inherently clinically variable and have the potential for inducing deterministic injuries in patients. The use of a conventional diagnostic reference level is not appropriate for FGI procedures. A similar but more detailed quality process for management of radiation dose in FGI procedures is described. Methods: A method that takes into account both the inherent variability of FGI procedures and the risk of deterministic injuries from these procedures is suggested. The substantial radiation dose level (SRDL) is an absolute action level (with regard to patient follow-up) below which skin injury is highly unlikely and above which skin injury is possible. The quality process for FGI procedures collects data from all instances of a given procedure from a number of facilities into an advisory data set (ADS). An individual facility collects a facility data set (FDS) comprised of all instances of the same procedure at that facility. The individual FDS is then compared to the multifacility ADS with regard to the overall shape of the dose distributions and the percent of instances in both the ADS and the FDS that exceed the SRDL. Results: Samples of an ADS and FDS for percutaneous coronary intervention, using the dose metric of reference air kerma (K{sub a,r}) (i.e., the cumulative air kerma at the reference point), are used to illustrate the proposed quality process for FGI procedures. Investigation is warranted whenever the FDS is noticeably different from the ADS for the specific FGI procedure and particularly in two circumstances: (1) When the facility's local median K{sub a,r} exceeds the 75th percentile of the ADS and (2) when the percent of instances where K{sub a,r} exceeds the facility-selected SRDL is greater for the FDS than for the ADS. Conclusions: Analysis of the two data sets (ADS and FDS) and

  8. Single-Dose Radiation-Induced Oral Mucositis Mouse Model

    PubMed Central

    Maria, Osama Muhammad; Syme, Alasdair; Eliopoulos, Nicoletta; Muanza, Thierry

    2016-01-01

    The generation of a self-resolved radiation-induced oral mucositis (RIOM) mouse model using the highest possibly tolerable single ionizing radiation (RT) dose was needed in order to study RIOM management solutions. We used 10-week-old male BALB/c mice with average weight of 23 g for model production. Mice were treated with an orthovoltage X-ray irradiator to induce the RIOM ulceration at the intermolar eminence of the animal tongue. General anesthesia was injected intraperitoneally for proper animal immobilization during the procedure. Ten days after irradiation, a single RT dose of 10, 15, 18, 20, and 25 Gy generated a RIOM ulcer at the intermolar eminence (posterior upper tongue surface) with mean ulcer floor (posterior epithelium) heights of 190, 150, 25, 10, and 10 μm, respectively, compared to 200 μm in non-irradiated animals. The mean RIOM ulcer size % of the total epithelialized upper surface of the animal tongue was RT dose dependent. At day 10, the ulcer size % was 2, 5, 27, and 31% for 15, 18, 20, and 25 Gy RT, respectively. The mean relative surface area of the total epithelialized upper surface of the tongue was RT dose dependent, since it was significantly decreased to 97, 95, 88, and 38% with 15, 18, 20, and 25 Gy doses, respectively, at day 10 after RT. Subcutaneous injection of 1 mL of 0.9% saline/6 h for 24 h yielded a 100% survival only with 18 Gy self-resolved RIOM, which had 5.6 ± 0.3 days ulcer duration. In conclusion, we have generated a 100% survival self-resolved single-dose RIOM male mouse model with long enough duration for application in RIOM management research. Oral mucositis ulceration was radiation dose dependent. Sufficient hydration of animals after radiation exposure significantly improved their survival. PMID:27446800

  9. Radiation dose to patients from the Philips CT scanner

    SciTech Connect

    Badcock, P.C.

    1985-07-01

    While the anthropomorphic phantom is useful in radiotherapy dosimetry, corrections for diagnostic qualities of radiation are necessary for departures from tissue-equivalence. TLD measurements were performed for this reason in the rectum of patients undergoing CT scanning of the pelvis. At high slice densities the energy imparted becomes comparable with that associated with fluoroscopic examinations of the abdomen. At low slice densities the average dose is ca 12 mGy.

  10. Survey on low-dose medical radiation exposure in occupational workers: the effect on hematological change

    NASA Astrophysics Data System (ADS)

    Ryu, J. K.; Cho, S. M.; Cho, J. H.; Dong, K. R.; Chung, W. K.; Lee, J. W.

    2013-03-01

    This study examined the changes in the hematological index caused by low-dose medical radiation exposure in workers in a medical radiation-exposed environment. The cumulative dose was obtained using thermoluminescent dosimeters over a 9-year period, and the changes in hematological index count (red blood cells (RBCs), hemoglobin, platelets, white blood cells (WBCs), monocytes, lymphocytes, neutrophils, basophils, and eosinophils) were examined in both the occupational workers and controls. In total, 370 occupational workers and 335 controls were compared. The analysis led to the following observations: (1) The average cumulative dose in males and females was 9.65±15.2 and 4.82±5.55 mSv, respectively. (2) In both males and females, there was a very low correlation between the occupation period and the cumulative dose (r<±0.25). (3) When the occupation period was longer, the WBC counts both decreased and increased in the male workers and the RBC counts were lower in the workers than in the control group (p<0.05). In females, the WBC counts both decreased and increased in the workers and the eosinophil counts were lower in the workers than in the control group (p<0.01). (4) When the cumulative dose was large, the lymphocyte counts decreased in male workers and the platelet count was lower in the workers than in the control group (p<0.05). In females, the lymphocyte count and RBC count were lower in the workers than in the control group (p<0.05). Abnormal distributions of some blood indices were observed in the occupational radiation workers compared with the controls. Attempts were made to limit radiation exposure to personnel, but the employees did not always follow the preset rules. Actually, the adverse effects of low-level radiation were attributed to probability. Overall, workers should obey the radiation protection regulations provided by the government and a national system of radiation protection is needed.

  11. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation

    PubMed Central

    Schubauer-Berigan, M K

    2010-01-01

    Context More than 400 000 workers annually receive a measurable radiation dose and may be at increased risk of radiation-induced leukaemia. It is unclear whether leukaemia risk is elevated with protracted, low-dose exposure. Objective We conducted a meta-analysis examining the relationship between protracted low-dose ionising radiation exposure and leukaemia. Data sources Reviews by the National Academies and United Nations provided a summary of informative studies published before 2005. PubMed and Embase databases were searched for additional occupational and environmental studies published between 2005 and 2009. Study selection We selected 23 studies that: (1) examined the association between protracted exposures to ionising radiation and leukaemia excluding chronic lymphocytic subtype; (2) were a cohort or nested case–control design without major bias; (3) reported quantitative estimates of exposure; and (4) conducted exposure–response analyses using relative or excess RR per unit exposure. Methods Studies were further screened to reduce information overlap. Random effects models were developed to summarise between-study variance and obtain an aggregate estimate of the excess RR at 100 mGy. Publication bias was assessed by trim and fill and Rosenthal's file drawer methods. Results We found an ERR at 100 mGy of 0.19 (95% CI 0.07 to 0.32) by modelling results from 10 studies and adjusting for publication bias. Between-study variance was not evident (p=0.99). Conclusions Protracted exposure to low-dose gamma radiation is significantly associated with leukaemia. Our estimate agreed well with the leukaemia risk observed among exposed adults in the Life Span Study (LSS) of atomic bomb survivors, providing increased confidence in the current understanding of leukaemia risk from ionising radiation. However, unlike the estimates obtained from the LSS, our model provides a precise, quantitative summary of the direct estimates of excess risk from studies of

  12. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  13. Radiation dose reduction in pediatric abdominal CT scanning

    SciTech Connect

    Kamel, I.R.

    1993-01-01

    A clinical trial was designed to test whether a significantly lower radiation dose technique could be used for pediatric abdominal CT scanning without loss of diagnostic image quality. The study included pediatric patients referred to radiology from the Children's Hospital and clinics at The University of Michigan. Seventy-eight cases were included in the study, 36 cases in the experimental group and 42 in the control group. Patient characteristics in both groups were comparable in every respect except for the technical factors used to expose the pelvis. Patients in the experimental group were scanned with a technique using 80 mAs while those in the control group were scanned with the conventional technique of 240 mAs. Therefore, the radiation dose to the pelvis was three times higher in the control group than in the experimental group. Scans were evaluated by two experienced pediatric radiologists who assessed anatomical details, image resolution and the degree of confidence in reaching a diagnosis. The low-mAs technique did not result in reduction of diagnostic image quality or the confidence in reaching a diagnosis. In conclusion, the radiation dose resulting from pediatric CT of the pelvis may be reduced by a factor of three with equivalent medical benefit.

  14. Recent Updates to Radiation Organ Dose Estimation Tool PIMAL

    SciTech Connect

    Akkurt, Hatice; Wiarda, Dorothea; Eckerman, Keith F

    2011-01-01

    A computational phantom with moving arms and legs and an accompanying graphical user interface, PIMAL, was previously developed to enable radiation dose estimation for different postures in a user-friendly manner. This initial version of the software was useful in adjusting the posture, generating the corresponding MCNP input file, and performing the radiation transport simulations for dose calculations using MCNP5 or MCNPX. However, it only included one mathematical phantom model (hermaphrodite) and allowed only isotropic point sources. Recently, the software was enhanced by adding two more mathematical phantom models, a male and female, and the source features were enhanced significantly by adding internal and external source options in a pull-down menu. Although the initial version of the software included only a mathematical hermaphrodite phantom, the features and models in the software are constantly being enhanced by adding more phantoms as well as other options to enable dose assessment for different configurations/cases in a user-friendly manner. In this latest version of the software, ICRP's recently released reference male and female voxel phantoms are included in a pull-down menu. The male and female models are described using 7 and 14 million voxels, respectively. Currently, the software is being modified further to include the International Commission on Radiation Protection's (ICRP) reference male and female voxel phantoms. Additionally, some case studies are being implemented and included in a library of input files. This paper describes recent updates to the software.

  15. Measurement of patient radiation doses in certain urography procedures.

    PubMed

    Sulieman, A; Barakat, H; Zailae, A; Abuderman, A; Theodorou, K

    2015-07-01

    Patients are exposed to significant radiation doses during diagnostic and interventional urologic procedures. This study aimed to measure patient entrance surface air kerma (ESAK) and to estimate the effective dose during intravenous urography (IVU), extracorporeal shock-wave lithotripsy (ESWL), and ascending urethogram (ASU) procedures. ESAK was measured in patients using calibrated thermo luminance dosimeters, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 179 procedures were investigated. 27.9 % of the patients underwent IVU procedures, 27.9 % underwent ESWL procedures and 44.2 % underwent ASU procedures. The mean ESAK was 2.1, 4.18 and 4.9 mGy for IVU, ESWL, and ASU procedures, respectively. Differences in patient ESAK for the same procedure were observed. The mean ESAK values were comparable with those in previous studies. PMID:25899610

  16. Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers

    SciTech Connect

    Umisedo, Nancy K.; Okuno, Emico; Medina, Nilberto H.; Colacioppo, Sergio; Hiodo, Francisco Y.

    2008-08-07

    The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of {sup 40}K, {sup 238}U and {sup 232}Th show that there is no significant transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of {sup 40}K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 {mu}Sv.

  17. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  18. Glandular dose in breast computed tomography with synchrotron radiation.

    PubMed

    Mettivier, G; Fedon, C; Di Lillo, F; Longo, R; Sarno, A; Tromba, G; Russo, P

    2016-01-21

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported. PMID:26683710

  19. Glandular dose in breast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Fedon, C.; Di Lillo, F.; Longo, R.; Sarno, A.; Tromba, G.; Russo, P.

    2016-01-01

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  20. Radiation Dose-Volume Effects in the Brain

    SciTech Connect

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-03-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of <2.5 Gy, an incidence of radiation necrosis of 5% and 10% is predicted to occur at a biologically effective dose of 120 Gy (range, 100-140) and 150 Gy (range, 140-170), respectively. For twice-daily fractionation, a steep increase in toxicity appears to occur when the biologically effective dose is >80 Gy. For large fraction sizes (>=2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of >=18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  1. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions. PMID:11754644

  2. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  3. [The issue of low doses in radiation therapy and impact on radiation-induced secondary malignancies].

    PubMed

    Chargari, Cyrus; Cosset, Jean-Marc

    2013-12-01

    Several studies have well documented that the risk of secondary neoplasms is increasing among patients having received radiation therapy as part of their primary anticancer treatment. Most frequently, radiation-induced neoplasms occur in volume exposed to high doses. However, the impact of "low" doses (<5 Gy) in radiation-induced carcinogenesis should be clinically considered because modern techniques of intensity-modulated radiation therapy (IMRT) or stereotactic irradiation significantly increase tissue volumes receiving low doses. The risk inherent to these technologies remains uncertain and estimates closely depend on the chosen risk model. According to the (debated) linear no-threshold model, the risk of secondary neoplasms could be twice higher with IMRT, as compared to conformal radiation therapy. It seems that only proton therapy could decrease both high and low doses delivered to non-target volumes. Except for pediatric tumors, for which the unequivocal risk of second malignancies (much higher than in adults) should be taken into account, epidemiological data suggest that the risk of secondary cancer related to low doses could be very low, even negligible in some cases. However, clinical follow-up remains insufficient and a marginal increase in secondary tumors could counterbalance the benefit of a highly sophisticated irradiation technique. It therefore remains necessary to integrate the potential risk of new irradiation modalities in a risk-adapted strategy taking into account therapeutic objectives but also associated risk factors, such as age (essentially), chemotherapy, or life style. PMID:24257106

  4. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  5. [New mammography technologies and their impact on radiation dose].

    PubMed

    Chevalier del Rio, M

    2013-12-01

    This article reviews new mammography technologies resulting from advances in digital detectors and processing techniques. Most are just starting to be commercialized or are in the clinical trial phase. The results of clinical trials with the new 2D techniques (contrast-enhanced techniques or stereotactic techniques) show they are useful for diagnosing cancer. However, the greater complexity of the image acquisition process suggests that their use will be limited to particular cases such as inconclusive lesions or women with high risk for developing breast cancer. Among the 3D technologies (breast tomography and breast tomosynthesis), only breast tomosynthesis has been implemented in clinical practice, so it is the only technique for which it is possible to know the sensitivity, specificity, and radiation dose delivered. This article describes the principles underlying the way breast tomosynthesis works and the techniques used for image acquisition and reconstruction. It also summarizes the main results obtained in clinical studies, which generally show that breast tomosynthesis increases the breast cancer detection rate while decreasing the recall rate and number of biopsies taken. The protocol for breast tomosynthesis approved by the Food and Drug Administration (USA) consists of two conventional mammography projections for each breast and two tomosynthesis projections for each breast. This means multiplying the risks of inducing cancer and death associated with 2D mammography by a factor between 2 and 3 (2.6-3.3 and 0.7-0.9 per 100,000 women exposed when 50 years old, respectively). The protocol for breast tomosynthesis examinations is one of the aspects that is essential to determine when including tomosynthesis in screening programs and routine breast imaging. PMID:24246883

  6. Optimization of radiation dosing schedules for proneural glioblastoma.

    PubMed

    Badri, H; Pitter, K; Holland, E C; Michor, F; Leder, K

    2016-04-01

    Glioblastomas are the most aggressive primary brain tumor. Despite treatment with surgery, radiation and chemotherapy, these tumors remain uncurable and few significant increases in survival have been observed over the last half-century. We recently employed a combined theoretical and experimental approach to predict the effectiveness of radiation administration schedules, identifying two schedules that led to superior survival in a mouse model of the disease (Leder et al., Cell 156(3):603-616, 2014). Here we extended this approach to consider fractionated schedules to best minimize toxicity arising in early- and late-responding tissues. To this end, we decomposed the problem into two separate solvable optimization tasks: (i) optimization of the amount of radiation per dose, and (ii) optimization of the amount of time that passes between radiation doses. To ensure clinical applicability, we then considered the impact of clinical operating hours by incorporating time constraints consistent with operational schedules of the radiology clinic. We found that there was no significant loss incurred by restricting dosage to an 8:00 a.m. to 5:00 p.m. window. Our flexible approach is also applicable to other tumor types treated with radiotherapy. PMID:26094055

  7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  8. Main Sources and Doses of Space Radiation during Mars Missions and Total Radiation Risk for Cosmonauts

    NASA Astrophysics Data System (ADS)

    Mitrikas, Victor; Aleksandr, Shafirkin; Shurshakov, Vyacheslav

    This work contains calculation data of generalized doses and dose equivalents in critical organs and tissues of cosmonauts produces by galactic cosmic rays (GCR), solar cosmic rays (SCR) and the Earth’s radiation belts (ERB) that will impact crewmembers during a flight to Mars, while staying in the landing module and on the Martian surface, and during the return to Earth. Also calculated total radiation risk values during whole life of cosmonauts after the flight are presented. Radiation risk (RR) calculations are performed on the basis of a radiobiological model of radiation damage to living organisms, while taking into account reparation processes acting during continuous long-term exposure at various dose rates and under acute recurrent radiation impact. The calculations of RR are performed for crewmembers of various ages implementing a flight to Mars over 2 - 3 years in maximum and minimum of the solar cycle. The total carcinogenic and non-carcinogenic RR and possible life-span shortening are estimated on the basis of a model of the radiation death probability for mammals. This model takes into account the decrease in compensatory reserve of an organism as well as the increase in mortality rate and descent of the subsequent lifetime of the cosmonaut. The analyzed dose distributions in the shielding and body areas are applied to making model calculations of tissue equivalent spherical and anthropomorphic phantoms.

  9. Studies of the neutron radiation environment inside the International Space Station obtained by the Bonner Ball Neutron Detector

    NASA Astrophysics Data System (ADS)

    Koshiishi, H.; Chishiki, A.; Matsumoto, H.; Takagi, S.; Goka, T.

    The Bonner Ball Neutron Detector (BBND) experiment was conducted on the US Laboratory Module of the International Space Station (ISS) as part of the science program of NASA's Human Research Facility (HRF) in order to evaluate the neutron radiation environment inside the ISS. The BBND consists of six He-3 proportional counters, which are covered with polyethylene moderators of various thickness, and gadolinium eliminators to make each counter have different energy response function to incident neutrons. Thus, the BBND measures the neutron energy spectrum from thermal neutron up to 15 MeV. The experiment was performed over 8 months from Mar. 23 2001 through Nov. 15 2001 during solar maximum. The neutron energy spectrum in 22 bins and the dose equivalent evaluated using the ICRP-74 coefficients with 1-minute temporal resolution are obtained by the BBND. The real-time data acquisition of the BBND enables us to discuss the neutron radiation environment at different location on the ISS orbit, such as in the South Atlantic Anomaly (SAA) and in high-latitude regions. Comparisons are also made between solar maximum and solar minimum using earlier data obtained by the pre-cursor experiment during 3.5 days on STS-89 (SpaceShuttle-Mir-Mission No.8) in 1998. Additionally, a few solar flares associated with large proton events occurred during the measurement period, which enhanced the radiation damage caused by the neutron radiation environment. The influence of solar events on the neutron radiation environment is also discussed.

  10. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    SciTech Connect

    Liao, S; Wang, Y; Weng, H

    2015-06-15

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.

  11. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    SciTech Connect

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

  12. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan.

    PubMed

    Furukawa, M; Kina, S; Shiroma, M; Shiroma, Y; Masuda, N; Motomura, D; Hiraoka, H; Fujioka, S; Kawakami, T; Yasuda, Y; Arakawa, K; Fukahori, K; Jyunicho, M; Ishikawa, S; Ohomoto, T; Shingaki, R; Akata, N; Zhuo, W; Tokonami, S

    2015-11-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h(-1), respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time. PMID:26065703

  13. Small Bowel Dose Tolerance for Stereotactic Body Radiation Therapy.

    PubMed

    LaCouture, Tamara A; Xue, Jinyu; Subedi, Gopal; Xu, Qianyi; Lee, Justin T; Kubicek, Gregory; Asbell, Sucha O

    2016-04-01

    Inconsistencies permeate the literature regarding small bowel dose tolerance limits for stereotactic body radiation therapy (SBRT) treatments. In this review, we organized these diverse published limits with MD Anderson at Cooper data into a unified framework, constructing the dose-volume histogram (DVH) Risk Map, demonstrating low-risk and high-risk SBRT dose tolerance limits for small bowel. Statistical models of clinical data from 2 institutions were used to assess the safety spectrum of doses used in the exposure of the gastrointestinal tract in SBRT; 30% of the analyzed cases had vascular endothelial growth factor inhibitors (VEGFI) or other biological agents within 2 years before or after SBRT. For every dose tolerance limit in the DVH Risk Map, the probit dose-response model was used to estimate the risk level from our clinical data. Using the current literature, 21Gy to 5cc of small bowel in 3 fractions has low toxicity and is reasonably safe, with 6.5% estimated risk of grade 3 or higher complications, per Common Terminology Criteria for Adverse Events version 4.0. In the same fractionation for the same volume, if lower risk is required, 16.2Gy has an estimated risk of only 2.5%. Other volumes and fractionations are also reviewed; for all analyzed high-risk small bowel limits, the risk is 8.2% or less, and the low-risk limits have 4% or lower estimated risk. The results support current clinical practice, with some possibility for dose escalation. PMID:27000513

  14. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... monitoring and calculating occupational radiation doses. On December 4, 2007 (72 FR 68043), the NRC revised... COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear... Criteria and Methods to Calculate Occupational Radiation Doses.'' This guide describes methods that the...

  15. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  16. Problems in evaluating radiation dose via terrestrial and aquatic pathways.

    PubMed Central

    Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H

    1981-01-01

    This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being. PMID:7037381

  17. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  18. Central dose data management and analysis in IT-driven radiation protection strategies.

    PubMed

    Ward, M; Hughes, D; Connolly, P; Moores, B M

    2005-01-01

    The applications of information technology in health care are now widespread and continue to grow. Medical imaging is at the forefront of this revolution and the introduction of digital detection methods to replace film is now addressing the diagnostic X-ray market, the most routinely employed imaging modality. The introduction of picture archiving and communication systems, hospital and radiology information systems is well underway, and the integration of radiation protection initiatives into these developments is desirable. In north-west UK, a project aimed at developing and implementing IT-driven radiation protection strategies has been underway for the past 10 y. Such strategies are geared towards the support of European Commission patient dose directive 97/43 EURATOM, in particular the need to implement clinical audit, patient dose audit and to establish dose reference levels. This paper demonstrates the national and local requirements for establishing a central dose data management system for use in radiation protection strategies. In particular, such a system can help develop and support the role of a medical physics expert in optimisation. The scientific requirements for such an approach are presented in this paper, and a prototype system is described. Preliminary results obtained with the central data management facility are also presented and the implication for analysing multiple site dose data in optimisation strategies for digital radiographic technology is highlighted. PMID:15933095

  19. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung

    SciTech Connect

    Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J.H.

    1981-04-01

    The acute radiation pneumonitis syndrome is a major complication for patients receiving total thoracic irradiation in a large single dose. Previous studies have evaluated the onset of radiation pneumonitis on the basis of radiation doses calculated assuming unit density tissues. In this report, the incidence of radiation pneumonitis is determined as a function of absolute dose to lung. A simple algorithm relating dose correction factor to anterior-posterior patient diameter has been derived using a CT-aided treatment planning system. This algorithm was used to determine, retrospectively, the dose to lung for a group of 303 patients who had been treated with large field irradiation techniques. Of this group, 150 patients had no previous lung disease and had virtually no additional lung irradiation prior or subsequent to their large field treatment. The actuarial incidence of radiation pneumonitis versus dose to lung was evaluated using a simplified probit analysis. The resultant best fit sigmoidal complication curve demonstrates the onset of radiation pneumonitis to occur at about 750 rad with the 5% actuarial incidence occurring at approximately 820 rad. The errors associated with the dose determination procedure as well as the actuarial incidence calculations are considered. The time of onset of radiation pneumonitis occurs between 1 to 7 months after irradiation for 90% of the patients who developed pneumonitis with the peak incidence occurring at 2 at 3 months. No correlation was found between time of onset and the dose to lung over a dose range of 650 to 1250 rad.

  20. The determination of the penetrating radiation dose at Hanford

    SciTech Connect

    Rathbun, L.A.

    1989-09-01

    Most of the thermoluminescent dosimeters (TLDs) and other devices that have been used to measure environmental radiation on the Hanford Site have measured natural background levels of radiation. Measurements of offsite environmental radiation near the boundary of the Hanford Site have often indicated higher doses than onsite measurements have. However, the converse has been found when radiation measurements from the cities and communities of southeastern Washington were compared with onsite measurements. The historical trends described for environmental TLD data have been better defined in this study by compiling the TLD data for selected locations over a 6-year period (1983 to 1988). The ongoing Hanford Environmental Surveillance Program also provides radionuclide concentrations in soil based on samples collected by technicians at Pacific Northwest Laboratory (PNL) and sent to a commercial laboratory for analyses. As part of the study described in this report, a portable gamma spectroscopy system was used in the field to identify concentrations of gamma-emitting radionuclides in the soil at various locations on the Hanford Site and in the surrounding area. This work began in 1986. Supplemental radiation measurements were made with a microprocessor-based survey meter and large NaI detector. 20 refs., 4 figs., 3 tabs.

  1. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  2. Estimation of radiation doses for atomic-bomb survivors in the Hiroshima University Registry

    SciTech Connect

    Hoshi, M.; Matsuura, M.; Hayakawa, N.; Kamada, N.; Ito, C.

    1996-05-01

    The present study presents the Hiroshima University Registry of atomic bomb survivors, of which the total number is about 270,000, and application of absorbed doses. From this registry, we picked up 49,102 survivors and applied organ doses based on the dosimetry system 1986 (DS86), which is named the Atomic Bomb Survivor 1993 Dose (ABS93D). The applied dose data are based on the tables listed in the DS86 final report such as the free-in-air kermas, the house shielding factors, and organ dose factors for the active bone marrow and the breast. Calculations for the 13 other organs provided in DS86 are possible. To obtained the organ doses for each survivor, it is necessary to obtain information concerning (1) place exposed, (2) whether they were shielded or not, and (3) age. ABS93D body transmission factors for active bone marrow for neutrons and gamma rays agreed with DS 86 to within a few percent. Of the survivors studied, 35, 123 of them were used for the relative risk estimation of leukemia mortality, adopting the same method as the Radiation Effects Research Foundation (RERF) for comparison. For the observation period from 1968 to 1989, the analyzed relative risks for leukemia mortality at 1 Gy by shielded kerm and by active bone marrow dose are 2.01 and 2.37, respectively, which are consistent with the RERF results. 11 refs., 1 fig., 3 tabs.

  3. Radiation dose and shielding for the space station

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.

    1988-01-01

    Significant differences in dose prediction for Space Station arise depending on whether or not the magnetic field model is extrapolated into the future. The basis for these calculations is examined in detail, and the importance of the residual atmospheric layer at altitudes below 1000 km, with respect to radiation attenuation, is emphasized. Dosimetry results from Shuttle flights are presented and compared with the computed results. It is recommended that, at this stage, no extrapolation of the magnetic field into the future be included in the calculations. A model adjustment, to replace this arbitrary procedure, is presented. Dose predictions indicate that, at altitudes below 500 km and at low inclination, and with nominal module wall thickness (0.125 in. aluminum), orbit stay times of 90 days in Space Station would result in quarterly radiation doses to the crew, which are well within present limits for both males and females. Countermeasures would be required for stay times of a year or more and the measure of increasing shielding is examined.

  4. Radiation Dose Estimation Using Realistic Postures with PIMAL

    SciTech Connect

    Akkurt, Hatice; Wiarda, Dorothea; Eckerman, Keith F

    2010-12-01

    For correct radiation dose assessment, it is important to take the posture into account. A computational phantom with moving arms and legs was previously developed to address this need. Further, an accompanying graphical user interface (GUI), called PIMAL, was developed to enable dose estimation using realistic postures in a user-friendly manner such that the analyst's time could be substantially reduced. The importance of the posture for correct dose estimation has been demonstrated with a few case studies in earlier analyses. The previous version of PIMAL was somewhat limited in its features (i.e., it contained only a hermaphrodite phantom model and allowed only isotropic source definition). Currently GUI is being further enhanced by incorporating additional phantom models, improving the features, and increasing the user friendliness in general. This paper describes recent updates to the PIMAL software. In this summary recent updates to the PIMAL software, which aims to perform radiation transport simulations for phantom models in realistic postures in a user-friendly manner, are described. In future work additional phantom models, including hybrid phantom models, will be incorporated. In addition to further enhancements, a library of input files for the case studies that have been analyzed to date will be included in the PIMAL.

  5. Radiation absorbed dose to bladder walls from positron emitters in the bladder content

    SciTech Connect

    Powell, G.F.; Chen, C.T.

    1987-11-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  6. Radiation signature on exposed cells: Relevance in dose estimation.

    PubMed

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  7. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  8. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  9. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose.

    PubMed

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd

    2002-07-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. PMID:12111059

  10. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  11. Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations.

    PubMed

    Sanders, Charles L

    2012-12-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10-450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  12. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  13. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  14. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  15. Population doses from environmental gamma radiation in Iraq

    SciTech Connect

    Marouf, B.A.; Mohamad, A.S.; Taha, J.S.; al-Haddad, I.K. )

    1992-05-01

    The exposure rates due to external gamma radiation were measured in 11 Iraqi governerates. Measurements were performed with an Environmental Monitoring System (RSS-111) in open air 1 m above the ground. The average absorbed dose rate in each governerate was as follows (number x 10(-2) microGy h-1): Babylon (6.0), Kerbala (5.3), Al-Najaf (5.4), Al-Kadysia (6.5), Wasit (6.5), Diala (6.5), Al-Anbar (6.5), Al-Muthana (6.6), Maisan (6.8), Thee-Kar (6.6), and Al-Basrah (6.5). The collective doses to the population living in these governerates were 499, 187, 239, 269, 262, 458, 384, 153, 250, 450, and 419 person-Sv, respectively.

  16. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  17. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  18. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  19. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  20. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  1. Radiation Doses to Hanford Workers from Natural Potassium-40

    SciTech Connect

    Strom, Daniel J.; Lynch, Timothy P.; Weier, Dennis R.

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  2. The spectrum of mutation produced by low dose radiation

    SciTech Connect

    Morley,Alexander,A; Turner, David,R

    2004-10-31

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  3. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    SciTech Connect

    Wang, J; Kino, A; Newman, B; Chan, F

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CT Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.

  4. Monte Carlo modeling of the scatter radiation doses in IR

    NASA Astrophysics Data System (ADS)

    Mah, Eugene; He, Wenjun; Huda, Walter; Yao, Hai; Selby, Bayne

    2011-03-01

    Purpose: To use Monte Carlo techniques to compute the scatter radiation dose distribution patterns around patients undergoing Interventional Radiological (IR) examinations. Method: MCNP was used to model the scatter radiation air kerma (AK) per unit kerma area product (KAP) distribution around a 24 cm diameter water cylinder irradiated with monoenergetic x-rays. Normalized scatter fractions (SF) were generated defined as the air kerma at a point of interest that has been normalized by the Kerma Area Product incident on the phantom (i.e., AK/KAP). Three regions surrounding the water cylinder were investigated consisting of the area below the water cylinder (i.e., backscatter), above the water cylinder (i.e., forward scatter) and to the sides of the water cylinder (i.e., side scatter). Results: Immediately above and below the water cylinder and in the side scatter region, values of normalized SF decreased with the inverse square of the distance. For z-planes further away, the decrease was exponential. Values of normalized SF around the phantom were generally less than 10-4. Changes in normalized SF with x-ray energy were less than 20% and generally decreased with increasing x-ray energy. At a given distance from region where the x-ray beam enters the phantom, the normalized SF was higher in the backscatter regions, and smaller in the forward scatter regions. The ratio of forward to back scatter normalized SF was lowest at 60 keV and highest at 120 keV. Conclusion: Computed SF values quantify the normalized fractional radiation intensities at the operator location relative to the radiation intensities incident on the patient, where the normalization refers to the beam area that is incident on the patient. SF values can be used to estimate the radiation dose received by personnel within the procedure room, and which depend on the imaging geometry, patient size and location within the room. Monte Carlo techniques have the potential for simulating normalized SF values

  5. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    SciTech Connect

    Gridley, Daila S.

    2008-10-31

    photons. Over the course of this research, tissues other than spleens were archived and with funding obtained from other sources, including the Department of Radiation Medicine at the Loma Linda University Medical Center, some additional assays were performed. Furthermore, groups of additional mice were included that were pre-exposed to low-dose photons before irradiating with acute photons, protons, and simulated solar particle event (SPE) protons. Hence, the original support together with the additional funding for our research led to generation of much valuable information that was originally not anticipated. Some of the data has already resulted in published articles, manuscripts in review, and a number of presentations at scientific conferences and workshops. Difficulties in reliable and reproducible quantification of secreted cytokines using multi-plex technology delayed completion of this study for a period of time. However, final analyses of the remaining data are currently being performed and should result in additional publications and presentations in the near future. Some of the most notable conclusions, thus far, are briefly summarized below: - Distribution of leukocytes were dependent upon cell type, radiation quality, body compartment analyzed, and time after exposure. Low-dose protons tended to have less effect on numbers of major leukocyte populations and T cell subsets compared to low-dose photons. - The patterns of gene and cytokine expression in CD4+ T cells after protracted low-dose irradiation were significantly modified and highly dependent upon the total dose and time after exposure. - Patterns of gene and cytokine expression differed substantially among groups exposed to low-dose photons versus low-dose protons; differences were also noted among groups exposed to much higher doses of photons, protons, and simulated SPE protons. - Some measurements indicated that exposure to low-dose photon radiation, especially 0.01 Gy, significantly

  6. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    SciTech Connect

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  7. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  8. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  9. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    SciTech Connect

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large

  10. The radiation dose to the urinary bladder in radio-iodine therapy

    NASA Astrophysics Data System (ADS)

    Bolster, A. A.; Hilditch, T. E.

    1996-10-01

    A new MIRD dynamic model has been used to provide estimates of the dose to the urinary bladder resulting from the administration of the therapeutic agents as iodide (for thyroid carcinoma) and meta-iodobenzylguanidine (MIBG) (for neuroendocrine tumours). Because the latter agent is used for therapeutic purposes in children, dose estimates were obtained for subjects aged 1 year and upwards. Those parameters likely to influence the bladder dose were also investigated, making use of the inherent flexibility of the model. For an administration of 1 GBq of either as iodide or MIBG to an adult subject, the radiation dose to the inner surface of the bladder was estimated to be approximately 1100 mGy, which is nearly twice the value estimated using a constant-volume bladder model. The new model produced dose estimates for children (within the range of MIBG) which were approximately 50% greater than those derived using a constant-volume bladder model. The urine flow rate was found to have the greatest effect on the bladder dose, a flow of twice the normal rate resulting in a reduction in the bladder dose by a factor of two. On the other hand, a reduction in the urine flow rate to half the normal value was estimated to increase the radiation dose by a factor of two. This was true for subjects of all ages. With normal voiding, the average dose to the bladder wall from -radiation was estimated to be 5 - 13% of the surface beta dose for

  11. Space radiation dose analysis for solar flare of August 1989

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Simonsen, Lisa C.; Sauer, Herbert H.; Wilson, John W.; Townsend, Lawrence W.

    1990-01-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  12. Space radiation dose analysis for solar flare of August 1989

    SciTech Connect

    Nealy, J.E.; Simonsen, L.C.; Sauer, H.H.; Wilson, J.W.; Townsend, L.W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  13. Reduction of radiation dose to patients undergoing barium enema by dose audit.

    PubMed

    Yu, S K; Cheung, Y K; Chan, T L; Kung, C M; Yuen, M K

    2001-02-01

    Nowadays, new fluoroscopic machines are usually equipped with a dose-area product (DAP) meter for dose measurement. In our hospital, DAP meters have been used in the Diagnostic Radiology Department for dose audit since June 1997. Demographic patient data, name of radiologist, fluoroscopic duration and DAP readings of every case were recorded by radiographers. In early 1999, questionnaires were distributed to radiologists who had performed fluoroscopic examinations during the auditing period. 23 radiologists with varying years of experience completed the questionnaire and their practice was analysed. Since familiarization with the examination technique would affect radiologists' practice, these radiologists were divided into two groups for analysis. Radiologists with less than 3 years of experience were grouped together as junior radiologists, whilst others were grouped as senior radiologists. Results of the questionnaire indicated that radiologists generally found DAP meters useful for dose evaluation in the process of technique refinement. Radiologists aware of being under continuous surveillance of their practice showed significant reduction of doses (junior radiologists 25%, p<0.005; senior radiologists 36%, p<0.05) and fluoroscopic times (junior radiologists 36%, p<0.001; senior radiologists 18%, p<0.05) compared with radiologists who were unaware that they were under surveillance but with similar radiological experience. This effect is believed to be because of increased awareness of radiation dose through audit. In addition, this "audit effect" may also affect junior radiologists in decision-making regarding the number of radiographs (p<0.05), but no effect was found for senior radiologists (p>0.5). PMID:11718389

  14. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell culture media at concentrations of 0.25 mg Fe/mL and 1.0 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for 72 hours. Extracellular iron was then removed and cells were irradiated at either 662 keV or 10 MV. At the 0.25 mg Fe/mL dose (4 pg Fe/cell), radiation energy did not affect the level of cytotoxicity. However with 1.0 mg Fe/mL (9 pg Fe/cell), the higher 10 MV radiation energy resulted in 50% greater cytotoxicity as compared to cells without IONPs irradiated at this energy. These results suggest IONPs may be able to significantly enhance the cytotoxic effects of radiation and improve therapeutic ratio if they can be selectively associated with cancer cells and/or tumors. Ongoing in vivo studies of IONP radiation enhancement in a murine tumor model are too immature to draw conclusions from at this time, however preliminary data suggests similar effectiveness of IONP radiation enhancement at 6 MV and 18 MV energy levels. In addition to the IONP-based radiation enhancement demonstrated here, the use of tumor-localized IONP with an externally delivered, non-toxic alternating magnetic field affords the opportunity to selectively heat and kill tumor cells. Combining IONP-based radiation sensitization and heat-based cytotoxicity provides a unique and potentially highly effective opportunity for therapeutic ratio enhancement.

  15. Implications of radiation dose and exposed populations on radiation protection in the 21st century.

    PubMed

    Boice, John D

    2014-02-01

    Radiation is in the public eye because of Fukushima, computed tomography examinations, airport screenings, and possible terrorist attacks. What if the Boston Marathon pressure cooker had also contained a radioactive source? Nuclear power may be on the resurgence. Because of the increasing uses of radiation, the increases in population exposures, and the increasing knowledge of radiation effects, constant vigilance is needed to keep up with the changing times. Psychosocial disorders associated with the inappropriate (but real) fear of radiation need to be recognized as radiation detriments. Radiation risk communication, radiation education, and communication must improve at all levels: to members of the public, to the media, to other scientists, and to radiation professionals. Stakeholders must continue to be involved in all radiation protection initiatives. Finally, we are at a crisis as the number of war babies (me) and baby boomers (you?) who are also radiation professionals continues its rapid decline, and there are few in the pipeline to fill the current and looming substantial need: "The old road is rapidly agin'" (Dylan). NCRP has begun the WARP initiative-Where Are the Radiation Professionals?-an attempt to rejuvenate the pipeline of future professionals before the trickle becomes tiny drops. A Workshop was held in July 2013 with government agencies, military, private sector, universities, White House representatives, and societies to develop a coordinated and national action plan. A "Manhattan Project" is needed to get us "Back to the Future" in terms of the funding levels that existed in years past that provided the necessary resources to train, engage, and retain (a.k.a., jobs) the radiation professionals needed for the nation. If we don't keep swimmin' (Disney's Nemo) we'll "sink like a stone" (Dylan).Introduction of Implications of Radiation Dose and Exposed Populations (Video 2:06, http://links.lww.com/HP/A25). PMID:24378509

  16. Organ radiation doses and lifetime risk of excess cancer for several space shuttle missions

    NASA Astrophysics Data System (ADS)

    Atwell, W.; Hardy, A. C.; Peterson, L. E.

    Previously, we presented a methodology for extrapolating a crewmember's skin dose obtained from thermoluminescent dosimetry to organ doses by use of computerized anatomical male and female models. The organs considered are those identified in National Council on Radiation Protection and Measurements (NCRP) Report 98. Using this technique, we have analyzed those Shuttle missions where crew doses >=5 mGy were observed. Radiation absorbed doses are directly proportional to spacecraft shielding and attitude, orbital altitude, inclination, and mission duration. For 28.5 degree inclination missions, the dominant source of exposure is due to penetrating protons from the South Atlantic Anomaly. Results of Shuttle missions 41-C, 51-D, 51-J, STS-33, STS-31, STS-57, and STS-61 are presented and discussed in detail. Projected lifetime incidence risks of radiation-induced cancer for these missions that were based on NCRP Report 98 may not overestimate risks based on recent findings in cancer incidence studies of Hiroshima and Nagasaki atomic bomb survivors.

  17. RADIATION DOSE IN PAEDIATRIC COMPUTED TOMOGRAPHY: RISKS AND BENEFITS

    PubMed Central

    Ogbole, G.I.

    2010-01-01

    Computed tomography (CT) is a powerful tool for the accurate and effective diagnosis and treatment of a variety of conditions because it allows high-resolution three-dimensional images to be acquired very quickly. However as the number of CT procedures performed globally have continued to increase; with growing concerns about patient protection. Currently, no system is in place to track patient doses and the lifetime cumulative dose from medical sources. The widespread use of CT even in developing countries has raised questions regarding the possible threat to public health especially in children. The best available risk estimates suggest that paediatric CT will result in significantly increased lifetime radiation risk over adult CT. Studies have shown that lower milliampere-second (mAs) settings can be used for children without significant loss of information. Although the risk–benefit balance is still strongly tilted toward benefit, there is still need for caution. Furthermore since the frequency of paediatric CT examinations is rapidly increasing, and estimates suggest that quantitative lifetime radiation risks for children are not negligible, efforts should be made toward more active reduction of CT exposure settings in paediatric patients. This article hopes to address this concerns and draw attention to the fact that children are not ‘small adults ’ and should therefore be treated differently. PMID:25161479

  18. Thyroid neoplasia following low-dose radiation in childhood

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1989-12-01

    The thyroid gland is highly sensitive to the carcinogenic effects of ionizing radiation. Previously, we reported a significant increase of thyroid cancer and adenomas among 10,834 persons in Israel who received radiotherapy to the scalp for ringworm. These findings have now been extended with further follow-up and revised dosimetry. Overall, 98 thyroid tumors were identified among the exposed and 57 among 10,834 nonexposed matched population and 5392 sibling comparison subjects. An estimated thyroid dose of 9 cGy was linked to a fourfold (95% Cl = 2.3-7.9) increase of malignant tumors and a twofold (95% Cl = 1.3-3.0) increase of benign tumors. The dose-response relationship was consistent with linearity. Age was an important modifier of risk with those exposed under 5 years being significantly more prone to develop thyroid tumors than older children. The pattern of radiation risk over time could be described on the basis of a constant multiplication of the background rate, and an absolute risk model was not compatible with the observed data. Overall, the excess relative risk per cGy for thyroid cancer development after childhood exposure is estimated as 0.3, and the absolute excess risk as 13 per 10(6) PY-cGy. For benign tumors the estimated excess relative risk was 0.1 per cGy and the absolute risk was 15 per 10(6) PY-cGy.

  19. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  20. SU-E-T-636: Investigation of Dose Variation in High Dose Radiation Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Casey, C; Long, S; Pella, S; Dumitru, N; Herrera, R

    2014-06-15

    Purpose: The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator's placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Significant dose variation was obtained for the Contura, Savi, MLM and Prostate applicators. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended. Florida Atlantic University may provide Travel reimbursements.

  1. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey

    PubMed Central

    Deshpande, Sudesh; Dhote, D. S.; Kumar, Rajesh; Naidu, Suresh; Sutar, A.; Kannan, V.

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  2. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey.

    PubMed

    Deshpande, Sudesh; Dhote, D S; Kumar, Rajesh; Naidu, Suresh; Sutar, A; Kannan, V

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  3. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  4. Remote Sensing of Radiation Dose Rate by a Robot for Outdoor Usage

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Doi, K.; Kanematsu, H.; Utsumi, Y.; Hashimoto, R.; Takashina, T.

    2013-04-01

    In the present paper, the design and prototyping of a telemetry system, in which GPS, camera, and scintillation counter were mounted on a crawler type traveling vehicle, were conducted for targeting outdoor usage such as school playground. As a result, the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt. The results were as follows: (1) It was confirmed that the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt (running speed: 17[m/min]). (2) It was confirmed that the location information captured by GPS is visible on the Google map, and that the incorporation of video information is also possible to play. (3)A radiation dose rate of 0.09[μSv / h] was obtained in the ground. The value is less than the 1/40 ([3.8μSv / h]) allowable radiation dose rate for children in Fukushima Prefecture.(4)As a further work, modifying to program traveling, the measurement of the distribution of the radiation dose rate in a school of Fukushima Prefecture, and class delivery on radiation measurement will be carried out.

  5. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  6. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  7. Pediatric Computed Tomography. Radiation Dose in Abdominal Studies

    NASA Astrophysics Data System (ADS)

    López, X.; Ruiz-Trejo, C.; Buenfil, A. E.; Gamboa-deBuen, I.; Dies, P.

    2008-08-01

    Computed tomography is one of the most popular medical imaging modalities used in the last years. However, because is one of the techniques that delivered a considerable radiation dose, precautions should be taken into account. Pediatric patients are more radiosensitive than adults, and the probability that no desirable biological effects can occur is greater. To this, also it adds the probability that they will need more radiological studies in the future. The work consisted in determining the received dose by the pediatric patients undergoing abdominal studies in a multislice computed tomograph, according to the dosimetric quantities established by a Code of Practice published by the International Atomic Energy Agency; using a ionization chamber and a phantom that simulates the abdomen of a pediatric patient. The weighted air kerma index (Cw) was 14.3±0.4 mGy, this value is lower than the published by the American College of Radiology, 25 mGy. The multiple scan average dose (MSAD), which is a quantity established by the NOM-229-SSA1-2002 was determined, finding a value of 14.2±0.1 mGy, it is also below the value established, 25 mGy for an adult study.

  8. Calculation of Radiation Doses from Uranium Recovery Operations.

    Energy Science and Technology Software Center (ESTSC)

    1980-12-08

    Version: 00 MILDOS estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This is a multi-purpose code system, within the range of its proper application, and can be used to evaluate population doses formore » NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. The MILDOS package includes models for both point sources (stacks, vents) and area sources (ore pads, tailings areas). Gaseous releases are limited to consideration of 222Rn plus ingrowth of daughters. Exposure pathways of concern are assumed to be inhalation of airborne radioactive material, ingestion of vegetables, meat, and milk contaminated via deposition, and external exposure to radiation emitted by airborne activity and activity deposited on ground surfaces. Liquid exposure pathways are not treated by MILDOS.« less

  9. Pediatric Computed Tomography. Radiation Dose in Abdominal Studies

    SciTech Connect

    Lopez, X.; Ruiz-Trejo, C.; Buenfil, A. E.; Gamboa-deBuen, I.; Dies, P

    2008-08-11

    Computed tomography is one of the most popular medical imaging modalities used in the last years. However, because is one of the techniques that delivered a considerable radiation dose, precautions should be taken into account. Pediatric patients are more radiosensitive than adults, and the probability that no desirable biological effects can occur is greater. To this, also it adds the probability that they will need more radiological studies in the future. The work consisted in determining the received dose by the pediatric patients undergoing abdominal studies in a multislice computed tomograph, according to the dosimetric quantities established by a Code of Practice published by the International Atomic Energy Agency; using a ionization chamber and a phantom that simulates the abdomen of a pediatric patient. The weighted air kerma index (C{sub w}) was 14.3{+-}0.4 mGy, this value is lower than the published by the American College of Radiology, 25 mGy. The multiple scan average dose (MSAD), which is a quantity established by the NOM-229-SSA1-2002 was determined, finding a value of 14.2{+-}0.1 mGy, it is also below the value established, 25 mGy for an adult study.

  10. Evaluation of dose homogenization and radiation carcinogenesis risk in total body irradiation for bone marrow transplantation.

    PubMed

    Oysul, K; Dirican, B; Beyzadeoglu, M; Sürenkok, S; Arpaci, F; Pak, Y

    2003-01-01

    The purpose of this study is to report on the dose homogeneity in total body irradiated patients undergoing Bone Marrow Transplantation (BMT), and carcinogenic risk in surviving patients. Between 1987 and 2001, 105 patients received hyperfractionated (6 fractions in 3 days) 12 Gy Total Body Irradiation (TBI) in our institution with lateral opposed fields. All the patients had measurements with thermoluminiscence dosimetry (TLD100) placed on seven bilateral body sites in vivo, controlled by the randophantom measurements to verify reasonable dose homogeneity achievement. The comorbid effects in the whole TBI conditioning group with at least three months post BMT follow-up were noted and surviving patients who had a minimum 5-year and maximum 14-year follow-up (median 7.8 years) have been evaluated for carcinogenic radiation risk on the basis of tissue weighting factors as defined by ICRP 60. Reasonable dose homogeneity by lateral opposed beam TBI has been obtained in all 105 patients in whom lateral TLD100 measurement means were within +5% of the planned doses. Calculated carcinogenesis risk factor was 11.34% for males and 12.40% for females, and no second-cancer has been detected whilst radiation-induced 5 cataracts and 10 interstitial pneumonia comorbidities were noted. Dose homogenization can be well achieved for hyperfractionated lateral-beam TBI with acceptable comorbidities and estimated second-cancer risk is significant but relatively low compared to the risk from the clinical indications for TBI. PMID:14628091

  11. Sensitivity of Daily Doses of Biologically Active Radiation, To Ozone Changes In Southern French Alps

    NASA Astrophysics Data System (ADS)

    de La Casinière, A.; Touré, M. L.; Masserot, D.; Lenoble, J.; Cabot, T.; Pinedo Vega, J. L.

    Global UV irradiance spectra we re recorded each half an hour between sunrise and sunset, along the year 2000 in Briançon (1300m asl) at the CEMBREU (Centre Européen Médical Bioclimatique de Recherche et d'Enseignement Universitaire), a site of the French spectral UV network in Southern Alps. From these spectra are retrieved atmospheric transmissivities corresponding to daily doses of various biologically active radiation. A transmissivity is defined as the ratio of the ground level value of a daily dose to the extra -atmospheric value of this daily dose. The daily doses studied relate to UVB, erythema, DNA damage, and plant damage. Multiple linear correlations of the various transmissivities with the three predictors (daily sunshine fraction), µmin (cosine of the daily minimum SZA), and (daily total ozone column) assumed to be independent variables, are done for year 2000. These correlations permit to assess the mean sensitivities of the various transmissivities, to changes in for different cloud cover conditions in Briançon. The variations of each sensitivity is studied as a function of , µmin and . Comparing the results obtained with those given in the literature, we find for = 1 (that is for a strong probability of clear sky conditions) and SZA min = 45°, a radiation amplification factor (RAF) of the erythemal daily dose equal to 1.1 when = 285 DU, and to 1.4 when = 315 DU.

  12. Optical and NMR dose response of N-isopropylacrylamide normoxic polymer gel for radiation therapy dosimetry

    PubMed Central

    Mesbahi, Asghar; Jafarzadeh, Vahid; Gharehaghaji, Nahideh

    2012-01-01

    Background Application of less toxic normoxic polymer gel of N-isopropyl acrylamide (NIPAM) for radiation therapy has been studied in recent years. Aim In the current study the optical and NMR properties of NIPAM were studied for radiation therapy dosimetry application. Materials and methods NIPAM normoxic polymer gel was prepared and irradiated by 9 MV photon beam of a medical linac. The optical absorbance was measured using a conventional laboratory spectrophotometer in different wavelengths ranging from 390 to 860 nm. R2 measurements of NIPAM gels were performed using a 1.5 T scanner and R2–dose curve was obtained. Results Our results showed R2 dose sensitivity of 0.193 ± 0.01 s−1 Gy−1 for NIPAM gel. Both R2 and optical absorbance showed a linear relationship with dose from 1.5 to 11 Gy for NIPAM gel dosimeter. Moreover, absorbance–dose response varied considerably with light wavelength and highest sensitivity was seen for the blue part of the spectrum. Conclusion Our results showed that both optical and NMR approaches have acceptable sensitivity and accuracy for dose determination with NIPAM gel. However, for optical reading of the gel, utilization of an optimum optical wavelength is recommended. PMID:24377016

  13. Image Quality and Radiation Dose Assessment of a Digital Mammography System

    SciTech Connect

    Isa, N. M.; Hassan, W. M. S. W.; Abdullah, W. A. K. W.; Othman, F.; Ramli, A. A. M.

    2010-07-07

    Image quality and radiation dose of a direct amorphous selenium digital mammography system were considered in terms of contrast to noise ratio (CNR) and average glandular dose (AGD). They were measured for various qualities and breast phantom thicknesses with different types of breast tissue composition to determine optimal radiation quality and dose. Three sets of breast tissue equivalent slabs (30%:70%, 50%:50% and 70%:30% glandular-adipose) with thickness of 2 cm to 7 cm and 0.2 mm aluminum foil were used to provide certain CNR. Two different combinations of anode/ilter material and a wide range of tube voltages were employed for each phantom thickness. Phantom images with grid were acquired using automatic exposure control (AEC) mode for each thickness. Phantom images without grid were also obtained in manual exposure mode by selecting the same anode/filter combination and kVp as the image obtained with grid at the same thickness, but varying mAs of 10 to 200 mAs. Optimization indicated that relatively high energy beam qualities should be used with a greater dose to compensate for lower energy x-rays. The results also indicate that current AEC setting for a fixed detector is not optimal.

  14. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGESBeta

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; et al

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initiallymore » improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  15. Cardiovascular risks associated with low dose ionizing particle radiation.

    PubMed

    Yan, Xinhua; Sasi, Sharath P; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1)H; 0.5 Gy, 1 GeV) and iron ion ((56)Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56)Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56)Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  16. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    SciTech Connect

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  17. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    PubMed Central

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  18. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy.

    PubMed

    Kron, T; Smith, A; Hyodo, K

    1996-12-01

    Thermoluminescence dosimetry (TLD) is a versatile technique with many applications for dosimetry of ionising radiation. However, in the range of kilovoltage x-rays which is widely used for diagnostic and therapeutic medical applications, problems arise from the differing dose response of most TL dosimeters with the radiation energy. The dose response of various TL detector types was investigated in mono-energetic x-ray beams of 26.8, 33.2, 40, 80.4 and 99.6keV from a synchrotron radiation source at the National Laboratory for High Energy Physics in Japan. This response was studied as a function of TL material (LiF:Mg,Ti, LiF:Mg,Cu,P and Al2O3), the detector geometry and size, and their thermal history. Due to the asymmetric diffraction from a Si crystal employed to produce monoenergetic photons there was more than 50% dose inhomogeneity in some of radiation fields used. Therefore, the different TL dosimeter types were rotated around and the results related to the reading of a set of "standard" LiF:Mg,Ti ribbons which were included in all experiments as reference detectors. No significant influence of the detector shape (physical size, thickness) on the dose response with energy could be found. However, the pre-irradiation thermal history influences the dose response with radiation energy: a fast cool down of LiF:Mg,Ti after a high temperature anneal will increase the sensitivity by more than a factor of two. The relatively new TLD material LiF:Mg,Cu,P (GR-200, obtained from Solid Dosimeter & Detector Laboratories, Beijing) was found to be approximately 100 times more sensitive than the standard LiF:Mg,Ti. In addition it proved to be more tissue equivalent for photon radiation between 27keV and 40keV. The performance of LiF:Mg,Cu,P makes it a very interesting TL material deserving further evaluation for applications in diagnostic and therapeutic x-rays. PMID:9060209

  19. Radiation dose in the high background radiation area in Kerala, India.

    PubMed

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples. PMID:21515614

  20. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  1. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean

  2. Radiation-induced lung damage: dose-time-fractionation considerations.

    PubMed

    Van Dyk, J; Mah, K; Keane, T J

    1989-01-01

    The comparison of different dose-time-fractionation schedules requires the use of an isoeffect formula. In recent years, the NSD isoeffect formula has been heavily criticized. In this report, we consider an isoeffect formula which is specifically developed for radiation-induced lung damage. The formula is based on the linear-quadratic model and includes a factor for overall treatment time. The proposed procedures allow for the simultaneous derivation of an alpha/beta ratio and a gamma/beta time factor. From animal data in the literature, the derived alpha/beta and gamma/beta ratios for acute lung damage are 5.0 +/- 1.0 Gy and 2.7 +/- 1.4 Gy2/day respectively, while for late damage the suggested values are 2.0 Gy and 0.0 Gy2/day. Data from two clinical studies, one prospective and the other retrospective, were also analysed and corresponding alpha/beta and gamma/beta ratios were determined. For the prospective clinical study, with a limited range of doses per fraction, the resultant alpha/beta and gamma/beta ratios were 0.9 +/- 2.6 Gy and 2.6 +/- 2.5 Gy2/day. The combination of the retrospective and prospective data yielded alpha/beta and gamma/beta ratios of 3.3 +/- 1.5 Gy and 2.4 +/- 1.5 Gy2/day, respectively. One potential advantage of this isoeffect formalism is that it might possibly be applied to both acute and late lung damage. The results of this formulation for acute lung damage indicate that time-dependent effects such as slow repair or proliferation might be more important in determining isoeffect doses than previously predicted by the estimated single dose (ED) formula. Although we present this as an alternative approach, we would caution against its clinical use until its applicability has been confirmed by additional clinical data. PMID:2928557

  3. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    SciTech Connect

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  4. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  5. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  6. Coaching Reduced the Radiation Dose of Pain Physicians by Half during Interventional Procedures.

    PubMed

    Slegers, A S; Gültuna, I; Aukes, J A; van Gorp, E J J A A; Blommers, F M N; Niehof, S P; Bosman, J

    2015-06-01

    The increased use of C-arm fluoroscopy in interventional pain management has led to higher radiation exposure for pain physicians. This study investigated whether or not real-time radiation dose feedback with coaching can reduce the scatter dose received by pain physicians. Firstly, phantom measurements were made to create a scatter dose profile, which visualizes the average scatter radiation for different C-arm positions at 3 levels of height. Secondly, in the clinical part, the radiation dose received by pain physicians during pain treatment procedures was measured real-time to evaluate (1) the effect of real-time dose feedback on the received scatter dose, and (2) the effect of knowledge of the scatter dose profile and active coaching, on the scatter dose received by the pain physician. The clinical study included 330 interventional pain procedures. The results showed that real-time feedback of the received dose did not lead to a reduction in scatter radiation. However, visualization of the scatter dose in a scatter dose profile and active coaching on optimal positions did reduce the scatter radiation received by pain physicians during interventional pain procedures by 46.4% (P = 0.05). Knowledge of and real-time coaching with the scatter dose profile reduced the dose of pain physicians by half, caused by their increased awareness for scatter radiation and their insight into strategic positioning. PMID:25354342

  7. [Calculation of the dose of low-intensity laser radiation: the need or the harm?].

    PubMed

    Moskvin, S V

    2012-01-01

    This study showed that it is highly undesirable to equip the devices for laser therapy with the dose-calculation function. In order to avoid mistakes, the operator should perform a strict sequence of actions as follows: to choose the needed wavelength and operating regime (the laser head block) of the LILR source, to set and measure the radiation power, the time and frequency of treatment, turn on the apparatus, control its operation and switch it off at the scheduled time. Meeting all these requirements eventually ensures obtaining a certain optimal dose density and guarantees that the entire procedure of laser irradiation is performed in a proper way. The equipment of the apparatus with the dose-calculation function is nothing more than a marketing ploy intended to earn extra money that apart from everything else creates additional problems for the customer. PMID:23373298

  8. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  9. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  10. Predicting astronaut radiation doses from major solar particle events using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Tehrani, Nazila H.

    1998-06-01

    Space radiation is an important issue for manned space flight. For long missions outside of the Earth's magnetosphere, there are two major sources of exposure. Large Solar Particle Events (SPEs) consisting of numerous energetic protons and other heavy ions emitted by the Sun, and the Galactic Cosmic Rays (GCRs) that constitute an isotropic radiation field of low flux and high energy. In deep-space missions both SPEs and GCRs can be hazardous to the space crew. SPEs can provide an acute dose, which is a large dose over a short period of time. The acute doses from a large SPE that could be received by an astronaut with shielding as thick as a spacesuit maybe as large as 500 cGy. GCRs will not provide acute doses, but may increase the lifetime risk of cancer from prolonged exposures in a range of 40-50 cSv/yr. In this research, we are using artificial intelligence to model the dose-time profiles during a major solar particle event. Artificial neural networks are reliable approximators for nonlinear functions. In this study we design a dynamic network. This network has the ability to update its dose predictions as new input dose data is received while the event is occurring. To accomplish this temporal behavior of the system we use an innovative Sliding Time-Delay Neural Network (STDNN). By using a STDNN one can predict doses received from large SPEs while the event is happening. The parametric fits and actual calculated doses for the skin, eye and bone marrow are used. The parametric data set obtained by fitting the Weibull functional forms to the calculated dose points has been divided into two subsets. The STDNN has been trained using some of these parametric events. The other subset of parametric data and the actual doses are used for testing with the resulting weights and biases of the first set. This is done to show that the network can generalize. Results of this testing indicate that the STDNN is capable of predicting doses from events that it has not seen

  11. Evaluation of the Stochastic Effects of Low-Dose Radiation: Dose Reconstruction for the Techa River Cohort in Russia

    SciTech Connect

    Degteva, M O.; Kozheurov, V P.; Tolstykh, E I.; Vorobiova, M I.; Anspaugh, L R.; Napier, Bruce A. )

    2001-06-01

    Persons traveling in space can accumulate fairly large doses of radiation, up to several Sv, at low-to-moderate dose rates. In general these dose rates are low enough so that deterministic effects can be avoided, although shielding may be necessary. An important question, however, is the stochastic effects (induction of cancer and genetic defects) of these doses. Most radiation-risk estimates are based on dose reconstruction and epidemiologic follow-up of the survivors of the atomic bombings on Japan, events that delivered doses nearly instantaneously. It has been hoped that stochastic effects would be less probable for radiation delivered at lower dose rates, but few opportunities have been available to examine this question in humans. The Mayak Production Association (MPA) was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days there were high occupational doses as well as technological failures that resulted in the release of large amounts of waste (about 10^17 Bq of liquid wastes) into the rather small Techa River. Residents along the Techa River were exposed to external radiation, and they ingested foods contaminated with 90Sr and other radionuclides. The?Techa River Cohort? has been studied for several years by scientists from the Urals Research Center for Radiation Medicine (URCRM). The purpose of the project considered here is to improve the dose-reconstruction system for the Techa River Cohort that has been under development for many years by Russian scientists at the URCRM. This, and the companion epidemiologic studies, are deemed to be unique and important, as members of the Techa River Cohort received red bone marrow doses of up to 3 Gy, but at low-to-moderate-dose rates. An increase in leukemia and cancer mortality has already been noted for this population, and further study should allow the evaluation of dose-rate-reduction factors for this situation.

  12. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  13. Image texture and radiation dose properties in CT.

    PubMed

    Mozejko, David; Kjernlie Andersen, Hilde; Pedersen, Marius; Waaler, Dag; Trægde Martinsen, Anne Catrine

    2016-01-01

    The aim of this study was to compare image noise properties of GE Discovery HD 750 and Toshiba Aquilion ONE. The uniformity section of a Catphan 600 image quality assurance phantom was scanned with both scanners, at different dose levels and with extension rings simulating patients of different sizes. 36 datasets were obtained and analyzed in terms of noise power spectrum. All the results prove that introduction of extension rings significantly altered the image quality with respect to noise properties. Without extension rings, the Toshiba scanner had lower total visible noise than GE (with GE as reference: FC18 had 82% and FC08 had 80% for 10 mGy, FC18 had 77% and FC08 74% for 15 mGy, FC18 had 80% and FC08 77% for 20 mGy). The total visible noise (TVN) for 20 and 15 mGy were similar for the phantom with the smallest additional extension ring, while Toshiba had higher TVN than GE for the 10 mGy dose level (120% FC18, 110% FC08). For the second and third ring, the GE images had lower TVN than Toshiba images for all dose levels (Toshiba TVN is greater than 155% for all cases). The results indi-cate that GE potentially has less image noise than Toshiba for larger patients. The Toshiba FC18 kernel had higher TVN than the Toshiba FC08 kernel with additional beam hardening correction for all dose levels and phantom sizes (120%, 107%, and 106% for FC18 compared to 110%, 98%, and 97%, for FC08, for 10, 15 and 20 mGy doses, respectively). PMID:27167260

  14. An EOF Iteration Approach for Obtaining Homogeneous Radiative Fluxes from Satellites Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Banglin; Pinker, Rachel T.; Stackhouse, Paul W., Jr.

    2007-01-01

    Conventional observations of climate parameters are sparse in space and/or in time and the representativeness of such information needs to be optimized. Observations from satellites provide improved spatial coverage than point observations however they pose new challenges for obtaining homogeneous coverage. Surface radiative fluxes, the forcing functions of the hydrologic cycle and biogeophysical processes, are now becoming available from global scale satellite observations. They are derived from independent satellite platforms and sensors that differ in temporal and spatial resolution and in the size of the footprint from which information is derived. Data gaps, degraded spatial resolution near boundaries of geostationary satellites, and different viewing geometries in areas of satellite overlap, could result in biased estimates of radiative fluxes. In this study, discussed will be issues related to the sources of inhomogeneity in surface radiative fluxes as derived from satellites; development of an approach to obtain homogeneous data sets; and application of the methodology to the widely used International Satellite Cloud Climatology Project (ISCCP) data that currently serve as a source of information for deriving estimates of surface and top of the atmosphere radiative fluxes. Introduced is an Empirical Orthogonal Function (EOF) iteration scheme for homogenizing the fluxes. The scheme is evaluated in several ways including comparison of the inferred radiative fluxes against ground observations, both before and after the EOF approach is applied. On the average, the latter reduces the rms error by about 2-3 W/m2.

  15. Radiation dose estimates for C-11 iomazenil, a benzodiazepine receptor radioligand

    SciTech Connect

    Sparks, R.B.; Dey, H.M.; Siebyl, I.B.

    1994-05-01

    SPECT imaging of the brain with I-123 iomazenil has shown avid uptake of the radioligand in a distribution consistent with benzodiazepine receptor binding. It was desirable to radiolabel this compound with a positron emitting radionuclide so that quantitation of the receptor density could be assessed with PET imaging. Radiation dose estimates for C-11 iomazenil were calculated prior to obtaining Institutional Review Board approval of this procedure. A previously published multicompartmental model was used as the biological model for estimating residence times associated with the C-11 labeled iomazenil. According to this model, 85-90% is excreted in the urine and 10-15% in the feces. A dynamic, voiding urinary bladder model was utilized for activity excreted renally and the ICRP 30 gastrointestinal tract kinetic model was used for activity excreted via the hepatobiliary system. Absorbed doses from C-11 (I-123) iomazenil to the urinary bladder were calculated to be 0.099 mGy/MBq (0.19 mGy/MBq) for a 4.8 hour bladder voiding interval. Shortening the bladder voiding interval to 2.0 hours had little effect on the bladder wall dose (0.095 mGy/MBq). However, a 30-minute void interval was estimated to lower the bladder wall dose substantially (0.045 mGy/MBq). Absorbed dose to the kidney was higher for C-11 iomazenil (0.054 vs 0.031 mGy/MBq) than for I-123 iomazenil due to rapid, early renal excretion of this very short-lived positron emitter. Doses to the gastrointestinal tract were estimated to be 4- to 20-fold lower for C-11 iomazenil compared to I-123 iomazenil. Overall, labeling iomazenil with C-11 rather than I-123 greatly reduces the radiation dose, per unit administered, to all organs except the kidneys.

  16. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  17. Choosing populations to study the health effects of low-dose ionizing radiation.

    PubMed Central

    Dreyer, N A; Loughlin, J E; Friedlander, E R; Clapp, R W; Fahey, F H

    1981-01-01

    In January 1978, the United States Congress requested information about the utility of additional epidemiologic studies for quantifying the health effects of low-dose ionizing radiation. In our judgment, no single population can be recommended for study on purely scientific grounds, since the largest group offers only a small chance to obtain a definitive result. On the other hand, if social pressures and regulatory agencies mandate that such studies be attempted, we would recommend prospective cohort studies of occupational populations. We propose that a national worker registry be developed using ionizing radiation as the prototype for studying other occupational exposures. The problems related to studying low-level radiation are not unique, but apply equally to investigations dealing with a great variety of toxic agents. A national plan for collecting information on workers' exposure and health could provide a cost-efficient means to answer public health questions posed by the Congress, scientists and the public. PMID:7294269

  18. SU-E-T-209: Independent Dose Calculation in FFF Modulated Fields with Pencil Beam Kernels Obtained by Deconvolution

    SciTech Connect

    Azcona, J; Burguete, J

    2014-06-01

    Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.

  19. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. PMID:25644753

  20. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  1. Radiation Dose Reduction Methods For Use With Fluoroscopic Imaging, Computers And Implications For Image Quality

    NASA Astrophysics Data System (ADS)

    Edmonds, E. W.; Hynes, D. M.; Rowlands, J. A.; Toth, B. D.; Porter, A. J.

    1988-06-01

    The use of a beam splitting device for medical gastro-intestinal fluoroscopy has demonstrated that clinical images obtained with a 100mm photofluorographic camera, and a 1024 X 1024 digital matrix with pulsed progressive readout acquisition techniques, are identical. In addition, it has been found that clinical images can be obtained with digital systems at dose levels lower than those possible with film. The use of pulsed fluoroscopy with intermittent storage of the fluoroscopic image has also been demonstrated to reduce the fluoroscopy part of the examination to very low dose levels, particularly when low repetition rates of about 2 frames per second (fps) are used. The use of digital methods reduces the amount of radiation required and also the heat generated by the x-ray tube. Images can therefore be produced using a very small focal spot on the x-ray tube, which can produce further improvement in the resolution of the clinical images.

  2. Risk of cancer subsequent to low-dose radiation.

    PubMed

    Warren, S

    1980-10-01

    Prominent among media items related to the Three Mile Island episode were prophecies of future cancers. The credibility of some of these estimates are discussed. The average person has been exposed by the age of 50 to 2.5 rad (0.025 Gy) from natural background. We define low doses as under 25 rad (0.25 Gy). The most heavily exposed members of the general population during the Three Mile Island event received 83 mrad (0.83 mGy). Those exposed to 2500 mrad (25 mGy) would show no pathologically recognizable effects of radiation though there is evidence that chromosomal damage may occur with doses about 1 rad (0.01 Gy). An official stated among the consequences of the Three Mile Island accident that two additional cancer deaths would result. No epidemiologist could detect such an increase in the population at risk. It has been generally agreed that the linear hypothesis is useful for determining protection standards, not prognosis. Objective criteria for pathologic diagnosis of cause-effect relations are presented. PMID:7430985

  3. Absorbed dose to water: Standards and traceability for radiation oncology

    SciTech Connect

    Almond, P.R.

    1995-12-31

    Although the need for appropriate quantities and units for ionizing radiation has existed since shortly after discovery of X-rays, the quantities and units in general use today were not completely formalized until about 15 years ago. The development of appropriate national and international standards have also been ongoing. For many years the quantity, exposure, measured in units of roentgen was the national standard and they were also the quantity and units in which radiotherapy was described. With the introduction of megavoltage X-ray and electron-beam equipment and the adoption of the quantity {open_quotes}absorbed-dose{close_quotes} measured in units of rad (or gray) different approaches to calibrating these beams were needed. This was especially the case since the national standard in terms of exposure at a maximum photon energy for {sup 60}Co gamma rays was only available. Since the late 1960s various machine calibration protocols have been published. These protocols have to accommodate changes in modality, energy, quantities and units between the national standard and the user. Because of this, a new definition of traceability is proposed to accommodate the present system. By recording all intercomparisons and parameters used, an auditable calibration chain can be maintained. Even with the introduction of calibration protocols based upon national absorbed dose standards, the proposed traceability definition will still be needed.

  4. The NIOSH Radiation Dose Reconstruction Project: managing technical challenges.

    PubMed

    Moeller, Matthew P; Townsend, Ronald D; Dooley, David A

    2008-07-01

    Approximately two years after promulgation of the Energy Employees Occupational Illness Compensation Program Act, the National Institute for Occupational Safety and Health Office of Compensation and Analysis Support selected a contractor team to perform many aspects of the radiation dose reconstruction process. The project scope and schedule necessitated the development of an organization involving a comparatively large number of health physicists. From the initial stages, there were many technical and managerial challenges that required continuous planning, integration, and conflict resolution. This paper identifies those challenges and describes the resolutions and lessons learned. These insights are hopefully useful to managers of similar scientific projects, especially those requiring significant data, technical methods, and calculations. The most complex challenge has been to complete defensible, individualized dose reconstructions that support timely compensation decisions at an acceptable production level. Adherence to applying claimant-favorable and transparent science consistent with the requirements of the Act has been the key to establishing credibility, which is essential to this large and complex project involving tens of thousands of individual stakeholders. The initial challenges included garnering sufficient and capable scientific staff, developing an effective infrastructure, establishing necessary methods and procedures, and integrating activities to ensure consistent, quality products. The continuing challenges include maintaining the project focus on recommending a compensation determination (rather than generating an accurate dose reconstruction), managing the associated very large data and information management challenges, and ensuring quality control and assurance in the presence of an evolving infrastructure. The lessons learned concern project credibility, claimant favorability, project priorities, quality and consistency, and critical

  5. Radiation burden from secondary doses to patients undergoing radiation therapy with photons and light ions and radiation doses from imaging modalities.

    PubMed

    Gudowska, I; Ardenfors, O; Toma-Dasu, I; Dasu, A

    2014-10-01

    Ionising radiation is increasingly used for the treatment of cancer, being the source of a considerable fraction of the medical irradiation to patients. With the increasing success rate of cancer treatments and longer life expectancy of the treated patients, the issue of secondary cancer incidence is of growing concern, especially for paediatric patients who may live long after the treatment and be more susceptible to carcinogenesis. Also, additional imaging procedures like computed tomography, kilovoltage and megavoltage imaging and positron emission tomography, alone or in conjunction with radiation therapy, may add to the radiation burden associated with the risk of occurrence of secondary cancers. This work has been based on literature studies and is focussed on the assessment of secondary doses to healthy tissues that are delivered by the use of modern radiation therapy and diagnostic imaging modalities in the clinical environment. PMID:24353029

  6. Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Kyung-Chan; Dokgo, Kyunghwan; Choi, Enjin; Kim, Hang-Pyo

    2015-03-01

    It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

  7. Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response

    PubMed Central

    Lall, R; Ganapathy, S; Yang, M; Xiao, S; Xu, T; Su, H; Shadfan, M; Asara, J M; Ha, C S; Ben-Sahra, I; Manning, B D; Little, J B; Yuan, Z-M

    2014-01-01

    Because of insufficient understanding of the molecular effects of low levels of radiation exposure, there is a great uncertainty regarding its health risks. We report here that treatment of normal human cells with low-dose radiation induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis resulting in increased radiation resistance. This metabolic change is highlighted by upregulation of genes encoding glucose transporters and enzymes of glycolysis and the oxidative pentose phosphate pathway, concomitant with downregulation of mitochondrial genes, with corresponding changes in metabolic flux through these pathways. Mechanistically, the metabolic reprogramming depends on HIF1α, which is induced specifically by low-dose irradiation linking the metabolic pathway with cellular radiation dose response. Increased glucose flux and radiation resistance from low-dose irradiation are also observed systemically in mice. This highly sensitive metabolic response to low-dose radiation has important implications in understanding and assessing the health risks of radiation exposure. PMID:24583639

  8. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of {sup 166}Ho Microspheres in Liver Radioembolization

    SciTech Connect

    Seevinck, Peter R.; Maat, Gerrit H. van de; Wit, Tim C. de; Vente, Maarten A.D.; Nijsen, Johannes F.W.; Bakker, Chris J.G.

    2012-07-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional {sup 166}Ho activity distribution to estimate radiation-absorbed dose distributions in {sup 166}Ho-loaded poly (L-lactic acid) microsphere ({sup 166}Ho-PLLA-MS) liver radioembolization. Methods and Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of {sup 166}Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the {sup 166}Ho activity distribution, derived from quantitative MRI data, with a {sup 166}Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results: Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local {sup 166}Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of {sup 166}Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of {sup 166}Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose

  9. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  10. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses

    PubMed Central

    Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  11. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    PubMed

    Joo, Hae Mi; Kang, Su Jin; Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  12. Sensitivity to low-dose radiation in radiosensitive wasted mice

    SciTech Connect

    Paunesku, T.; Protic, M.; Woloschak, G. E.

    1999-11-12

    Mice homozygous for the autosomal recessive wasted mutation (wst/wst) have abnormalities in T-lymphocytes and in the anterior motor neuron cells of the spinal cord, leading to sensitivity to low doses of ionizing radiation, hind limb paralysis, and immunodeficiency. This defect results in a failure to gain weight by 20 days and death at 28 days of age. The wasted mutation (previously mapped to mouse chromosome 2) is shown to be a 3-bp deletion in a T-cell-specific (and perhaps motor-neuron-specific) regulatory region (promoter) of the proliferating cell nuclear antigen (PCNA) gene on mouse chromosome 2. A regulatory element is also shown to be important in PCNA expression in T-lymphocytes and motor neuron cells afflicted by the 3-bp deletion in the PCNA promoter. The model is as follows: Absence of PCNA expression in the thymuses (and motor neurons) of wasted mice causes cellular apoptosis; this absence of expression is mediated by a positive transactor that can bind to the wild-type but not the wasted mutant PCNA promoter; the bound protein induces late expression of PCNA in T-lymphocytes and prevents onset of radiation sensitivity in the cells.

  13. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    SciTech Connect

    Lehmann, J; Stern, R L; Daly, T P; Schwieter, C W; Jones, G E; Arnold, M L; Hartmann-Siantar, C L; Goldberg, Z

    2004-04-20

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface.

  14. The Effect of High Dose Radioiodine Therapy on Formation of Radiation Retinopathy During Thyroid Cancer Treatment

    PubMed Central

    Kaçar Güveli, Tülay; Özkan, Sezer; Öner Tamam, Müge; Uyanık, Ercan; Ediz, Nurcan; Mülazımoğlu, Mehmet; Özpaçacı, Tevfik

    2014-01-01

    Objective: Non-thyroidal complication of high-dose radioiodine therapy for thyroid carcinoma might cause salivary and lacrimal gland dysfunction, which may be transient or permanent in a dose-dependent manner. However, radiation retinopathy complicating 131I therapy, has not been previously well characterized. The aim of this study was to evaluate the extent of retinal damage among patients who had received high doses of radioiodine treatment. Methods: Forty eyes of 20 patients (3 male, 17 female) who received 250-1000 mCi during 131I therapy and on ophthalmological follow up for a year after the last treatment were included in the study. Mean age of the study group was 50 years (range 25-70 years). In ophthalmologic examination, visual acuity was measured in order to determine visual loss. Intraocular pressure was measured in all the patients. Then lens examination was carried out with slit lamp biomicroscopy in order to investigate cataract or partial lens opacities. Fundus observation was carried out through the dilated pupil with slit lamp biomicroscopy using 90 D noncontact lens. Result: The best corrected visual aquity with Snellen chart was found as 1.0 in 36 eyes (90%) and between 0.6 and 0.9 (10%) in 4 eyes (10%). At the biomicroscopic fundus examination, retinal hemorrhage consistent with radiation retinopathy, microaneurysm, microinfarction, edema or exudation, vitreus hemorrhage, partial or total optical disc pallor indicating papillopathy in the optic disc were not observed in any of the eyes. Conclusion: This result indicates that there is not any significant correlation between repeated high-dose radioiodine therapy and radiation retinopathy in differentiated thyroid carcinomas. Even though there is not a significant restriction in use of higher doses of radioiodine therapy in differentiated thyroid carcinoma, more extensive studies are needed in order to obtain more accurate data on possible occurrence of retinopathy. PMID:25541931

  15. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  16. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    SciTech Connect

    Mahesh, M; Gingold, E; Jones, A

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.

  17. High-Dose Radiation May Be No Better for Low-Risk Prostate Cancer

    MedlinePlus

    ... Radiation May Be No Better for Low-Risk Prostate Cancer Study finds no benefits in disease progression, survival ... doses of radiation may not benefit low-risk prostate cancer patients, a new review suggests. "In the field ...

  18. Trimming Exposure Data, Putting Radiation Workers at Risk: Improving Disclosure and Consent Through a National Radiation Dose-Registry

    PubMed Central

    Shrader-Frechette, Kristin

    2007-01-01

    In the United States, regulatory standards allow workers to be exposed to ionizing radiation that can cause 1 additional cancer fatality per 400 workers per year. Because radiation-dose limits cover only single sources (e.g., a nuclear plant) or exposure classes (workplace, medical, or public) and are defined for average occupational exposure, workers typically do not know their precise cumulative, individual, and relative risks from radiation. Nevertheless, this information is necessary for informed consent, because most scientists say radiation effects are cumulative and linear with no risk threshold. To promote public health, informed consent, and better understanding of the effects of low-dose radiation, I argue for a multistage National Radiation-Dose Registry, beginning with cumulative, individual worker doses. PMID:17761581

  19. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2011-01-01

    There is growing interest in the ability to monitor, track, and report exposure to radiation from medical imaging. Historically, however, dose information has been stored on an image-based dose sheet, an arrangement that precludes widespread indexing. Although scanner manufacturers are beginning to include dose-related parameters in the Digital Imaging and Communications in Medicine (DICOM) headers of imaging studies, there remains a vast repository of retrospective computed tomographic (CT) data with image-based dose sheets. Consequently, it is difficult for imaging centers to monitor their dose estimates or participate in the American College of Radiology (ACR) Dose Index Registry. An automated extraction software pipeline known as Radiation Dose Intelligent Analytics for CT Examinations (RADIANCE) has been designed that quickly and accurately parses CT dose sheets to extract and archive dose-related parameters. Optical character recognition of information in the dose sheet leads to creation of a text file, which along with the DICOM study header is parsed to extract dose-related data. The data are then stored in a relational database that can be queried for dose monitoring and report creation. RADIANCE allows efficient dose analysis of CT examinations and more effective education of technologists, radiologists, and referring physicians regarding patient exposure to radiation at CT. RADIANCE also allows compliance with the ACR's dose reporting guidelines and greater awareness of patient radiation dose, ultimately resulting in improved patient care and treatment. PMID:21969661

  20. Mitochondrial-Derived Oxidants and Cellular Responses to Low Dose/Low LET Ionizing Radiation

    SciTech Connect

    Spitz, Douglas R.

    2009-11-09

    that could be mitigated by over expression of the H2O2 metabolizing enzyme, catalase, and/or the mitochondrial form of superoxide dismutase (MnSOD). Furthermore, using radiation-induced genomically unstable cells, it was shown that steady-state levels of H2O2 were significantly elevated for many cell generations following exposure, catalase suppressed the radiation-induced mutator phenotype when added long after radiation exposure, unstable clones showed evidence of mitochondrial dysfunction some of which was characterized by improper assembly of SDH subunits (particularly subunit B), and chemical inhibitors of SDH activity could decrease steady-state levels of H2O2 as well as mutation frequency. These results support the hypotheses that 1) SDH mutations could contribute to transformation by inducing genomic instability and a mutator phenotype via increasing steady-state levels of ROS; 2) metabolic sources of O2•- and H2O2 play a significant role in low dose radiation induced injury and genomic instability; and 3) increased mutation rates in irradiated mammal cells can be suppressed by scavengers of H2O2 (particularly catalase) long after radiation exposure. Overall the results obtained during this period of support provide clear evidence in support of the hypothesis that abnormal oxidative metabolism in mitochondria that result in increases in steady-sate levels of H2O2 and other ROS are capable of significantly contributing to radiation-induced mutator phenotypes in mammalian cells.

  1. The SNAP 27 gamma radiation spectrum obtained with a Ge/Li/ detector

    NASA Technical Reports Server (NTRS)

    Taherzadeh, M.

    1976-01-01

    The pulse height distribution, obtained experimentally using a Ge(Li) detector, was employed to determine the photon emission rate characteristic of a PuO2 fuel source known as the SNAP 27 heat source. The selfshielding parameters of the photon emitter, the efficiency of the detector and the geometry of the experiment were utilized to determine the unscattered photon emission rate of the source and the unscattered flux spectrum at a certain specified distance from the source. For the scattered part of the flux spectrum a Monte Carlo technique was employed so that the total flux spectrum could be determined at any point in the radiation field. As a result of this work, a technique was developed to obtain the unfolded radiation spectrum of the SNAP 27 heat source.

  2. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  3. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  4. Assessment of retrospective dose estimation, with fluorescence in situ hybridization (FISH), of six victims previously exposed to accidental ionizing radiation.

    PubMed

    Liu, Qing-Jie; Lu, Xue; Zhao, Xiao-Tao; Feng, Jiang-Bin; Lü, Yu-Min; Jiang, En-Hai; Zhang, Shu-Lan; Chen, De-Qing; Jia, Ting-Zhen; Liang, Li

    2014-01-01

    The present study aims to evaluate the use of the fluorescence in situ hybridization (FISH) translocation assay for retrospective dose estimation of acute accidental exposure to radiation in the past. Reciprocal translocation analysis by FISH with three whole-chromosome probes was performed on normal peripheral blood samples. Samples were irradiated with 0-5Gy (60)Co γ-rays in vitro, and dose-effect curves were established. FISH-based translocation analyses for six accident victims were then performed, and biological doses were estimated retrospectively by comparison with the dose-effect curves. Reconstructed doses by FISH were compared with estimated doses obtained by analysis of di-centrics performed soon after exposure, or with dose estimates from tooth-enamel electron paramagnetic resonance (EPR) data obtained at the same time as the FISH analysis. Follow-up FISH analyses for an adolescent victim were performed. Results showed that dose-effect curves established in the present study follow a linear-quadratic model, regardless of the background translocation frequency. Estimated doses according to two dose-effect curves for all six victims were similar. FISH dose estimations of three adult victims exposed to accidental radiation less than a decade prior to analysis (3, 6, or 7 years ago) were consistent with those estimated with tooth-enamel EPR measurements or analyses of di-centrics. Estimated doses of two other adult victims exposed to radiation over a decade prior to analysis (16 or 33 years ago) were underestimated and two to three times lower than the values obtained from analysis of di-centrics or tooth-enamel EPR. Follow-up analyses of the adolescent victim showed that doses estimated by FISH analysis decrease rapidly over time. Therefore, the accuracy of dose estimates by FISH is acceptable only when analysis is performed less than 7 years after exposure. Measurements carried out more than a decade after exposure through FISH analysis resulted in

  5. Reduction of Radiation Doses to Patients and Staff During Endoscopic Retrograde Cholangiopancreatography

    PubMed Central

    Sulieman, Abdelmoneim; Paroutoglou, Georgios; Kapsoritakis, Andreas; Kapatenakis, Anargeyros; Potamianos, Spiros; Vlychou, Marianna; Theodorou, Kiki

    2011-01-01

    Background/Aim: Endoscopic retrograde cholangiopancreatography (ERCP) is associated with a considerable radiation exposure for patients and staff. While optimization of the radiation dose is recommended, few studies have been published. The purpose of this study has been to measure patient and staff radiation dose, to estimate the effective dose and radiation risk using digital fluoroscopic images. Entrance skin dose (ESD), organ and effective doses were estimated for patients and staff. Materials and Methods: Fifty-seven patients were studied using digital X-ray machine and thermoluminescent dosimeters (TLD) to measure ESD at different body sites. Organ and surface dose to specific radiosensitive organs was carried out. The mean, median, minimum, third quartile and the maximum values are presented due to the asymmetry in data distribution. Results: The mean ESD, exit and thyroid surface dose were estimated to be 75.6 mGy, 3.22 mGy and 0.80 mGy, respectively. The mean effective dose for both gastroenterologist and assistant is 0.01 mSv. The mean patient effective dose was 4.16 mSv, and the cancer risk per procedure was estimated to be 2 × 10-5 Conclusion: ERCP with fluoroscopic technique demonstrate improved dose reduction, compared to the conventional radiographic based technique, reducing the surface dose by a factor of 2, without compromising the diagnostic findings. The radiation absorbed doses to the different organs and effective doses are relatively low. PMID:21196649

  6. Radiation Dose-Volume Effects in Radiation-Induced Rectal Injury

    SciTech Connect

    Michalski, Jeff M.; Gay, Hiram; Jackson, Andrew; Tucker, Susan L.; Deasy, Joseph O.

    2010-03-01

    The available dose/volume/outcome data for rectal injury were reviewed. The volume of rectum receiving >=60Gy is consistently associated with the risk of Grade >=2 rectal toxicity or rectal bleeding. Parameters for the Lyman-Kutcher-Burman normal tissue complication probability model from four clinical series are remarkably consistent, suggesting that high doses are predominant in determining the risk of toxicity. The best overall estimates (95% confidence interval) of the Lyman-Kutcher-Burman model parameters are n = 0.09 (0.04-0.14); m = 0.13 (0.10-0.17); and TD{sub 50} = 76.9 (73.7-80.1) Gy. Most of the models of late radiation toxicity come from three-dimensional conformal radiotherapy dose-escalation studies of early-stage prostate cancer. It is possible that intensity-modulated radiotherapy or proton beam dose distributions require modification of these models because of the inherent differences in low and intermediate dose distributions.

  7. Impact of radiation dose and iterative reconstruction on pulmonary nodule measurements at chest CT: a phantom study

    PubMed Central

    Kim, Hyungjin; Min Park, Chang; Chae, Hee-Dong; Lee, Sang Min; Goo, Jin Mo

    2015-01-01

    PURPOSE We aimed to identify the impact of radiation dose and iterative reconstruction (IR) on measurement of pulmonary nodules by chest computed tomography (CT). METHODS CT scans were performed on a chest phantom containing various nodules (diameters of 3, 5, 8, 10, and 12 mm; +100, −630 and −800 HU for each diameter) at 80, 100, 120 kVp and 10, 20, 50, 100 mAs (a total of 12 radiation dose settings). Each CT was reconstructed using filtered back projection, iDose4, and iterative model reconstruction (IMR). Thereafter, two radiologists measured the diameter and attenuation of the nodules. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. Influence of radiation dose and reconstruction algorithm on measurement error and objective image quality metrics was analyzed using generalized estimating equations. RESULTS The 80 kVp, 10 mAs CT scan was not feasible for the measurement of 3 mm sized simulated ground-glass nodule (GGN); otherwise, diameter measurement error was not significantly influenced by radiation dose (P > 0.05). IR did not have a significant impact on diameter measurement error for simulated solid nodules (P > 0.05). However, for simulated GGNs, IMR was associated with significantly decreased relative diameter measurement error (P < 0.001). Attenuation measurement error was not significantly influenced by either radiation dose or reconstruction algorithm (P > 0.05). Objective image quality was significantly better with IMR (P < 0.05). CONCLUSION Nodule measurements were not affected by radiation dose except for 3 mm simulated GGN on 80 kVp, 10 mAs dose setting. However, for GGNs, IMR may help reduce diameter measurement error while improving image quality. PMID:26359871

  8. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  9. Skyshine analysis using energy and angular dependent dose-contribution fluxes obtained from air-over-ground adjoint calculation.

    PubMed

    Uematsu, Mikio; Kurosawa, Masahiko

    2005-01-01

    A generalised and convenient skyshine dose analysis method has been developed based on forward-adjoint folding technique. In the method, the air penetration data were prepared by performing an adjoint DOT3.5 calculation with cylindrical air-over-ground geometry having an adjoint point source (importance of unit flux to dose rate at detection point) in the centre. The accuracy of the present method was certified by comparing with DOT3.5 forward calculation. The adjoint flux data can be used as generalised radiation skyshine data for all sorts of nuclear facilities. Moreover, the present method supplies plenty of energy-angular dependent contribution flux data, which will be useful for detailed shielding design of facilities. PMID:16604693

  10. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small. PMID:24778349

  11. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  12. RECONSTRUCTION OF INDIVIDUAL RADIATION DOSES FOR A CASE-CONTROL STUDY OF THYROID CANCER IN FRENCH POLYNESIA

    PubMed Central

    Drozdovitch, Vladimir; Bouville, André; Doyon, Françoise; Brindel, Pauline; Cardis, Elisabeth; de Vathaire, Florent

    2014-01-01

    Forty-one atmospheric nuclear weapons tests (plus five safety tests) were conducted in French Polynesia between 1966 and 1974. To evaluate the potential role of atmospheric nuclear weapons testing on a high incidence of thyroid cancer observed since 1985 in French Polynesia, a population-based case-control study was performed. The study included 602 subjects, either cases or controls, all aged less than 40 y at the end of nuclear weapons testing in 1974. Radiation doses to the thyroids of the study subjects were assessed based on the available historical results of radiation measurements. These were mainly found in the annual reports on the radiological situation in French Polynesia that had been sent to the UNSCEAR Secretariat. For each atmospheric nuclear weapons test that contributed substantially to the local deposition of radionuclides, the radiation dose to the thyroid from 131I intake was estimated. In addition, thyroid doses from the intake of short-lived radioiodines (132I, 133I, 135I) and 132Te, external exposure from gamma-emitted radionuclides deposited on the ground, and ingestion of long-lived 137Cs were reconstructed. The mean thyroid dose among the study subjects was found to be around 3 mGy while the highest dose was estimated to be around 40 mGy. Doses from short-lived iodine and tellurium isotopes ranged up to 10 mGy. Thyroid doses from external exposure ranged up to 3 mGy, while those from internal exposure due to cesium ingestion did not exceed 1 mGy. The dose estimates that have been obtained are based on a rather limited number of radiation measurements performed on a limited number of islands and are highly uncertain. A thorough compilation of the results of all radiation monitoring that was performed in French Polynesia in 1966–1974 would be likely to greatly improve the reliability and the precision of the dose estimates. PMID:18403963

  13. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  14. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  15. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  16. Gene expression-based dosimetry by dose and time in mice following acute radiation exposure.

    PubMed

    Tucker, James D; Divine, George W; Grever, William E; Thomas, Robert A; Joiner, Michael C; Smolinski, Joseph M; Auner, Gregory W

    2013-01-01

    Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to (60)Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4-7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R(2)), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations. PMID:24358280

  17. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    PubMed

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia. PMID:21404066

  18. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    NASA Astrophysics Data System (ADS)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  19. Terrestrial gamma radiation dose study to determine the baseline for environmental radiological health practices in Melaka state, Malaysia.

    PubMed

    Ramli, Ahmad Termizi; Sahrone, Sallehudin; Wagiran, Husin

    2005-12-01

    Environmental terrestrial gamma radiation dose rates were measured throughout Melaka, Malaysia, over a period of two years, with the objective of establishing baseline data on the background radiation level. Results obtained are shown in tabular, graphic and cartographic form. The values of terrestrial gamma radiation dose rate vary significantly over different soil types and for different underlying geological characteristics present in the study area. The values ranged from 54 +/- 5 to 378 +/- 38 nGy h(-1). The highest terrestrial gamma dose rates were measured over soil types of granitic origin and in areas with underlying geological characteristics of an acid intrusive (undifferentiated) type. An isodose map of terrestrial gamma dose rate in Melaka was drawn by using the GIS application 'Arc View'. This was based on data collected using a NaI(Tl) scintillation detector survey meter. The measurements were taken at 542 locations. Three small 'hot spots' were found where the dose rates were more than 350 nGy h(-1). The mean dose rates in the main population areas in the mukims (parishes) of Bukit Katil, Sungai Udang, Batu Berendam, Bukit Baru and Bandar Melaka were 154 +/- 15, 161 +/- 16, 160 +/- 16, 175 +/- 18 and 176 +/- 18 nGy h(-1), respectively. The population-weighted mean dose rate throughout Melaka state is 172 +/- 17 nGy h(-1). This is lower than the geographical mean dose rate of 183 +/- 54 nGy h(-1). The lower value arises from the fact that most of the population lives in the central area of the state where the lithology is dominated by sedimentary rocks consisting of shale, mudstone, phyllite, slate, hornfels, sandstone and schist of Devonian origin which have lower associated dose rates. The mean annual effective dose to the population from outdoor terrestrial gamma radiation was estimated to be 0.21 mSv. This value is higher than the world average of 0.07 mSv. PMID:16340071

  20. The Observed Variance Between Predicted and Measured Radiation Dose in Breast and Prostate Patients Utilizing an In Vivo Dosimeter

    SciTech Connect

    Scarantino, Charles W. Prestidge, Bradley R.; Anscher, Mitchel S.; Ferree, Carolyn R.; Kearns, William T.; Black, Robert D.; Bolick, Natasha G.; Beyer, Gloria P.

    2008-10-01

    Purpose: Report the results of using a permanently implantable dosimeter in radiation therapy: determine specific adverse events, degree of migration, and acquire dose measurements during treatment to determine difference between expected and measured dose. Methods and Materials: The Dose Verification System is a wireless, permanently implantable metal-oxide semiconductor field-effect transistor dosimeter using a bidirectional antenna for power and data transfer. The study cohort includes 36 breast (33 patients received two devices) and 29 prostate (21 patients received two devices) cancer patients. A total of 1,783 and 1,749 daily dose measurements were obtained on breast and prostate patients, respectively. The measurements were compared with the planned expected dose. Biweekly computed tomography scans were obtained to evaluate migration and the National Cancer Institute's Common Toxicity Criteria, version 3, was used to evaluate adverse events. Results: Only Grade I/II adverse events of pain and bleeding were noted. There were only four instances of dosimeter migration of >5 mm from known factors. A deviation of {>=}7% in cumulative dose was noted in 7 of 36 (19%) for breast cancer patients. In prostate cancer patients, a {>=}7% deviation was noted in 6 of 29 (21%) and 8 of 19 (42%) during initial and boost irradiation, respectively. The two patterns of dose deviation were random and systematic. Some causes for these differences could involve organ movement, patient movement, or treatment plan considerations. Conclusions: The Dose Verification System was not associated with significant adverse events or migration. The dosimeter can measure dose in situ on a daily basis. The accuracy and utility of the dose verification system complements current image-guided radiation therapy and intensity-modulated radiation therapy techniques.

  1. In vitro study of cell survival following dynamic MLC intensity-modulated radiation therapy dose delivery

    SciTech Connect

    Moiseenko, Vitali; Duzenli, Cheryl; Durand, Ralph E.

    2007-04-15

    The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1x, 2x, 3x, 4x, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was

  2. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  3. Thorium-232 in human tissues: Metabolic parameters and radiation doses

    SciTech Connect

    Stehney, A.F.

    1994-09-01

    Higher than environmental levels of {sup 232}Th have been found in autopsy samples of lungs and other organs from four former employees of a Th refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Concentrations of {sup 232}Th in these samples and in tissues from two cases of non-occupational exposure were examined for compatibility with dosimetric models in Publication 30 of the International Commission on Radiological Protection (ICPP 1979a). The concentrations of {sup 232}Th in the lungs of the Th workers relative to the concentrations in bone or liver were much higher than calculated from the model for class Y aerosols of Th and the exposure histories of the subjects, and concentrations in the pulmonary lymph nodes were much lower than calculated for three of the Th workers and both non-occupational cases. Least-squares fits to the measured concentrations showed that the biological half-times of Th in liver, spleen, and kidneys are similar to the half-time in bone instead of the factor of 10 less suggested in Publication 30, and the fractions translocated from body fluids were found to be about 0.03, 0.02, and 0.005, respectively, when the fraction to bone was held at the suggested value of 0.7. Fitted values of the respiratory parameters differed significantly between cases and the differences were ascribable to aerosol differences. Average inhalation rates calculated for individual Th workers ranged from 50 to 110 Bq {sup 232}Th y{sup {minus}1}, and dose equivalents as high as 9.3 Sv to the lungs, 2.0 Sv to bone surfaces, and 1.1 Sv effective dose equivalent were calculated from the inhalation rates and fitted values of the metabolic parameters. The radiation doses were about the same when calculated from parameter values fitted with an assumed translocation fraction of 0.2 from body fluids to bone instead of 0.7.

  4. High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels

    NASA Astrophysics Data System (ADS)

    Grimaldi, N.; Sabatino, M. A.; Przybytniak, G.; Kaluska, I.; Bondì, M. L.; Bulone, D.; Alessi, S.; Spadaro, G.; Dispenza, C.

    2014-01-01

    Poly(N-vinylpyrrolidone)-grafted-acrylic acid biocompatible nanogels (NGs) were prepared using an exiting industrial-type electron accelerator and setups, starting from semi-dilute aqueous solutions of a commercial PVP and the acrylic acid monomer. As a result, NGs with tunable size and structure can be obtained quantitatively. Sterility was also imparted at the integrated dose absorbed. The chemical structure of the NGs produced was confirmed through Fourier Transformer Infrared Spectroscopy (FT-IR). The molecular and physico-chemical properties of NGs, such as the hydrodynamic dimensions and surface charge densities, for various polymer and monomer concentrations in the irradiated solutions, are discussed here.

  5. Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia

    NASA Astrophysics Data System (ADS)

    Norbani, Nor Eliana; Abdullah Salim, Nazaratul Ashifa; Saat, Ahmad; Hamzah, Zaini; Ramli, Ahmad Termizi; Wan Idris, Wan Mohd Rizlan; Jaafar, Mohd Zuli; Bradley, David A.; Abdul Rahman, Ahmad Taufek

    2014-11-01

    Baseline data on background radiation levels allows for future assessment of possible changes in natural radionuclide concentrations, either as a result of geological processes or radioactive contamination. We have measured terrestrial gamma radiation dose-rates (TGRD) from surface soils throughout accessible areas in the Peninsular Malaysia state of Negeri Sembilan (NS). Dose rate measurements were carried out using a NaI (TI) scintillation survey meter, encompassing 1708 locations, covering about 73% of the 6645 km2 of the land area in NS. This has allowed development of a TGRD contour map, plotted using WinSurf software. The range of measured TGRD was from 71±3 nGy/h up to 1000±11 nGy/h. The greatest measured TGRD was obtained in an area covered by soil types originating from igneous rock of granitic formations, while the least value of TGRD was observed in an area covered by limestone composed of calcite mineral, mostly found near river and coastal areas. Mean values of TGRD across the seven districts of NS ranged from 244±7 nGy/h to 458±13 nGy/h, the global mean being 330±8 nGy/h compared to a mean value of 92 nGy/h and 59 nGy/h for Malaysia and the world, respectively. The average annual dose from such terrestrial gamma radiation dose-rates to an individual residing in NS, assuming a tropical rural setting, is estimated to be 0.96 mSv per year.

  6. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  7. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  8. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    SciTech Connect

    Berrington de Gonzalez, Amy; Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P.

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  9. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  10. Effective Dose from Stray Radiation for a Patient Receiving Proton Therapy for Liver Cancer

    SciTech Connect

    Taddei, Phillip J.; Krishnan, Sunil; Mirkovic, Dragan; Newhauser, Wayne D.; Yepes, Pablo

    2009-03-10

    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors.

  11. Effective Dose from Stray Radiation for a Patient Receiving Proton Therapy for Liver Cancer

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Krishnan, Sunil; Mirkovic, Dragan; Yepes, Pablo; Newhauser, Wayne D.

    2009-03-01

    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors.

  12. Precise dose evaluation using a commercial phototransistor as a radiation detector.

    PubMed

    Santos, L A P; Barros, F R; Filho, J A; da Silva, E F

    2006-01-01

    An experimental arrangement and a circuitry based on an NPN phototransistor-type silicon radiation detector have been used for evaluating the X-ray beam dose in the diagnostic range. The circuitry was built to allow alteration of the electric field in the phototransistor internal structure, with some devices that have an available base connection. By changing the transistor base bias it is possible to alter its operation point to obtain a response gain from the selected photon energy range. In this way we have made an electronic energy-domain discretisation and we are investigating a model to calculate the dose contribution from each energy discretised into 10 keV steps. The method has been tested in filtered radiation beams generated from an HF-160 Pantak X-ray unit and compared with the usual dosimetry method. Our results have demonstrated that it is possible to make such a dose deconvolution from 40 to 140 keV energies by controlling the phototransistor base bias properly. PMID:16702243

  13. The prediction of radiation-induced liver dysfunction using a local dose and regional venous perfusion model

    SciTech Connect

    Cao Yue; Platt, Joel F.; Francis, Isaac R; Balter, James M.; Pan, Charlie; Normolle, Daniel; Ben-Josef, Edgar; Haken, Randall K. ten; Lawrence, Theodore S.

    2007-02-15

    We have shown that high dose conformal radiation combined with chemotherapy appears to prolong the survival of patients with unresectable intrahepatic cancers. The ability to safely deliver higher doses is primarily limited by the development of radiation-induced liver disease, characterized by venous occlusion. In this study, we investigated whether portal venous perfusion measured prior to the end of radiation therapy (RT) together with dose could predict liver venous perfusion dysfunction after treatment. Ten patients with unresectable intrahepatic cancer participated in an IRB-approved computer tomography (CT) perfusion study. Hepatic arterial and portal vein perfusion distributions were estimated by using dynamic contrast enhanced CT and the single compartmental model. Scans were obtained at four time points: prior to treatment, after 15 and 30 fractions of 1.5 Gy treatments, and one month following the completion of RT. Multivariant linear regression was used to determine covariances among the first three time point measurements plus dose for prediction of the post RT measurement. The reduction in the regional venous perfusion one month following RT was predicted by the local accumulated dose and the change in the regional venous perfusion after {approx}30 fractions (F=90.6,p<0.000 01). Each Gy produced an approximately 1.2% of reduction in the venous perfusion. This local dose and venous perfusion model has the potential to predict individual sensitivity to radiation. This is the first step toward developing a method to deliver higher and potentially more curative radiation doses to the patients who can safely receive these higher doses.

  14. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance

    NASA Astrophysics Data System (ADS)

    Qiu, Jimmy; Hope, Andrew J.; Cho, B. C. John; Sharpe, Michael B.; Dickie, Colleen I.; DaCosta, Ralph S.; Jaffray, David A.; Weersink, Robert A.

    2012-10-01

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ˜2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  15. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect

    Napier, Bruce A.

    2012-03-26

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  16. Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials.

    PubMed

    Napier, Bruce

    2012-03-01

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant. PMID:22395282

  17. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  18. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. PMID:26046521

  19. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    PubMed

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described. PMID:23204558

  20. Alternative Physical Quality Parameters Influences Effectiveness of Lower Doses Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Yousif, Abubaker Ali; Bahari, Ismail Bin; Yasir, Muhamad Samudi

    2011-03-01

    It has been proved in many studied that the absorbed dose is not good physical quality parameter to quantify the radiation effects at lower doses. However relative biological effect (RBE) is still used as a major parameter of radiation effectiveness. Whereas linear energy transfer (LET) is inadequate physical parameter, therefore the weaknesses in using RBE-LET system for radiation protection have been investigated. Secondary data of V79 has reanalyzed to help complement the inadequacy current method in assessing cell inactivation at lower doses. Results of analysis show that the effectiveness of densely ionizing radiation is better quantified using mean free path (λ).

  1. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars.

    PubMed

    Kircos, L T; Eakle, W S; Smith, R A

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography. PMID:3458783

  2. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars

    SciTech Connect

    Kircos, L.T.; Eakle, W.S.; Smith, R.A.

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography.

  3. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  4. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  5. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    PubMed Central

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  6. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation.

    PubMed

    Gridley, D S; Mao, X W; Cao, J D; Bayeta, E J M; Pecaut, M J

    2013-10-01

    This study evaluated liver from C57BL/6 mice irradiated with low-dose/low-dose-rate (LDR) γ-rays (0.01 Gy, 0.03 cGy/h), with and without subsequent exposure to acute 2 Gy gamma or proton radiation. Analyses were performed on day 56 post-exposure. Expression patterns of apoptosis-related genes were strikingly different among irradiated groups compared with 0 Gy (p < 0.05). Two genes were affected in the Gamma group, whereas 10 were modified in the LDR + Gamma group. In Proton and LDR + Proton groups, there were six and 12 affected genes, respectively. Expression of genes in the Gamma (Traf3) and Proton (Bak1, Birc2, Birc3, Mcl1) groups was no longer different from 0 Gy control group when mice were pre-exposed to LDR γ-rays. When each combined regimen was compared with the corresponding group that received acute radiation alone, two genes in the LDR + Gamma group and 17 genes in the LDR + Proton group were modified; greatest effect was on Birc2 and Nol3 (> 5-fold up-regulated by LDR + Protons). Oxygen radical production in livers from the LDR + Proton group was higher in LDR, Gamma, and LDR + Gamma groups (p < 0.05 vs. 0 Gy), but there were no differences in phagocytosis of E. coli. Sections stained with hematoxylin and eosin (H&E) suggested more inflammation, with and without necrosis, in some irradiated groups. The data demonstrate that response to acute radiation is dependent on radiation quality and regimen and that some LDR γ-ray-induced modifications in liver response were still evident nearly 2 months after exposure. PMID:23869974

  7. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  8. Evaluation of radiation dose delivered by cone beam CT and tomosynthesis employed for setup of external breast irradiation

    SciTech Connect

    Winey, Brian; Zygmanski, Piotr; Lyatskaya, Yulia

    2009-01-15

    A systematic set of measurements is reported for evaluation of doses to critical organs resulting from cone-beam CT (CB-CT) and cone-beam tomosynthesis (CB-TS) as applied to breast setup for external beam irradiation. The specific focus of this study was on evaluation of doses from these modalities in a setting of volumetric breast imaging for target localization in radiotherapy treatments with the goal of minimizing radiation to healthy organs. Ion chamber measurements were performed in an anthropomorphic female thorax phantom at the center of each breast and lung and on the phantom surface at one anterior and two lateral locations (seven points total). The measurements were performed for three different isocenters located at the center of the phantom and at offset locations of the right and left breast. The dependence of the dose on angle selection for the CB-TS arc was also studied. For the most typical situation of centrally located CB-CT isocenter the measured doses ranged between 3 and 7 cGy, in good agreement with previous reports. Dose measurements were performed for a range of start/stop angles commonly used for CB-TS and the impact of direct and scatter dose on organs at risk was analyzed. All measured CB-TS doses were considerably lower than CB-CT doses, with greater decrease in dose for the organs outside of the beam (up to 98% decrease in dose). Remarkably, offsetting the isocenter towards the ipsilateral breast resulted on average to additional 46% dose reduction to organs at risk. The lowest doses to the contralateral breast and lung were less than 0.1 cGy when they were measured for the offset isocenter. The biggest reduction in dose was obtained by using CB-TS beams that completely avoid the critical organ. For points inside the CB-TS beam, the dose was reduced in a linear relation with distance from the center of the imaging arc. The data indicate that it is possible to reduce substantially radiation doses to the contralateral organs by proper

  9. Diurnal Variations of Energetic Particle Radiation Dose Measured by the Mars Science Laboratory Radiation Assessment Detector

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot; Zeitlin, Cary; Ehresmann, Bent; Köhler, Jan; Guo, Jingnan; Kahanpää, Henrik; Hassler, Don; -Gomez, Javier E.; Wimmer-Schweingruber, Robert; Brinza, David; Böttcher, Stephan; Böhm, Eckhard; Burmeister, Sonka; Martin, Cesar; Müller-Mellin, Robert; Appel, Jan; Posner, Arik; Reitz, Gunter; Kharytonov, Aliksandr; Cucinotta, Francis

    2013-04-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) rover Curiosity has collected data on the interplanetary radiation environment during cruise from Earth to Mars and at the surface of Mars since its landing in August 2012. RAD's particle detection capabilities are achieved with a solid-state detector (SSD) stack (A, B, C), a CsI(Tl) scintillator (D), and a plastic scintillator (E) for neutron detection. The D and E detectors are surrounded by an anticoincidence shield (F), also made of plastic scintillator. All scintillators are optically coupled to silicon diodes which convert scintillation light to electrons. RAD is capable of measuring both Galactic Cosmic Rays (GCRs) thought to be produced by supernovae outside the heliosphere and Solar Energetic Particles (SEPs). GCRs are relativistic particles (100 MeV/nuc to >10 GeV/nuc) composed of roughly 89% protons, 10% alpha particles (He), and 1% heavier nuclei [1]. Because of their high energies and continuous nature, GCRs are the dominant source of background radiation at the Martian surface, and are responsible for the production of secondary particles (notably neutrons) via complex interactions in the atmosphere and regolith. SEPs are produced by coronal mass ejections. These intermittent storms are most likely to occur near solar maximum and typical fluxes are dominated by protons with energies lower than 100 MeV/nuc. Unlike the GCR flux, the SEP flux can vary by five or more orders of magnitude over timescales of a day. Even under a constant flux of energetic particle radiation at the top of the atmosphere, the radiation dose at the surface should vary as a function of surface elevation [2]. This variation is directly related to the change in the shielding provided by the total atmospheric mass column, which is to a very good approximation directly related to surface pressure. Thus, the flux of primary energetic particles should increase with altitude, all other things being equal

  10. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Xin, Lu Zhao; Carenza, Mario; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78°C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizing mixture.

  11. MECHANISMS OF ENHANCED CELL KILLING AT LOW DOSES: IMPLICATIONS FOR RADIATION RISK

    EPA Science Inventory

    We have determined previously that radiation sensitivity can be dose-dependent so that small acute exposures (and possibly exposures at very low dose rates) are more lethal per unit dose than larger exposures above a threshold (typically 5-40 cGy) where radioresistance increases....

  12. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  13. Effect of incremental doses of radiation on viability of the microbial population on synthetic operating room gowns

    SciTech Connect

    Whitby, J.L.; Storey, D.G.

    1982-03-01

    A total of 700 25-cm/sup 2/ samples of surgical gown material were exposed to doses of cobalt-60 radiation of 0.0 to 0.6 Mrad in 0.1-Mrad increments. Pour plates were made, and the microbial colonies that arose were enumerated, isolated, and identified as to species. The death rate of the microbial population was calculated, and the mean D/sub 10/ value of 0.269 Mrad was obtained. Analysis showed that the initial population on unirradiated material had been underestimated; when the counts obtained by homogenization of unirradiated material were substituted, a corrected mean D/sub 10/ value of 0.249 Mrad was obtained. The isolates obtained were identified, and 70.7% were found to be Bacillus spp. with 12 different spcies identified, 16.2% were Micrococcus spp. with 6 different species identified, and 8.2% were fungi with 10 different species identified. Calculations were made for appropriate doses of radiation to sterilize gowns with this contaminating microbial population. These calculations gave an estimated dose of radiation of 1.98 to 1.81 Mrad to reduce the observed population to 0.001, a standad where 1 gown in 1,000 might contain a living organism. Comparison of the radiation resistance of this popultion with that of others reported in the literature showed good agreement.

  14. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    SciTech Connect

    Ebert, Martin A.; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah L.; Kennedy, Angel; Joseph, David J.; Denham, James W.

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  15. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  16. Radiation Doses of Various CT Protocols: a Multicenter Longitudinal Observation Study

    PubMed Central

    2016-01-01

    Emerging concerns regarding the hazard from medical radiation including CT examinations has been suggested. The purpose of this study was to observe the longitudinal changes of CT radiation doses of various CT protocols and to estimate the long-term efforts of supervising radiologists to reduce medical radiation. Radiation dose data from 11 representative CT protocols were collected from 12 hospitals. Attending radiologists had collected CT radiation dose data in two time points, 2007 and 2010. They collected the volume CT dose index (CTDIvol) of each phase, number of phases, dose length product (DLP) of each phase, and types of scanned CT machines. From the collected data, total DLP and effective dose (ED) were calculated. CTDIvol, total DLP, and ED of 2007 and 2010 were compared according to CT protocols, CT machine type, and hospital. During the three years, CTDIvol had significantly decreased, except for dynamic CT of the liver. Total DLP and ED were significantly decreased in all 11 protocols. The decrement was more evident in newer CT scanners. However, there was substantial variability of changes of ED during the three years according to hospitals. Although there was variability according to protocols, machines, and hospital, CT radiation doses were decreased during the 3 years. This study showed the effects of decreased CT radiation dose by efforts of radiologists and medical society. PMID:26908984

  17. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  18. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively). PMID:26863777

  19. Development of an alanine dosimetry system for radiation dose measurements in the radiotherapy range

    NASA Astrophysics Data System (ADS)

    Gago-Arias, A.; González-Castaño, D. M.; Gómez, F.; Peteiro, E.; Lodeiro, C.; Pardo-Montero, J.

    2015-08-01

    Alanine/ESR systems provide an interesting alternative to standard dosimetry systems like solid state or gas ionization chambers for dosimetry in radiotherapy. This is primarily due to the negligible energy dependence, high stability, and the possibility of using small pellets that are especially suitable for the dosimetry of small fields. In order to obtain acceptable dose uncertainties in the radiotherapy dose range, the setup, operational parameters and quantification methods need to be carefully investigated and optimized. In this work we present the development of an alanine/ESR dosimetry system, traced to the secondary standard laboratory of absorbed dose to water at the Radiation Physics Laboratory of the Universidade de Santiago de Compostela (Spain). We focus on the setup, the optimization of the operational parameters of the ESR spectrometer, the quantification of the readout signal and the construction of a calibration curve. The evaluation of the uncertainty budget is also a key component of an alanine/ESR system for radiotherapy dosimetry, and is presented in detail.After the optimization of the procedures, we have achieved a relative uncertainty of 1.7% (k=2) for an absorbed dose of 10 Gy, decreasing to 0.9% for 50 Gy.

  20. Geometric dose prediction model for hemithoracic intensity-modulated radiation therapy in mesothelioma patients with two intact lungs.

    PubMed

    Kuo, LiCheng; Yorke, Ellen D; Dumane, Vishruta A; Foster, Amanda; Zhang, Zhigang; Mechalakos, James G; Wu, Abraham J; Rosenzweig, Kenneth E; Rimner, Andreas

    2016-01-01

    The presence of two intact lungs makes it challenging to reach a tumoricidal dose with hemithoracic pleural intensity-modulated radiation therapy (IMRT) in patients with malignant pleural mesothelioma (MPM) who underwent pleurectomy/decor-tications or have unresectable disease. We developed an anatomy-based model to predict attainable prescription dose before starting optimization. Fifty-six clinically delivered IMRT plans were analyzed regarding correlation of prescription dose and individual and total lung volumes, planning target volume (PTV), ipsilateral normal lung volume and ratios: contralateral/ipsilateral lung (CIVR); contralateral lung/PTV (CPVR); ipsilateral lung /PTV (IPVR); ipsilateral normal lung /total lung (INTLVR); ipsilateral normal lung/PTV (INLPVR). Spearman's rank correlation and Fisher's exact test were used. Correlation between mean ipsilateral lung dose (MILD) and these volume ratios and between prescription dose and single lung mean doses were studied. The prediction models were validated in 23 subsequent MPM patients. CIVR showed the strongest correlation with dose (R = 0.603, p < 0.001) and accurately predicted prescription dose in the validation cases. INLPVR and MILD as well as MILD and prescription dose were significantly correlated (R = -0.784, p < 0.001 and R = 0.554, p < 0.001, respectively) in the training and validation cases. Parameters obtainable directly from planning scan anatomy predict achievable prescription doses for hemithoracic IMRT treatment of MPM patients with two intact lungs. PMID:27167294

  1. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  2. Comparison of radiation dose to operator between transradial and transfemoral coronary angiography with optimised radiation protection: a phantom study.

    PubMed

    Liu, Huiliang; Jin, Zhigeng; Jing, Limin

    2014-03-01

    A growing concern in applying radial access in cardiac catheterisation is the increased operator radiation exposure. This study used an anthropomorphic phantom to simulate transradial and transfemoral coronary angiography with optimised radiation protection conditions. Operator radiation exposure was measured with thermoluminescent dosemeters at predefined locations. Compared with the femoral route, the radial route was associated with a dose decrease of 15 % at the operator's chest level with optimised radiation shielding. However, radiation exposure to the operator's hand remained significantly higher when applying radial access even with collective protective equipment used (by a factor of 2). Furthermore, the efficiency of operator radiation protection was found to be dependent on the tube incidence. Awareness should be raised about the significant increase of radiation exposure to operators' hands in transradial coronary angiography. Protection to reduce the dose level to the hands is necessary and should be further improved. PMID:24162374

  3. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation.

    PubMed

    Harder, Samantha J; Matthews, Quinn; Isabelle, Martin; Brolo, Alexandre G; Lum, Julian J; Jirasek, Andrew

    2015-01-01

    The drive toward personalized radiation therapy (RT) has created significant interest in determining patient-specific tumor and normal tissue responses to radiation. Raman spectroscopy (RS) is a non-invasive and label-free technique that can detect radiation response through assessment of radiation-induced biochemical changes in tumor cells. In the current study, single-cell RS identified specific radiation-induced responses in four human epithelial tumor cell lines: lung (H460), breast (MCF-7, MDA-MB-231), and prostate (LNCaP), following exposure to clinical doses of radiation (2-10 Gy). At low radiation doses (2 Gy), H460 and MCF-7 cell lines showed an increase in glycogen-related spectral features, and the LNCaP cell line showed a membrane phospholipid-related radiation response. In these cell lines, only spectral information from populations receiving 10 Gy or less was required to identify radiation-related features using principal component analysis (PCA). In contrast, the MDA-MB-231 cell line showed a significant increase in protein relative to nucleic acid and lipid spectral features at doses of 6 Gy or higher, and high-dose information (30, 50 Gy) was required for PCA to identify this biological response. The biochemical nature of the radiation-related changes occurring in cells exposed to clinical doses was found to segregate by status of p53 and radiation sensitivity. Furthermore, the utility of RS to identify a biological response in human tumor cells exposed to therapeutic doses of radiation was found to be governed by the extent of the biochemical changes induced by a radiation response and is therefore cell line specific. The results of this study demonstrate the utility and effectiveness of single-cell RS to identify and measure biological responses in tumor cells exposed to standard radiotherapy doses. PMID:25588147

  4. Radiation fields and dose assessments in Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation. PMID:21498858

  5. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  6. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    SciTech Connect

    Nimwegen, Frederika A. van; Cutter, David J.; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D.G.; Janus, Cécile P.M.; Darby, Sarah C.; Leeuwen, Flora E. van; Aleman, Berthe M.P.

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  7. Improved Performance of Energy Window Ratio Criteria Obtained Using Multiple Windows at Radiation Portal Monitoring Sites

    SciTech Connect

    Weier, Dennis R.; Lopresti, Charles A.; Ely, James H.; Bates, Derrick J.; Kouzes, Richard T.

    2006-06-07

    Radiation portal monitors are being used to detect radioactive target materials in vehicles transporting cargo. As vehicles pass through the portal monitors, they generate count profiles over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory, in support of U.S. Customs and Border Protection (CBP) and U.S. Domestic Nuclear Detection Office (DNDO) under the U.S. Department of Homeland Security (DHS), has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations. Energy window criteria have been shown to increase sensitivity to certain types of target radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. First generation equipment had only two-window capability, and while energy windowing for such systems was shown to be useful for detecting certain types of sources, it was subsequently found that improved performance could be obtained with more windows. Second generation equipment instead has more windows and can thus support additional energy window criteria which can be shown to be sensitive to a wider set of target sources. Detection likelihoods are generated for various sources and energy window criteria, as well as for gross count decision criteria, based on computer simulated injections of sources into archived vehicle profiles. (PIET-43741-TM-534)

  8. An optimized colony forming assay for low-dose-radiation cell survival measurement

    SciTech Connect

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  9. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-05-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.

  10. Total-dose radiation effects data for semiconductor devices (1989 supplement)

    NASA Technical Reports Server (NTRS)

    Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.

    1990-01-01

    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.

  11. 78 FR 78964 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute... employees at any Department of Energy (DOE) facility who were exposed to radiation but for whom it is not feasible to estimate their radiation dose, and on whether there is reasonable likelihood that...

  12. 78 FR 53147 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute... employees at any Department of Energy facility who were exposed to radiation but for whom it is not feasible to estimate their radiation dose, and on whether there is reasonable likelihood that such...

  13. 78 FR 14303 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute... employees at any Department of Energy facility who were exposed to radiation but for whom it is not feasible to estimate their radiation dose, and on whether there is reasonable likelihood that such...

  14. High and low dose radiation effects on mammary adenocarcinoma cells – an epigenetic connection

    PubMed Central

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis. PMID:27226982

  15. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  16. Estimation of the Dose of Radiation Received by Patient and Physician During a Videofluoroscopic Swallowing Study.

    PubMed

    Morishima, Yoshiaki; Chida, Koichi; Watanabe, Hiroshi

    2016-08-01

    Videofluoroscopic swallowing study (VFSS) is considered the standard diagnostic imaging technique to investigate swallowing disorders and dysphagia. Few studies have been reported concerning the dose of radiation a patient receives and the scattering radiation dose received by a physician during VFSS. In this study, we investigated the dose of radiation (entrance skin dose, ESD) estimated to be received by a patient during VFSS using a human phantom (via a skin-dose monitor sensor placed on the neck of the human phantom). We also investigated the effective dose (ED) and dose equivalent (DE) received by a physician (wearing two personal dosimeters) during an actual patient procedure. One dosimeter (whole body) was worn under a lead apron at the chest, and the other (specially placed to measure doses received by the lens of the eye) outside the lead apron on the neck collar to monitor radiation doses in parts of the body not protected by the lead apron. The ESD for the patient was 7.8 mGy in 5 min. We estimated the average patient dose at 12.79 mGy per VFSS procedure. The physician ED and DE during VFSS were 0.9 mSv/year and 2.3 mSv/year, respectively. The dose of radiation received by the physician in this study was lower than regulatory dose limits. However, in accordance with the principle that radiation exposure should be as low as reasonably achievable, every effort should be made (e.g., wearing lead glasses) to reduce exposure doses. PMID:27318941

  17. Shared decision-making: is it time to obtain informed consent before radiologic examinations utilizing ionizing radiation? Legal and ethical implications.

    PubMed

    Berlin, Leonard

    2014-03-01

    Concerns about the possibility of developing cancer due to diagnostic imaging examinations utilizing ionizing radiation exposure are increasing. Research studies of survivors of atomic bomb explosions, nuclear reactor accidents, and other unanticipated exposures to similar radiation have led to varying conclusions regarding the stochastic effects of radiation exposure. That high doses of ionizing radiation cause cancer in humans is generally accepted, but the question of whether diagnostic levels of radiation cause cancer continues to be hotly debated. It cannot be denied that overexposure to ionizing radiation beyond a certain threshold, which has not been exactly determined, does generate cancer. This causes a dilemma: what should patients be informed about the possibility that a CT or similar examination might cause cancer later in life? At present, there is no consensus in the radiology community as to whether informed consent must be obtained from a patient before the patient undergoes a CT or similar examination. The author analyzes whether there is a legal duty mandating radiologists to obtain such informed consent but also, irrespective of the law, whether there an ethical duty that compels radiologists to inform patients of potential adverse effects of ionizing radiation. Over the past decade, there has been a noticeable shift from a benevolent, paternalistic approach to medical care to an autonomy-based, shared-decision-making approach, whereby patient and physician work as partners in determining what is medically best for the patient. Radiologists should discuss the benefits and hazards of imaging with their patients. PMID:24589398

  18. Resource Letter EIRLD-2: Effects of Ionizing Radiation at Low Doses

    NASA Astrophysics Data System (ADS)

    Wilson, Richard

    2012-04-01

    This Resource Letter provides a guide to the literature on the effects of ionizing radiation on people at low doses. Journal articles, books and web pages are provided for the following: data at high dose levels, effects of moderate to high doses (leukemia, solid cancer, lung cancer, childhood cancer, and non-cancer outcomes), effects of dose rate, relationship to background, supra linearity and hormesis, and policy implications.

  19. Resource Letter EIRLD-1: Effects of ionizing radiation at low doses

    NASA Astrophysics Data System (ADS)

    Wilson, Richard

    1999-05-01

    This Resource Letter provides a guide to the literature on the effects of ionizing radiation on people at low doses. Journal articles, books, and web pages are provided for the following: data at high dose levels, effects of moderate to high doses (leukemia, solid cancer, lung cancer, childhood cancer and noncancer outcomes), effects of dose rate, relationship to background, supra linearity and homesis, and policy implications.

  20. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  1. Evidence for Radiation Hormesis After In Vitro Exposure of Human Lymphocytes to Low Doses of Ionizing Radiation§

    PubMed Central

    Rithidech, Kanokporn Noy; Scott, Bobby R.

    2008-01-01

    Previous research has demonstrated that adding a very small gamma-ray dose to a small alpha radiation dose can completely suppress lung cancer induction by alpha radiation (a gamma-ray hormetic effect). Here we investigated the possibility of gamma-ray hormesis during low-dose neutron irradiation, since a small contribution to the total radiation dose from neutrons involves gamma rays. Using binucleated cells with micronuclei (micronucleated cells) among in vitro monoenergetic-neutron-irradiated human lymphocytes as a measure of residual damage, we investigated the influence of the small gamma-ray contribution to the dose on suppressing residual damage. We used residual damage data from previous experiments that involved neutrons with five different energies (0.22-, 0.44-, 1.5-, 5.9-, and 13.7-million electron volts [MeV]). Corresponding gamma-ray contributions to the dose were approximately 1%, 1%, 2%, 6%, and 6%, respectively. Total absorbed radiation doses were 0, 10, 50, and 100 mGy for each neutron source. We demonstrate for the first time a protective effect (reduced residual damage) of the small gamma-ray contribution to the neutron dose. Using similar data for exposure to gamma rays only, we also demonstrate a protective effect of 10 mGy (but not 50 or 100 mGy) related to reducing the frequency of micronucleated cells to below the spontaneous level. PMID:18846261

  2. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible?

    SciTech Connect

    Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.; Ryan, Nicole; Raben, David

    2015-10-01

    Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.

  3. Chromosome aberrations in relation to radiation dose following partial-body exposures in three populations

    SciTech Connect

    Kleinerman, R.A.; Littlefield, L.G.; Tarone, R.E.; Sayer, A.M.; Hildreth, N.G.; Pottern, L.M.; Machado, S.G.; Boice, J.D. Jr. )

    1990-07-01

    Structural chromosome aberrations were evaluated in peripheral blood samples obtained from three populations exposed to partial-body irradiation. These included 143 persons who received radiotherapy for enlarged thymus glands during infancy and 50 sibling controls; 79 persons irradiated for enlarged tonsils and 81 persons surgically treated for the same condition during childhood; and 77 women frequently exposed as young adults to fluoroscopic chest X rays during lung collapse treatment for tuberculosis (TB) and 66 women of similar ages treated for TB with other therapies. Radiation exposures occurred 30 and more years before blood was drawn. Doses to active bone marrow averaged over the entire body were 21, 6, and 14 cGy for the exposed thymic, tonsil, and TB subjects, respectively. Two hundred metaphases were scored for each subject, and the frequencies of symmetrical (stable) and asymmetrical (unstable) chromosome aberrations were quantified in 97,200 metaphases. Cells with stable aberrations were detected with greater frequency in the irradiated subjects compared with nonirradiated subjects in all three populations, and an overall test for an association between stable aberrations and partial-body ionizing radiation was highly significant (P less than 0.001). We found no evidence that radiation-induced aberrations varied by age at exposure. These data show that exposure of children or young adults to partial-body fractionated radiation can result in detectable increased frequencies of stable chromosome aberrations in circulating lymphocytes 30 years later, and that these aberrations appear to be informative as biological markers of population exposure.

  4. Hit-size effectiveness theory applied to high doses of low LET radiation for pink mutations in Tradescantia

    SciTech Connect

    Varma, M.N.; Bond, V.P.; Matthews, G.

    1985-01-01

    A hit-size effectiveness function which represents the probability of inducing a pink mutation in Tradescantia as a function of lineal energy density has been obtained (1) using observed pink mutation data for seven different radiation qualities and their respective single event microdosimetric spectra. In obtaining this function only the linear portions of dose-response curves were used. A significant improvement of the concepts embodied in the proposed hit-size effectiveness theory would be the demonstration of its applicability at high doses (where multiple hits are produced) and high dose rates (at which no significant biological repair takes place). In this article details are given on preliminary calculations of the pink mutation frequency in Tradescantia at 1, 5, 10, 20, and 60 rads for 250 kVp x rays, using the multi-hit spectra and the hit-size effectiveness function obtained on the basis of single hit microdosimetric spectra as outline in (1). A comparison of the calculated and observed pink mutation frequencies indicate excellent agreement and suggests the possibility of obtaining the hit-size effectiveness function from high dose biological-effect data obtained using low-LET radiations. 6 refs., 3 figs., 3 tabs.

  5. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.

    PubMed

    Brenner, David J; Doll, Richard; Goodhead, Dudley T; Hall, Eric J; Land, Charles E; Little, John B; Lubin, Jay H; Preston, Dale L; Preston, R Julian; Puskin, Jerome S; Ron, Elaine; Sachs, Rainer K; Samet, Jonathan M; Setlow, Richard B; Zaider, Marco

    2003-11-25

    High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others. PMID:14610281

  6. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    SciTech Connect

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  7. Patient radiation doses during coronary interventions in four Croatian hospitals: 4-y comparison.

    PubMed

    Krpan, Tomislav; Faj, Dario; Brnić, Zoran; Baraban, Vedrana; Mišir, Mihael

    2015-07-01

    The number of coronary interventions increased substantially in the recent years. Although of great benefit to patients, these procedures can subject patients to considerable radiation doses. There is a legal framework for patient dose measurements in Croatia during radiological procedures, but in practice, it applies only occasionally. A quality control manual, established at the University Hospital Osijek, was accepted by other major cardiology centres in Croatia; besides checking the technical characteristics of the device, it provides constant measurement and analysis of patient doses in interventional cardiology. It also includes patient examination for radiation skin injuries in case of dose of >2 Gy. The aim of the study was to determine and compare patient radiation doses during cardiological interventions measured within 4 y in four major cardiology centres with the values proposed by the European Commission and other professional bodies. The local reference dose levels were also set. PMID:25848111

  8. Radiation doses of patients and urologists during percutaneous nephrolithotomy.

    PubMed

    Safak, M; Olgar, T; Bor, D; Berkmen, G; Gogus, C

    2009-09-01

    Renal stones can be treated either by extracorporeal shock wave lithotripsy (ESWL) or percutaneous nephrolithotomy (PCNL). Increasing use of fluoroscopic exposure for access and to detect stone location during PCNL make the measurement of patient and staff doses important. The main objective of this work was to assess patient and urologist doses for the PCNL examination. We used the tube output technique for determination of patient doses (n = 20) and lithium fluoride thermoluminescent dosimeter (TLD) chips for urologist dose measurements. The TLD technique was also used for some patient dose measurements (n = 7) for comparison with the tube output technique. Mean entrance skin doses of 191 and 117 mGy were measured by the tube output technique for anterior-posterior (AP) and right anterior oblique (RAO) 30 degrees /left anterior oblique (LAO) 30 degrees projections, respectively. The mean urologist doses for eye, finger and collar were measured as 26, 33.5 and 48 microGy per procedure, respectively. The mean effective dose per procedure for the urologist was 12.7 microSv. None of the individual skin dose results approach deterministic levels. PMID:19690355

  9. Risk equivalent of exposure versus dose of radiation

    SciTech Connect

    Bond, V.P.

    1986-01-01

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems. (TEM)

  10. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study.

    PubMed

    Zhang, Sean X; Gao, Junfang; Buchholz, Thomas A; Wang, Zhonglu; Salehpour, Mohammad R; Drezek, Rebekah A; Yu, Tse-Kuan

    2009-08-01

    Gold nanoparticles can enhance the biological effective dose of radiation delivered to tumors, but few data exist to quantify this effect. The purpose of this project was to build a Monte Carlo simulation model to study the degree of dose enhancement achievable with gold nanoparticles. A Monte Carlo simulation model was first built using Geant4 code. An Ir-192 brachytherapy source in a water phantom was simulated and the calculation model was first validated against previously published data. We then introduced up to 10(13) gold nanospheres per cm(3) into the water phantom and examined their dose enhancement effect. We compared this enhancement against a gold-water mixture model that has been previously used to attempt to quantify nanoparticle dose enhancement. In our benchmark test, dose-rate constant, radial dose function, and two-dimensional anisotropy function calculated with our model were within 2% of those reported previously. Using our simulation model we found that the radiation dose was enhanced up to 60% with 10(13) gold nanospheres per cm(3) (9.6% by weight) in a water phantom selectively around the nanospheres. The comparison study indicated that our model more accurately calculated the dose enhancement effect and that previous methodologies overestimated the dose enhancement up to 16%. Monte Carlo calculations demonstrate that biologically-relevant radiation dose enhancement can be achieved with the use of gold nanospheres. Selective tumor labeling with gold nanospheres may be a strategy for clinically enhancing radiation effects. PMID:19381816

  11. Evaluation of radiation dose to anthropomorphic paediatric models from positron-emitting labelled tracers

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2014-03-01

    PET uses specific molecules labelled with positron-emitting radionuclides to provide valuable biochemical and physiological information. However, the administration of radiotracers to patients exposes them to low-dose ionizing radiation, which is a concern in the paediatric population since children are at a higher cancer risk from radiation exposure than adults. Therefore, radiation dosimety calculations for commonly used positron-emitting radiotracers in the paediatric population are highly desired. We evaluate the absorbed dose and effective dose for 19 positron-emitting labelled radiotracers in anthropomorphic paediatric models including the newborn, 1-, 5-, 10- and 15-year-old male and female. This is achieved using pre-calculated S-values of positron-emitting radionuclides of UF-NCI paediatric phantoms and published biokinetic data for various radiotracers. The influence of the type of anthropomorphic model, tissue weight factors and direct human- versus mouse-derived biokinetic data on the effective dose for paediatric phantoms was also evaluated. In the case of 18F-FDG, dosimetry calculations of reference paediatric patients from various dose regimens were also calculated. Among the considered radiotracers, 18F-FBPA and 15O-water resulted in the highest and lowest effective dose in the paediatric phantoms, respectively. The ICRP 103 updated tissue-weighting factors decrease the effective dose in most cases. Substantial differences of radiation dose were observed between direct human- versus mouse-derived biokinetic data. Moreover, the effect of using voxel- versus MIRD-type models on the calculation of the effective dose was also studied. The generated database of absorbed organ dose and effective dose for various positron-emitting labelled radiotracers using new generation computational models and the new ICRP tissue-weighting factors can be used for the assessment of radiation risks to paediatric patients in clinical practice. This work also contributes

  12. Management of pediatric radiation dose using GE fluoroscopic equipment.

    PubMed

    Belanger, Barry; Boudry, John

    2006-09-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  13. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    SciTech Connect

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

  14. [Evaluation of absorbed dose from kilovoltage cone-beam computed tomography by radiotherapy planning system: influence on the radiation therapy for prostate cancer].

    PubMed

    Kawamura, Tetsuro; Murakami, Naoki; Okamura, Yoshiaki; Nishimura, Hideki; Miyawaki, Daisuke; Kimura, Kunihiko; Hase, Mamoru; Sasaki, Ryohei

    2013-05-01

    Image-guided radiation therapy (IGRT) is increasingly being used in modern radiation therapy, and it is now possible to verify a patient's position using kilo-voltage cone-beam computed tomography (kV-CBCT). However, if kV-CBCT is used frequently, the dose absorbed by the body cannot be disregarded. A number of studies have been made on the absorbed dose of kV-CBCT, in which absorbed dose measurements were made using a computed tomography dose index (CTDI) or a thermoluminescent dosimeter (TLD). Other methods include comparison of the absorbed dose between a kV-CBCT and other modalities. These techniques are now in common use. However, dose distribution within the patient varies with the patient's size, posture and the part of the body to which radiation therapy is applied. The chief purpose of this study was to evaluate the dose distribution of kV-CBCT by employing a radiotherapy planning system (RTPS); a secondary aim was to examine the influence of a dose of kV-CBCT radiation when used to treat prostate cancer. The beam data of an on-board imager (OBI) was registered in the RTPS, after which modeling was performed. The radiation dosimetry was arranged by the dosimeter in an elliptical phantom. Rotational radiation treatment was used to obtain the dose distribution of the kV-CBCT within the patient, and the patient dose was evaluated based on the simulation of the dose distribution. In radiation therapy for prostate cancer, if kV-CBCT was applied daily, the dose increment within the planning target volume (PTV) and the organ in question was about 1 Gy. PMID:23964528

  15. Impact of the Fukushima nuclear accident on background radiation doses measured by control dosimeters in Japan.

    PubMed

    Romanyukha, Alexander; King, David L; Kennemur, Lisa K

    2012-05-01

    After the 9.0 magnitude earthquake and subsequent massive tsunami on 11 March 2011 in Japan, several reactors at the Fukushima Daiichi Nuclear Power Plant suffered severe damage. There was immediate participation of U.S. Navy vessels and other United States Department of Defense (DoD) teams that were already in the area at the time of the disaster or arrived shortly thereafter. The correct determination of occupational dose equivalent requires estimation of the background dose component measured by control dosimeters, which is subsequently subtracted from the total dose equivalent measured by personal dosimeters. The purpose of the control dosimeters is to determine the amount of radiation dose equivalent that has accumulated on the dosimeter from background or other non-occupational sources while they are in transit or being stored. Given the release of radioactive material and potential exposure to radiation from the Fukushima Daiichi Nuclear Power Plant and the process by which the U.S. Navy calculates occupational exposure to ionizing radiation, analysis of pre- and post-event control dosimeters is warranted. Several hundred historical dose records from the Naval Dosimetry Center (NDC) database were analyzed and compared with the post-accident dose equivalent data of control dosimeters. As result, it was shown that the dose contribution of the radiation and released radiological materials from the Fukushima nuclear accident to background radiation doses is less than 0.375 μSv d for shallow and deep photon dose equivalent. There is no measurable effect on neutron background exposure. The latter has at least two important conclusions. First, the NDC can use doses measured by control dosimeters at issuing sites in Japan for determination of personnel dose equivalents; second, the dose data from control dosimeters prior to and after the Fukushima accident may be used to assist in dose reconstruction of non-radiological (non-badged) personnel at these locations

  16. Patient Radiation Dose in Diagnostic and Interventional Procedures for Intracranial Aneurysms: Experience at a Single Center

    PubMed Central

    Chun, Chang Woo; Lee, Cheol Hyoun; Ihn, Yon Kwon; Shin, Yong-Sam

    2014-01-01

    Objective To assess patient radiation doses during cerebral angiography and embolization of intracranial aneurysms in a large sample size from a single center. Materials and Methods We studied a sample of 439 diagnostic and 149 therapeutic procedures for intracranial aneurysms in 480 patients (331 females, 149 males; median age, 57 years; range, 21-88 years), which were performed in 2012 with a biplane unit. Parameters including fluoroscopic time, dose-area product (DAP), and total angiographic image frames were obtained and analyzed. Results Mean fluoroscopic time, total mean DAP, and total image frames were 12.6 minutes, 136.6 ± 44.8 Gy-cm2, and 251 ± 49 frames for diagnostic procedures, 52.9 minutes, 226.0 ± 129.2 Gy-cm2, and 241 frames for therapeutic procedures, and 52.2 minutes, 334.5 ± 184.6 Gy-cm2, and 408 frames for when both procedures were performed during the same session. The third quartiles for diagnostic reference levels (DRLs) were 14.0, 61.1, and 66.1 minutes for fluoroscopy time, 154.2, 272.8, and 393.8 Gy-cm2 for DAP, and 272, 276, and 535 for numbers of image frames in diagnostic, therapeutic, and both procedures in the same session, respectively. The proportions of fluoroscopy in DAP for the procedures were 11.4%, 50.5%, and 36.1%, respectively, for the three groups. The mean DAP for each 3-dimensional rotational angiographic acquisition was 19.2 ± 3.2 Gy-cm2. On average, rotational angiography was used 1.4 ± 0.6 times/session (range, 1-4; n = 580). Conclusion Radiation dose in our study as measured by DAP, fluoroscopy time and image frames did not differ significantly from other reported DRL studies for cerebral angiography, and DAP was lower with fewer angiographic image frames for embolization. A national registry of radiation-dose data is a necessary next step to refine the dose reference level. PMID:25469098

  17. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Safety and Health (NIOSH) under HHS regulations 42 CFR part 82. This information will include annual dose... transfer (LET), protons, neutrons, alpha, low-energy x-ray) and by dose rate (acute or chronic) for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Data Required To...

  18. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Safety and Health (NIOSH) under HHS regulations 42 CFR part 82. This information will include annual dose... transfer (LET), protons, neutrons, alpha, low-energy x-ray) and by dose rate (acute or chronic) for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Data Required To...

  19. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Safety and Health (NIOSH) under HHS regulations 42 CFR part 82. This information will include annual dose... transfer (LET), protons, neutrons, alpha, low-energy x-ray) and by dose rate (acute or chronic) for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Data Required To...

  20. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Safety and Health (NIOSH) under HHS regulations 42 CFR part 82. This information will include annual dose... transfer (LET), protons, neutrons, alpha, low-energy x-ray) and by dose rate (acute or chronic) for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Data Required To...

  1. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Safety and Health (NIOSH) under HHS regulations 42 CFR part 82. This information will include annual dose... transfer (LET), protons, neutrons, alpha, low-energy x-ray) and by dose rate (acute or chronic) for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Data Required To...

  2. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  3. Reduction of occupational radiation dose in staff at the cardiac catheterisation laboratory by protective material placed on the patient.

    PubMed

    Ordiales, J M; Nogales, J M; Sánchez-Casanueva, R; Vano, E; Fernández, J M; Álvarez, F J; Ramos, J; Martínez, G; López-Mínguez, J R

    2015-07-01

    Reducing occupational radiation dose in cardiac catheterisation laboratories is one of the objectives of the radiation protection system because the procedures performed involve high levels of radiation compared with others in health care. Recommendations on protection methods used are referred to different structural types and personal protection tools. In this work, the effectiveness of a shielding drape above the patient in different geometric shapes for a standard procedure in interventional cardiology was evaluated. Values of personal dose equivalent Hp(10) obtained simultaneously with three active electronic semiconductor dosemeters located at the usual position of staff and at the C-arm have been used to show the usefulness of the shielding drape. PMID:25848096

  4. Mechanisms of action for an anti-radiation vaccine in reducing the biological impact of high dose and dose-rate, low-linear energy transfer radiation exposure.

    PubMed

    Maliev, V; Popov, D; Casey, R C; Jones, J A

    2007-01-01

    The development of an anti-radiation vaccine could be very useful in reducing acute radiation syndromes. Existing principles for the treatment of acute radiation syndromes are based on the amelioration of progressive pathophysiological changes, using the concept of replacement therapy. Active immunization by small quantities of the essential radiation-induced systemic toxins of what we call the Specific Radiation Determinant (SRD) before irradiation increased duration of life among animals that were irradiated by lethal or sub-lethal doses of gamma-radiation. The SRD toxins possess antigenic properties that are specific to different forms of acute radiation sickness. Intramuscular injection of larger quantities of the SRD toxins induce signs and symptoms in irradiated naive animals similar to those observed in acute radiation syndromes, including death. Providing passive immunization, at variable periods of time following radiation, with preparations of immune-globulins directed at the SRD molecules, can confer some protection in the development of clinical sequelae in irradiated animals. Improved survival rates and times were observed in animals that received lower, sublethal doses of the same SRDs prior to irradiation. Therefore, active immunization can be induced by SRD molecules as a prophylaxis. The protective effects of the immunization begin to manifest 15-35 days after an injection of a biologically active SDR preparation. The SRD molecules are a group of radiation toxins with antigenic properties that correlate specifically with different forms of radiation disease. The SRD molecules are composed of glycoproteins and lipoproteins that accumulate in the lymphatic system of mammals in the first hours after irradiation, and preliminary analysis suggests that they may originate from cellular membrane components. The molecular weight of the SRD group ranges from 200-250 kDa. The SRD molecules were isolated from the lymphatic systems of laboratory animals that

  5. Radiation dose reduction in cone-beam computed tomography of extremities: evaluation of a novel radiation shield.

    PubMed

    Matikka, H; Virén, T

    2014-06-01

    Cone-beam computed tomography (CBCT) is a relatively new technique for imaging of extremities. It provides high-resolution images with lower effective dose compared to conventional CT. However following the ALARA principle, CBCT-imaging protocols and practices must also be optimised to minimize the dose absorbed by the patient as well as personnel. The aim of this study is to evaluate the effect of a novel scanner-attached radiation shield on the dose absorbed by the patient and on the amount of scattered radiation around the scanner.An orthopedic CBCT scanner was applied for comparing the doses with and without the shield during an elbow and a knee scan. A homogeneous 8 cm PMMA phantom with either an anthropomorphic Alderson phantom or a 16 cm PMMA phantom simulated the tissues of a patient. Measurements were made for several scan parameters using calibrated dose meters.The results show that the radiation shield significantly decreased the doses measured on the patient during CBCT scans of the elbow and the knee. The usage of the shield decreased the absorbed doses by up to 95.5%. Also scattered radiation around the gantry decreased notably. The use of the shield is highly recommended, especially for pediatric patients. PMID:24894593

  6. Effects of low doses and low dose rates of external ionizing radiation: Cancer mortality among nuclear industry workers in three countries

    SciTech Connect

    Cardis, E.; Kato, I.; Lave, C.; Gilbert, E.S.; Fix., J.; Carpenter, L.; Howe, D.; Armstrong, B.K.; Bereal, V.

    1995-05-01

    Studies of the mortality among nuclear industry workforces have been carried out, and nationally combined analyses performed, in the U.S., the UK and Canada. This paper presents the results of internationally combined analyses of mortality data on 95,673 workers (85.4% men) monitored for external exposure to ionizing radiation and employed for 6 months or longer in the nuclear industry of one of the three countries. These analyses were undertaken to obtain a more precise direct assessment of the carcinogenic effects of protracted low-level exposure to external, predominantly {gamma}, radiation. The combination of the data from the various studies increases the power to study associations between radiation dose and mortality from all causes or from all cancers. Mortality from leukemia, excluding chronic lymphocytic leukemia (CLL)-the cause of death most strongly and consistently related to radiation dose in studies of atomic bomb survivors and other populations exposed at high dose rates-was significantly associated with cumulative external radiation dose (one-sided P value = 0.046; 119 deaths). Among the 31 other specific types of cancer studied, a significant association was observed only for multiple myeloma (one-sided P value = 0.037; 44 deaths), and this was attributable primarily to the associations reported previously between this disease and radiation dose in the Hanford (U.S.) and Sellafield (UK) cohorts. The excess relative risk (ERR) estimates for all cancers excluding leukemia, and leukemia excluding CLL, the two main groupings of causes of death for which risk estimates have been derived from studies of atomic bomb survivors, were -0.07 per Sv [90% confidence interval (CI):-0.4,0.3] and 2.18 per Sv (90% CI:0.1,5.7), respectively. These values correspond to a relative risk of 0.99 for all cancers excluding leukemia and 1.22 for leukemia excluding CLL for a cumulative protracted dose of 100 mSv compared to O mSv. 53 refs., 1 fig., 8 tabs.

  7. REDUCING STRAY RADIATION DOSE FOR A PEDIATRIC PATIENT RECEIVING PROTON CRANIOSPINAL IRRADIATION.

    PubMed

    Taddei, Phillip J; Mirkovic, Dragan; Fontenot, Jonas D; Giebeler, Annelise; Zheng, Yuanshui; Titt, Uwe; Woo, Shiao; Newhauser, Wayne D

    2009-10-01

    The aim of this study was to quantify stray radiation dose from neutrons emanating from a proton treatment unit and to evaluate methods of reducing this dose for a pediatric patient undergoing craniospinal irradiation. The organ equivalent doses and effective dose from stray radiation were estimated for a 30.6-Gy treatment using Monte Carlo simulations of a passive scattering treatment unit and a patient-specific voxelized anatomy. The treatment plan was based on computed tomography images of a 10-yr-old male patient. The contribution to stray radiation was evaluated for the standard nozzle and for the same nozzle but with modest modifications to suppress stray radiation. The modifications included enhancing the local shielding between the patient and the primary external neutron source and increasing the distance between them. The effective dose from stray radiation emanating from the standard nozzle was 322 mSv; enhancements to the nozzle reduced the effective dose by as much as 43%. These results add to the body of evidence that modest enhancements to the treatment unit can reduce substantially the effective dose from stray radiation. PMID:20865143

  8. Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector.

    PubMed

    Varghese, Anna; Livingstone, Roshan S; Varghese, Lijo; Kumar, Parveen; Srinath, Sirish Chandra; George, Oommen K; George, Paul V

    2016-01-01

    Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed information of the coronary arteries with some steep projections involving high radiation dose to patients. This study intends to evaluate radiation doses and estimated risk from angiographic projections during CA procedure performed using novel flat detector (FD) system with improved image processing and noise reduction techniques. Real-time monitoring of radiation doses using kerma-area product (KAP) meter was performed for 140 patients using Philips Clarity FD system. The CA procedure involved seven standard projections, of which five were extensively selected by interventionalists. Mean fluoroscopic time (FT), KAP, and reference air kerma (Ka,r) for CA procedure were 3.24 min (0.5-10.51), 13.99Gycm2 (4.02-37.6), and 231.43 mGy (73.8-622.15), respectively. Effective dose calculated using Monte Carlo-based PCXMC software was found to be 4.9mSv. Left anterior oblique (LAO) 45° projection contributed the highest radiation dose (28%) of the overall KAP. Radiation-induced risk was found to be higher in females compared to males with increased risk of lung cancer. An increase of 10%-15% in radiation dose was observed when one or more additional projections were adopted along with the seven standard projections. A 14% reduction of radiation dose was achieved from novel FD system when low-dose protocol during fluoroscopy and medium-dose protocol during cine acquisitions were adopted, compared to medium-dose protocol. PMID:27167263

  9. Inhalation and external doses in coastal villages of high background radiation area in Kollam, India.

    PubMed

    Ben Byju, S; Koya, P K M; Sahoo, B K; Jojo, P J; Chougaonkar, M P; Mayya, Y S

    2012-11-01

    The observational evidence for radiation-induced health effects in humans comes largely from the exposures to high doses received over short periods of time. The rate of induction of any health risk at low doses and dose rates is estimated by extrapolation from observations at high doses. Effects of low dose/low dose rate could be done by the study of populations that have been exposed to slightly above-average natural radiation doses. Southwest coastal line of the Kerala state in India is one such region known to have elevated levels of background radioactivity mainly due to the mineral-rich sand available with high abundance of thorium. In the present work, a study was conducted to investigate the inhalation and external radiation doses to human beings in the high background radiation area along the southwest coast of Kerala. Five hundred dwellings were selected for the study. All the selected houses were at least 10 y old with similar construction. Long-term integrated indoor measurements of the external gamma dose using thermoluminescent dosemeters (TLDs) and the inhalation dose with the SSNTD-based twin-cup dosemeters were carried out in the dwellings simultaneously. Ambient gamma dose measurements were also made with a GM tube-based survey meter while deploying and retrieving the dosemeters. The data show a high degree of heterogeneity. The inhalation dose was found to vary from 0.1 to 3.53 mSv y(-1) and the external dose rates had a range of 383-11419 µGy y(-1). The external doses measured by the survey meter and TLDs showed an excellent correlation. PMID:22961502

  10. Radiation dose is associated with prognosis of small cell lung cancer with superior vena cava syndrome

    PubMed Central

    Wang, Zhen-Bo; Ning, Fang-Ling; Wang, Xiao-Le; Cheng, Yu-Feng; Dong, Xin-Jun; Liu, Chang-Min; Chen, Shao-Shui

    2015-01-01

    Approximately 10% of small cell lung cancer (SCLC) cases develop superior vena cava syndrome (SVCS). Many SCLC patients with SVCS have relatively limited disease, requiring curative rather than palliative treatment. Besides chemotherapy, radiotherapy is important for treating SCLC with SVCS. We retrospectively evaluated the influence of radiotherapy dose on the prognosis of 57 patients with SCLC with SVCS treated with concurrent chemoradiotherapy. The mean biological equivalent radiation dose was 71.5 Gy. We administered etoposide/cisplatin as sequential and concurrent chemotherapy. All patients received at least one cycle of concurrent chemotherapy. All patients had partial or complete response; SVCS-associated symptoms were reduced in 87.7% (50/57) of patients within 3-10 days after treatment. Radiation dose did not affect 2-year local control (74.2% vs. 80.8%). Patients who received high-dose radiation had a lower 2-year overall survival rate than those who received low-dose radiation (11.6 vs. 33%; P = 0.024). The high dose group median survival was 15.0 months (95% confidence interval [CI]: 11.2-19.0) compared with 18.7 months (95% CI: 13.9-23.6) in the low dose group. Grade 3/4 neutropenia occurred in 22/26 high dose patients (84.6%) and 21/31 low dose patients (67.7%). In the high dose group, 30.8% of patients had grade 3/4 esophagitis compared with 19.4% of low dose patients. Only 29.0% of low dose patients received < 4 cycles of chemotherapy in the first 12 weeks after treatment began compared with 46.2% of high dose patients. Concurrent chemoradiotherapy is a tolerable modality for treating stage IIIA/IIIB SCLC with SVCS. Moderate-dose radiotherapy is preferable. PMID:26064339

  11. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  12. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  13. Determination of environmental radiation flux and organ doses using in-situ gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Abdulrahman S.

    Contamination of buildings represent a unique problem during Decontamination and Decommissioning (D&D) of nuclear facilities. It is necessary to determine the long-lived radionuclides and their respective specific activities in building materials before the right D&D decision can be made. At the same time, radiation risk of workers or potential occupants in the facility must be assessed as part of the D&D process. The goal of this project was to develop a methodology of obtaining gamma radiation flux and organ doses from in-situ gamma spectroscopy. Algorithms were developed to simulate the response functions of the HPGe detector and to convert the spectra into photon fluences. A Monte Carlo code, MCNP4C, was used to simulate HPGe detector response and to develop the conversion algorithm. The simulated spectra obtained for an HPGe detector were converted to flux using the algorithm for various different geometries. The response functions of the detector are presented in this document for the gamma energies from 60 keV to 2.2 MeV. Published fluence-to-dose conversion coefficients were used to calculate organ doses and effective dose equivalent. We then tested the theory at a 100-MeV linear electron accelerator at Rensselaer Polytechnic Institute (RPI). Samples of the activated concrete walls and floor in the target room of the Linac facility as well as some steel samples were taken to quantify the specific activities of the structures. The results show that the most important long-lived radionuclides include 22 Na, 46Sc, 54 Mn, 57Co, 60 Co, 65Zn, 152 Eu and 154Eu, depending on the location and composition of the material. The specific activities at the Linac facility range from 1.15E-01 to 765.31 muCi/Kg. The annual effective dose equivalent was assessed to be 2.44 mSv y-1 (0.244 rem y-1 ), which is about 5% of the Annual EDE limits to workers.

  14. Do changes in biomarkers from space radiation reflect dose or risk?

    NASA Astrophysics Data System (ADS)

    Brooks, A.

    The space environment is made up of many different kinds of radiation so that the proper use of biomarkers is essential to estimate radiation risk. This presentation will evaluate differences between biomarkers of dose and risk and demonstrate why they should not be confused following radiation exposures in deep space. Dose is a physical quantity, while risk is a biological quantity. Many examples exist w ereh dose or changes in biomarkers of dose are inappropriately used as predictors of risk. Without information on the biology of the system, the biomarkers of dose provide little help in predicting risk in tissues or radiation exposure types where no excess risk can be demonstrated. Many of these biomarkers of dose only reflect changes in radiation dose or exposure. However, these markers are often incorrectly used to predict risk. For example, exposure of the trachea or of the deep lung to high-LET alpha particles results in similar changes in the biomarker chromosome damage in these two tissues. Such an observation would predict that the risk for cancer induction would be similar in these two tissues. It has been noted , however, that there has never been a tracheal tumor observed in rats that inhaled radon, but with the same exposure, large numbers of tumors were produced in the deep lung. The biology of the different tissues is the major determinant of the risk rather than the radiation dose. Recognition of this fact has resulted in the generation of tissue weighting factors for use in radiation protection. When tissue weighting factors are used the values derived are still called "dose". It is important to recognize that tissue specific observations have been corrected to reflect risk, and therefore should no longer be viewed as dose. The relative biological effectiveness (RBE) is also used to estimate radiation risk. The use of biomarkers to derive RBE is a difficult since it involves the use of a biological response to a standard low-LET reference radiation

  15. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets impor