Science.gov

Sample records for radiation dosimeter concept

  1. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  2. A Radiation Dosimeter Concept for the Lunar Surface Environment

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Watts, John; Kuznetsov, Eugeny N.; Parnell, Thomas A.; Pendleton, Geoff N.

    2007-01-01

    A novel silicon detector configuration for radiation dose measurements in an environment where solar energetic particles are of most concern is described. The dosimeter would also measure the dose from galactic cosmic rays. In the lunar environment a large range in particle flux and ionization density must be measured and converted to dose equivalent. This could be accomplished with a thick (e.g. 2mm) silicon detector segmented into cubic volume elements "voxels" followed by a second, thin monolithic silicon detector. The electronics needed to implement this detector concept include analog signal processors (ASIC) and a field programmable gate array (FPGA) for data accumulation and conversion to linear energy transfer (LET) spectra and to dose-equivalent (Sievert). Currently available commercial ASIC's and FPGA's are suitable for implementing the analog and digital systems.

  3. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  4. Microwave dosimeter - A concept

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Bird, F.

    1971-01-01

    Dosimeter determines time-integrated radiation dosage to which an individual is exposed. Integration is measured chemically in proportion to radiation detected. Wearer receives an exposure measurement representing an average of the dose over the entire body.

  5. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  6. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  7. Micromechanical radiation dosimeter

    SciTech Connect

    Thundat, T.; Sharp, S.L.; Fisher, W.G.; Warmack, R.J.; Wachter, E.A. )

    1995-03-20

    We demonstrate the use of microcantilevers coated with ultraviolet cross-linking polymers as optical radiation dosimeters. Upon exposure to radiation, a treated cantilever bends due to stress and its resonance frequency increases due to stiffening. These phenomena can be used to develop sensitive radiation dosimeters which respond to radiation affecting the mechanical properties of the selected coating.

  8. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  9. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  10. Radiation monitoring equipment dosimeter experiment

    NASA Astrophysics Data System (ADS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  11. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  12. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    DOEpatents

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  13. Development of an improved fingertip dosimeter for beta radiation

    SciTech Connect

    Couch, N.W.

    1986-01-01

    The dosimeter employs a multi-element, multi-filter concept by stacking four 0.13 mm LiF-teflon TLD's to form the beta detector element. The entire dosimeter is approximately 1 mm thick, flexible, and rugged enough for field use without interference with the manual dexterity of the user. The fingertip dosimeter provides data for determining the beta energy of each exposure. The beta energy can be used to determine the TLD response factor for correcting the TLD output to beta dose in mrad. The data can be used to reconstruct the beta depth dose curve due to single beta or mixed beta exposures. For mixed beta/gamma exposures, the addition of a gamma measuring element would provide data for separating the gamma component for the beta component. The depth dose curve can be used to calculate the beta doses in tissue at 7 mg/cm/sup 2/, for legal reporting purposes, or at any other desired depth within the range of the beta radiation. The fingertip dosimeter was used to monitor extremity beta doses for research lab personnel. The results showed higher fingertip beta doses than had previously been expected. The average monthly beta dose was shown to be approximately 0.5 rad/mo.

  14. Radiation Measured during ISS-Expedition 13 with Different Dosimeters

    NASA Technical Reports Server (NTRS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Lee, K.; George, T.

    2008-01-01

    Radiation in low Earth orbit (LEO) is mainly composed of Galactic Cosmic Rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors in various configurations; the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation exposure for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the operational principles for the dosimeters, describes the method to combine the results measured by TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured. Keywords: space radiation; cosmic rays; active and passive dosimeters; LET spectra

  15. A miniature MOSFET radiation dosimeter probe.

    PubMed

    Gladstone, D J; Lu, X Q; Humm, J L; Bowman, H F; Chin, L M

    1994-11-01

    Prototype miniature dosimeter probes have been designed, built, and characterized employing a small, radiation sensitive metal oxide semiconductor field effect transistor (MOSFET) chip to measure, in vivo, the total accumulated dose and dose rate as a function of time after internal administration of long range beta particle radiolabeled antibodies and in external high energy photon and electron beams. The MOSFET detector is mounted on a long narrow alumina substrate to facilitate electrical connection. The MOSFET, alumina substrate, and lead wires are inserted into a 16 gauge flexineedle, which, in turn, may be inserted into tissue. The radiation dosimeter probe has overall dimensions of 1.6 mm diam and 3.5 cm length. The MOSFET probe signals are read, stored, and analyzed using an automated data collection and analysis system. Initially, we have characterized the probe's response to long range beta particle emission from 90Y sources in solution and to high energy photon and electron beams from linear accelerators. Since the prototype has a finite substrate thickness, the angular dependence has been studied using beta particle emission from a 90Sr source. Temperature dependence and signal drift have been characterized and may be corrected for. Measurements made in spherical volumes containing 90Y with diameters less than the maximum electron range, to simulate anticipated geometries in animal models, agree well with Berger point kernel and EGS4 Monte Carlo calculations. The results from the prototype probes lead to design requirements for detection of shorter range beta particles used in radioimmunotherapy and lower photon energies used in brachytherapy. PMID:7891632

  16. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  17. Preliminary evaluation of implantable MOSFET radiation dosimeters.

    PubMed

    Beddar, A S; Salehpour, M; Briere, T M; Hamidian, H; Gillin, M T

    2005-01-01

    In this paper, we report on measurements performed on a new prototype implantable radiation detector that uses metal-oxide semiconductor field effect transistors (MOSFETs) designed for in vivo dosimetry. The dosimeters, which are encapsulated in hermetically sealed glass cylinders, are used in an unbiased mode during irradiation, unlike other MOSFET detectors previously used in radiotherapy applications. They are powered by radio frequency telemetry for dose measurements, obviating the need for a power supply within each capsule. We have studied the dosimetric characteristics of these MOSFET detectors in vitro under irradiation from a 60Co source. The detectors show a dose reproducibility generally within 5% or better, with the main sources of error being temperature fluctuations occurring between the pre- and post-irradiation measurements as well as detector orientation. A better temperature-controlled environment leads to a reproducibility within 2%. Our preliminary in vitro results show clearly that true non-invasive in vivo dosimetry measurements are feasible and can be performed remotely using telemetric technology. PMID:15715428

  18. Radiation measured with passive dosimeters in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Semones, E.; Gaza, R.; Weyland, M.

    begin center Radiation Measured with Passive Dosimeters in Low Earth Orbit end center begin center D Zhou 1 2 E Semones 1 R Gaza 1 2 M Weyland 1 end center begin center 1 Johnson Space Center - NASA 2101 Nasa Road 1 Houston 77058 USA end center begin center 2 Universities Space Research Association 2101 Nasa Parkway Houston 77058 USA end center begin center Abstract end center The linear energy transfer LET of particles in low Earth orbit LEO is extended from sim 0 1 to sim 1000 keV mu m water The best passive dosimeters for the radiation measurement are thermoluminescence dosimeters TLDs or optically stimulated luminescence dosimeters OSLDs for low LET and CR-39 plastic nuclear track detectors PNTDs for high LET Radiation quantities fluence absorbed dose dose equivalent and quality factor were measured with the passive dosimeters composed of TLDs OSLDs and CR-39 PNTDs for STS-114 mission This paper introduces the operation principles for TLDs OSLDs and CR-39 PNTDs describes the method to combine the results measured by TLDs OSLDs and CR-39 PNTDs and presents the results measured by different dosimeters for different LET band and that combined for all LET

  19. Radiation measured for MATROSHKA-1 experiment with passive dosimeters

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Semones, E.; O'Sullivan, D.; Zapp, N.; Weyland, M.; Reitz, G.; Berger, T.; Benton, E. R.

    2010-01-01

    The radiation field in low Earth orbit (LEO) and deep space is complicated. The radiation impact on astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. Radiation risk is a key concern for human space flight and can be estimated with radiation LET spectra measured for the different organs of an astronaut phantom. At present the best passive personal dosimeters used for astronauts are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. CR-39 PNTDs, TLDs and OSLDs were used for the MATROSHKA-1 experiment to measure radiation experienced by astronauts outside the international space station (ISS). LET spectra and radiation field quantities (differential and integral fluence, absorbed dose and dose equivalent) were measured for the different organs and skin locations of the MAROSHKA phantom using CR-39 PNTDs and TLDs. The spectra and results can be used to determine the radiation quantities for astronaut's extra vehicular activity (EVA) and for the further in-depth study of the radiation risk for astronauts. Sensitivity fading of CR-39 detectors was observed for the MATROSHKA experiment and a practical method was developed to correct it. This paper presents the radiation LET spectra measured with CR-39 PNTDs and the total radiation quantities combined from results measured with CR-39 PNTDs and TLDs.

  20. Commissioning and implementation of an implantable dosimeter for radiation therapy.

    PubMed

    Buzurovic, Ivan; Showalter, Timothy N; Studenski, Matthew T; Den, Robert B; Dicker, Adam P; Cao, Junsheng; Xiao, Ying; Yu, Yan; Harrison, Amy

    2013-01-01

    In this article we describe commissioning and implementation procedures for the Dose Verification System (DVS) with permanently implanted in vivo wireless, telemetric radiation dosimeters for absolute dose measurements. The dosimeter uses a semiconductor device called a metal-oxide semiconductor field-effect transistor (MOSFET) to measure radiation dose. A MOSFET is a transistor that is generally used for amplifying or switching electronic signals. The implantable dosimeter was implemented with the goal of verifying the dose delivered to radiation therapy patients. For the purpose of acceptance testing, commissioning, and clinical implementation and to evaluate characteristics of the dosimeter, the following tests were performed: 1) temperature dependence, 2) reproducibility,3) field size dependence, 4) postirradiation signal drift, 5) dependence on average dose rate, 6) linearity test, 7) angular dependence (different gantry angle position), 8) angular dependence (different DVS angle position), 9) dose rate dependence,10) irradiation depth dependence, 11) effect of cone-beam exposure to the dosimeter, and 12) multiple reading effect. The dosimeter is not currently calibrated for use in the kV range; nonetheless, the effect of the cone-beam procedure on the MOSFET dosimeter was investigated. Phantom studies were performed in both air and water using an Elekta Synergy S Beam-Modulator linear accelerator. Commissioning and clinical implementation for prostate cancer patients receiving external-beam radiation therapy were performed in compliance with the general recommendations given for in vivo dosimetry devices. The reproducibility test in water at human body temperature (37°C) showed a 1.4% absolute difference, with a standard deviation of 5.72 cGy (i.e., SD = 2.9%). The constancy test shows that the average readings at room temperature were 3% lower compared to the readings at human body temperature, with a SD = 2%. Measurements were not dependent upon field size

  1. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  2. NOTE: Visible absorption spectra of radiation exposed SIRAD dosimeters

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-12-01

    SIRAD badge dosimeters are a new type of personal dosimeter designed to measure radiation exposure up to 200 R and give a visual qualitative measurement of exposure. This is performed using the active dosimeter window, which contains a radiochromic material amalgamated in the badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Measurements have been performed to analyse the absorption spectra of the active window, and results show that the window automatically turns a blue colour upon irradiation and produces two peaks in the absorption spectra located at 617 nm and 567 nm. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 at 50 R exposure and 0.31 at 200 R exposure when irradiated with a 6 MV x-ray energy beam. When compared to the calibration colour strips at 6 MV x-ray energy the film's OD response matches relatively well within 3.5%. An approximate 8% reduction in measured OD to exposure was seen for 250 kVp x-rays compared to 6 MV x-rays. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0 to 200 R.

  3. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  4. A genipin-gelatin gel dosimeter for radiation processing

    NASA Astrophysics Data System (ADS)

    Davies, J. B.; Bosi, S. G.; Baldock, C.

    2012-08-01

    Genipin, a fruit extract from Gardenia jasminoides Ellis, forms cross-links in solutions of gelatin, to form a blue hydrogel that bleaches quantitatively upon irradiation and the colour change can be measured with a spectrophotometer. With the addition of sulphuric acid this dosimeter is sufficiently sensitive for quality assurance of radiotherapy level dosimetry. Without sulphuric acid the gel has a reduced sensitivity and responds linearly with dose between 100 and 1000 Gy, making it potentially useful as a dosimeter for radiation processing applications such as the phytosanitary irradiation treatment of food. We investigated the dose response characteristics of this new formulation and found that the darker gels are more sensitive to dose and have a reduced uncertainty.

  5. Response of ionization chamber based pocket dosimeter to beta radiation.

    PubMed

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)<1 MeV and same was verified using (147)Pm, (85)Kr and (204)Tl beta sources. However, for beta particles having energy >1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles. PMID:23978508

  6. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  7. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  8. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  9. Impact of the Fukushima nuclear accident on background radiation doses measured by control dosimeters in Japan.

    PubMed

    Romanyukha, Alexander; King, David L; Kennemur, Lisa K

    2012-05-01

    After the 9.0 magnitude earthquake and subsequent massive tsunami on 11 March 2011 in Japan, several reactors at the Fukushima Daiichi Nuclear Power Plant suffered severe damage. There was immediate participation of U.S. Navy vessels and other United States Department of Defense (DoD) teams that were already in the area at the time of the disaster or arrived shortly thereafter. The correct determination of occupational dose equivalent requires estimation of the background dose component measured by control dosimeters, which is subsequently subtracted from the total dose equivalent measured by personal dosimeters. The purpose of the control dosimeters is to determine the amount of radiation dose equivalent that has accumulated on the dosimeter from background or other non-occupational sources while they are in transit or being stored. Given the release of radioactive material and potential exposure to radiation from the Fukushima Daiichi Nuclear Power Plant and the process by which the U.S. Navy calculates occupational exposure to ionizing radiation, analysis of pre- and post-event control dosimeters is warranted. Several hundred historical dose records from the Naval Dosimetry Center (NDC) database were analyzed and compared with the post-accident dose equivalent data of control dosimeters. As result, it was shown that the dose contribution of the radiation and released radiological materials from the Fukushima nuclear accident to background radiation doses is less than 0.375 μSv d for shallow and deep photon dose equivalent. There is no measurable effect on neutron background exposure. The latter has at least two important conclusions. First, the NDC can use doses measured by control dosimeters at issuing sites in Japan for determination of personnel dose equivalents; second, the dose data from control dosimeters prior to and after the Fukushima accident may be used to assist in dose reconstruction of non-radiological (non-badged) personnel at these locations

  10. Novel composition of polymer gel dosimeters based on N-(Hydroxymethyl)acrylamide for radiation therapy

    NASA Astrophysics Data System (ADS)

    Basfar, Ahmed A.; Moftah, Belal; Rabaeh, Khalid A.; Almousa, Akram A.

    2015-07-01

    A new composition of polymer gel dosimeters is developed based on radiation induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 20 Gy. The polymerization occurs and increases with increasing absorbed dose. The dose response of polymer gel dosimeters was studied using nuclear magnetic imaging (NMR) for relaxation rate (R2) of water proton. Dose rate, energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

  11. Spectroscopic separation of Čerenkov radiation in high-resolution radiation fiber dosimeters

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Zhang, Rongxiao; Kanick, Stephen Chad; Pogue, Brian W.; Finlay, Jarod C.

    2015-09-01

    We have investigated Čerenkov radiation generated in phosphor-based optical fiber dosimeters irradiated with clinical electron beams. We fabricated two high-spatial resolution fiber-optic probes, with 200 and 400 μm core diameters, composed of terbium-based phosphor tips. A generalizable spectroscopic method was used to separate Čerenkov radiation from the transmitted signal by the fiber based on the assumption that the recorded signal is a linear superposition of two basis spectra: characteristic luminescence of the phosphor medium and Čerenkov radiation. We performed Monte Carlo simulations of the Čerenkov radiation generated in the fiber and found a strong dependence of the recorded Čerenkov radiation on the numerical aperture of the fiber at shallow phantom depths; however, beyond the depth of maximum dose that dependency is minimal. The simulation results agree with the experimental results for Čerenkov radiation generated in fibers. The spectroscopic technique used in this work can be used for development of high-spatial resolution fiber micro dosimeters and for optical characterization of various scintillating materials, such as phosphor nanoparticles, in ionizing radiation fields of high energy.

  12. Spectroscopic separation of Čerenkov radiation in high-resolution radiation fiber dosimeters.

    PubMed

    Darafsheh, Arash; Zhang, Rongxiao; Kanick, Stephen Chad; Pogue, Brian W; Finlay, Jarod C

    2015-09-01

    We have investigated Čerenkov radiation generated in phosphor-based optical fiber dosimeters irradiated with clinical electron beams. We fabricated two high-spatial resolution fiber-optic probes, with 200 and 400 μm core diameters, composed of terbium-based phosphor tips. A generalizable spectroscopic method was used to separate Čerenkov radiation from the transmitted signal by the fiber based on the assumption that the recorded signal is a linear superposition of two basis spectra: characteristic luminescence of the phosphor medium and Čerenkov radiation. We performed Monte Carlo simulations of the Čerenkov radiation generated in the fiber and found a strong dependence of the recorded Čerenkov radiation on the numerical aperture of the fiber at shallow phantom depths; however, beyond the depth of maximum dose that dependency is minimal. The simulation results agree with the experimental results for Čerenkov radiation generated in fibers. The spectroscopic technique used in this work can be used for development of high-spatial resolution fiber micro dosimeters and for optical characterization of various scintillating materials, such as phosphor nanoparticles, in ionizing radiation fields of high energy. PMID:26334972

  13. Implanted Dosimeters Identify Radiation Overdoses During IMRT for Prostate Cancer

    SciTech Connect

    Den, Robert B.; Nowak, Kamila; Buzurovic, Ivan; Cao Junsheng; Harrison, Amy S.; Lawrence, Yaacov R.; Dicker, Adam P.; Showalter, Timothy N.

    2012-07-01

    Purpose: Image-guided dose-escalated radiotherapy is the standard of care for the treatment of prostate cancer. Although many published methods are available that account for prostate motion during delivery, evidence demonstrating that the planned dose is actually delivered on a daily basis is lacking. We report our initial clinical experience using implantable dosimeters to quantify and adjust the dose received during intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 20 patients undergoing IMRT with cone-beam computed tomography (CT) image guidance for prostate cancer had the dose verification system with radiopaque metal-oxide-semiconductor field effect transistor dosimeters implanted before treatment planning. All patients underwent planning with CT simulation in the supine position with custom immobilization, and the implanted dosimeters were located in the IMRT plans. The predicted dose for each dosimeter was defined and compared with the wireless readings before and after each treatment session. Investigations by physicians and medical physicists were initiated for two or more discrepancies >6% for any five consecutive fractions or for any discrepancy {>=}10%. Results: Using implanted in vivo dosimeters, dose measurements consistently >6% greater than the predicted values were observed during treatment for 3 of 20 prostate cancer patients who received IMRT with daily image guidance. A review of the daily cone-beam CT images revealed acceptable alignment of the prostate target volumes and implanted dosimeters but identified significant anatomic changes within the treated region. Repeat CT simulation and RT planning was performed, with resolution of the dose discrepancies in all 3 cases with the adoption of a new IMRT plan. Conclusions: Our report illustrates the potential effect of implanted in vivo dosimetry for prostate IMRT and emphasizes the importance of careful planning and delivery with attention to systematic shifts or anatomic

  14. Considerations concerning the use of counting active personal dosimeters in pulsed fields of ionising radiation.

    PubMed

    Ambrosi, Peter; Borowski, Markus; Iwatschenko, Michael

    2010-06-01

    Active personal electronic dosimeters (APDs) exhibit limitations in pulsed radiation fields, which cannot be overcome without the use of new detection technology. As an interim solution, this paper proposes a method by which some conventional dosimeters can be operated in a way such that, based on the basic knowledge about the pulsed radiation field, any dosimetric failure of the dosimeter is signalised by the instrument itself. This method is not applicable to all combinations of APD and pulsed radiation field. The necessary requirements for the APD and for the parameters of the pulsed radiation field are given in the paper. Up to now, all such requirements for APDs have not been tested or verified in a type test. The suitability of the method is verified for the use of one APD used in two clinical pulsed fields. PMID:20083488

  15. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  16. Wristwatch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1986-08-26

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation. 10 figs.

  17. Wristwatch dosimeter

    DOEpatents

    Wolf, Michael A.; Waechter, David A.; Umbarger, C. John

    1986-01-01

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  18. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  19. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.

    PubMed

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-03-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  20. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  1. [Measurement of scatter radiation on MDCT equipment using an OSL dosimeter].

    PubMed

    Tomita, Hironobu; Morozumi, Kunihiko

    2004-11-01

    The recent introduction of multi-detector row computed tomography (MDCT) has made it possible to scan the entire abdomen within approximately 10 sec in procedures such as interventional radiology computed tomography (IVRCT), which are associated with operator exposure. Therefore, anxious patients and patients who are not able to remain still can be examined with an assistant. In the present study, radiation exposure to the assistant was estimated, and the distribution of scattered radiation near the gantry was measured using an optically stimulated luminescence (OSL) dosimeter. Simultaneous measurements were obtained using a direction storage (DIS) dosimeter for reference. The maximum value of 1.47 mSv per examination was obtained at the point closest to the gantry's center (50 cm from the center at a height of 150 cm above the floor) . In addition, scattered radiation decreased as the measurement point was moved further from the gantry's center, falling below the limit of detection (0.1 mSv or less) at 200 cm and at the sides of the gantry. OSL dosimeters are also employed as personal dosimeters, permitting reliable values to be obtained easily. They were found to be an effective tool for the measurement of scattered radiation, as in the present study, helping to provide better understanding of the distribution of scattered radiation within the CT room. PMID:15568007

  2. Dual calibrated dosimeter for simultaneous measurements of erythemal and vitamin D effective solar ultraviolet radiation.

    PubMed

    Wainwright, L; Parisi, A V; Downs, N

    2016-04-01

    A miniaturized ultraviolet radiation (UV) dosimeter based on polyphenylene oxide (PPO) has been dual calibrated for both erythemal and vitamin D effective exposures (UVB 280 - 320 nm) over extended periods up to five days. Optimal human health requires a balanced amount of UVB exposure as both too much and too little have different but serious potential health consequences. Dosimetry is an established method of measuring specific UV exposures to an object or subject. PPO dosimeters have previously been used to measure the erythemally effective UV exposure. An extension of this use is to dual calibrate the miniaturized dosimeter which will also enable measurement of vitamin D effective exposures. By calibration to the erythemal and vitamin D effective action spectra, PPO dosimeters were able to record both types of biologically effective exposure as both are active within the UVB waveband. Dose response tests were conducted in each season by exposure to solar UV with the corresponding dual calibrations made for each season. The calibration provided an R(2) of 0.95-0.99 for erythemal UV and an R(2) of 0.99 for vitamin D effective UV. The successful outcome of this testing has established that PPO is suitable for use as a long term, dual calibrated dosimeter provided the film is seasonally calibrated. This enables one dosimeter to provide two sets of exposure results. The combination of dual calibration and the long term exposure potential of PPO makes the PPO dosimeter more versatile and increases the scope of UV field research on erythemal UV and vitamin D effective UV in the future. PMID:26878218

  3. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  4. Medical Radiation Dosimetry: Concepts and Needs

    SciTech Connect

    Kron, Tomas

    2011-05-05

    Radiation is used widely used in medicine for diagnostic and therapeutic applications. Both the desired effects and the potential detrimental side effects depend on the radiation dose delivered. As such it is essential to determining the radiation dose received by patients as accurately as needed to optimise the radiation procedure. Solid state dosimeters are increasingly used in medicine because of their small physical size, high sensitivity and usually low cost. Combining multiple detectors allows the detection of radiation dose distributions, an application where the distinction between radiation dosimeter and image detector starts to blur. Given the rapid development of detector technology it can be expected that the utilisation of solid-state dosimeters in medicine will continue to increase.

  5. A Novel Twin-TLD Radiation Dosimeter for Astronauts during LEO Missions

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Lambert, Jamil; Fuentes, Carolina; Sunil, C.; Tripathy, Sam; Sarkar, Pradip Kumar

    2012-07-01

    During low earth orbiting (LEO) missions space vehicles are continuously bombarded with energetic protons from the sun and in the events of solar flare (SFE), the proton flux sporadically increases by many orders of magnitudes. The solar protons interact with the containment wall of the vehicle producing high-energy neutrons with a broad energy distribution as well as gamma rays, which result in a high radiation exposure to astronauts. By implementing pairs of TLD-700 (7LiF:Ti, Mg) and TLD-500 (alpha: Al2O3-C) chips we have developed a personal dosimeter for an accurate assessment of biological dose of high-energy mixed radiation field. Dosimeters were irradiated with high-energy neutrons produced by bombarding a 25*25*35 cm3 polystyrene plate phantom with high-energy therapeutic protons at Westdeutsches Protonentherapiezentrum Essen (WPE). The radiation field was simulated using the FLUKA code and the dosimeters were calibrated in-situ with a tissue equivalent proportional counter (TEPC). The operation principle of the novel twin-TLD personal dosimeter for astronauts will be highlighted in our presentation.

  6. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  7. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  8. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    SciTech Connect

    Buckner, Mark A; Hanson, Gregory R; Bryan, William L

    2009-04-28

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  9. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  10. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr.; Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  11. A metal-oxide-semiconductor radiation dosimeter with a thick and defect-rich oxide layer

    NASA Astrophysics Data System (ADS)

    Liu, Hongrui; Yang, Yuhao; Zhang, Jinwen

    2016-04-01

    Enhancing the density of defects in the oxide layer is the main factor in improving the sensitivity of a metal-oxide-semiconductor (MOS) radiation dosimeter. This paper reports a novel MOS dosimeter with a very thick and defect-rich oxide layer fabricated by MEMS technology. The category of defects in SiO2 and their possible effect on the radiation dose sensing was analyzed. Then, we proposed combining deep-reactive-ion etching, thermal oxidation and low pressure chemical vapor deposition to realize an oxide layer containing multiple and large interfaces which can increase defects significantly. The trench-and-beam structure of silicon was considered in detail. The fabrication process was developed for obtaining a thick and compact MEMS-made SiO2. Our devices were irradiated by γ-rays of 60Co at 2 Gy per minute for 2 h and a thermally stimulated current (TSC) method was used to determine the readout of the dosimeters. Results show that there is a peak current of about 450 nA, indicating a total TSC charge of 158 μC and sensitivity of 1.1 μC mm-3·Gy, which is 40 times the sensitivity of previous MOS dosimeters.

  12. Solid State Radiation Dosimeters for Space and Medical Applications

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  13. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Anton, M.; Hackel, T.; Zink, K.; von Voigts-Rhetz, P.; Selbach, H.-J.

    2015-01-01

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  14. Three-dimensional radiation dosimetry for gamma knife using a gel dosimeter

    NASA Astrophysics Data System (ADS)

    Hussain, Kazi Muazzam

    The use of three-dimensional radiation dosimetry has been limited. With the use of water phantoms and ionization chambers, it has been possible to determine three dimensional dose distributions on a gross scale for cobalt 60 and linear accelerator sources. This method has been somewhat useful for traditional radiotherapy. There is, however, a need for more precise dosimetry, particularly with stereotactic radiosurgery. Most gamma knife facilities use either thermoluminescant dosimetry or film, neither of which provides three dimensional dose distributions. To overcome this limitation, we have developed a gel dosimetry system that relies on the production of a ferric ion-xylenol orange colored complex. This work demonstrates the use of laser light and a detector to quantify radiation-induced colorimetric changes in absorbance for the gel dosimeter. The absorbance has been reconstructed by the back projection technique to demonstrate the applicability of the gel dosimeter to gamma knife 3D-dose distributions.

  15. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  16. Determination of transmission factors for beta radiation using Al 2O 3:C commercial OSL dosimeters

    NASA Astrophysics Data System (ADS)

    Pinto, T. N. O.; Caldas, L. V. E.

    2010-07-01

    In recent years, the optically stimulated luminescence (OSL) technique has been used in personal dosimetry, and aluminum oxide (Al 2O 3:C) has become a very useful material for this technique. The objective of this work was the determination of the transmission factors for beta radiation using Al 2O 3:C commercial dosimeters and the OSL method. The obtained results were similar to the transmission factors reported in the beta source calibration certificates.

  17. Citizen's dosimeter

    SciTech Connect

    Klemic, Gladys; Bailey, Paul; Breheny, Cecilia

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  18. Multimode optical fiber study for a new radiation dosimeter development

    NASA Astrophysics Data System (ADS)

    Badita, Eugenia; Stancu, Elena; Scarlat, Florea; Vancea, Catalin; Dumitrascu, Maria; Scarisoreanu, Anca

    2013-06-01

    This paper presents the experimental results on preliminary study of the physical proprieties of the multimode optical fiber in radiation field delivered by electron linear accelerator of the National Research and Development Institute for Laser, Plasma and Radiation Physics (INFLPR). This study is based on the physical degradation effect of the optical fiber due to electron beam exposure measured through dependence of the exposure dose in electron beam and radiation induced attenuation. Optical fiber attenuations were measured before, during and after electron beam exposure. Results show a greater attenuation for multimode optical fiber of lower wavelength.

  19. A gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, S.; Park, Y. S.; Schreiner, L. J.

    2004-01-01

    In this presentation we show results of investigations on gelatin-free dosimeters containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide (named Aqueous Polyacrylamide, APA, dosimeters). The dosimeters were prepared with three different total monomer concentrations (2, 6, and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all three dosimeters, show a continuous degree of polymerization over the range of dose 0.5 - 25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of cross-linked polymer formed at each dose. This model may be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  20. Enhancement in dose sensitivity of polymer gel dosimeters composed of radiation-crosslinked gel matrix and less toxic monomers

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Taguchi, M.

    2015-01-01

    Polymer gel dosimeters based on radiation-crosslinked hydroxypropyl cellulose gel were prepared, which comprised 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol #400 dimethacrylate (9G) as less toxic monomers and tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an antioxidant. The dosimeters exposed to 60Co γ-rays became cloudy at only 1 Gy. The irradiated dosimeters were optically analyzed by using a UV- vis spectrophotometer to evaluate dose response. Absorbance of the dosimeters linearly increased in the dose range from 0 to 10 Gy, in which dose sensitivity increased with increasing 9G concentration. The dose sensitivity of the dosimeters with 2 wt% HEMA and 3 wt% 9G was also enhanced by increment in THPC.

  1. Kinetic parameters of uracil dosimeter in simulated extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Gróf, P.; Bérces, A.; Patel, M. R.; Lammer, H.; Rontó, Gy.

    Studies of the solar UV environment on Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B (280 nm - 315 nm) and the UV-C (200 nm - 280 nm) ranges. Since, short wavelength solar UV radiation in the UV-B and UV-C range penetrated through the atmosphere to the unprotected early Earth's surface, associated biological consequences may be expected. We discuss experimental data obtained as follows: Radiation sources applied were solar simulator and high power deuterium lamp, the wavelength were adjusted by interference filters (210, 230, 250 nm) and the irradiances were measured by OL754 spectroradiometer. The photo-reverse effect depends highly on the wavelength of the exposed radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerization, while the longer wavelengths prefer the production of dimerization. In case of polychromatic light, like in space or on a planetary surface which is unprotected by an ozone layer the two processes run parallel. We could demonstrate experimentally, for the case of a uracil thin-layer that the photo-reaction process of the nucleotides can be both dimerization and the reverse process: monomerization. These results are important for the study of solar UV effects on organisms in the early terrestrial environment as well as for the search for life on Mars since we can show that biological harmful effects can also be reduced by shorter wavelength UV radiation, which is of importance in reducing DNA damages provoked by wavelengths longer than about 240 nm. Our earlier results showed that dimerization of the pyrimidin base uracil can be described by a first order kinetics, and this reaction gives the possibility to determine the dose of the UV source applied. This work is a theoretical and experimental approach to the relevant parameters of the first order kinetics.

  2. Evaluation of the radiation-sensitizer/protector and/or antioxidant efficiencies using Fricke and PAG dosimeters

    NASA Astrophysics Data System (ADS)

    Meesat, Ridthee; Jay-Gerin, Jean-Paul; Khalil, Abdelouahed; Lepage, Martin

    2009-05-01

    In this study, our aim is to assess the potential of Fricke and polyacrylamide gel (PAG) dosimeters to quantitatively evaluate the efficiency of potential radiation sensitizers/protectors and antioxidants. These compounds are of importance in radiotherapy as well as in disease prevention and promotion of health. The basic principle of the Fricke dosimeter is the radiation-induced oxidation of Fe2+ to Fe3+ in an aerated aqueous 0.4 M H2SO4. The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. Using this method, we observed that cystamine (one of the best of the known radioprotectors) can prevent oxydation of Fe2+ from reactive radiolysis species. However, one obvious disadvantage of the Fricke dosimeter is that it operates under highly acidic conditions (pH 0.46), which may degrade biological compounds. In contrast, the pH of the polyacrylamide gel (PAG) dosimeter is almost neutral, such that degradation of compounds is less probable. A change in R2-dose sensitivity was observed in the presence of radiosensitizers/radioprotectors and antioxidants. The protective effect of Trolox (a well-known antioxidant) and thiourea (a radioprotector) was readily observed using the PAG dosimeter. Incorporation of iodinated radiation sensitizers such as NaI and an iodine contrast agent led to a quantifiable sensitizer enhancement ratio. These studies suggest that the Fricke and the PAG dosimeters have the potential to evaluate the efficiency of radiation sensitizers/protectors and antioxidants.

  3. Characterization of a medical X-ray machine for testing the response of electronic dosimeters in pulsed radiation fields

    NASA Astrophysics Data System (ADS)

    Guimarães, Margarete C.; Da Silva, Teógenes A.

    2014-11-01

    Electronic personal dosimeters (EPD) based on solid state detectors have been used for personnel monitoring for radiation protection purpose; their use has been extended to practices with pulsed radiation beams although their performance is not well known. Deficiencies in the EPD response in pulsed radiation fields have been reported; they were not detected before since type tests and calibrations of EPDs were established in terms of continuous X and gamma reference radiations. An ISO working group was formed to elaborate a standard for test conditions and performance requirements of EPDs in pulsed beams; the PTB/Germany implemented a special X-ray facility for generating the reference pulsed radiation beams. In this work, an 800 Plus VMI medical X-ray machine of the Dosimeter Calibration Laboratory of CDTN/CNEN was characterized to verify its feasibility to perform EPD tests. Characterization of the x-ray beam was done in terms of practical peak voltage, half-value layer, mean energy and air kerma rate. Reference dosimeters used for air kerma measurements were verified as far their metrological coherence and a procedure for testing EDPs was established. Electronic personal dosimeters (EPD) have been used for personnel monitoring. EPD use has been extended to pulsed radiation beams. Deficiencies in the EPD response in pulsed beams have been reported. The feasibility of using a medical X-ray machine to perform EPD tests was studied. Reference dosimeters were verified and EPD testing procedure was established.

  4. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek

    2011-12-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N, N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx. The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG.

  5. NUCLEAR RADIATION DOSIMETER USING COMPOSITE FILTER AND A SINGLE ELEMENT FILTER

    DOEpatents

    Storm, E.; Shlaer, S.

    1964-04-21

    A nuclear radiation dosimeter is described that uses, in combination, a composite filter and a single element filter. The composite filter contains a plurality of comminuted metals having K-edges evenly distributed over the energy range of interest and the quantity of each of the metals is selected to result in filtering in an amount inversely proportional to the sensitivity of the film in the range over l00 kev. A copper filter is used that has a thickness to contribute the necessary additional correction in the interval between 40 and 100 kev. (AEC)

  6. PERSONNEL DOSIMETER

    DOEpatents

    Birkhoff, R.D.; Hubbell, H.H. Jr.; Johnson, R.M.

    1959-02-24

    A personnel dosimeter sensitive to both gamma and beta radiation is described. The dosimeter consists of an electrical conductive cylinder having a wall thickness of substantially 7 milligrams per square centimeter and an electrode disposed axially within the cylinder and insulated therefrom to maintain a potential impressed between the electrode and the cylinder. A cylindrical perforated shield provided with a known percentage of void area is disposed concentrically about the cylinder. The shield is formed of a material which does not contain more than 15 percent of an element higher than atomic weight 13. The dose actually received is at most the gamma dose plus the beta dose indicated by discharge of the dosimeter divided by the known percentage.

  7. Calibration and conformational studies in radiation dosimetry using polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Cardenas, Richard L.

    2001-11-01

    The polymer gel dosimeter made its debut in the early 90's and dosimetrists and medical physicists alike were excited about the prospect of using the gel dosimeter as an effective and useful three-dimensional modeling tool. Research in the early to mid-90's brought on better polymer mixtures with greater sensitivity and shelf life. Nearly a decade later, these gels are not being used in a clinical setting. The question is, why are they not being routinely used in the clinical setting for modeling and quality assurance of radiation instrumentation and computer generated treatment plans? There are three main reasons and we address these reasons directly in this investigation. First, every promising experiment performed on these gels were done in ideal conditions. The problem ideal experimentation is that the conditions in a clinical setting are unpredictable hence these idealized protocols could not be easily used in practice. Second, attempts to use the gels in clinical settings had mixed results. There was no real consistency with the results based on calibration curves generated by the gel manufacturer and even based on additional calibration studies performed by the medical physicists. Third, there were no consistent and effective calculation programs that were flexible, rigorous, and consistent to use. Due to these main problems, medical physicists have begun to dismiss the gel dosimeter and reverted to traditional 1-dimensional and 2-dimensional verification methods. What we developed in this study is a means to put the polymer gel dosimeter back into the forefront of dosimetry. First, we performed experiments under a clinical setting. Then, we investigated three different calibration methods, including our very own normalized calibration protocol to identify calibration problems and offer up a solution to this problem. Finally, we also generated a good data processing program that is flexible, rigorous, and consistent to use in any setting. In addition to

  8. Stored-fluorography mode reduces radiation dose during cardiac catheterization measured with OSLD dosimeter

    NASA Astrophysics Data System (ADS)

    Ting, Chien-Yi; Chen, Zhih-Cherng; Tang, Kuo-Ting; Liu, Wei-Chung; Lin, Chun-Chih; Wang, Hsin-Ell

    2015-12-01

    Coronary angiogram is an imperative tool for diagnosis of coronary artery diseases, in which cine-angiography is a commonly used method. Although the angiography proceeds under radiation, the potential risk of radiation exposure for both the patients and the operators was seldom noticed. In this study, the absorbed radiation dose in stored-fluorography mode was compared with that in cine-angiography mode by using optically simulated luminescent dosimeters to realize their effects on radiation dose. Patients received coronary angiogram via radial artery approach were randomized into the stored-fluorography group (N=30) or the cine-angiography group (N=30). The excluded criteria were: 1. women at pregnancy or on breast feeding, 2. chronic kidney diseases with glomerular filtration rate less than 60 mL/min. During the coronary angiogram, absorbed dose of the patients and the operator radiation exposure was measured with optically simulated luminescent dosimeter (OSLD). The absorbed dose of the patients in the stored-fluorography group (3.13±0.25 mGy) was apparently lower than that in the cine-angiography group (65.57±5.37 mGy; P<0.001). For the operator, a statistical difference (P<0.001) was also found between the stored-fluorography group (0.09163 μGy) and the cine-angiography (0.6519μGy). Compared with traditional cine-angiography mode, the stored-fluorography mode can apparently reduce radiation exposure of the patients and the operator in coronary angiogram.

  9. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  10. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G.; Jirasek, Andrew; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for

  11. Many-functional dosimeter for monitoring and measuring of radiation in space and ecology research

    NASA Astrophysics Data System (ADS)

    Elizarov, S. V.; Mineev, Yu. V.; Trofimov, P. N.

    1995-02-01

    The principles of construction of the many-function dosimeter on the base of the semiconductor detectors with large area are given. It is shown that an applying of two or more semiconductor detectors with different thickness allows the simultaneous and individual detection of the fluxes and spectra for alpha, beta, and gamma radiations. In difference from the spectrometers which are used today for monitoring, the proposed one together with the obtaining of the absorbed dose for every radiation type, gives the possibility to determine the energy spectrum of alpha, beta, gamma radiation and the maintenance of radon, to determine the type of radiation and its isotope structure and other radiation characteristics. The new principles of the detecting devices construction are used, modern electronic devices and microprocessor are applied for increasing the speed and stability, and for extending the obtainable radiation range. This device can be applied for monitoring of the charged and neutral radiation along a satellite route, and also for detection of radiation inside a spacecraft.

  12. Use of MOSFET dosimeters to validate Monte Carlo radiation treatment calculation in an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Juste, Belén; Miró, R.; Abella, V.; Santos, A.; Verdú, Gumersindo

    2015-11-01

    Radiation therapy treatment planning based on Monte Carlo simulation provide a very accurate dose calculation compared to deterministic systems. Nowadays, Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy to verify the received dose by patients. In the present work, we have used the MCNP6 (Monte Carlo N-Particle transport code) to simulate the irradiation of an anthropomorphic phantom (RANDO) with a medical linear accelerator. The detailed model of the Elekta Precise multileaf collimator using a 6 MeV photon beam was designed and validated by means of different beam sizes and shapes in previous works. To include in the simulation the RANDO phantom geometry a set of Computer Tomography images of the phantom was obtained and formatted. The slices are input in PLUNC software, which performs the segmentation by defining anatomical structures and a Matlab algorithm writes the phantom information in MCNP6 input deck format. The simulation was verified and therefore the phantom model and irradiation was validated throughout the comparison of High-Sensitivity MOSFET dosimeter (Best medical Canada) measurements in different points inside the phantom with simulation results. On-line Wireless MOSFET provide dose estimation in the extremely thin sensitive volume, so a meticulous and accurate validation has been performed. The comparison show good agreement between the MOSFET measurements and the Monte Carlo calculations, confirming the validity of the developed procedure to include patients CT in simulations and approving the use of Monte Carlo simulations as an accurate therapy treatment plan.

  13. Smart Radiological Dosimeter

    SciTech Connect

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  14. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    PubMed Central

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  15. Magnesium lactate mixed with EVA polymer/paraffin as an EPR dosimeter for radiation processing application

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.; Abdel-Fattah, A. A.

    2012-12-01

    The dosimetric characteristics of γ-radiation-induced defects in magnesium lactate (ML) rods (3.5 mm×10 mm) formulated by mixing ML with molten mixtures of paraffin wax and EVA copolymer have been investigated using electron paramagnetic resonance (EPR). The EPR spectrum of irradiated ML rods was characterized by a quartet signal with the spectroscopic splitting g-factor of 2.0048±0.0003 at 0.4 mT. The useful dose range of the rod dosimeter was 100 Gy to 80 kGy. The mass attenuation coefficient, μ/ρ, and the mass energy-absorption coefficient, μen/ρ, versus energy in the range of 10 keV to 20 MeV indicate that the prepared ML dosimeter is typically adipose tissue equivalent overall this energy range. The overall combined uncertainties (at 2σ) associated with routine dose monitoring in the dose range of 0.1-10 kGy and 10-80 kGy were found to be 6.14% and 6.36%, respectively.

  16. A high dynamic range current dosimeter for space ionization radiation measurement

    NASA Astrophysics Data System (ADS)

    Lei, Sheng-jie; Wei, Zhi-yong; Fang, Mei-hua; Chen, Guo-yun; Zhang, Zi-xia; Huang, San-bo

    2011-08-01

    A dosimeter for space ionization radiation field is developed, energy deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, and the dynamic range of the signal is very high. Now, an ionization chamber is designed and a variable gain current feedback preamp module is designed for the weak output current amplification is connected to output of the ionization chamber anode. The amplifier module includes I-V converter with T shaped resistance net, zero correct circuit, low pass filter, voltage linear amplifier circuit, gain control circuit and voltage output circuit. A complete analysis of this current preamp with respect to its circuit structure, dynamic properties, its equivalent input noise and the temperature effect is given. The effects of stray impedances on the behavior of the current feedback preamp are taken into account and the techniques necessary to achieve an optimum stable electrometer, with respect to noise, Dc drift, leakage currents, are applied. Experiments show that the energy of dosimeter deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, the current preamp can detect weak current effectively with the range from 100fA to 10μA through switchable gain.

  17. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  18. Evaluation of the response to xenon-133 radiations by thermoluminescent dosimeters used during the accident at Three Mile Island.

    PubMed

    Riley, R J; Zanzonico, P B; Masterson, M E; St Germain, J M; Laughlin, J S

    1982-03-01

    An evaluation is presented of the accuracy and sensitivity of three types of TLD's used during the accident at the Three Mile Island Nuclear Station. This evaluation indicated that, due to the method of calibration, all the dosimeters over-responded to 133Xe radiations. The response ranged from slightly above unity to almost two. Exposures of the TLD's were of two types, namely, the characteristic X-rays either were or were not filtered from the beam. The angular sensitivity of the dosimeters is also reported. PMID:7068394

  19. A cyanocobalamin dosimeter for monitoring gamma-radiation doses of 0.1-2 kGy

    NASA Astrophysics Data System (ADS)

    Maged, A. F.; Hamza, M. S. A.; Saad, E. A.

    1997-08-01

    A simple dosimeter is described for measuring gamma-ray doses useful for insect sterilization, seed-sprouting inhibition and food shelf-life extensions. The red aqueous solution of cyanocobalamin (B 12) before irradiation, assumes a stable yellow color when irradiated. It shows a linear response of absorbance decrease with the dose over the range of 0.1-2.0 kGy when the concentration of cyanocobalamin is equal 0.09 mM. The radiation-induced color is analyzed spectrophotometrically at the maximum absorption band (361 nm). The absorption spectra, dose response and post-irradiation stability of the dosimeter are discussed.

  20. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy.

    PubMed

    Kron, T; Smith, A; Hyodo, K

    1996-12-01

    Thermoluminescence dosimetry (TLD) is a versatile technique with many applications for dosimetry of ionising radiation. However, in the range of kilovoltage x-rays which is widely used for diagnostic and therapeutic medical applications, problems arise from the differing dose response of most TL dosimeters with the radiation energy. The dose response of various TL detector types was investigated in mono-energetic x-ray beams of 26.8, 33.2, 40, 80.4 and 99.6keV from a synchrotron radiation source at the National Laboratory for High Energy Physics in Japan. This response was studied as a function of TL material (LiF:Mg,Ti, LiF:Mg,Cu,P and Al2O3), the detector geometry and size, and their thermal history. Due to the asymmetric diffraction from a Si crystal employed to produce monoenergetic photons there was more than 50% dose inhomogeneity in some of radiation fields used. Therefore, the different TL dosimeter types were rotated around and the results related to the reading of a set of "standard" LiF:Mg,Ti ribbons which were included in all experiments as reference detectors. No significant influence of the detector shape (physical size, thickness) on the dose response with energy could be found. However, the pre-irradiation thermal history influences the dose response with radiation energy: a fast cool down of LiF:Mg,Ti after a high temperature anneal will increase the sensitivity by more than a factor of two. The relatively new TLD material LiF:Mg,Cu,P (GR-200, obtained from Solid Dosimeter & Detector Laboratories, Beijing) was found to be approximately 100 times more sensitive than the standard LiF:Mg,Ti. In addition it proved to be more tissue equivalent for photon radiation between 27keV and 40keV. The performance of LiF:Mg,Cu,P makes it a very interesting TL material deserving further evaluation for applications in diagnostic and therapeutic x-rays. PMID:9060209

  1. Exposure of arctic field scientists to ultraviolet radiation evaluated using personal dosimeters.

    PubMed

    Cockell, C S; Scherer, K; Horneck, G; Rettberg, P; Facius, R; Gugg-Helminger, A; Driscoll, C; Lee, P

    2001-10-01

    During July 2000 we used an electronic personal dosimeter (X-2000) and a biological dosimeter (Deutsches Zentrum für Luft- und Raumfahrt: Biofilm) to characterize the UV radiation exposure of arctic field scientists involved in biological and geological fieldwork. These personnel were working at the Haughton impact structure on Devon Island (75 degrees N) in the Canadian High Arctic under a 24 h photoperiod. During a typical day of field activities under a clear sky, the total daily erythemally weighted exposure, as measured by electronic dosimetry, was up to 5.8 standard erythemal dose (SED). Overcast skies (typically 7-8 okta of stratus) reduced exposures by a mean of 54%. We estimate that during a month of field activity in July a typical field scientist at this latitude could potentially receive approximately 80 SED to the face. Because of body movements the upper body was exposed to a UV regimen that often changed on second-to-second time-scales as assessed by electronic dosimetry. Over a typical 10 min period on vehicle traverse, we found that erythemal exposure could vary to up to 87% of the mean exposure. Time-integrated exposures showed that the type of outdoor field activities in the treeless expanse of the polar desert had little effect on the exposure received. Although absolute exposure changed in accordance with the time of day, the exposure ratio (dose received over horizontal dose) did not vary much over the day. Under clear skies the mean exposure ratio was 0.35 +/- 0.12 for individual activities at different times of the day assessed using electronic dosimetry. Biological dosimetry showed that the occupation was important in determining daily exposures. In our study, scientists in the field received an approximately two-fold higher dose than individuals, such as medics and computer scientists, who spent the majority of their time in tents. PMID:11683037

  2. Radiation-induced failures and degradation of wireless real-time dosimeter under high-dose-rate irradiation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, K.; Kuroki, K.; Akiba, N.; Kurosawa, K.; Matsumoto, T.; Nishiyama, J.; Harano, H.

    2010-04-01

    Radiation-induced malfunction and degradation of electronic modules in certain operating conditions are described in this report. The cumulative radiation effects on Atmel AVR microcontrollers, and 2.4 GHz and 303 MHz wireless network devices were evaluated under gamma ray irradiation with dose rates of 100, 10 and 3 Gy/h. The radiation-induced malfunctions occurred at doses of 510+/-22 Gy for AVR microcontrollers, and 484+/-111 and 429+/-14 Gy for 2.4 GHz and 303 MHz wireless network devices, respectively, under a 100 Gy/h equivalent dose rate. The degradation of microcontrollers occurred for total ionizing doses between 400 and 600 Gy under X-ray irradiation. In addition, we evaluated the reliability of neutron dosimeters using a standard neutron field. One of the neutron dosimeters gave a reading that was half of the standard field value.

  3. Wrist-watch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1982-04-16

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable within a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  4. Total occupational exposure during characterisation, conditioning and securing of radioactive sealed sources: a new dosimetric concept using active electronic dosimeters.

    PubMed

    Prlić, Ivica; Mihić, Marija Surić; Marović, Gordana; Mestrović, Tomislav

    2009-03-01

    Radiation dosimetry in protection against ionising radiation involves research of all possible pathways through which natural or man-made radioactive materials can contaminate a habitat and actually harm its biota. It also takes into account natural and artificial (man-made) electromagnetic ionizing radiation (gamma and x radiation). This article presents a dosimetric study assessing exposure to man-made ionising radiation of local environment and total occupational exposure of two professional workers involved in characterisation, conditioning, and securing of unused radioactive sealed sources. The purpose of the study was to validate a new active electronic dosimeter (AED) of type ALARA OD and to develop a new monitoring method by tracing the external occupational exposure over real time. This method is used to continuously measure and record external radiation doses and, which is a novelty, establish dose rates receiving pattern as a function of real time. Occupational whole body dosimetric results obtained with AED were compared with results obtained with passive dosimetry (film badge and thermoluminiscence). Air, dust, and silicon sand samples were analysed by gamma-spectrometry to estimate internal exposure of the two workers to 222Rn due to inhalation or ingestion of dust and sand in indoor air. In order to establish total occupational exposure, control radon measurement was performed in the immediate environment and the external Hazard index (Hex) was calculated. PMID:19329376

  5. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  6. Evaluation of external dose equivalent with thermoluminescent dosimeters from residents living in radiation-contaminated buildings.

    PubMed

    Lee, J S; Dong, S L; Chang, W P; Chan, C C

    1997-09-01

    As of October 1996 there are more than 90 radiation-contaminated steel supported rebar buildings (containing more than 1000 apartments) dispersed in the northern part of Taiwan. These apartments were contaminated with cobalt-60 at a total activity ranging from 1-140 microSv/yr. In this paper, a method is developed for evaluating external dose equivalent and dose equivalent rates encountered by the residents wearing specially designed thermoluminescent dosimeter (TLD)-embedded chains, belts and badges. Comparisons are also made between the TLD readings and the exposure readings from indoor layout personal dosimetry surveys and room occupancy adjustments to the buildings. The accuracy and sensitivity of the TLDs compared with the ionization chamber readings are judged to be considerable improvements over those of previous studies. From the present study, it is concluded that the reliability of the daily activity records provided by the residents during the entire TLD-wearing period is the most critical but challenging feature of the external dose equivalent measurement. PMID:9418211

  7. SU-E-CAMPUS-T-02: Exploring Radiation Acoustics CT Dosimeter Design Aspects for Proton Therapy

    SciTech Connect

    Alsanea, F; Moskvin, V; Stantz, K

    2014-06-15

    Purpose: Investigate the design aspects and imaging dose capabilities of the Radiation Acoustics Computed Tomography (RA CT) dosimeter for Proton induced acoustics, with the objective to characterize a pulsed pencil proton beam. The focus includes scanner geometry, transducer array, and transducer bandwidth on image quality. Methods: The geometry of the dosimeter is a cylindrical water phantom (length 40cm, radius 15cm) with 71 ultrasound transducers placed along the length and end of the cylinder to achieve a weighted set of projections with spherical sampling. A 3D filtered backprojection algorithm was used to reconstruct the dosimetric images and compared to MC dose distribution. First, 3D Monte Carlo (MC) Dose distributions for proton beam energies (range of 12cm, 16cm, 20cm, and 27cm) were used to simulate the acoustic pressure signal within this scanner for a pulsed proton beam of 1.8x107 protons, with a pulse width of 1 microsecond and a rise time of 0.1 microseconds. Dose comparison within the Bragg peak and distal edge were compared to MC analysis, where the integrated Gaussian was used to locate the 50% dose of the distal edge. To evaluate spatial fidelity, a set of point sources within the scanner field of view (15×15×15cm3) were simulated implementing a low-pass bandwidth response function (0 to 1MHz) equivalent to a multiple frequency transducer array, and the FWHM of the point-spread-function determined. Results: From the reconstructed images, RACT and MC range values are within 0.5mm, and the average variation of the dose within the Bragg peak are within 2%. The spatial resolution tracked with transducer bandwidth and projection angle sampling, and can be kept at 1.5mm. Conclusion: This design is ready for fabrication to start acquiring measurements. The 15 cm FOV is an optimum size for imaging dosimetry. Currently, simulations comparing transducer sensitivity, bandwidth, and proton beam parameters are being evaluated to assess signal-to-noise.

  8. The Observed Variance Between Predicted and Measured Radiation Dose in Breast and Prostate Patients Utilizing an In Vivo Dosimeter

    SciTech Connect

    Scarantino, Charles W. Prestidge, Bradley R.; Anscher, Mitchel S.; Ferree, Carolyn R.; Kearns, William T.; Black, Robert D.; Bolick, Natasha G.; Beyer, Gloria P.

    2008-10-01

    Purpose: Report the results of using a permanently implantable dosimeter in radiation therapy: determine specific adverse events, degree of migration, and acquire dose measurements during treatment to determine difference between expected and measured dose. Methods and Materials: The Dose Verification System is a wireless, permanently implantable metal-oxide semiconductor field-effect transistor dosimeter using a bidirectional antenna for power and data transfer. The study cohort includes 36 breast (33 patients received two devices) and 29 prostate (21 patients received two devices) cancer patients. A total of 1,783 and 1,749 daily dose measurements were obtained on breast and prostate patients, respectively. The measurements were compared with the planned expected dose. Biweekly computed tomography scans were obtained to evaluate migration and the National Cancer Institute's Common Toxicity Criteria, version 3, was used to evaluate adverse events. Results: Only Grade I/II adverse events of pain and bleeding were noted. There were only four instances of dosimeter migration of >5 mm from known factors. A deviation of {>=}7% in cumulative dose was noted in 7 of 36 (19%) for breast cancer patients. In prostate cancer patients, a {>=}7% deviation was noted in 6 of 29 (21%) and 8 of 19 (42%) during initial and boost irradiation, respectively. The two patterns of dose deviation were random and systematic. Some causes for these differences could involve organ movement, patient movement, or treatment plan considerations. Conclusions: The Dose Verification System was not associated with significant adverse events or migration. The dosimeter can measure dose in situ on a daily basis. The accuracy and utility of the dose verification system complements current image-guided radiation therapy and intensity-modulated radiation therapy techniques.

  9. Optical CT and MR imaging of radiation dose distributions using the FBX-gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kelly, Robin G.

    In recent years, magnetic resonance imaging of gelatin doped with the Fricke solution has been applied to the direct measurement of three-dimensional (3D) dose distributions. However, the 3D-dose distribution can also be imaged more economically and efficiently using the method of optical absorption computed tomography. This is accomplished by first preparing a gelatin matrix containing a radiochromic dye and mapping the radiation-induced local change in the optical absorption coefficient. Ferrous Sulphate-Benzoic Acid-Xylenol Orange (FBX) was the dye of choice for this investigation. The complex formed by Fe 3+ and xylenol orange exhibits a linear change in optical attenuation (cm-1) with radiation dose in the range between 0 and 1000 cGy, and the local concentration of this complex can be probed using a green laser light (lambda = 543.5 nm). An optical computed tomography (CT) scanner was constructed analogous to a first-generation x-ray CT scanner, using a He-Ne laser, photodiodes, and rotation-translation stages controlled by a personal computer. The optical CT scanner itself can reconstruct attenuation coefficients to a baseline accuracy of <2% while yielding dose images accurate to within 5% when other uncertainties are taken into account. The radiation-induced conversion of ferrous ion (Fe2+) to ferric ion (Fe3+) in the FBX Gelatin dosimeter can also be measured using magnetic resonance imaging, similar to the standard Fricke-gelatin system. The oxidation process causes a shortening of the spin-spin (T 2), and spin-lattice (T1) relaxation times, each of which can be measured, with varying accuracy and precision, using different MR pulse sequences. In this investigation, the spin-lattice relaxation times of FBX gelatin were determined using both a fast inversion recovery pulse-sequence, and a three-dimensional Look-Locker (3D-LL) pulse-sequence. The inverse spin-lattice relaxation time (R1 = 1/T1) is shown to vary linearly with absorbed dose in the range 500

  10. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. PMID:26046521

  11. Unified Technical Concepts. Module 13: Radiation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on radiation is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  12. Investigating Undergraduate Students’ Conceptions of Radiation

    NASA Astrophysics Data System (ADS)

    Romine, James M.; Buxner, Sanlyn; Impey, Chris; Nieberding, Megan; Antonellis, Jessie C.

    2014-11-01

    Radiation is an essential topic to the physical sciences yet is often misunderstood by the general public. The last time most people have formal instruction about radiation is as students in high school and this knowledge will be carried into adulthood. Peoples’ conceptions of radiation influence their attitude towards research regarding radiation, radioactivity, and other work where radiation is prevalent. In order to understand students’ ideas about radiation after having left high school, we collected science surveys from nearly 12,000 undergraduates enrolled in introductory science courses over a span of 25 years. This research investigates the relationship between students’ conceptions of radiation and students’ personal beliefs and academic field of study.Our results show that many students in the sample were unable to adequately describe radiation. Responses were typically vague, brief, and emotionally driven. Students’ field of study was found to significantly correlate with their conceptions. Students pursuing STEM majors were 60% more likely to describe radiation as an emission and/or form of energy and cited atomic or radioactive sources of radiation twice as often as non-STEM students. Additionally, students’ personal beliefs also appear to relate to their conceptions of radiation. The most prominent misconception shown was that radiation is a generically harmful substance, which was found to be consistent throughout the duration of the study. In particular, non-science majors in our sample had higher rates of misconceptions, often generalized the idea of radiation into a broad singular topic, and had difficulty properly identifying sources.Generalized ideas of radiation and the inability to properly recognize sources of radiation may contribute to the prevalent misconception that radiation is an inexplicably dangerous substance. A basic understanding of both electromagnetic and particulate radiation and the existence of radiation at various

  13. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Astrophysics Data System (ADS)

    Zhou, Dazhuang

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) -SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) -Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 -near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module -Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  14. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  15. Radiation-induced optical attenuation of Co/Fe co-doped alumino-silicate optical fiber for radiation dosimeter application

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Kim, Jong-Yeol; Lee, Nam-Ho; Jung, Hyun-Kyu; Han, Won-Taek

    2013-05-01

    Possibility of a Co/Fe co-doped alumino-silicate optical fiber as a radiation dosimeter application was investigated from the measurement of radiation-induced optical attenuation (RIA). The RIA at 1310 nm of the optical fiber upon gammaray irradiation was found to increase linearly with the radiation dose. The extent of the RIA increase to 11,900 dB/km at radiation dose rate of 20 Gy/min for 1 hour was 70 times larger than that of the reference single mode fiber and the RIA remained almost constant after 5 minutes of the irradiation termination.

  16. Determination of Radiation Energy Response for Thermoluminescent Dosimeter TLD-100: Determination of Organ Dose in Diagnostic Radiology

    SciTech Connect

    Deda, Antoneta; Telhaj, Ervis

    2009-04-19

    TLD-100 (thermoluminescent dosimeter) cards (chips) were calibrated using X-rays with energies of 25-250 kV produced by a Cs-137 source. The energy responses of lithium fluoride crystals for different energies of X-rays were studied. QA/QC was then performed in the Albanian Ionizing Radiation Metrology Laboratory. Based on the QA/QC results, the chips were used to study the doses to different organs in diagnostic radiology. Organ dose was evaluated after calculation of e dose in air (Kair), using an ionizing chamber.

  17. Determination of Radiation Energy Response for Thermoluminescent Dosimeter TLD-100: Determination of Organ Dose in Diagnostic Radiology (abstract)

    NASA Astrophysics Data System (ADS)

    Deda, Antoneta; Telhaj, Ervis

    2009-04-01

    TLD-100 (thermoluminescent dosimeter) cards (chips) were calibrated using X-rays with energies of 25-250 kV produced by a Cs-137 source. The energy responses of lithium fluoride crystals for different energies of X-rays were studied. QA/QC was then performed in the Albanian Ionizing Radiation Metrology Laboratory. Based on the QA/QC results, the chips were used to study the doses to different organs in diagnostic radiology. Organ dose was evaluated after calculation of e dose in air (Kair), using an ionizing chamber.

  18. Characterization of a new photo-fluorescent film dosimeter for high-radiation dose applications

    SciTech Connect

    Murphy, Mark K. ); Miller, Steven D. ); Kovacs, Andras; Mclaughlin, William L.; Slezsak, Istvan

    2001-12-01

    Characterization studies on one of the first versions of the Sunna fluorescent dosimeter have been published by Kovacs and McLaughlin. This present study describes testing results of a newer version of the dosimeter (Model and 61543;, batch 0399-20). This dosimeter is a 1-cm by 3-cm polymeric film of 0.5 mm thickness that emits a green fluorescence component at intensities almost linear with dose. The manufacturing method (injection molding) allows potential batch sizes on the order of a million while maintaining a signal precision on the order of+/- 1%. Studies include dose response, dose rate dependence, energy dependence, post-irradiation stability, environmental effects, and variation of response within a batch. Data for both food irradiation and sterilization dose levels were obtained. The results indicate that the green signal (0.3-200 kGy) works well for food irradiation dose levels, especially in refrigerated facilities that maintain tight temperature control. The green signal also works well in sterilization facilities because its irradiation temperature coefficient above room temperature is minimal at sterilization doses. If the user requires readout results in less than 22 hours after room temperature irradiation, the user can either calibrate for a specific post-irradiation readout time(s) or simply heat the dosimeters in a small laboratory oven to quickly stabilize the signal.

  19. RADIATION BIOLOGY: CONCEPTS FOR RADIATION PROTECTION

    EPA Science Inventory

    ABSTRACT

    The opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The...

  20. Preliminary results of water shielding effects for space radiation in ISS crew cabin by means of passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Shurshakov, Vyacheslav; Kawashima, Hajime; Kurano, Mieko; Yasuda, Nakahiro; Uchihori, Yukio; Nikolaev, Igor; Tolochek, Raisa; Ambrozova, Iva; Kitamura, Hisashi; Kobayashi, Ikuo; Suzuki, Akifumi; Kartsev, Ivan; Yarmanova, Eugenia

    2012-07-01

    The dose reduction rate for space radiation by the additional installation of water shielding (the hygienic wipes and towels containing water) in ISS crew cabin was measured with the passive dosimeter packages consisting of thermoluminescence detectors and CR-39 plastic nuclear track detectors. The water shieldings were stored into the protective curtain at 4 layers, which correspond to the additional shielding thickness of about 8 g/cm ^{2}. The protective curtains were installed along the outer wall of the starboard crew cabin in Russian Service Module; the total mass of the protective curtain is 65 kg. The dose reduction effect was experimentally measured with totally 12 passive dosimeter packages. Half of the packages were located on the protective curtain surface and the other half packages were located on the crew cabin wall behind or aside the protective curtain. Two experiments were carried out onboard ISS crew cabin, 1) from July 4 to November 29, 2010 and 2) from December 17, 2010 to May 5, 2011. The dose reduction rate by the protective curtain was ranging from 15 to 70 % in absorbed dose, depending on the shielding material thickness. The results will be also compared with the calculation based on Monte Carlo simulation. It is expected that the properly utilization of protective curtain would effectively reduce the radiation dose for crew living in space station.

  1. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, R.A.

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  2. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, Robert A.

    1985-01-01

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  3. Optical tomography for radiation dosimetry and treatment plan verification by videographic imaging of ferrous sulphate xylenol orange gelatin dosimeters

    NASA Astrophysics Data System (ADS)

    Wolodzko, John George

    1999-08-01

    Recent advances in computer and radiation delivery technologies have led to new and complex methods in radiotherapy which involve the deposition of radiation in the human body at high doses or dose rates. Both these and more traditional approaches to radiotherapy would benefit from a means to provide detailed information about the distribution of radiation dose in multiple dimensions for the purposes of treatment planning and verification. Several investigations have been carried out over the past few years to evaluate the utility of various formulations of ferrous sulphate, or Fricke, get dosimeters in the measurement of radiation fields. These have been proposed to be of particular value in the determination of three-dimensional radiation dose distributions associated with emerging and complex approaches to cancer treatment such as `gamma knife', pencil beam, stereotactic, or conformal radiotherapies. Hitherto, the emphasis in the majority of approaches has been on measuring the difference in effect on paramagnetic properties between the initial ferrous ion concentration of the solution, and the ferric ions which a produced following irradiation. Although many positive and confirmative results have been published regarding this method, it relies on access to clinical MRI units for imaging the irradiated gel; an expensive and logistical challenge for the majority of potential users. We report here a study carried out to determine the feasibility of analyzing one form of this dosimeter through tomographic reconstruction of two-dimensional optical projections acquired using an ordinary, diffuse light source, video camera, standard tomographic reconstruction software, and other components designed and/or assembled by the author. Qualitative, quantitative and statistical analyses yield highly linear and reproducible results with r2 from regression analyses typically on the order of 0.98. Comparisons of the measured dose distribution patterns to the treatment plan

  4. SU-E-T-585: Optically-Stimulated Luminescent Dosimeters for Monitoring Pacemaker Dose in Radiation Therapy

    SciTech Connect

    Apicello, L; Riegel, A; Jamshidi, A

    2015-06-15

    Purpose: A sufficient amount of ionizing radiation can cause failure to components of pacemakers. Studies have shown that permanent damage can occur after a dose of 10 Gy and minor damage to functionality occurs at doses as low as 2 Gy. Optically stimulated thermoluminescent dosimeters (OSLDs) can be used as in vivo dosimeters to predict dose to be deposited throughout the treatment. The purpose of this work is to determine the effectiveness of using OSLDs for in vivo dosimetry of pacemaker dose. Methods: As part of a clinical in vivo dosimetry experience, OSLDs were placed at the site of the pacemaker by the therapist for one fraction of the radiation treatment. OSLD measurements were extrapolated to the total dose to be received by the pacemaker during treatment. A total of 79 measurements were collected from November 2011 to December 2013 on six linacs. Sixty-six (66) patients treated in various anatomical sites had the dose of their pacemakers monitored. Results: Of the 79 measurements recorded, 76 measurements (96 %) were below 2 Gy. The mean and standard deviation were 50.12 ± 76.41 cGy. Of the 3 measurements that exceeded 2 Gy, 2 measurements matched the dose predicted in the treatment plan and 1 was repeated after an unexpectedly high Result. The repeated measurement yielded a total dose less than 2 Gy. Conclusion: This analysis suggests OSLDs may be used for in vivo monitoring of pacemaker dose. Further research should be performed to assess the effect of increased backscatter from the pacemaker device.

  5. Space radiation dosimeter SSJ* for the block 5D/Flight 7 DMSP (Defense Meteorological Satellite Program) satellite: calibration and data presentation. Environmental research papers

    SciTech Connect

    Gussenhoven, M.S.; Filz, R.C.; Lynch, K.A.; Mullen, E.G.; Hanser, F.A.

    1986-03-20

    The DMSP/F7 satellite carries, in addition to weather-monitoring devices, a number of instruments that measure the space environment for the purpose of scientific study. These are an auroral imaging device, precipitating-electron and -ion detectors, a thermal-plasma analyzer, a fluxgate magnetometer, and a space-radiation dosimeter. Together, these provide a strong tool for analyzing the high-latitude, near-Earth, magnetospheric environment. This report was prepared to facilitate the use of the data from one of these instruments, the space-radiation dosimeter, and to show the data can be used to obtain both dose and flux measurements of high-energy relativtic electrons and protons at low altitudes. The report includes: a description of the DMSP/F7 orbit; a description of the space-radiation dosimeter and the data it returns; the method by which dose is determined; the method by which flux is determined; and a discussion of the use of high-threshold-energy proton- and ion-induced star counts. Appendices A and B present the response of the dosimeter to electron bremsstrahlung and a list of the interactive routines available at AFGL for data analysis.

  6. Radiation chemistry of heavy-particle tracks. 2. Fricke dosimeter system

    SciTech Connect

    Chatterjee, Aloke; Magee, John L.

    1980-12-01

    A heavy-particle track model suggested by considerations presented in a companion paper is used in a calculation of the differential (G') and integral (G) yields of the Fricke dosimeter system for six selected particles over a wide range of energies. The particles are H, He, C, Ne, Ar, and Fm; the energy range for the first two is 10{sup -3} MeV/n to 10{sup 3} MeV/n, and for the last four is 10{sup -1} MeV/n to 10{sup 3} MeV/n. The calculated G' and G values are compared with experimental values as far as possible, and the heavy-particle track model situation is discussed.

  7. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    SciTech Connect

    Jursinic, Paul A.

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  8. Novel Concepts for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  9. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system

    SciTech Connect

    Sonder, E.; Ahmed, A.B.

    1991-12-01

    A value for ``average background radiation`` of 0.75 mR/week has been determined from a total of 1680 thermoluminescent dosimeters (TLD`s) exposed in 70 houses for periods up to one year. The distribution of results indicates a rather large variation among houses, with a few locations exhibiting backgrounds double the general average. Some discrepancies in the short-term background accumulation of TLD`s have been explained as being due to light leakage through the dosimeter cases. In addition the lower limit of detection (L{sub D}) for deep and shallow dose equivalents has been determined for these dosimeters. The L{sub D} for occupational exposure depends strongly on the time a dosimeter is exposed to background radiation in the field. The L{sub D} can vary from a low of 2.4 mrem for high energy gamma rays when the background accumulation period is less than a few weeks to values as high as 66 mrem for uranium beta particles when background has been allowed to accumulate for more than 21 weeks.

  10. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications.

    PubMed

    Hu, B; Wang, Y; Zealey, W

    2009-12-01

    A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established. PMID:20169842

  11. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  12. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, M.; Blencowe, A.; Yeo, U. J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M.

    2013-06-01

    The aim of this study is to present the first experimental validation and quantification of the dose enhancement capability of bismuth oxide nanoparticles (Bi2O3-Nps). A recently introduced multi-compartment 3D radiochromic dosimeter for measuring radiation dose enhancement produced from the interaction of X-rays with metal nanoparticles was employed to investigate the 3D spatial distribution of ionizing radiation dose deposition. Dose-enhancement factor for the dosimeters doped with Bi2O3-NPs was ~1.9 for both spectrophotometry and optical CT analyses. Our results suggest that bismuth-based nanomaterials are efficient dose enhancing agents and have great potential for application in clinical radiotherapy.

  13. Performance testing of extremity dosimeters

    SciTech Connect

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1987-06-01

    The Health Physics Society Standing Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance. The draft standard has been evaluated by testing the performance of existing processors of extremity dosimeters against the standard's proposed criterion. The proposed performance criterion is: absolute value of B + S less than or equal to 0.35, where B is the bias (calculated as the average of the performance quotients) of 15 dosimeter measurements and S is the standard deviation of the performance quotients. Dosimeter performance was tested in seven irradiation categories: low-energy photons (general and accident dosimetry), high-energy photons (general and accident dosimetry), beta particles, neutrons, and a mixture category. Twenty-one types of extremity dosimeters (both finger ring and wrist/ankle dosimeters) were received from 11 processors. The dosimeters were irradiated by the Pacific Northwest Laboratory (PNL) to specific dose levels in one or more of the seven categories as specified in the draft standard and were returned to the processors. The processors evaluated the doses and returned the results to PNL for analysis. The results were evaluated against the performance criterion specified in the draft standard. The results indicate that approximately 60% of both the finger ring and the wrist/ankle dosimeters met the performance criterion. Two-thirds of the dosimeters that did not meet the performance criterion had large biases (ranging from 0.25 to 0.80) but small standard deviations (less than 0.15). 21 refs., 3 figs., 20 tabs.

  14. Investigation of TL properties of sand collected from sewage sludge as an "in situ" dosimeter in radiation disinfection.

    PubMed

    Benny, P G; Bhatt, B C

    1996-01-01

    Thermoluminescence (TL) properties of sand, collected from sewage sludge, were studied after extensive cleaning procedures. In the sand samples treated with either hydrogen peroxide (H2O2) or hydrofluoric acid (HF), there was a prominent TL peak at about 220 degrees C after gamma-irradiation and 120 degrees C, 20 min post-irradiation annealing treatment. The dose vs TL response curves in hydrogen-peroxide-treated and HF-treated sand samples were found to be linear up to 30 and 100 Gy, respectively, beyond which they were supra-linear. The extent of post-irradiation fading in the sand sample, which was treated with H2O2 and post-irradiation annealed at 120 degrees C for 20 min, was observed to be 8% after 21 days, while no detectable fading was observed for the sample which was HF treated and annealed at 120 degrees C for 20 min after gamma-irradiation. Therefore, H2O2- as well as HF-treated sludge sand samples could be considered for use as in situ TL dosimeters for radiation disinfection of sewage sludge. PMID:8589671

  15. Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter.

    PubMed

    Soubra, M; Cygler, J; Mackay, G

    1994-04-01

    A new type of direct reading semiconductor dosimeter has been investigated as a radiation detector for photon and electron therapy beams of various energies. The operation of this device is based on the measurement of the threshold voltage shift in a custom-built metal oxide-silicon semiconductor field effect transistor (MOSFET). This voltage is a linear function of absorbed dose. The extent of the linearity region is dependent on the voltage controlled operation during irradiation. Operating two MOSFETS at two different biases simultaneously during irradiation will result in sensitivity (V/Gy) reproducibility better than +/- 3% over a range in dose of 100 Gy and at a dose per fraction greater than 20 x 10(-2) Gy. The modes of operation give this device many advantages, such as continuous monitoring during irradiation, immediate reading, and permanent storage of total dose after irradiation. The availability and ease of use of these MOSFET detectors make them very promising in clinical dosimetry. PMID:8058024

  16. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Yun-Dong, Chen; Soares, C. G.; Miller, A.; Van Dyk, G.; Lewis, D. F.

    1991-04-01

    A new radiation-sensitive imaging material, called GafChromic™ Dosimetry Media, offers advances in high-dose radiation dosimetry and high-resolution radiography for gamma radiation and electrons. The potential uses in radiation processing, radiation sterilization of medical devices, population control of insects by irradiation, food irradiation, blood irradiation for organ-transplant immuno-suppression, clinical radiography, and industrial radiography have led to the present sensitometric study over the breadth of the wide dynamic range of this new routine detector and imaging material, namely, absorbed doses from 10 Gy to 5 × 10 4 Gy. The thin-coated film is colorless before irradiation, and registers a deep-blue image upon irradiation, with two absorption bands at about 650 nm (major band) and 600 nm (minor band). The response to electrons, in terms of increase in absorbance per unit absorbed dose, is the same as that to gamma radiation within the estimated uncertainty of the measurements (± 5%, 95% confidence level). The spatial resolving power is > 1200 lines/mm. After the first 24 hours, the image is stable over many months (within ± 5% in absorbance), however, the system should be irradiated and analyzed at approximately the temperatures used during calibration, because of temperature dependence during irradiation and readout, and temperatures greater than 55°C should be avoided.

  17. Compliance with the proper use of an individual radiation dosimeter among children and the effects of improper use on the measured dose: a retrospective study 18–20 months following Japan's 2011 Fukushima nuclear incident

    PubMed Central

    Nomura, Shuhei; Tsubokura, Masaharu; Hayano, Ryugo; Yoneoka, Daisuke; Ozaki, Akihiko; Shimada, Yuki; Furutani, Tomoyuki; Kanazawa, Yukio; Oikawa, Tomoyoshi

    2015-01-01

    Objectives To identify profiles of children who did not properly use individual radiation dosimeters following Japan's 2011 Fukushima nuclear incident, and to assess how much error is generated by improper dosimeter use. Participants The participants in this study comprised 1637 school children who participated in the external radiation exposure screening programme administrated by Minamisoma City (located 20–30 km from the Fukushima nuclear plant) between 18 and 20 months after the Fukushima incident. Methods We assessed the factors associated with improper use (non-use) of the dosimeters at specific time periods during the day (school commuting hours, at school, at home, outdoors and at bedtime) using logistic regression analyses. Ratios of the measured dose to regression estimates of the ‘expected’ dose (referred to as an error due to non-use) were also examined. Results Only 119 children (7.3%) used the dosimeters properly in all time periods. This low rate was attributed primarily to non-use when children were in the home and outdoors, rather than at school. School level, air dose rate at home, gender, membership in outdoor sports clubs and time spent outdoors on weekends, were significantly associated with improper use, after adjustment for covariates. Data from children who did not wear the dosimeters to school and outdoors had statistically significant (but clinically insignificant) errors (ratio: 1.13, p<0.01; and 0.97, p<0.05, respectively), whereas improper use of the dosimeters at school, at home and at bedtime did not generate significant errors. Conclusions Well-targeted rigorous instructions on the use of the dosimeter are required, with particular focus on time periods other than school hours. However, given the small dose error due to the improper use of the dosimeters, even if the dosimeters are improperly used, solid evaluation of the radiation exposure may be possible with some accuracy. PMID:26719319

  18. Thermoluminescence dosimeter

    SciTech Connect

    Zendle, Robert

    1985-01-01

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  19. Thermoluminescence dosimeter

    DOEpatents

    Zendle, R.

    1983-11-03

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  20. Intensity variation study of the radiation field in a mammographic system using thermoluminescent dosimeters TLD-900 (CaSO4:Dy)

    NASA Astrophysics Data System (ADS)

    Corrêa, E. L.; Silva, J. O.; Vivolo, V.; Potiens, M. P. A.; Daros, K. A. C.; Medeiros, R. B.

    2014-02-01

    This study presents the results of the intensity variation of the radiation field in a mammographic system using the thermoluminescent dosimeter TLD-900 (CaSO4:Dy). These TLDs were calibrated and characterized in an industrial X-ray system used for instruments calibration, in the energy range used in mammography. They were distributed in a matrix of 19 lines and five columns, covering an area of 18 cm×8 cm in the center of the radiation field on the clinical equipment. The results showed a variation of the intensity probably explained by the non-uniformity of the field due to the heel effect.

  1. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  2. A Deployable In Vivo EPR Tooth Dosimeter for Triage After a Radiation Event Involving Large Populations

    PubMed Central

    Williams, Benjamin B.; Dong, Ruhong; Flood, Ann Barry; Grinberg, Oleg; Kmiec, Maciej; Lesniewski, Piotr N.; Matthews, Thomas P.; Nicolalde, Roberto J.; Raynolds, Tim; Salikhov, Ildar K.; Swartz, Harold M.

    2011-01-01

    In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable characteristics for triage, including independence from confounding biologic factors, a non-invasive measurement procedure, the capability to make measurements at any time after the event, suitability for use by non-expert operators at the site of an event, and the ability to provide immediate estimates of individual doses. Throughout development there has been a particular focus on the need for a deployable system, including instrumental requirements for transport and field use, the need for high throughput, and use by minimally trained operators. Numerous measurements have been performed using this system in clinical and other non-laboratory settings, including in vivo measurements with unexposed populations as well as patients undergoing radiation therapies. The collection and analyses of sets of three serially-acquired spectra with independent placements of the resonator, in a data collection process lasting approximately five minutes, provides dose estimates with standard errors of prediction of approximately 1 Gy. As an example, measurements were performed on incisor teeth of subjects who had either received no irradiation or 2 Gy total body irradiation for prior bone marrow transplantation; this exercise provided a direct and challenging test of our capability to identify subjects who would be in need of acute medical care. PMID:21966241

  3. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    NASA Astrophysics Data System (ADS)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  4. Sci—Fri PM: Dosimetry—01: Radiation-induced refraction artefacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G; Jirasek, Andrew; Wells, Derek M

    2014-08-15

    Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can have on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.

  5. Response of an implantable MOSFET dosimeter to 192Ir HDR radiation.

    PubMed

    Fagerstrom, Jessica M; Micka, John A; DeWerd, Larry A

    2008-12-01

    New in vivo dosimetry methods would be useful for clinical HDR brachytherapy. An implantable MOSFET Dose Verification System designed by Sicel Technologies, Inc. was examined for use with 192Ir HDR applications. This investigation demonstrated that varying the dose rate from 22 to 84 cGy/min did not change detector response. The detectors exhibited a higher sensitivity to 192Ir energies than 60Co energies. A nonlinear accumulated dose effect was characterized by three third-order polynomials fit to data from detectors placed at three different distances from the source. The detectors were found to have minimal rotational angular dependence. A strong longitudinal angular dependence was found when the detector's copper coil and electronics assembly were aligned between the MOSFETs and incident radiation. This orientation showed a 16% decrease in response relative to other orientations tested. PMID:19175130

  6. SU-F-18C-09: Assessment of OSL Dosimeter Technology in the Validation of a Monte Carlo Radiation Transport Code for CT Dosimetry

    SciTech Connect

    Carver, D; Kost, S; Pickens, D; Price, R; Stabin, M

    2014-06-15

    Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width of 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.

  7. Technical Evaluation of Radiation Dose Delivered in Prostate Cancer Patients as Measured by an Implantable MOSFET Dosimeter

    SciTech Connect

    Beyer, Gloria P. Scarantino, Charles W.; Prestidge, Bradley R.; Sadeghi, Amir G.; Anscher, Mitchell S.; Miften, Moyed; Carrea, Tammy B.; Sims, Marianne C.; Black, Robert D.

    2007-11-01

    Purpose: To perform a comparison of the daily measured dose at depth in tissue with the predicted dose values from treatment plans for 29 prostate cancer patients involved in a clinical trial. Methods and Materials: Patients from three clinical sites were implanted with one or two dosimeters in or near the prostatic capsule. The implantable device, known as the DVS, is based on a metal-oxide-semiconductor field effect transistor (MOSFET) detector. A portable telemetric readout system couples to the dosimeter antenna (visible on kilovoltage, computed tomography, and ultrasonography) for data transfer. The predicted dose values were determined by the location of the MOSFET on the treatment planning computed tomography scan. Serial computed tomography images were taken every 2 weeks to evaluate any migration of the device. The clinical protocol did not permit alteration of the treatment parameters using the dosimeter readings. For some patients, one of several image-guided radiotherapy (RT) modalities was used for target localization. Results: The evaluation of dose discrepancy showed that in many patients the standard deviation exceeded the previous values obtained for the dosimeter in a phantom. In some patients, the cumulative dose disagreed with the planned dose by {>=}5%. The data presented suggest that an implantable dosimeter can help identify dose discrepancies (random or systematic) for patients treated with external beam RT and could be used as a daily treatment verification tool for image-guided RT and adaptive RT. Conclusion: The results of our study have shown that knowledge of the dose delivered per fraction can potentially prevent over- or under-dosage to the treatment area and increase the accuracy of RT. The implantable dosimeter could also be used as a localizer for image-guided RT.

  8. Comparative study of some new EPR dosimeters

    NASA Astrophysics Data System (ADS)

    Alzimami, K. S.; Maghraby, Ahmed M.; Bradley, D. A.

    2014-02-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (WPP) and peak-to-peak signal height (HPP). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic.

  9. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.

  10. Thermoluminescence dosimeter reader

    SciTech Connect

    Miyake, S.; Miura, N.

    1984-10-30

    A thermoluminescence dosimeter reader having a heater for heating a thermoluminescence element, a light measuring circuit for measuring circuit for measuring the intensity of the thermoluminescence emanated from the element when it is heated and a display device for displaying the reading of the dosage of radiation to which the element is exposed according to the intensity of the thermoluminescence is provided with a dosage information inputting means which outputs an electric signal having a value representing a predetermined reference dosage of radiation, a calculating means for calculating a calibration constant which is the ratio between the value of the electric signal and the output value of the light measuring circuit which is the measured value of the dosage of radiation of a reference thermoluminescence element which is exposed to the predetermined reference dosage of radiation, and a memory means for memorizing the calibration constant.

  11. Miniature personal UV solar dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr.

    1981-01-01

    Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.

  12. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  13. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  14. Investigating Science Literacy: Students' Conceptions of Radiation

    NASA Astrophysics Data System (ADS)

    Romine, James; Buxner, S.; Impey, C. D.; Nieberding, M. N.; Antonellis, J. C.; Collaborations of Astronomy Teaching Scholars (CATS)

    2014-01-01

    This study is part of a larger investigation of students' science literacy in which we have been collecting survey data from undergraduate students enrolled in introductory science courses from 1980-2013. The overall survey asks students questions about basic topics in science and technology. We present results from the analysis of students' open-ended responses to the question "What is radiation?" Our findings show that a substantial number of students' perceptions of radiation are focused on the dangers of radiation and less on the applications. A large fraction of students correctly identified radiation as energy or light, although they expressed the misconception that only part of the electromagnetic spectrum counted as radiation. Overall, students expressed a number of misconceptions about the sources and uses of radiation although over 80% know that radiation can occur naturally or be man made. We present how these findings relate to other large trends from the survey. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  15. Monte Carlo study of the energy response and depth dose water equivalence of the MOSkin radiation dosimeter at clinical kilovoltage photon energies.

    PubMed

    Lian, C P L; Othman, M A R; Cutajar, D; Butson, M; Guatelli, S; Rosenfeld, A B

    2011-06-01

    Skin dose is often the quantity of interest for radiological protection, as the skin is the organ that receives maximum dose during kilovoltage X-ray irradiations. The purpose of this study was to simulate the energy response and the depth dose water equivalence of the MOSkin radiation detector (Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia), a MOSFET-based radiation sensor with a novel packaging design, at clinical kilovoltage photon energies typically used for superficial/orthovoltage therapy and X-ray CT imaging. Monte Carlo simulations by means of the Geant4 toolkit were employed to investigate the energy response of the CMRP MOSkin dosimeter on the surface of the phantom, and at various depths ranging from 0 to 6 cm in a 30 × 30 × 20 cm water phantom. By varying the thickness of the tissue-equivalent packaging, and by adding thin metallic foils to the existing design, the dose enhancement effect of the MOSkin dosimeter at low photon energies was successfully quantified. For a 5 mm diameter photon source, it was found that the MOSkin was water equivalent to within 3% at shallow depths less than 15 mm. It is recommended that for depths larger than 15 mm, the appropriate depth dose water equivalent correction factors be applied to the MOSkin at the relevant depths if this detector is to be used for depth dose assessments. This study has shown that the Geant4 Monte Carlo toolkit is useful for characterising the surface energy response and depth dose behaviour of the MOSkin. PMID:21559885

  16. Dosimeter and method for using the same

    DOEpatents

    Warner, Benjamin P.; Johns, Deidre M.

    2003-06-24

    A very sensitive dosimeter that detects ionizing radiation is described. The dosimeter includes a breakable sealed container. A solution of a reducing agent is inside the container. The dosimeter has an air-tight dosimeter body with a transparent portion and an opaque portion. The transparent portion includes a transparent chamber that holds the breakable container with the reducing agent. The opaque portion includes an opaque chamber that holds an emulsion of silver salt (AgX) selected from silver chloride, silver bromide, silver iodide, and combinations of them. A passageway in the dosimeter provides fluid communication between the transparent chamber and the opaque chamber. The dosimeter may also include a chemical pH indicator in the breakable container that provides a detectable color change to the solution for a pH of about 3-10. The invention also includes a method of detecting ionizing radiation that involves producing the dosimeter, breaking the breakable container, allowing the solution to flow through the passageway and contact the emulsion, detecting any color change in the solution and using the color change to determine a radiation dosage.

  17. Imploding plasma radiation sources: basic concepts. Memorandum report

    SciTech Connect

    Guillory, J.; Davis, J.

    1984-07-31

    This document is prepared as a briefing aid and technical primer for persons unfamiliar and uninitiated with the theory of imploding plasma radiation sources. It is hoped that it will prove helpful in introducing the basic physics concepts of these sources and in presenting these concepts to newcomers and potential users.

  18. Performance criteria for dosimeter angular response

    SciTech Connect

    Roberson, P.L.; Fox, R. A.; Cummings, F. M.; McDonald, J. C.; Jones, K.L.

    1988-06-01

    This report provides criteria for evaluating the response of personnel dosimeters to radiation at nonperpendicular incidence. The US Department of Energy Laboratory Accreditation Program (DOELAP) ensures that dosimetry systems at DOE facilities meet acceptable standards for precision and accuracy. In the past, these standards were limited to tests for system variability, energy dependence, and level of detection. The proposed criteria will broaden the scope of DOELAP to include the angular response of personnel dosimeters. Because occupational exposures in the workplace are rarely due to radiation from only one direction, dosimeters must accurately assign individual dose equivalent from irradiation at any forward angle of incidence. Including an angular response criterion in DOELAP would improve the quality of personnel monitoring provided that the criterion is developed from appropriate dose quantities. This report provides guidance for assigning individual dose equivalents for radiation fields at nonperpendicular incidence to the dosimeter. 21 refs., 10 figs., 10 tabs.

  19. "BION-M" No. 1 spacecraft radiation environment as observed by the RD3-B3 radiometer-dosimeter in April-May 2013

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.; Shurshakov, V. V.; Ivanova, O. A.; Häder, D.-P.; Schuster, M. T.; Reitz, G.; Horneck, G.

    2015-02-01

    Space radiation has been monitored using the РД3-Б3 (in the following we use the Latin transcription RD3-B3) spectrometer-dosimeter on board a recent space flight of the Russian recoverable satellite "BION-M" No. 1. The instrument was mounted inside the satellite in a pressurized volume together with biological objects and samples. The RD3-B3 instrument is a battery operated version of the spare model of the R3D-B3 instrument developed and built for the ESA BIOPAN-6 facility on Foton M3 satellite launched on September 2007 (Häder et al., 2009). It is a low mass, small dimension automated device that measures solar radiation in four channels and ionizing radiation in 256 channels of a Liulin-type energy deposition spectrometer (Dachev et al., 2002). Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. The paper summarizes the results for the Earth radiation environment at the altitude of 253-585 km.

  20. R3DE: Radiation Risk Radiometer-Dosimeter on the International Space Station--optical radiation data recorded during 18 months of EXPOSE-E exposure to open space.

    PubMed

    Schuster, Martin; Dachev, Tsvetan; Richter, Peter; Häder, Donat-Peter

    2012-05-01

    Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008-2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400-700 nm), UVA (315-400 nm), UVB (280-315 nm), and UVC (<280 nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1 Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m(-2) for PAR, 269.03 MJ m(-2) for UVA, 45.73 MJ m(-2) for UVB, or 18.28 MJ m(-2) for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE. PMID:22680686

  1. Poly [1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] solutions used as low dose ionizing radiation dosimeter

    SciTech Connect

    Bronze-Uhle, E. S.; Graeff, C. F. O.; Batagin-Neto, A.; Fernandes, D. M.; Fratoddi, I.; Russo, M. V.

    2013-06-17

    In this work, the effect of gamma radiation on the optical properties of polymetallayne poly[1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] (Pt-DEBP) in chloroform solution is studied. The samples were irradiated at room temperature with doses from 0.01 Gy to 1 Gy using a {sup 60}Co gamma ray source. A new band at 420 nm is observed in the emission spectra, in superposition to the emission maximum at 398 nm, linearly dependent on dose. We propose to use the ratio of the emission amplitude bands as the dosimetric parameter. This method proved to be robust, accurate, and can be used as a dosimeter in medical applications.

  2. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  3. Piezoelectric dosimeter charger

    SciTech Connect

    Kronenberg, S.

    1981-01-27

    Disclosed is a small portable extremely rugged charger for existing pocket-sized type radiation dosimeters. The charger is comprised of a rectangularly shaped housing which contains a piezoelectric charging circuit which is manually operated by a handle to produce a relatively high charging voltage. The charging voltage is coupled to a charging post mounted on a removable cover which is adapted to be selectively rotated so that the underside of the charging post is exposed to light from one of two light windows in the housing whereupon the dosimeter scale may be viewed by either direct or reflected light from any source available. The piezoelectric charging circuit is comprised of a pair of axially aligned cylinders of piezoelectric material mounted in a fulcrum type frame having a beam lever element in contact with one of the cylinders. A spring bias element is connected to the beam lever element and is actuated by a cam attached to the handle which when rotated acts upon the spring to cause an axial compressional force to be applied to the cylinders which thereby produce the required charging voltage.

  4. Use of two dosimeters for better estimation of effective dose

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Hyeong

    Obviously, a single dosimeter on the chest can underestimate effective dose (E) and effective dose equivalent (HE) significantly when radiation comes from the back because the dosimeter on the chest is shielded by the body of a radiation worker. This problem can be solved by using an extra dosimeter on the back so that at least one dosimeter is always directly exposed to radiation. In this work, the use of two dosimeters was studied using the MCNP code and mathematical phantoms. First, an optimal combination of dosimeter weighting factors was found to be 0.58 and 0.42 for chest and back dosimeters, respectively, through a systematic optimization process. The optimal algorithm, which uses these weighting factors, was superior to other algorithms reported in the literature. The underestimation problem when using a single-dosimeter approach for posterior incident radiation was completely solved by using two dosimeters and the optimal algorithm. The two-dosimeter approach also estimated E and HE very well for a broad range of frontal incident photon beams, neither underestimating E or HE by more than 11%, nor overestimating by more than about 50%. Although the use of two dosimeters effectively solved the underestimation problem of the single-dosimeter approach for posterior incident radiation, this approach overestimated E and HE for lateral, overhead, and underfoot beam directions. However, this overestimation can be reduced by using suitably selected anisotropic-responding dosimeters. To study the effect of anisotropic-responding properties of personal dosimeters on the estimation of E and HE, this work considered several types of anisotropic-responding dosimeters. In practical exposure situations, radiation workers move during exposure, which results in less overestimation of E and HE than static lateral, overhead, and underfoot exposures. To quantify the reduction of the overestimation by the movement of radiation workers, we averaged photon beam results over

  5. Solid-state gamma-ray dosimeter which measures radiation in terms of absorption in a material different from the detector material

    SciTech Connect

    Kronenberg, S.

    1988-02-04

    A solid-state gamma-ray dosimeter is described, which measures radiation in terms of absorption in a material different from the detector material. A solid-state detector, and amplifier, an analog-to-digital interface, and a microprocessor are combined in circuit to correct for differences between absorption of radiation in detector material and absorption in other materials, especially tissue. A suitable cladding may surround the detector. A method of generating dose-translation data for calibrating the microprocessor is also disclosed. The solid-state detector is attached to a multichannel analyzer circuit and subject to known doses of various monochromatic gamma rays. Output pulses from the detector are amplified and introduced into the multichannel analyzer. The spectrum produced is used to determine an average channel number (or pulse height) for a given dose of monochromatic radiation. The given dose is in units specific to material different from the detector material. The partial dose represented by a single detector pulse at that energy is computed. Partial doses for other energies are likewise computed.

  6. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  7. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  8. Environmental dosimeter of the thermoluminescent type

    DOEpatents

    Eichner, F.N.; Kocher, L.F.

    1974-01-29

    A dosimeter for accurately monitoring normally low-energy radiation including a thermoluminescent CaF phosphor enclosed within a tantalum capsule is described. The tantalum acts as a filter to weaken the measured dose due to photons having energies below about 0.2 MeV. Tantalum end caps are maintained on the capsule body by a polyolefin sheath formed from heat-contractable tubing. After exposing the dosimeter to environmental radiation, it is placed in a shielded chamber for about 24 h and subsequently annealed at about 80 deg C to release radiation energy accumulated in low-temperature traps. The dosimeter is then disassembled and the phosphors photometrically read at temperatures about 50 deg C to determine the absorbed radiation dose. (Official Gazette)

  9. Solid state neutron dosimeter for space applications

    SciTech Connect

    Nagarkar, V.; Entine, G.; Stoppel, P.; Cirignano, L. ); Swinehart, P. )

    1992-08-01

    One of the most important contributions to the radiation exposure of astronauts engaged in space flight is the significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Under NASA sponsorship, the authors are developing a solid state neutron sensor capable of being incorporated into a very compact, flight instrument to provide high quality real time measurement of this important radiation flux. The dosimeter uses a special, high neutron sensitivity, PIN diode that is insensitive t the other forms of ionizing radiation. The dosimeter will have the ability to measure and record neutron dose over a range of 50 microgray to tens of milligrays (5 millirads to several rads) over a flight of up to 30 days. the performance characteristics of the PIN diode with a detailed description of the overall dosimeter is presented. in this paper.

  10. R3DE: Radiation Risk Radiometer-Dosimeter on the International Space Station—Optical Radiation Data Recorded During 18 Months of EXPOSE-E Exposure to Open Space

    PubMed Central

    Schuster, Martin; Dachev, Tsvetan; Häder, Donat-Peter

    2012-01-01

    Abstract Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008–2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400–700 nm), UVA (315–400 nm), UVB (280–315 nm), and UVC (<280 nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1 Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m−2 for PAR, 269.03 MJ m−2 for UVA, 45.73 MJ m−2 for UVB, or 18.28 MJ m−2 for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE. Key Words: ISS—EXPOSE-E—R3DE—Radiation measurement—PAR—UV radiation. Astrobiology 12, 393–402. PMID:22680686

  11. The Assessment of Effective Dose Equivalent Using Personnel Dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Xie

    From January 1994, U.S. nuclear plants must develop a technically rigorous approach for determining the effective dose equivalent for their work forces. This dissertation explains concepts associated with effective dose equivalent and describes how to assess effective dose equivalent by using conventional personnel dosimetry measurements. A Monte Carlo computer code, MCNP, was used to calculate photon transport through a model of the human body. Published mathematical phantoms of the human adult male and female were used to simulate irradiation from a variety of external radiation sources in order to calculate organ and tissue doses, as well as effective dose equivalent using weighting factors from ICRP Publication 26. The radiation sources considered were broad parallel photon beams incident on the body from 91 different angles and isotropic point sources located at 234 different locations in contact with or near the body. Monoenergetic photons of 0.08, 0.3, and 1.0 MeV were considered for both sources. Personnel dosimeters were simulated on the surface of the body and exposed to with the same sources. From these data, the influence of dosimeter position on dosimeter response was investigated. Different algorithms for assessing effective dose equivalent from personnel dosimeter responses were proposed and evaluated. The results indicate that the current single-badge approach is satisfactory for most common exposure situations encountered in nuclear plants, but additional conversion factors may be used when more accurate results become desirable. For uncommon exposures involving source situated at the back of the body or source located overhead, the current approach of using multi-badges and assigning the highest dose is overly conservative and unnecessarily expensive. For these uncommon exposures, a new algorithm, based on two dosimeters, one on the front of the body and another one on the back of the body, has been shown to yield conservative assessment of

  12. System for use with solid state dosimeter

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Tomeraasen, P.L.

    1990-09-04

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquefied nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions. 3 figs.

  13. System for use with solid state dosimeter

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1990-01-01

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquified nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions.

  14. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  15. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  16. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  17. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  18. Automating the personnel dosimeter monitoring program

    SciTech Connect

    Compston, M.W.

    1982-12-01

    The personnel dosimetry monitoring program at the Portsmouth uranium enrichment facility has been improved by using thermoluminescent dosimetry to monitor for ionizing radiation exposure, and by automating most of the operations and all of the associated information handling. A thermoluminescent dosimeter (TLD) card, worn by personnel inside security badges, stores the energy of ionizing radiation. The dosimeters are changed-out periodically and are loaded 150 cards at a time into an automated reader-processor. The resulting data is recorded and filed into a useful form by computer programming developed for this purpose.

  19. New results for the space radiation environment of MIR space station obtained by Liulin dosimeter-radiometer. Comparison with LET spectrometer NAUSICAA.

    PubMed

    Dachev TsP; Semkova, J V; Matviichuk YuN; Koleva, R T; Tomov, B T; Baynov, P T; Bottollier-Depois, J F; Nguen, V D; Lebaron-Jacobs, L; Siegrist, M; Duvivier, E; Almarcha, B; Petrov, V M; Shurshakov, V V

    1995-01-01

    Since 1988 high sensitivity semiconductor dosimeter-radiometer "Liulin" worked on board of MIR space station. Device measured the absorbed dose rate and the flux of penetrating particles. The analysis of the data shows the following new results: In October 1989 and after March 24, 1991, two additional stable maximums in flux channel were observed in the southern-eastern part of South Atlantic Anomaly (SAA). These two maximums existed at least several months and seem to be due to trapped high energy electron and proton fluxes. In April 1991 additional maximums were localized in the following geographical coordinates regions: latitude = (-35 degrees)-(-50 degrees) longitude = 332 degrees-l6 degrees and lat.(-46 degrees)-(-52 degrees) long. 360 degrees-60 degrees. Additional maximums diffusion occurs inside radiation belt. Appearance of these maximums seems to be closely connected with preceding powerful solar proton events and associated geomagnetic dynamics of new belt disturbances. Alter the series of solar proton events in June 1991 we observed significant enhancement of this new radiation belt formation. To achieve sufficient accuracy of dose rate predictions in low Earth orbits the structure and dynamics of new belt should be carefully analyzed to be included in a new environment model. From the inter comparison of the data from "Liulin" and French developed tissue equivalent LET spectrometer NAUSICAA in the time period August-November 1992 we come to the following conclusions: Mainly there is good agreement between both data sets for absorbed dose in the region of SAA; Different situation of the instruments on the station can explain the cases when differences up to 2 times are observed; At high latitudes usually the tissue equivalent absorbed dose observations are 2 times larger than "Liulin" doses. PMID:11540982

  20. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  1. Problems and conception of ensuring radiation safety during Mars missions.

    PubMed

    Petrov, V M

    2004-01-01

    The Mars mission differs from near-Earth manned space flights by radiation environment and duration. The importance of effective using the weight of the spacecraft increases greatly because all the necessary things for the mission must be included in its starting weight. For this reason the development of optimal systems of radiation safety ensuring (RSES) acquires especial importance. It is the result of sharp change of radiation environment in the interplanetary space as compared to the one in the near-Earth orbits and significant increase of the interplanetary flight duration. The demand of a harder limitation of unfavorable factors effects should lead to radiation safety (RS) standards hardening. The main principles of ensuring the RS of the Mars mission (optimizing, radiation risk, ALARA) and the conception of RSES, developed on the basis of the described approach and the experience obtained during orbital flights are presented in the report. The problems that can impede the ensuring of the crew members' RS are also given here. PMID:15881790

  2. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  3. Kevlar® as a Potential Accident Radiation Dosimeter for First Responders, Law Enforcement and Military Personnel.

    PubMed

    Romanyukha, Alexander; Trompier, François; Benevides, Luis A

    2016-08-01

    Today the armed forces and law enforcement personnel wear body armor, helmets, and flak jackets composed substantially of Kevlar® fiber to prevent bodily injury or death resulting from physical, ballistic, stab, and slash attacks. Therefore, there is a high probability that during a radiation accident or its aftermath, the Kevlar®-composed body armor will be irradiated. Preliminary study with samples of Kevlar® foundation fabric obtained from body armor used by the U.S. Marine Corps has shown that all samples evaluated demonstrated an EPR signal, and this signal increased with radiation dose. Based on these results, the authors predict that, with individual calibration, exposure at dose above 1 Gy can be reliably detected in Kevlar® samples obtained from body armor. As a result of these measurements, a post-event reconstruction of exposure dose can be obtained by taking various samples throughout the armor body and helmet worn by the same irradiated individual. The doses can be used to create a whole-body dose map that would be of vital importance in a case of a partial body or heterogeneous exposure. PMID:27356056

  4. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  5. Hanford beta-gamma personnel dosimeter prototypes and evaluation

    SciTech Connect

    Fix, J.J.; Holbrook, K.L.; Soldat, K.L.

    1983-04-01

    Upgraded and modified Hanford dosimeter prototypes were evaluated for possible use at Hanford as a primary beta-gamma dosimeter. All prototypes were compatible with the current dosimeter card and holder design, as well as processing with the automated Hanford readers. Shallow- and deep-dose response was determined for selected prototypes using several beta sources, K-fluorescent x rays and filtered x-ray techniques. All prototypes included a neutron sensitive chip. A progressive evaluation of the performance of each of the upgrades to the current dosimeter is described. In general, the performance of the current dosimeter can be upgraded using individual chip sensitivity factors to improve precision and an improved algorithm to minimize bias. The performance of this dosimeter would be adequate to pass all categories of the ANSI N13.11 performance criteria for dosimeter procesors, provided calibration techniques compatible with irradiations adopted in the standard were conducted. The existing neutron capability of the dosimeter could be retained. Better dosimeter performance to beta-gamma radiation can be achieved by modifying the Hanford dosimeter so that four of the five chip positions are devoted to calculating these doses instead of the currently used two chip positions. A neutron sensitive chip was used in the 5th chip position, but all modified dosimeter prototypes would be incapable of discriminating between thermal and epithermal neutrons. An improved low energy beta response can be achieved for the current dosimeter and all prototypes considered by eliminating the security credential. Further improvement can be obtained by incorporating the 15-mil thick TLD-700 chips.

  6. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  7. A new type of extremity dosimeter

    NASA Astrophysics Data System (ADS)

    Uchrin, György

    1980-09-01

    A three element sandwich type dosimeter has been developed. The beta element is LiF cold pressed to an Al disc the response of which follows the energy dependence of the true skin beta dose for Emax⩾ 0.2 MeV. Filtered LiF hot pressed chips measure gamma dose and indicate the radiation quality.

  8. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  9. Measurement of individual doses of radiation by personal dosimeter is important for the return of residents from evacuation order areas after nuclear disaster.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru

    2015-01-01

    To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual's house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster. PMID:25806523

  10. Measurement of Individual Doses of Radiation by Personal Dosimeter Is Important for the Return of Residents from Evacuation Order Areas after Nuclear Disaster

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru

    2015-01-01

    To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual’s house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster. PMID:25806523

  11. US progress on the development of CR-39 based neutron dosimeters

    SciTech Connect

    Hadlock, D.E.

    1987-06-01

    Historically at US nuclear facilities, two types of personnel neutron dosimeters have been in routine use: nuclear track emulsion-Type A (NTA) film and thermoluminescent dosimeter (TLD)-albedo. Both of these dosimeters have energy-dependent responses. Therefore, the neutron energy spectra must be known, to interpret the dosimeter results properly. A new state-of-the-art dosimetry system has been developed within the US Department of Energy (US DOE) Personnel Neutron Dosimeter Evaluation and Upgrade Program. This system is called the combination thermoluminescent dosimeter/track etch dosimeter (TLD/TED). This paper briefly describes US DOE research currently being conducted to further enhance the TED portion of the combination TLD/TED system. The research areas involved include dose sensitivity, neutron energy range, specialized radiators, self-developing dosimeters, and neutron spectrometry. 1 fig., 1 tab.

  12. Methods and means of checking thermoluminescent and radiophotoluminescent dosimeters

    SciTech Connect

    Fominykh, V.I.; Oborin, A.V.; Sebekin, A.P.; Uryaev, I.A.

    1987-06-01

    The authors discuss methods of checking thermoluminescent and radiophotoluminescent dosimeters which are used often in monitoring radiation safety in various areas including nuclear power stations. When the dosimeters are checked in the fields of standard beta-ray sources, it is recommended that the standard absorbed-dose or equivalent-dose measures for beta radiation should be sources of /sup 90/Sr + /sup 90/Y, /sup 204/Tl, and /sup 147/Pm. Various safety guidelines are discussed.

  13. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  14. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  15. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-10-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  16. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a

  17. Fact-finding Survey in Response to the Manipulation of Personal Alarm Dosimeter Collection Efficiency: Lessons Learned About Post-Emergency Radiation Protection from the TEPCO Fukushima Daiichi APP Accident.

    PubMed

    Yasui, Shojiro

    2015-01-01

    During emergency work at TEPCO Fukushima Daiichi Atomic Power Plant on December 1, 2011 a subcontractor demanded that its contracted workers cover their personal alarm dosimeters (PAD) with 3-cm-thick lead plates to lower dosimeter readings. As a response, the Ministry of Health, Labour and Welfare (MHLW) conducted a fact-finding survey to identify similar cases and devise measures to prevent a recurrence of this incident. To screen the suspected cases, the MHLW extracted: a) cases in which a PAD reading was at least 15% higher than the reading obtained from a radio-photolumine-scence dosimeter (RPD), where the dose was greater than 5 mSv in a month (1813 data points), and b) dose data in which PAD readings were less than 50% of the expected dose, where exposure dose may exceed 1 mSv in a day (56 workers, 17,148 data points). From these screenings, the MHLW identified 50 instances from TEPCO and nine primary contractors, including four general contractors, two plant manufacturers, and three plant maintenance companies as the subjects of the due diligence study of exposure data, including interviews. The results of the survey provide lessons that can also be applied to transition from emergency radiation protection to normal operation, as the application of emergency dose limits had ceased on December 16, 2011, in the affected plant. Based on the results of the survey, the MHLW provided administrative guidance documents to TEPCO and 37 primary contractors. The major points of these documents include: a) identification of recorded dose values by comparison of PAD readings to RPD readings, b) storage and management of RPDs and control badges, c) circulation management of PADs and access control to the affected plant, d) estimation of planned doses and setting of alarm values of PADs, e) actions to be taken by contractors if worker dose limits are reached, and f) physical measures to prevent recurrence of the incident. PMID:25617063

  18. Proton-minibeam radiation therapy: A proof of concept

    SciTech Connect

    Prezado, Y.; Fois, G. R.

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  19. [Thermoluminescence Slab Dosimeter].

    PubMed

    Shinsho, Kiyomitsu; Koba, Yusuke; Tamatsu, Satoshi; Sakurai, Noboru; Wakabayashi, Genichiro; Fukuda, Kazusige

    2013-01-01

    In 1953 F. Daniels et al. used the property of thermoluminescence in dosimetry for the first time. Since then, numerous TLD have been developed. 2D TLD was investigated for the first time in 1972 by P Broadhead. However, due to excessive fading, difficulties with handling and the time required for measurements, development stalled. At the current time, the majority of TLD are used in small scale, localized dosimetry with a wide dynamic range and personal dosimeters for exposure management. Urushiyama et. al. have taken advantage of the commoditization of CCD cameras in recent years--making large area, high resolution imaging easier--to introduce and develop a 2D TLD. It is expected that these developments will give rise to a new generation of applications for 2D TL dosimetry. This paper introduces the "TL Slab Dosimeter" developed jointly by Urushiyama et. al. and our team, its measurement system and several typical usage scenarios. PMID:24893451

  20. Dosimeter Badge Detects Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Travis, Joshua C.; Moore, Gerald; Rose-Pehrsson, Susan; Carver, Patricia; Brenner, Karen

    1993-01-01

    Disposable dosimeter badge indicates approximate cumulative exposure to hydrazine or monomethyl hydrazine in air. Indication is change in colors of both paper tapes; one coated with para-N, N-dimethylaminobenzaldehyde. Colors of exposed tapes compared with colors on two preprinted color wheels to obtain estimate of exposure. Badges help minimize risks associated with exposure of personnel to hydrazine or monomethyl hydrazine, or suspected carcinogens. Also used as stationary monitors by taping them on walls or equipment at strategic locations.

  1. Optical waveguide dosimeter

    SciTech Connect

    Kronenberg, S.; Levine, H.; Mclaughlin, W.L.; Siebentritt, C.R.

    1983-03-22

    An optical waveguide dosimeter for personnel dosimetry is provided including a liquid solution of leuko dye hermetically sealed in plastic tubing. Optical transport is improved by dipping the ends of the plastic tubing into clear epoxy, thus forming beads that serve as optical lenses. A layer of clear ultraviolet absorbing varnish coated on these beads and an opaque outer layer over the plastic tubing provides protection against ambient uv.

  2. The high dose response and functional capability of the DT-702/Pd lithium fluoride thermoluminescent dosimeter.

    PubMed

    Lawlor, Tyler M; Talmadge, Molly D; Murray, Mark M; Nelson, Martin E; Mueller, Andrew C; Romanyukha, Alexander A; Fairchild, Gregory R; Grypp, Matthew D; Williams, Anthony S

    2015-05-01

    The United States Navy monitors the dose its radiation workers receive using the DT-702/PD thermoluminescent dosimeter, which consists of the Harshaw 8840 holder and the four-element Harshaw 8841 card. There were two main objectives of this research. In the first objective, the dosimeters were exposed to 100 Gy using electron and x-ray beams and found to respond approximately 30-40% lower than the delivered dose. No significant effect on the under-response was found when dose rate, radiation type, dosimeter position on the phantom, and dosimeter material were varied or when the card was irradiated while enclosed in its holder. Since the current naval policy is to remove from occupational use any thermoluminescent dosimeter with an accumulated deep dose equivalent of 0.05 Sv or greater, the functionality of the dosimeter was also investigated at deep dose equivalents of 0.05, 0.15, and 0.25 Sv using 60Co and 137Cs sources as the second main objective. All dosimeters were annealed following exposure and then exposed to 5.0 mSv from a 90Sr source. In all cases, the dosimeters responded within 3% of the delivered dose, indicating that the dosimeters remained functional as defined by naval dosimetry requirements. However, the anneal time required to clear the thermoluminescent dosimeter's reading was found to increase approximately as the cube root with the delivered dose. PMID:25811149

  3. The application of Sunna dosimeter film for process control at industrial gamma- and electron beam irradiation facilities

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Baranyai, M.; Fuochi, P. G.; Lavalle, M.; Corda, U.; Miller, S.; Murphy, M.; O'Doherty, J.

    2004-09-01

    The Sunna dosimeter was introduced for dose determination in the dose range of 50-300 kGy by measuring optically stimulated luminescence. The usefulness of the dosimeter film has already been shown in food irradiation for routine process control. The aim of the present study was to check the performance of the Sunna dosimeter film for process control in radiation sterilization under industrial processing conditions, i.e. at high activity gamma irradiators and at high energy electron beam facilities. To ensure similar irradiation conditions during calibration and routine irradiation "in-plant calibration" was performed by irradiating the Sunna dosimeters together with ethanol-monochlorobenzene transfer standard and alanine reference standard dosimeters. The Sunna dosimeters were then irradiated together with the routine dosimeter of the actual plant during regular production runs and the absorbed doses measured by the different dosimeters agreed within ±2%(1 σ).

  4. Hanford personnel dosimeter supporting studies FY-1981

    SciTech Connect

    Not Available

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies.

  5. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  6. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  7. Concept of quasi-periodic undulator - control of radiation spectrum

    SciTech Connect

    Sasaki, Shigemi

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  8. Fast neutron dosimeter using Cooled Optically Stimulated Luminescence (COSL)

    SciTech Connect

    Eschbach, P.A.; Miller, S.D.

    1991-10-01

    Data is presented that demonstrates the concept of a fast neutron dosimeter using Cooled Optically Stimulated Luminescence. CaF{sub 2}:Mn powder, compounded with polyethylene, was injection molded and pressed into 0.1-cm-thick sheets. The sheets were then cut to form dosimeters with dimensions, 1.25 cm by 1.25 cm. After a laser anneal, the dosimeters were exposed to various amounts (from 10 mSv to 100 mSv) of fast {sup 252}Cf neutrons. The exposed dosimeters were cooled to liquid nitrogen temperature, stimulated with laser light, and then allowed to warm up to room temperature whereupon the dose dependent luminescence was recorded with a photon counting system. When the control and gamma components were subtracted from the {sup 252}Cf response, a dose-dependent neutron response was observed. The design, construction, and preliminary performance of an automated system for the dose interrogation of individual CaF{sub 2}:Mn grains within the polyethylene matrix will also be discussed. The system uses a small CO{sub 2} laser to heat areas of the cooled dosimeter to room temperature. If the readout of very small grain within the plastic matrix is successful, it will enhance the neutron to gamma response of the dosimeter.

  9. Concepts of radiation safety and protection: Beyond BEIR V

    SciTech Connect

    Farman, A.G. )

    1991-01-01

    The publication of an updated report on the biological effects of ionizing radiation (BEIR V) has focused new attention on the potential hazards associated with the use of low doses of ionizing radiation for diagnostic purposes. This article reviews the BEIR V report findings and suggests methods for reducing the risks to dental patients and the operators of dental x-ray equipment.

  10. Ceric and ferrous dosimeters show precision for 50-5000 rad range

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Henry, V. D.

    1968-01-01

    Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET.

  11. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  12. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  13. Space Radiation Effects on Electronics: Simple Concepts and New Challenges

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation covers the following topics: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) NASA Approaches to Commercial Electronics; 5) Final Thoughts.

  14. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  15. Radiation treatment of brain tumors: Concepts and strategies

    SciTech Connect

    Marks, J.E. )

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  16. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  17. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  18. Comparison of the ionizing radiation fields observed by Liulin-Photo and R3D-B3 spectrum-dosimeters inside and outside Foton-M3 spacecraft

    NASA Astrophysics Data System (ADS)

    Damasso, Mario; Dachev, Tsvetan; Zanini, Alba; Falzetta, Giuseppe; Lambreva, Maya; Rea, Giuseppina; Giardi, Maria Teresa

    Foton-M3 ESA space mission flew in Low Earth Orbit (250÷290 km) from 14 to 26 September 2007, carrying more than 40 experiments related to different scientific disciplines. During the mission, the dose and particle flux variations inside and outside the capsule have been monitored in real time by Liulin-Photo e R3D-B3 spectrum-dosimeters respectively, the latter housed in the Biopan-6 facility containing experiments directly exposed to the space environment. Liulin-Photo and R3D-B3 are both composed of a silicon detector (area=2 cm2 ) and they measure the energies deposited by the incident ionizing particles (R3D-B3 measuring also solar UV radiation). Inside the capsule, Liulin-Photo was mounted on the top of the space biology experiment Photo-II to monitor the radiation field around this experiment. The device Photo- II is a system of optical sensors that measured in real time the chlorophyll fluorescence to study the effects of the mixed ionizing space radiations on the photosynthetic activity of several microrganisms modified at the level of the photosynthetic electron transfer chain of Photosystem II. In this study we present the results obtained comparing the dose and flux data collected from the two instruments, in order to get information about the effects produced by the capsule shielding. In particular, we analyse in deeper detail the data corresponding to the passages of the spacecraft above the South Atlantic magnetic Anomaly (SAA) and inside the outer electron belt. A comparison between experimental data and predictions of ionizing radiation environment models is also performed. Moreover, an analysis of some space weather data is conducted to better characterize the space environment in relation to the effect on the biological material during the mission.

  19. Design considerations for space radiators based on the liquid sheet (LSR) concept

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Chubb, Donald L.

    1991-01-01

    Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.

  20. Performance evaluation of diagnostic radiology dosimeters in clinical and calibration x-ray beams.

    PubMed

    Hourdakis, Costantine John; Boziari, Argyro; Manetou, Aggeliki

    2010-05-01

    Diagnostic radiology dosimeters should comply with International Electrotechnical Commission (IEC) 61674 standard in order to perform measurements with sufficient accuracy and reliability. The calibration of a dosimeter is performed under, and pertains to, reference conditions. However, in most cases, dosimeters are used for clinical measurements under non-reference conditions. The performance, in terms of accuracy of dose measurements, of six commercial diagnostic radiology dosimeters was tested at reference calibration and at clinical non-reference conditions. The results showed that all dosimeters being tested exhibited limits of variation within the +/-5% IEC limits. Depending on the detector's physical and operational properties, the dosimeters' energy dependence of response values varied from -4.7% to +4.2%. To address this variation of response, calibration at three radiation qualities (RQR 3, RQR 5, and RQR 9), at least, is recommended. Different irradiation conditions such as air kerma rate, x-ray tube design, x-ray system, and dosimeter operational modes affect the dosimeters' response by less than 3%. A dosimeter that complies with IEC standards and operates according to its specifications could be used at typical clinical irradiation conditions taking into account only corrections for the energy dependence of response. In this case, the error in dose accuracy is expected to be less than 3%. PMID:20386200

  1. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology.

    PubMed

    Dong, S L; Chu, T C; Lan, G Y; Wu, T H; Lin, Y C; Lee, J S

    2002-12-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40Vp to 125kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures. PMID:12406633

  2. NightCool: A Nocturnal Radiation Cooling Concept

    SciTech Connect

    Parker, Danny S.; Sherwin, John R.; Hermelink, Andreas H.

    2008-08-26

    This report describes an experimental evaluation that was conducted on a night sky cooling system designed to substantially reduce space cooling needs in homes in North American climates. The system uses a sealed attic covered by a highly conductive metal roof (a roof integrated radiator) which is selectively linked by air flow to the main zone with the attic zone to provide cooling - largely during nighttime hours.

  3. An Experimental Concept for Probing Nonlinear Radiation Belt Physics

    NASA Astrophysics Data System (ADS)

    Amatucci, Bill; Ganguli, Guru; Crabtree, Chris; Mithaiwala, Manish; Siefring, Carl; Tejero, Erik

    2014-10-01

    The SMART sounding rocket is designed to probe the nonlinear response of a known ionospheric stimulus. High-speed neutral barium atoms generated by a shaped charge explosion perpendicular to the magnetic field in the ionosphere form a ring velocity distribution of photo-ionized Ba+ that will generate lower hybrid waves. Induced nonlinear scattering of lower hybrid waves into whistler/magnetosonic waves has been theoretically predicted, confirmed by simulations, and observed in the lab. The effects of nonlinear scattering on wave evolution and whistler escape to the radiation belts have been studied and observable signatures quantified. The fraction of the neutral atom kinetic energy converted into waves is estimated at 10-12%. SMART will carry a Ba release module and an instrumented daughter section with vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors to determine wave spectra in the source region and detect precipitated particles. The Van Allen Probes can detect the propagation of the scattered whistlers and their effects in the radiation belts. By measuring the radiation belt whistler energy density, SMART will confirm the nonlinear scattering process and the connection to weak turbulence. Supported by the Naval Research Laboratory Base Funds.

  4. p-MOSFET total dose dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  5. Real-time dosimeter targeted to nuclear applications

    NASA Astrophysics Data System (ADS)

    Correia, Alexandre; Rosa, Carla C.; Santos, Pedro M. P.; Falcão, António N.; Lorentz, Katharina

    2014-08-01

    An intrinsic fiber optic dosimeter (FOD) targeted to nuclear applications is presented. The proposed real-time dosimeter provides dose information based on the historic record over time of the effects of ionizing radiation on single- and multimode pure silica fibers, and also on PMMA plastic fibers. The effect of 60Co gamma irradiation on optical links based on silica and plastic fibers were assessed, considering thermal environment effects over a wide range of variation of the operating parameters. Cerenkov radiation and radiation-induced absorption effects were in focus. The corresponding distortion and spectral transmission degradation were evaluated over wide range of the operating parameters. Radiation induced attenuation (RIA) has shown a spectral band dependent behaviour up to 840 Gy dose levels. The performance of different fibers was assessed against the performance of non-irradiated fibers. From the measurements of dose rate and total dose imparted by ionizing radiation in the fibers we verified that fibers with radiation resistance issues showed wavelength-dependent radiation sensitivity increasing with dose rate. Upon evaluation of correlations between the total dose, the induced loss at various dose rates and different wavelengths, it was concluded that intrinsic fiber dosimeters can be used for dose rates in the range 4 - 28 Gy/min., typical of severe radiation environments.

  6. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  7. Evaluation of a high exposure solar UV dosimeter for underwater use.

    PubMed

    Schouten, Peter W; Parisi, Alfio V; Turnbull, David J

    2007-01-01

    Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280-320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320-400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements. PMID:17645666

  8. Foundation, excavation and radiation shielding concepts for a 16-m large lunar telescope

    NASA Technical Reports Server (NTRS)

    Chua, Koon M.; Johnson, Stewart W.

    1991-01-01

    NASA is considering a 16-m diameter optical telescope on the moon as a part of the Space Exploration Initiative. Fundamental concepts of engineering activities on the moon and how they can be applied to the establishment of a 16-m large lunar telescope (LLT) are discussed. These fundamental concepts include the engineering response of lunar soils and how they affect construction activities, namely, drilling, blasting, ripping, digging and compaction. A mirror support structure and foundation design concept is proposed. The foundation considered is a multiple contact points spud-can type footing. It does not appear that a deep foundation or the presence of bedrock is required to achieve the telescope foundation stiffness. The LLT system will include a regolith covered housing, the size of a small room, which will contain sensitive electronic equipment including charge coupled devices which need protection from cosmic radiation effects. A brief discussion is made on radiation, radiation transport and radiation effects on electronics and on humans. Radiation protection techniques and the different emplacement schemes for the LLT instrument housing for radiation protection are suggested. A structural concept of an early lunar based telescope is also presented.

  9. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    SciTech Connect

    McCaw, Travis J. Micka, John A.; DeWerd, Larry A.

    2014-05-15

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the

  10. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group.

    PubMed

    Hodgson, David C; Dieckmann, Karin; Terezakis, Stephanie; Constine, Louis

    2015-01-01

    The optimal management of children with Hodgkin lymphoma (HL) should limit the risk of treatment-related toxicity without compromising disease control. Consequently, increasing effort is being directed to retaining the demonstrated efficacy of radiation therapy (RT) in maximizing the cure of HL while reducing the radiation exposure of normal tissues. Historically, guidelines for RT volume definition used in pediatric HL trials have referenced 2-dimensional imaging and bony landmarks to define classical involved field RT. With recognition of the efficacy of chemotherapy, the data on the adverse late effects of radiation, and the evolution of advanced imaging techniques that reveal the location of both tumor and normal tissues, it is necessary that radiation techniques for children and adolescents be refined. The concepts described by the International Commission on Radiation Units provide a common approach for field definition using 3-dimensional computed tomographic--based RT planning and volumetric image guidance. Here we describe the application of these concepts in the planning of RT for pediatric HL. This will be increasingly important as current and upcoming pediatric HL trials will employ these concepts to deliver RT. PMID:25413415

  11. Performance testing of extremity dosimeters against a draft standard

    SciTech Connect

    Harty, R.; Reece, W.D.; Hooker, C.D.; McDonald, J.C.

    1990-09-01

    The assurance of worker radiation safety is directly related to the performance of personnel dosimetry. The US Department of Energy (DOE) has long recognized this critical relationship and has addressed this issue by instituting the DOE Laboratory Accreditation Program (DOELAP) which strives to improve the quality of personnel dosimetry through performance testing, dosimetry calibration, intercomparisons, evaluations and accreditations. One area of personnel dosimetry that has not been specifically addressed by DOELAP is extremity dosimeter testing. This task was directed at assessing the problems of implementing extremity dosimeter performance testing. A series of performance tests were made based on a draft standard written by the Health Physics Society Standards Committee (HPSSC) using extremity dosimeters currently in use at DOE and DOE contractor facilities. The results of this study indicate the need to incorporate performance testing of extremity dosimetry systems into DOELAP. Based on the results of this study, recommendations are made for improvements to the draft standard. 20 refs., 6 figs., 3 tabs.

  12. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  13. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  14. Radiochromic leuko dye real time dosimeter, one way optical waveguide

    SciTech Connect

    Kronenberg, S.

    1982-11-15

    This invention relates generally to nuclear radiation dosimetry, and more particularly to a radiochromic leuko dye dosimeter constructed and arranged to measure absorbed radiation doses, such as gamma rays, X-rays and fast neutrons, in real time; viz., as the dose is being delivered. A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exists through the transparent end. The intensity of the existing light is measured to determine radiation induced absorption of the leuko dye.

  15. Dosimeter for the measurement of UV exposures related to melanoma induction.

    PubMed

    Turnbull, David J; Parisi, Alfio V

    2010-07-01

    This paper reports on the development of a dosimeter for the measurement of biologically effective UV exposures related to melanoma induction. The melanoma (UVMel) dosimeter is based on the combination of polysulfone and nalidixic acid. This research found that the combination of these photosensitive chromophores reacts to UV wavelengths from 290 to 390 nm. It was found that a large change in optical absorbance occurred at 345 nm when the dosimeter was employed to quantify the solar UV waveband. Preliminary results indicate that this UVMel dosimeter can measure exposures of more than 189 kJ m(-2) of biologically effective weighted solar UV radiation with an inter-dosimeter variability of no more than +/-5%. PMID:20551501

  16. Monte Carlo simulation of single and two-dosimeter approaches in a steam generator channel head.

    PubMed

    Kim, C H; Reece, W D

    2002-08-01

    In a steam generator channel head, it was not unusual to see radiation workers wearing as many as twelve dosimeters over the surface of the body to avoid a possible underestimation of effective dose equivalent (H(E)) or effective dose (E). This study shows that only one or two dosimeters can be used to estimate H(E) and E without a significant underestimation. MCNP and a point-kernel approach were used to model various exposure situations in a steam generator channel head. The single-dosimeter approach (on the chest) was found to underestimate H(E) and E significantly for a few exposure situations, i.e., when the major portion of radiation source is located in the backside of a radiation worker. In this case, the photons from the source pass through the body and are attenuated before reaching the dosimeter on the chest. To assure that a single dosimeter provides a good estimate of worker dose, these few exposure situations cannot dominate a worker's exposure. On the other hand, the two-dosimeter approach (on the chest and back) predicts H(E) and E very well, hardly ever underestimating these quantities by more than 4% considering all worker positions and contamination situations in a steam generator channel head. This study shows that two dosimeters are adequate for an accurate estimation of H(E) and E in a steam generator channel head. PMID:12132712

  17. Passive dosimeters other than film and TLDs (thermoluminescent dosimeter)

    SciTech Connect

    Hankins, D.E.

    1986-05-15

    This presentation will describe CR-39 plastic as a personnel neutron dosimeter. Recent research at LLNL and elsewhere has resulted in the development of a dosimetry system that is superior to any personnel neutron dosimeter previously available. The author describes the features of the dosimetry system and the new etching procedures and techniques in detail. Most of the research was done at the LLNL and has been supported as a part of the DOE Neutron Dosimetry Upgrade Program. 10 refs., 4 figs., 1 tab.

  18. Worms in space? A model biological dosimeter.

    PubMed

    Zhao, Yang; Johnsen, Robert; Baillie, David; Rose, Ann

    2005-06-01

    Although it is well known that radiation causes mutational damage, little is known about the biological effects of long-term exposure to radiation in space. Exposure to radiation can result in serious heritable defects in experimental animals, and in humans, susceptibility to cancer, radiation-sickness, and death at high dosages. It is possible to do ground controlled studies of different types of radiation on experimental animals and to physically measure radiation on the space station or on space probes. However, the actual biological affects of long-term exposure to the full range of space radiation have not been studied, and little information is available about the biological consequences of solar flares. Biological systems are not simply passive recording instruments. They respond differently under different conditions, and thus it is important to be able to collect data from a living animal. There are technical difficulties that restrict the placement of an experimental organism in a space environment for long periods of time, in a manner that allows for the recovery of genetic data. Use of the self-fertilizing hermaphroditic nematode, Caenorhabditis elegans offers potential for the design of a biological dosimeter. In this paper, we describe the advantages of this model system and review the literature of C. elegans in space. PMID:16038089

  19. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  20. Tungsten thermal neutron dosimeter

    NASA Technical Reports Server (NTRS)

    Ball, L. L.; Richardson, P. J.; Sheibley, D. W.

    1969-01-01

    Tungsten-185 activity, which is produced by neutron activation of tungsten-184, determines thermal neutron flux. Radiochemical separation methods and counting techniques for irradiated tungsten provide accurate determination of the radiation exposure.

  1. Near infrared radio-luminescence of O{sub 2} loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments

    SciTech Connect

    Di Francesca, D.; Girard, S.; Boukenter, A.; Ouerdane, Y.; Agnello, S.; Gelardi, F. M.; Marcandella, C.; Paillet, P.

    2014-11-03

    We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.

  2. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  3. Concepts and challenges in cancer risk prediction for the space radiation environment.

    PubMed

    Barcellos-Hoff, Mary Helen; Blakely, Eleanor A; Burma, Sandeep; Fornace, Albert J; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M

    2015-07-01

    Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program. PMID:26256633

  4. Concepts and challenges in cancer risk prediction for the space radiation environment

    NASA Astrophysics Data System (ADS)

    Barcellos-Hoff, Mary Helen; Blakely, Eleanor A.; Burma, Sandeep; Fornace, Albert J.; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G.; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M.

    2015-07-01

    Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.

  5. Fetal radiation dose estimates for I-131 sodium iodide in cases where conception occurs after administration

    SciTech Connect

    Sparks, R.B.; Stabin, M.G.

    1999-01-01

    After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossover could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.

  6. Method for preparing dosimeter for measuring skin dose

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  7. Numerical simulation of `DMSP` dosimeter response

    SciTech Connect

    Jordan, T.M. ||

    1993-12-31

    Four Defense Meteorological Satellite Program (DMSP) dosimeters were modeled for numerical simulation of radiation response. The modeling included the hemispherical aluminum dome, the solid state detector, and the tungsten base plate. Orbits were generated for 840 km and 98 degrees inclination and used with 1965 and 1985 magnetic field models and the AP8 and AE8 data sets to obtain solar minimum and solar maximum integral fluences for protons and electrons. Adjoint Monte Carlo methods were then used to simulate the transport of these environments in the geometric models of the dosimeters. Volume average dose calculations were used to calculate the response of the LOLET (less than 1 MeV deposited per particle) channels to electrons and secondary bremsstrahlung. Monte Carlo methods were used, in conjunction with a pulse height analysis, to obtain the proton response of the LOLET and HILET (1 to 10 MeV deposited per particle) channels. The HILET and LOLET responses obtained from these calculations are in good agreement with DMSP measurements for 1984-85.

  8. Laboratory facilities and recommendations for the characterization of biological ultraviolet dosimeters.

    PubMed

    Bolsée, D; Webb, A R; Gillotay, D; Dörschel, B; Knuschke, P; Krins, A; Terenetskaya, I

    2000-06-01

    A laboratory facility for characterizing biological dosimeters for the measurement of UV radiation has been built and tested. The facility is based on a solar simulator, stabilized by photofeedback, and monitored by a spectroradiometer, with a versatile filter arrangement. This enables the following characteristics of the dosimeters to be ascertained: spectral response, linearity, and reciprocity; angular acceptance and response; calibration in simulated sunlight. The system has been tested on a variety of dosimeters and has the potential to be used with other radiometers, subject currently to the size of their active surface. PMID:18345205

  9. Dye strip dosimeter

    SciTech Connect

    Saisomboon, S.; Siri-Upathum, C.

    1987-10-01

    This paper describes a new method for measuring radiation dose by using natural pigments. The pigments were extracted from Hibiscus rosa sinensis L. and Canna indica L. and were irradiated with gamma ray. Doses of 30 rad and above are indicated by color changes.

  10. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  11. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  12. An investigation into the accuracy of the albedo dosimeter DVGN-01 in measuring personnel irradiation doses in the fields of neutron radiation at nuclear power installations of the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Beskrovnaya, L. G.; Goroshkova, E. A.; Mokrov, Yu. V.

    2010-05-01

    The calculated results of research into the accuracy of an individual albedo dosimeter DVGN-01 as it corresponds to the personal equivalent dose for neutrons H p (10) and to the effective dose for neutrons E eff in the neutron fields at Joint Institute for Nuclear Research Nuclear Power Installations (JNPI) upon different geometries of irradiations are presented. It has been shown that correction coefficients are required for the specific estimation of doses by the dosimeter. These coefficients were calculated using the energy sensitivity curve of the dosimeter and the known neutron spectra at JNPI. By using the correction factors, the uncertainties of both doses will not exceed the limits given to the personnel according to the standards.

  13. Characterization of a reusable PRESAGE® 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Juang, T.; Adamovics, J.; Oldham, M.

    2015-01-01

    This study investigates a reusable PRESAGE® 3D dosimeter (Presage-RU), which would improve cost-effectiveness and facilitate wider implementation of comprehensive, high resolution 3D dosimetry. Small (1x1x4.5 cm) and large (8 cm diameter, 4.5 cm length) sample dosimeters were irradiated multiple times to characterize dose response (i.e. radiation-induced change in optical density (ΔOD)), optical clearing rate, and dose distribution stability. Presage- RU exhibited an initial dose response sensitivity of 0.0119 ΔOD/(cm-Gy), a reduction in response with subsequent irradiations, and a small, permanent ΔOD (~1-6% of initial signal) following each irradiation. Dosimeters optically cleared at an exponential rate (average T1/2 = 24.8±3.6 h), and were effectively cleared after ~5-8 days. 3D gamma analysis (3%/3mm, 10% dose threshold) of a 4-field box plan applied to the large dosimeter showed good agreement following initial irradiation (96.6% passing), but a reduction in passing rate (89.1% passing) with subsequent irradiation. Further study is warranted to fully assess and quantify the performance of Presage-RU for repeat irradiations.

  14. Two methods for examining angular response of personnel dosimeters

    SciTech Connect

    Plato, P.; Leib, R.; Miklos, J.

    1988-06-01

    The American National Standard ANSI N13.11-1983 is used to test the accuracy (bias plus precision) of dosimetry processors as part of the dosimetry accreditation program of the National Voluntary Laboratory Accreditation Program (NVLAP). Section 3.8 of the ANSI N13.11-1983 standard requires that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. The NVLAP accreditation program excluded Section 3.8, and thus no angular response data have been generated in an organized fashion. The objective of this project is to examine the feasibility of two alternative methods to test the angular response of personnel dosimeters. The first alternative involves static irradiations with the dosimeters at fixed angles to a radiation source. The second alternative involves dynamic irradiations with the dosimeters mounted on a rotating phantom. A Panasonic UD-802 personnel dosimetry system** was used to generate data to examine both alternatives. The results lead to two major conclusions. Firstly, Section 3.8 of the ANSI N13.11-1983 standard should be amended to require a pass/fail test for angular response. Secondly, a comparison between angular response data generated with a fixed or a rotating phantom shows that the rotating phantom is the more cost-effective method.

  15. Laser CT evaluation on normoxic PAGAT gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kumar, D. S.; Samuel, E. J. J.; Watanabe, Y.

    2013-06-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

  16. The thermoluminescence study of epoxy based LiF:Mg,Cu,P dosimeters

    NASA Astrophysics Data System (ADS)

    Rahangdale, S. R.; Wankhede, S. P.; Kadam, Sonal; Dhabekar, Bhushan. S.; Palikundwar, U. A.; Moharil, S. V.

    2016-05-01

    The LiF:Mg,Cu,P phosphor is the most investigated phosphor in radiation dosimetry. Results on thermoluminescence of the epoxy based LiF:Mg,Cu,P dosimeters irradiated with gamma radiations are presented and compared with results of LiF:Mg,Cu,P powder. The glow curve structure of both LiF powder and dosimeter are same and only difference is found in the glow curve peak temperature. The LiF dosimeters were made from the 5012A and 5012B epoxy. The dosimeters had a mass of about 18 mg, 5.0 mm diameter and 0.5 mm thickness. The sensitivity variation of the dosimeters for exposure to 60Co gamma rays at different angles of incidence of the radiation is found to be within 4%. Its minimum detectable dose is about 3020 µGy. The epoxy based dosimeters withstand different environment and it can be used with general TL reader without need of any special design due to its small size and plane surface.

  17. High energy neutron dosimeter

    DOEpatents

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  18. High energy neutron dosimeter

    DOEpatents

    Sun, Rai Ko S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  19. Skin contamination dosimeter

    DOEpatents

    Hamby, David M.; Farsoni, Abdollah T.; Cazalas, Edward

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  20. Radiation protection effectiveness of a proposed magnetic shielding concept for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Shinn, J. L.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.

  1. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    NASA Astrophysics Data System (ADS)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-09-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  2. Solid state neutron dosimeter for space applications

    NASA Technical Reports Server (NTRS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-01-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  3. Solid state neutron dosimeter for space applications

    NASA Astrophysics Data System (ADS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-08-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  4. Characterization of a Tissue-Equivalent Dosimeter based on CMOS Solid-State Photomultipliers

    NASA Astrophysics Data System (ADS)

    Johnson, Erik; Benton, Eric; Stapels, Christopher; Chrsitian, James; Jie Chen, Xiao

    Available digital dosimeters are bulky and unable to provide real-time monitoring of dose from space radiation. The complexity of space-flight design requires reliable, fault-tolerant equip-ment capable of providing real-time dosimetry during a mission, which is not feasible with the existing thermoluminescent dosimeter (TLD) technology, especially during extravehicular activity (EVA). Real-time monitoring is important for low-Earth orbiting spacecraft and inter-planetary space flight to alert the crew when Solar Particle Events (SPE) increase the particle flux of the spacecraft environment. A dosimeter-on-a-chip for personal dosimetry is comprised of a tissue-equivalent scintillator coupled to a solid-state photomultiplier (SSPM) built using CMOS technology. The radiation sensitive component of the dosimeter is coupled to analog signal processing components and a microprocessor, which can maintain processing fidelity up to 5x105 events per second. The dynamic range of the dosimeter has been verified from 1-GeV protons (0.22 keV/µm in H20) to 420 MeV/n Fe (201.1 keV/µm in H20). The dosimeter confirmed doses to within 3

  5. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  6. Radiochromic leuko dye real time dosimeter, one way optical waveguide

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1984-12-18

    A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exits through the transparent end. The intensity of the exiting light is measured to determine radiation induced absorption of the leuko dye.

  7. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  8. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  9. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  10. Students' Conceptions About `Radiation': Results from an Explorative Interview Study of 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Neumann, Susanne; Hopf, Martin

    2012-12-01

    One basis of good teaching is to know about your students' preconceptions. Studies about typical ideas that students bring to the science classroom have been and continue to be a major field in science education research. This study aims to explore associations and ideas that students have regarding `radiation', a term widely used in various fields and necessary to understand fundamental ideas in science. In an explorative study, the perceptions of 50 high school students were examined using semi-structured interviews. The students were 14-16 years old and were chosen from 7 different high schools in an urban area in Austria. Following an interview guideline, students were asked about their general associations with the term `radiation' as well as about their general understanding of different types of radiation. A qualitative analysis of these interviews following the method of Flick (2009) revealed that the students' associations were, to a great extent, very different from the scientific use of the term. Several conceptions that could inhibit students' learning processes could be identified. Consequences for the teaching of the topic `radiation' in science lessons, which are based on these preconceptions, are presented in the conclusion.

  11. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  12. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  13. N-isopropylacrylamide gel dosimeter to evaluate clinical photon beam characteristics.

    PubMed

    Chiu, Chung-Yu; Tsang, Yuk-Wah; Hsieh, Bor-Tsung

    2014-08-01

    The introduction of beam intensity control concept in current radiotherapy techniques has increased treatment planning complexity. Thus, small-field dose measurement has become increasingly vital. Polymer gel dosimetry method is widely studied. It is the only dose measurement tool that provides 3D dose distribution. This study aims to use an N-isopropylacrylamide (NIPAM) gel dosimeter to conduct beam performance measurements of percentage depth dose (PDD), beam flatness, and symmetry for photon beams with field sizes of 3×3 and 4×4 cm(2). Computed tomography scans were used to readout the gel dosimeters. In the PDD measurement, the NIPAM gel dosimeter and Gafchromic™ EBT3 radiochromic film displayed high consistency in the region deeper than the build-up region. The gel dosimeter dose profile had 3% lower flatness and symmetry measurement at 5 cm depth for different fields compared with that of the Gafchromic™ EBT3 film. During gamma evaluation under 3%/3 mm dose difference/distance-to-agreement standard, the pass rates of the polymer gel dosimeter to the TPS and EBT3 film were both higher than 96%. Given that the gel is tissue equivalent, it did not exhibit the energy dependence problems of radiochromic films. Therefore, the practical use of NIPAM polymer gel dosimeters is enhanced in clinical dose verification. PMID:24836904

  14. An investigation into the sensitivity of various albedo neutron dosimeters aimed at correcting the readings

    NASA Astrophysics Data System (ADS)

    Alekseev, A. G.; Mokrov, Yu. V.; Morozova, S. V.

    2012-03-01

    The results of an experimental determination of the sensitivity of three types of individual neutron albedo dosimeters in neutron reference fields on the basis of radionuclide sources and at the top concrete shielding of the U-70 accelerator are presented. The results show that the ratios between the responses of the albedo dosimeters designed earlier at the Joint Institute for Nuclear Research (the albedo dosimeter (AD) and the multicomponent dosimeter (MD)) and the currently used DVGN-01 dosimeter are constant within 25% in a wide range of neutron energy. This fact makes it possible to use the results of measuring the AD and MD responses obtained earlier in neutron fields of nuclear-physical installations at the Joint Institute for Nuclear Research (JINR) for the correction of DVGN-01 dosimeter measurement results to apply it to personal radiation monitoring (PRM) at these installations. The correction factors for DVGN-01 measurement results are found and recommended to be used in PRM for most JINR installations.

  15. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad). PMID:23026976

  16. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation

    PubMed Central

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S.

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  17. A New Concept for Geothermal Energy Extraction: The Radiator - Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Geiser, P.; Marsh, B. D.; Malin, P. E.; Moore, S.

    2014-12-01

    Enhanced Geothermal Systems (EGS) in hot dry rock frequently underperform or fail due to insufficient reservoir characterization and poorly controlled permeability stimulation. Our new EGS design is based on the concept of a cooling radiator of an internal combustion engine, which we call the Radiator EGS (RAD-EGS). Within a hot sedimentary aquifer, we propose to construct vertically extensive heat exchanger vanes, which consist of rubblized zones of high permeability and which emulate a hydrothermal system. A "crows-foot" lateral drilling pattern at multiple levels is used to form a vertical array that includes S1 and Shmax. To create the radiator, we propose to use propellant fracing. System cool-down is delayed by regional background flow and induced upward flow of the coolant which initially heats the rock. Tomographic Fracture Imaging is used to image and control the permeability field changes. Preliminary heat transfer calculations suggest that the RAD-EGS will allow for commercial electricity production for at least several tens of years.

  18. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  19. Investigation on Tissue Equivalent Normoxic Polymer Gel Dosimeter using In-house Laser CT scanning system

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, D.; Jebaseelan Samuel, E. James

    2010-11-01

    Optical Computed Tomography has wide applications in the treatment of cancer. In continuation of this, an in-house Laser CT scanner has been built for "3D gel dosimetry". The Laser CT (LCT) scanner plays a major for Gel dosimeter or phantom readout and in clinical radiation therapy as a 3-Dimensional Radiation Dosimetry. A gel dosimeter which absorbs dose in a tissue-equivalent manner and allows the measurement of spatial distribution of the deposited dose is required. The normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When laser passes through this gel phantom, absorption and scattering takes place and combined to attenuation. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by means of a sensor. Reconstruction using Mat Lab algorithm provides 3D dose distribution.

  20. A multi-sensor dosimeter for brachytherapy based on radioluminescent fiber sensors

    NASA Astrophysics Data System (ADS)

    Correia, A.; Chiquita, S.; Hussain, N. Sooraj; Pirraco, Rui; Rosa, C. C.

    2013-05-01

    High-precision dosimeters are needed in brachytherapy treatments to ensure safe operation and adequate working conditions, to assess the correspondence between treatment planning and dose delivery, as well as to monitor the radiation dose received by patients. In this paper we present the development of a multi-sensor dosimeter platform targeted for brachytherapy environments. The performance of different scintillating materials response is assessed. The emission bands of most common scintillator materials used in ionizing radiation detection are typically below 550 nm, thus they may be prone to stem effect response. To avoid this effect we propose the use of scintillators with longer wavelength emission. Samples of neodymium doped glasses are evaluated as new infrared radioluminescent scintillators for real-time dosimeters, namely lithium lead boron silver (LLB4Ag) and lithium bismuth boron silver (LBiB4Ag) glasses. Their response is compared with the response of organic scintillator BCF-60 with a 530nm response.

  1. Response of aqueous dichromate and nanoclay dichromate gel dosimeters to carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Fukasaku, K.; Furuta, T.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2013-06-01

    We have recently reported the significant reduction of radiation product diffusion by the incorporation of clay nanoparticles into dichromate gel (DCG) dosimeters. In this work, we investigate the influence of the nanoclay addition and gelation on the MRI R1 (1/T1) image response of the dichromate dosimeter to the therapeutic carbon ion beam (12C6+ 290 MeV/u). The MRI R1 distribution in the aqueous dichromate solution well reproduces physical dose-depth distribution with a high linear-energy-transfer (LET) efficiency. The nanoclay DCG dosimeters, on the other hand, exhibit composition-dependent LET efficiency degradation, while a sharp Bragg peak can still be detected. These results indicate that the nanocomposite gel addition may induce change in the radiation-induced reaction mechanism.

  2. Improving the Success Rate of Delivering Annual Occupational Dosimetry Reports to Persons Issued Temporary External Dosimeters

    SciTech Connect

    Mallett, Michael Wesley

    2014-09-09

    Workers who are not routinely monitored for occupational radiation exposure at LANL may be issued temporary dosimeters in the field. Per 10CFR835 and DOE O 231.1A, the Laboratory's radiation protection program is responsible for reporting these results to the worker at the end of the year. To do so, the identity of the worker and their mailing address must be recorded by the delegated person at the time the dosimeter is issued. Historically, this data has not been consistently captured. A new online application was developed to record the issue of temporary dosimeters. The process flow of the application was structured such that: 1) the worker must be uniquely identified in the Lab's HR database, and 2) the mailing address of record is verified live time via a commercial web service, for the transaction to be completed. A COPQ savings (Type B1) of $96K/year is demonstrated for the new application.

  3. Comparative sensitivity study and reading correction of various albedo dosimeters in neutron fields on the U-400M accelerator

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozov, S. V.; Shchegolev, V. Yu.

    2013-03-01

    The sensitivities of three types of albedo dosimeters are experimentally studied in U-400M accelerator radiation fields in the experimental hall (one point) and behind its shielding (three points). It is shown that the ratios of the sensitivity of the albedo dosimeter (AD) and the combined personal dosimeter (CPD) used earlier at the Joint Institute for Nuclear Research (JINR) to the sensitivity of the DVGN-01 dosimeter are constant within 25%. This allows the AD and CPD sensitivities obtained earlier at the JINR facilities to be used for correcting readings of the DVGN-01 now used at JINR for personal radiation monitoring. Correction coefficients are found for DVGN-01 readings behind the U-400M shielding. This has allowed a more reliable correction coefficient to be established for the Flerov Laboratory of Nuclear Reactions (FLNR).

  4. Review of four novel dosimeters developed for use in radiotherapy

    NASA Astrophysics Data System (ADS)

    Metcalfe, P.; Quinn, A.; Loo, K.; Lerch, M.; Petasecca, M.; Wong, J.; Hardcastle, N.; Carolan, M.; McNamara, J.; Cutajar, D.; Fuduli, I.; Espinoza, A.; Porumb, C.; Rosenfeld, A.

    2013-06-01

    Centre for Medical Radiation Physics (CMRP) is a research strength at the University of Wollongong, the main research theme of this centre is to develop prototype novel radiation dosimeters. Multiple detector systems have been developed by Prof Rosenfelds' group for various radiation detector applications. This paper focuses on four current detector systems being developed and studied at CMRP. Two silicon array detectors include the magic plate and dose magnifying glass (DMG), the primary focus of these two detectors is high spatial and temporal resolution dosimetry in intensity modulated radiation therapy (IMRT) beams. The third detector discussed is the MOSkinTM which is a high spatial resolution detector based on MOSFET technology, its primary role is in vivo dosimetry. The fourth detector system discussed is BrachyView, this is a high resolution dose viewing system based on Medipix detector technology.

  5. Investigation of radiological properties and water equivalency of PRESAGE dosimeters

    SciTech Connect

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Adamovics, John; Bosi, Stephen; Kim, Jung-Ha; Baldock, Clive

    2011-04-15

    Purpose: PRESAGE is a dosimeter made of polyurethane, which is suitable for 3D dosimetry in modern radiation treatment techniques. Since an ideal dosimeter is radiologically water equivalent, the authors investigated water equivalency and the radiological properties of three different PRESAGE formulations that differ primarily in their elemental compositions. Two of the formulations are new and have lower halogen content than the original formulation. Methods: The radiological water equivalence was assessed by comparing the densities, interaction probabilities, and radiation dosimetry properties of the three different PRESAGE formulations to the corresponding values for water. The relative depth doses were calculated using Monte Carlo methods for 50, 100, 200, and 350 kVp and 6 MV x-ray beams. Results: The mass densities of the three PRESAGE formulations varied from 5.3% higher than that of water to as much as 10% higher than that of water for the original formulation. The probability of photoelectric absorption in the three different PRESAGE formulations varied from 2.2 times greater than that of water for the new formulations to 3.5 times greater than that of water for the original formulation. The mass attenuation coefficient for the three formulations is 12%-50% higher than the value for water. These differences occur over an energy range (10-100 keV) in which the photoelectric effect is the dominant interaction. The collision mass stopping powers of the relatively lower halogen-containing PRESAGE formulations also exhibit marginally better water equivalency than the original higher halogen-containing PRESAGE formulation. Furthermore, the depth dose curves for the lower halogen-containing PRESAGE formulations are slightly closer to that of water for a 6 MV beam. In the kilovoltage energy range, the depth dose curves for the lower halogen-containing PRESAGE formulations are in better agreement with water than the original PRESAGE formulation. Conclusions: Based

  6. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  7. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  8. Development of a scintillating optical fiber dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-01-01

    A radiation dosimeter for low dose rates based on a scintillating optical fiber coupled to a high gain photon-counting silicon photomultiplier (SiPM) for light readout was developed. The dosimeter satisfies most of the requirements for in-vivo, low dose-rate and real-time dosimetry. The device uses a small scintillator, is flexible and reasonably water-equivalent for photon energies above 100 keV [1,2]. Promising results were obtained when operating the device in current mode, detecting radiation from an X-ray tube in the 15-40 kV range and for anode currents as low as a few μA. As single-photon detectors, the major drawback of SiPMs is their high dark count rate (noise), which is a problem for low dose rate measurements in single photon counting mode. This drawback can be reduced by cooling the SiPMs or by using a much more efficient proposed solution in which two SiPMs operate in coincidence mode reading out the same optical fiber, thus allowing the rejection of false events triggered by dark noise. We have implemented a simple low-cost system, with dedicated front-end electronics operating in pulse mode for coincidence detection. Performance studies of the dosimeter operating in current mode, as a function of the X-ray tube current and voltage, show good sensitivity even for low radiation dose. When operating in pulse mode under low activity gamma irradiation, the coincidence system was able to reduce the dark noise to a residual value.

  9. Lower limits of detection for thermal luminescent dosimeters

    SciTech Connect

    Spacher, P.J. ); Mis, F.J.; Klueber, M.R. )

    1990-08-01

    This paper reports that Groups of Panasonic UD-802 thermoluminescent dosimeters (TLDs) were irradiated to successively increasing doses of Cesium-137 gamma radiation (0.662 MeV gamma rays) and then processed using a Panasonic UD-710 automatic TLD reader. The results were subjected to statistical tests to determine the critical level, the level of detection, and the less-than level. The critical level is equivalent to 1.7 mrad, the lower limit of detection is equivalent to 5 mrad and the less-than level has a high range value of 7.5 mrad.

  10. Use of wrist albedo neutron dosimeters

    SciTech Connect

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures.

  11. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. PMID:26275817

  12. Calibration factors for the SNOOPY NP-100 neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Moscu, D. F.; McNeill, F. E.; Chase, J.

    2007-10-01

    Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.

  13. The LLNL CR-39 personnel neutron dosimeter

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-09-29

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs.

  14. Method and apparatus for passive optical dosimeter comprising caged dye molecules

    DOEpatents

    Sandison, David R.

    2001-07-03

    A new class of ultraviolet dosimeters is made possible by exposing caged dye molecules, which generate a dye molecule on exposure to ultraviolet radiation, to an exterior environment. Applications include sunburn monitors, characterizing the UV exposure history of UV-sensitive materials, especially including structural plastics, and use in disposable `one-use` optical equipment, especially medical devices.

  15. The Neutron Energy Response of the Panasonic Model 809 Personnel Dosimeter

    SciTech Connect

    Frederick Cummings

    2010-04-01

    In 2010, the U.S. Department of Energy will adopt a new set of radiation weighting factors and quality factors to be consistent with values recommended by the International Commission on Radiological Protection. The change will affect the magnitude of occupational exposure assigned to radiation workers exposed to neutron radiation. Understanding the energy response of the dosimeter and the effect of the new quantities is critical to accurately ensuring that occupational exposure remains below the established regulatory limits. Therefore, the factors used to interpret dosimeter readings must be re-evaluated for each irradiation field over the range of neutron energies in which the dosimeter is used. This paper describes one method of determining the neutron response of the dosimeter. A Monte Carlo approach was used to model the energy response of the Panasonic Model 809 dosimeter over the range of energies from 1.0 x 10^-8 to 20 MeV. The response, normalized to the response at 2.1 MeV, ranged from approximately 0.5 at 20 MeV to approximately 26 at 1 eV. The response was then divided at each energy by the appropriate dose conversion coefficient to determine the dose response of the dosimeter. The dose responses, normalized to the response at 2.1 MeV, ranged from approximately 0.4 at 20 MeV to 765 at 1 eV. Dose conversion factors were determined for various reference neutron spectra and plotted on the dose response curve. Good agreement was observed except for the case of D2Omoderated 252Cf.

  16. Nuclear accident dosimeter processing with attenuation filters

    SciTech Connect

    Gunter, R.J.

    1994-05-01

    An evaluation of the Martin Marietta Energy Systems, Inc., Personnel Nuclear Accident Dosimeters was undertaken to determine if they could meet DOE 5480.11 requirements for photon dose assessment. Dosimeters were irradiated with a {sup 137}Cs source to doses ranging from 0.5 to 10,000 rad and processed using transmission filters to prevent photomultiplier tube saturation. Dose equivalent responses were found to meet the requirements using dosimeter reader number 55. Use of reader number 11 revealed a problem with current procedures. While performing a normal calibration with transmission filters in place it was discovered that there was a high noise component in the calibration signal, resulting in a poor calibration. Dosimeters processed with reader number 11 using a 1% transmission filter determined element 3 response 30% below expectations. The low element 3 response resulted in a significantly lower dose calculation for affected dosimeters. Another factor affecting overall response was an excessive supralinearity correction applied to dosimeters exposed between 100 and 1,000 rad.

  17. A basic study of some normoxic polymer gel dosimeters.

    PubMed

    De Deene, Y; Hurley, C; Venning, A; Vergote, K; Mather, M; Healy, B J; Baldock, C

    2002-10-01

    Polymer gel dosimeters offer a wide range of potential applications in the three-dimensional verification of complex dose distribution such as in intensity-modulated radiotherapy (IMRT). Until now, however, polymer gel dosimeters have not been widely used in the clinic. One of the reasons is that they are difficult to manufacture. As the polymerization in polymer gels is inhibited by oxygen, all free oxygen has to be removed from the gels. For several years this was achieved by bubbling nitrogen through the gel solutions and by filling the phantoms in a glove box that is perfused with nitrogen. Recently another gel formulation was proposed in which oxygen is bound in a metallo-organic complex thus removing the problem of oxygen inhibition. The proposed gel consists of methacrylic acid, gelatin, ascorbic acid, hydroquinone and copper(II)sulphate and is given the acronym MAGIC gel dosimeter. These gels are fabricated under normal atmospheric conditions and are therefore called 'normoxic' gel dosimeters. In this study, a chemical analysis on the MAGIC gel was performed. The composition of the gel was varied and its radiation response was evaluated. The role of different chemicals and the reaction kinetics are discussed. It was found that ascorbic acid alone was able to bind the oxygen and can thus be used as an anti-oxidant in a polymer gel dosimeter. It was also found that the anti-oxidants N-acetyl-cysteine and tetrakis(hydroxymethyl)phosphonium were effective in scavenging the oxygen. However, the rate of oxygen scavenging is dependent on the anti-oxidant and its concentration with tetrakis(hydroxymethyl)phosphonium being the most reactive anti-oxidants. Potentiometric oxygen measurements in solution provide an easy way to get a first impression on the rate of oxygen scavenging. It is shown that cupper(II)sulphate operates as a catalyst in the oxidation of ascorbic acid. We, therefore, propose some new normoxic gel formulations that have a less complicated chemical

  18. On the response of electronic personal dosimeters in constant potential and pulsed x- ray beams

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Oliveira, P. M. C.; da Silva, T. A.

    2016-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed x-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed x-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC x-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed x-rays.

  19. Electromagnetic field exposure dosimeter. Final report, September 1992-May 1993

    SciTech Connect

    Feaga, A.C.; Hilliard, M.P.; Link, R.

    1994-07-28

    The growing concern about adverse health effects caused by electromagnetic radiation prompted the ideas for this dosimeter. Data have been presented that link prolonged exposure to electromagnetic radiation from power lines to leukemia and some types of cancer. At present, though, there is a lack of recording instrumentation to measure the prolonged exposure of an individual; thus, it is not possible to correlate properly the amount of exposure or dose to health effects. With the recent advances in small, low-power devices, a small measuring device can be developed. Once this is built, a large data base can be obtained to help correlate electromagnetic field exposure to health conditions. The objective of this project is to develop an instrument which can measure electromagnetic fields over a prolonged period of time. The instrument would be small, say about the size of a radio Walkman, and would be worn throughout the day while taking data, as the individual goes about normal activities. A PC would be used to retrieve the data from the instrument at the end of the day. The dosimeter comprises a triaxial ferrite-loaded coil sensor, a set of amplifiers and filters, analog-to-digital converters, a microcontroller, and random access data memory. The signals from the sensor are filtered into three frequency ranges: one to measure 60-Hz exposure and two harmonics, another to measure high-energy pulsed energy, and a third frequency range to record the activity level of the individual. The signals from the filters are digitized and read into a microcontroller. The microcontroller performs a few calculations and controls the flow of the data to either random access memory or to a computer. A computer is used to retrieve the data from the dosimeter, and can store and display the measured data.

  20. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  1. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter

    NASA Astrophysics Data System (ADS)

    Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu

    2016-06-01

    Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.

  2. Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.

    SciTech Connect

    Potter, Charles Augustus

    2011-05-01

    An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists of two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.

  3. Angular response characterization of the Martin Marietta Energy Systems, Inc., personnel dosimeter

    SciTech Connect

    Ahmed, A.B.; McMahan, K.L.; Colwell, D.S.

    1993-08-01

    An evaluation of the Martin Marietta Energy Systems, Inc., personnel dosimeter to radiation incident from non-perpendicular angles was carried out to meet the Department of Energy Laboratory Accreditation Program (DOELAP) requirements. Dosimeters were exposed to six different radiation sources. For each source, dosimeters were rotated about their horizontal and vertical axes at seven different angles each. Raw readings were processed through the dose calculation algorithm used for routine personnel dosimetry to determine dose equivalent values. Dose equivalent responses relative to zero degree incident angle were found to be within {plus_minus} 20% for M150, K-59 and {sup 137}Cs photons when the incident angle was 60{degree} or less. For low-energy photon irradiations (M30 and K-16), responses for angles other than perpendicular incidence are generally unpredictable. Reasons include: (1) failure of dose calculation algorithm to identify the radiation field correctly due to unusual element ratios; and (2) at extreme angles ({plus_minus} 85{degree}), the dosimeter design (in relation to the irradiation geometry) becomes the limiting factor in producing reproducible results. Response to {sup 204}Tl beta particles decreases rapidly with increasing angle of incidence.

  4. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  5. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  6. Response of an FBX dosimeter to high LET 7Li and 12C ions

    NASA Astrophysics Data System (ADS)

    Bhat, N. N.; Choudhary, D.; Sarma, A.; Gupta, B. L.; Siddappa, K.

    2003-12-01

    We have carried out systematic studies on the response of ferrous sulphate-benzoic acid-xylenol orange (FBX)—a highly sensitive chemical dosimeter in liquid form to accelerated charged particles of different LET. Dosimeters were exposed in the form of thin layers to graded fluence of 7Li ion beam with three different energies Viz, 46, 38 and 27 MeV corresponding to average LETs of 6.3, 7.5 and 11 eV Å -1 and 12C ion beam with energy 45.6 MeV corresponding to average LET of 52.5 eV Å -1. From the investigations, the corresponding G(Fe +3) values were found to be (51.7±1.3)×10 -7, (35.4±0.7)×10 -7, (19.3±0.6)×10 -7 and (8.4±0.1)×10 -7 mol J -1, respectively. For gamma radiation, with estimated LET of 0.02 eV Å -1, G(Fe +3) value was observed to be (56.1±0.4)×10 -7 mol J -1. Clearly, G(Fe +3) values were found to decrease with increasing LET of the particle beam. However, the dosimeter showed no dependence on LET up to about 6 eV Å -1 unlike the Fricke dosimeter. The results confirm the response of FBX dosimeter is non-linear for doses exceeding 5 Gy for 60Co gamma rays. More importantly, the present study using 7Li and 12C ions clearly shows that response of the FBX dosimeter is linear for high LET radiations at low as well as high doses.

  7. Experimental determination of the influence of oxygen on the PRESAGE® dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2016-01-01

    It is generally accepted that the PRESAGE® radiochromic dosimeter is not sensitive to oxygen, however, this claim has not been supported or verified experimentally. Therefore, the aim of this study was to experimentally determine the potential influence of oxygen on dose sensitivity of the PRESAGE® dosimeter and its reporting system. Batches of PRESAGE® and its radical initiator-leuco dye reporting system were prepared in aerobic and anaerobic conditions. The anaerobic batches were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. The overall results show that oxygen has some influence on the dosimetric characteristics of PRESAGE®, although the radical initiator does appear to oxidize the leucomalachite green even in the presence of oxygen. Deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ~30% when compared to the non-deoxygenated system. A minor increase in sensitivity (~5%) was also achieved by deoxygenating the PRESAGE® precursor prior to casting. In addition, dissolved oxygen measurements revealed low levels of dissolved oxygen (0.40  ±  0.04 mg l-1) in the polyurethane precursor used to fabricate the PRESAGE® dosimeters, as compared to water (8.60  ±  0.03 mg l-1) and the reporting system alone (1.30  ±  0.10 mg l-1). The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE® system. However, deoxygenation of the dosimeter precursors prior to casting improves the dosimeters dose sensitivity by ~5%, which might be particularly useful for measuring low radiation doses

  8. Near-Infrared Transcranial Radiation for Major Depressive Disorder: Proof of Concept Study

    PubMed Central

    Cassano, Paolo; Cusin, Cristina; Mischoulon, David; Hamblin, Michael R.; De Taboada, Luis; Pisoni, Angela; Chang, Trina; Yeung, Albert; Ionescu, Dawn F.; Petrie, Samuel R.; Nierenberg, Andrew A.; Fava, Maurizio; Iosifescu, Dan V.

    2015-01-01

    Transcranial near-infrared radiation (NIR) is an innovative treatment for major depressive disorder (MDD), but clinical evidence for its efficacy is limited. Our objective was to investigate the tolerability and efficacy of NIR in patients with MDD. We conducted a proof of concept, prospective, double-blind, randomized study of 6 sessions of NIR versus sham treatment for patients with MDD, using a crossover design. Four patients with MDD with mean age 47 ± 14 (SD) years (1 woman and 3 men) were exposed to irradiance of 700 mW/cm2 and a fluence of 84 J/cm2 for a total NIR energy of 2.40 kJ delivered per session for 6 sessions. Baseline mean HAM-D17 scores decreased from 19.8 ± 4.4 (SD) to 13 ± 5.35 (SD) after treatment (t = 7.905; df = 3; P = 0.004). Patients tolerated the treatment well without any serious adverse events. These findings confirm and extend the preliminary data on NIR as a novel intervention for patients with MDD, but further clinical trials are needed to better understand the efficacy of this new treatment. This trial is registered with ClinicalTrials.gov NCT01538199. PMID:26356811

  9. Thermoluminescent Dosimeter Use for Environmental Surveillance at the Hanford Site, 1971–2005

    SciTech Connect

    Antonio, Ernest J.; Poston, Ted M.; Rathbone, Bruce A.

    2010-03-01

    This report describes the use of thermo luminescent dosimeters for environmental surveillance of external radiation on and around the Hanford Site for the period of 1970 to 2005. It addresses changes in the technology and associated quality control and assurance used in this work and summarizes the results of the 35 year period of external radiation surveillance. The appendices to this report provide trend plots for each location that comprised the shoreline, onsite, perimeter, and offsite sample design.

  10. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures.

    PubMed

    Ding, George X; Malcolm, Arnold W

    2013-09-01

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations. PMID:23920245

  11. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Malcolm, Arnold W.

    2013-09-01

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.

  12. TH-C-19A-05: Evaluation of a New Reusable 3D Dosimeter

    SciTech Connect

    Juang, T; Adamovics, J; Oldham, M

    2014-06-15

    Purpose: PRESAGE is a radiochromic plastic which has demonstrated strong potential for high resolution single-use 3D dosimetry. This study evaluates a new PRESAGE formulation (Presage-RU) in which the radiochromic response is reversible (the dosimeter optically clears after irradiation), enabling the potential for reusability. Methods: Presage-RU dose response and optical-clearing rates were evaluated in both small volume dosimeters (1×1×4.5cm) and a larger cylindrical dosimeter (8cm diameter, 4.5cm length). All dosimeters were allowed to fully optically clear in dark, room temperature conditions between irradiations. Dose response was determined by irradiating small volume samples from 0–8.0Gy and measuring change in optical density. The cylindrical dosimeter was irradiated with a simple 4-field box plan (parallel opposed pairs of 4cm×4cm AP-PA beams and 2cm×4cm lateral beams) to 20Gy. High resolution 3D dosimetry was achieved utilizing optical-CT readout. Readings were tracked up to 14 days to characterize optical clearing. Results: Initial irradiation yielded a response of 0.0119△OD/(Gy*cm) while two subsequent reirradiations yielded a lower but consistent response of 0.0087△OD/(Gy*cm). Strong linearity of dose response was observed for all irradiations. In the large cylindrical dosimeter, the integral dose within the high dose region exhibited an exponential decay in signal over time (halflife= 23.9 hours), with the dosimeter effectively cleared (0.04% of the initial signal) after 10 days. Subsequent irradiation resulted in 19.5% lower initial signal but demonstrated that the exponential clearing rate remained consistent. Results of additional subsequent irradiations will also be presented. Conclusion: This work introduces a new re-usable radiochromic dosimeter (Presage-RU) compatible with high resolution (sub-millimeter) 3D dosimetry. Sensitivity of the initial radiation was observed to be slightly higher than subsequent irradiations, but the

  13. Calibration results obtained with Liulin-4 type dosimeters

    NASA Astrophysics Data System (ADS)

    Dachev, Ts.; Tomov, B.; Matviichuk, Yu.; Dimitrov, Pl.; Lemaire, J.; Gregoire, Gh.; Cyamukungu, M.; Schmitz, H.; Fujitaka, K.; Uchihori, Y.; Kitamura, H.; Reitz, G.; Beaujean, R.; Petrov, V.; Shurshakov, V.; Benghin, V.; Spurny, F.

    The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with Monte-Carlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.

  14. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  15. Do saccharide doped PAGAT dosimeters increase accuracy?

    NASA Astrophysics Data System (ADS)

    Berndt, B.; Skyt, P. S.; Holloway, L.; Hill, R.; Sankar, A.; De Deene, Y.

    2015-01-01

    To improve the dosimetric accuracy of normoxic polyacrylamide gelatin (PAGAT) gel dosimeters, the addition of saccharides (glucose and sucrose) has been suggested. An increase in R2-response sensitivity upon irradiation will result in smaller uncertainties in the derived dose if all other uncertainties are conserved. However, temperature variations during the magnetic resonance scanning of polymer gels result in one of the highest contributions to dosimetric uncertainties. The purpose of this project was to study the dose sensitivity against the temperature sensitivity. The overall dose uncertainty of PAGAT gel dosimeters with different concentrations of saccharides (0, 10 and 20%) was investigated. For high concentrations of glucose or sucrose, a clear improvement of the dose sensitivity was observed. For doses up to 6 Gy, the overall dose uncertainty was reduced up to 0.3 Gy for all saccharide loaded gels compared to PAGAT gel. Higher concentrations of glucose and sucrose deteriorate the accuracy of PAGAT dosimeters for doses above 9 Gy.

  16. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose–responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose–response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in

  17. Initial characterization of a gel patch dosimeter for in vivo dosimetry.

    PubMed

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-05-21

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  18. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  19. Radio-physical properties of micelle leucodye 3D integrating gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; Baete, S. H.; De Deene, Y.

    2011-02-01

    Recently, novel radiochromic leucodye micelle hydrogel dosimeters were introduced in the literature. In these studies, gel measured electron depth dose profiles were compared with ion chamber depth dose data, from which it was concluded that leucocrystal violet-type dosimeters were independent of dose rate. Similar conclusions were drawn for leucomalachite green-type dosimeters, only after pre-irradiating the samples to a homogeneous radiation dose. However, in our extensive study of the radio-physical properties of leucocrystal violet- and leucomalachite green-type dosimeters, a significant dose rate dependence was found. For a dose rate variation between 50 and 400 cGy\\,min^{-1}, a maximum difference of 75% was found in optical dose sensitivity for the leucomalachite green-type dosimeter. Furthermore, the measured optical dose sensitivity of the leucomalachite green-type dosimeter was four times lower than the value previously reported in the literature. For the leucocrystal violet-type dosimeter, a maximum difference in optical dose sensitivity of 55% was found between 50 and 400 cGy\\,min^{-1}. A modified composition of the leucomalachite green-type dosimeter is proposed. This dosimeter is composed of gelatin, sodium dodecyl sulfate, chloroform, trichloroacetic acid and leucomalachite green. The optical dose sensitivity amounted to 4.375 \\times 10^{-5} \\,cm^{-1}\\; cGy^{-1} (dose rate 400 cGy\\,min^{-1}). No energy dependence for photon energies between 6 and 18 MV was found. No temperature dependence during readout was found notwithstanding a temperature dependence during irradiation of 1.90 cGy °C-1 increase on a total dose of 100 cGy. The novel gel dosimeter formulation exhibits an improved spatial stability (2.45 \\times 10^{-7} \\,cm^{2}\\; s^{-1} (= 0.088 mm^2 \\; h^{-1})) and good water/soft tissue equivalence. Nevertheless, the novel formulation was also found to have a significant, albeit reduced, dose rate dependence, as a maximum difference of 33

  20. Fiber optic dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-08-01

    A small dimension, real-time readout dosimeter is desirable for specific applications in medical physics as for example, dose measurement in prostate brachytherapy. This particular radiotherapy procedure consists in the permanent deposition of low energy, low-dose and low-dose rate small sized radioactive seeds. We developed a scintillating fiber optic based dosimeter suitable for in-vivo, real-time low dose and low dose rate measurements. Due to the low scintillation light produced in the scintillating fiber, a high sensitive and high gain light detector is required. The Silicon Photomultipliers are an interesting option that allowed us to obtain good results in our studies.

  1. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    SciTech Connect

    Dumas, Michael; Rakowski, Joseph T.

    2015-12-15

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of two days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner

  2. Effect of perchloric acid on the performance of the Fricke xylenol gel dosimeter.

    PubMed

    El Gohary, M I; Soliman, Y S; Amin, E A; Gawad, M H Abdel; Desouky, O S

    2016-07-01

    The conventional ferrous xylenol orange (XO) gel (FXG) dosimeter is being wildly investigated for radiotherapy dose measurements. Upon irradiation, its color turns red due to oxidation of Fe(2+) into Fe(3+), which forms a complex with xylenol orange. The effect of perchloric acid (PCA) on the dosimetric properties of the gel in the dose range of 1-15Gy was investigated using visual spectrophotometry. FXG-PCA responds to radiation dose linearly and exhibits higher radiation sensitivity than the conventional gel dosimeter. PCA in a concentration of 20mM enhances the radiation sensitivity ~44%. Stability of the absorbances of both the gels during storage under various conditions was investigated, and the uncertainty of dose measurements was estimated. PMID:27135606

  3. Cyanocobalamin solutions as potential dosimeters in low-dose food irradiations.

    PubMed

    Prakasan, Velayudhan; Sanyal, Bhaskar; Pritamdas Chawla, Surinder; Chander, Ramesh; Sharma, Arun

    2014-04-01

    Potential of aqueous solutions of cyanocobalamin in gamma radiation dosimetry was investigated. The solutions are inexpensive, nontoxic and easy-to-prepare dosimeters, which could be useful for measuring gamma radiation doses in various applications, such as quarantine treatment of fruit or insect disinfestation of grains and pulses. The optical absorbance of cyanocobalamin solutions of the optimal concentration 0.08 mM decreases with increasing radiation dose. The reproducible dependence of the absorbance decrease on the dose can be described with a polynomial. Pre- and post-irradiation stability of the solution absorbance, as well as effects of the irradiation temperature and dose rate, were studied. The response is not significantly affected by storage of the irradiated dosimeters under ambient conditions for 20 days. The performance characteristics of this chemical dosimetry system suggest that it can be useful to measure doses in irradiations of food. PMID:24530977

  4. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields. PMID:24206205

  5. Miniature personal electronic UVR dosimeter with erythema response and time-stamped readings in a wristwatch.

    PubMed

    Heydenreich, Jakob; Wulf, Hans Christian

    2005-01-01

    Personal ultraviolet radiation (UVR) dosimetry is important because sunlight is the most important risk factor for skin cancer and a risk factor for some eye diseases and immunosuppression and related disorders. Integrating devices, such as polysulphone film dosimeters, are generally used. To measure the exact dose at specific times, we have developed a personal electronic UVR dosimeter that makes time-stamped measurements. It has a sensor with an erythema action spectrum response and a linear sensitivity (dose-response) with no offset. The sensor has cosine response, and the dosimeter can cope with environmental conditions such as rain, temperature and dirt. It can be programmed to measure with different time intervals and save the average of a specified number of measurements in the memory that can store 32 000 time-stamped measurements. It is small (36 x 28 x 13 mm), weighs 14 g and can work for 4 months without maintenance. It is worn on the wrist, is equipped with a watch showing the time and may thus be used in large-scale studies. The sensitivity can change by 10% due to temperature changes from -5 to 40 degrees C. The UVR dosimeter sensitivity is 0.09 standard erythema doses (SED)/h and the difference in total received dose during 7 days between a Solar Light 501 UV-Biometer (186 SED) and our UVR dosimeter was 3% and the median difference in daily total dose was 2.2%. The dosimeter provides unique possibilities. Examples of personal UVR measurements, data calculations and how they can be interpreted are given. PMID:15850424

  6. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    PubMed

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time. PMID:24648245

  7. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2004-08-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest. PMID:15257213

  8. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2005-06-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest. PMID:15891457

  9. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2005-06-14

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  10. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2007-03-27

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  11. Response characteristics of selected personnel neutron dosimeters

    SciTech Connect

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field /sup 252/Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables.

  12. Investigating hydrogel dosimeter decomposition by chemical methods

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products.

  13. Pen Ink as an Ultraviolet Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Turner, Joanna; Parisi, Alfio; Spence, Jenny

    2008-01-01

    A technique for using highlighter ink as an ultraviolet dosimeter has been developed for use by secondary school students. The technique requires the students to measure the percentage of colour fading in ink drawn onto strips of paper that have been exposed to sunlight, which can be calibrated to measurements of the ultraviolet irradiance using…

  14. A small active dosimeter for applications in space

    NASA Astrophysics Data System (ADS)

    Ritter, Birgit; Maršálek, Karel; Berger, Thomas; Burmeister, Sönke; Reitz, Günther; Heber, Bernd

    2014-06-01

    The radiation field in low Earth orbits (LEO) differs significantly from the radiation environment on Earth's surface. Exposures are by far higher and pose an additional health risk for astronauts. Continuous monitoring is therefore a necessary task in the frame of radiation protection measures. A small battery-driven active dosimeter telescope based on silicon detectors meeting the requirements for LEO applications has been developed. The instrument, the Mobile Dosimetric Telescope (MDT), is designed to measure the absorbed dose rate and the linear energy transfer (LET) spectra. From the latter the mean quality factor of the radiation field can be derived and hence an estimate of the dose equivalent as a measure of the exposure. The calibration of the device is done using radioactive isotopes and heavy ions. Fragmentation products of heavy ions are used to show the ability of the MDT to reliably detect energy depositions from high energetic nuclei. Radiation measurements inside aircraft during long distance flights, serving as field tests of the instrument, prove the good performance of the instrument.

  15. Differential hepatic avoidance radiation therapy: Proof of concept in hepatocellular carcinoma patients

    PubMed Central

    Bowen, Stephen R.; Saini, Jatinder; Chapman, Tobias R.; Miyaoka, Robert S.; Kinahan, Paul E.; Sandison, George A.; Wong, Tony; Vesselle, Hubert J.; Nyflot, Matthew J.; Apisarnthanarax, Smith

    2015-01-01

    Purpose To evaluate the feasibility of a novel planning concept that differentially redistributes RT dose away from functional liver regions as defined by 99mTc-sulphur colloid (SC) uptake on patient SPECT/ CT images. Materials and methods Ten HCC patients with different Child–Turcotte–Pugh scores (A5-B9) underwent SC SPECT/CT scans in treatment position prior to RT that were registered to planning CT scans. Proton pencil beam scanning (PBS) therapy plans were optimized to deliver 37.5–60.0 Gy (RBE) over 5–15 fractions using single field uniform dose technique robust to range and setup uncertainty. Photon volumetrically modulated arc therapy (VMAT) plans were optimized to the same prescribed dose and minimum target coverage. For both treatment modalities, differential hepatic avoidance RT (DHART) plans were generated to decrease dose to functional liver volumes (FLV) defined by a range of thresholds relative to maximum SC uptake (43–90%) in the tumor-subtracted liver. Radiation dose was redistributed away from regions of increased SC uptake in each FLV by linearly scaling mean dose objectives during PBS or VMAT optimization. DHART planning feasibility was assessed by a significantly negative Spearman’s rank correlation (RS) between dose difference and SC uptake. Patient, tumor, and treatment planning characteristics were tested for association to DHART planning feasibility using non-parametric Kruskal–Wallis ANOVA. Results Compared to conventional plans, DHART plans achieved a 3% FLV dose reduction for every 10% SC uptake increase. DHART planning was feasible in the majority of patients with 60% of patients having RS < −0.5 (p < 0.01, range −1.0 to 0.2) and was particularly effective in 30% of patients (RS < −0.9). Mean dose to FLV was reduced by up to 20% in these patients. Only fractionation regimen was associated with DHART planning feasibility: 15 fraction courses were more feasible than 5–6 fraction courses (RS < −0.93 vs. RS > −0

  16. A theoretical concept of low level/low LET radiation carcinogenic risk (LLCR) projection

    SciTech Connect

    Filyushkin, I.V.

    1992-06-01

    Carcinogenic risk to humans resulting from low level/low LET radiation exposure (LLLCR) has not been observed directly because epidemiological observations have not yet provided statistically significant data on risk values. However, these values are of great interest for radiation health science and radiation protection practice under both normal conditions and emergency situations. This report presents a theoretical contribution to the validation of dose and dose rate efficiency factors (DDREF) transforming cocinogenic risk coefficients from those revealed in A-bomb survivors to factors appropriate for the projection of the risk resulting from very low levels of low LET radiation.

  17. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations.

    PubMed

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza; Faghihi, Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft-versus-host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PMID:24423829

  18. Thermoluminescent dosimeter measurements and analysis for LDEF experiment M0006

    NASA Technical Reports Server (NTRS)

    Stauber, Michael C.; Chang, J.; Kantorcik, T.

    1991-01-01

    Glow curve measurements are reported up to 600 C of (Thermoluminescent Dosimeter Measurement) TLD-100 (LiF) samples deployed on Long Duration Exposure Facility (LDEF) and retained as ground control. Lab exposure simulations are also reported with Co-60 radiation, low energy light ions and high energy protons in an effort to replicate the glow curves, especially the high temperature peaks observed in the LDEF TLD specimens. The evidence to date clearly shows the effect of inflight anneal on the low temperature part of the glow curve. It also shows that the high temperature part of the glow curve appears due to ion dose deposition. Initial correlations between high temperature glow peaks and effective LET of the registered dose is given.

  19. Applicability of the Sunna dosimeter for food irradiation control

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.; Miller, S.; Murphy, M.; McLaughlin, W. L.; Slezsák, I.; Kovács, A. I.

    2002-03-01

    The quick development concerning the commercial application of food irradiation in the USA recently resulted in growing marketing of irradiated red meat as well as irradiated fresh and dried fruits. These gamma and electron irradiation technologies require specific dosimetry systems for process control. The new version of the Sunna dosimeter has been characterized in gamma, electron and bremsstrahlung radiation fields by measuring the optically stimulated luminescence (osl) at 530 nm both below and above 1 kGy, i.e. for disinfestation and for meat irradiation purposes. No humidity and no significant dose rate effect on the green osl signal was observed. The temperature coefficient was determined from 0°C up to about 40°C and to stabilize the osl signal after irradiation a heat treatment method was introduced. Based on these investigations the Sunna 'gamma' film is a suitable candidate for dose control below and above 1 kGy for food irradiation technologies.

  20. Solid state dosimeters used in medical physics "A review"

    NASA Astrophysics Data System (ADS)

    Azorín-Nieto, Juan

    2012-10-01

    Many solid-state detectors have been successfully used to perform the quality control and in vivo dosimetry in medical physics, both in diagnostic radiology and radiotherapy, as they have high sensitivity in a small volume; most of them do not require electrical connection and have dosimetric characteristics of interest such as: good accuracy and reproducibility, as well as a response independent of the energy of radiation, some of them. For this reason, the selection of an appropriate detector for use in medical physics must take into account the energy mass absorption coefficient relative to water for photon sources and the mass stopping power relative to water for beta emitters and electron beams in the energy range of interest in medical physics, as well as the effective atomic number of materials that constitute them. This paper presents a review of the dosimetric characteristics of the solid state dosimeters most suitable for use in medical physics.

  1. [AOR characterization and zoning: a dosimeter for blue light].

    PubMed

    Dario, R; Uva, J; Di Lecce, V; Quarto, A

    2011-01-01

    The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device. PMID:23393888

  2. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose

    SciTech Connect

    Schneider, Uwe . E-mail: uwe.schneider@psi.ch; Zwahlen, Daniel; Ross, Dieter; Kaser-Hotz, Barbara

    2005-04-01

    Purpose: Estimates of secondary cancer risk after radiotherapy are becoming more important for comparative treatment planning. Modern treatment planning systems provide accurate three-dimensional dose distributions for each individual patient. These data open up new possibilities for more precise estimates of secondary cancer incidence rates in the irradiated organs. We report a new method to estimate organ-specific radiation-induced cancer incidence rates. The concept of an organ equivalent dose (OED) for radiation-induced cancer assumes that any two dose distributions in an organ are equivalent if they cause the same radiation-induced cancer incidence. Methods and Materials: The two operational parameters of the OED concept are the organ-specific cancer incidence rate at low doses, which is taken from the data of the atomic bomb survivors, and cell sterilization at higher doses. The effect of cell sterilization in various organs was estimated by analyzing the secondary cancer incidence data of patients with Hodgkin's disease who were treated with radiotherapy in between 1962 and 1993. The radiotherapy plans used at the time the patients had been treated were reconstructed on a fully segmented whole body CT scan. The dose distributions were calculated in individual organs for which cancer incidence data were available. The model parameter that described cell sterilization was obtained by analyzing the dose and cancer incidence rates for the individual organs. Results: We found organ-specific cell radiosensitivities that varied from 0.017 for the mouth and pharynx up to 1.592 for the bladder. Using the two model parameters (organ-specific cancer incidence rate and the parameter characterizing cell sterilization), the OED concept can be applied to any three-dimensional dose distribution to analyze cancer incidence. Conclusion: We believe that the concept of OED presented in this investigation represents a first step in assessing the potential risk of secondary

  3. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  4. Dose-response measurement in gel dosimeter using various imaging modalities

    NASA Astrophysics Data System (ADS)

    Fujibuchi, T.; Kawamura, H.; Yamanashi, K.; Hiroki, A.; Yamashita, S.; Taguchi, M.; Sato, Y.; Mimura, K.; Ushiba, H.; Okihara, T.

    2013-06-01

    Measurement methods that accurately measure radiation dose distribution in a three dimensional manner in order to allow comparisons of treatment plans are needed for quality assurance. One such measurement method involves the use of a polymer gel dosimeter to measure the dose distribution in three dimensions. During irradiation, a polymerization reaction makes new chemical bonds and induces changes of the chemical structure of the gel of the gel dosimeter. In the present study, dose-response measurement of an environment-friendly material used in the gel dosimeter was performed by imaging with computed tomography (CT) and R1, R2, and fluid-attenuated inversion-recovery (FLAIR) magnetic resonance imaging (MRI) under various imaging conditions. Dose-response characteristics in the gel dosimeter used in the experiment were observed at doses of 5-20 Gy administered by X-ray CT and MRI. Although the FLAIR signal was a relative value, the dose-response values with FLAIR were excellent compared to those with R1, R2, and CT. Determination of more appropriate imaging conditions could help expand the dose-response parameters of each measurement method.

  5. Implementation of the Panasonic TLD (Thermoluminescent Dosimeter) system for personnel monitoring at the Nevada Test Site

    SciTech Connect

    DeMarre, M.; Teasdale, C.L.; Sygitowicz, L.S.

    1988-01-01

    In January 1987, the dosimetry system at the Nevada Test Site changed from a film badge dosimetry program to the Panasonic Thermoluminescent Dosimeter (TLD) system to monitor external radiation exposure to personnel working at the Nevada Test Site. In order to implement the Panasonic TLD system, a combination dosimeter and security credential badge holder had to be developed, a computer processing system developed, a dose processing algorithm developed and enough Panasonic UD802AS2 TLDs purchased to support a large quarterly exchange. Problems that had to be resolved during the first year of operation were: processing approximately 15,000 dosimeters per quarter; multiple exchange of the same dosimeter in the same quarter due to incoming visitors and vendors; late returns due to the unique user community at the Nevada Test Site; TLD damage experience and unusual TLD anomalies. The experience from the original planning stages for conversion to the TLD system to the reality of the implementation of this system will be discussed.

  6. Considerations in the application of the electronic dosimeter to dose of record

    SciTech Connect

    Swinth, K.L.

    1997-12-01

    This report describes considerations for application of the electronic dosimeter (ED) as a measurement device for the dose of record (primary dosimetry). EDs are widely used for secondary dosimetry and advances in their reliability and capabilities have resulted in interest in their use to meet the needs of both primary and secondary dosimetry. However, the ED is an active device and more complex than the thermoluminescent and film dosimeters now in use for primary dosimetry. The user must evaluate the ED in terms of reliability, serviceability and radiations detected its intended application(s). If an ED is selected for primary dosimetry, the user must establish methods both for controlling the performance of the ED to ensure long term reliability of the measurements and for their proper use as a primary dosimeter. Regulatory groups may also want to develop methods to ensure adequate performance of the ED for dose of record. The purpose of the report is to provide an overview of considerations in the use of the ED for primary dosimetry. Considerations include recognizing current limitations, type testing of EDs, testing by the user, approval performance testing, calibration, and procedures to integrate the dosimeter into the users program.

  7. Characterization of a PN3 personal neutron dosimeter based on (n,α) reaction

    NASA Astrophysics Data System (ADS)

    Traoré, I.; Nachab, A.; Nourreddine, A.; Bâ, A.

    This study describes a new methodology for characterizing the sensitivity of personal neutron dose-equivalent dosimeters consisting of a PN3 (trade name of the CR-39 type) nuclear track detector coupled with a natural boron converter BN1 (20% 10B, 80% 11B) and enriched boron converter 10B (99% 10B). Both dosimeters (converter + detector) were mounted in an ISO water-filled phantom and were simultaneously irradiated in terms of personal dose equivalent Hp(10) ranging between 1 and 4 mSv under standard neutron radiation fields generated by (252Cf + D2O) and (252Cf + D2O)/Cd) sources. After irradiation, the latent tracks produced by alpha particles were revealed through a chemical solution. The optimum etching conditions (6.25 N, 70 °C for 7 h) used, were performed for an initial in-depth study. The response of the dosimeter was given by the ratio of the average track density obtained by subtracting the tracks due to the 252Cf + D2O and (252Cf + D2O)/Cd sources to the dose equivalent. The calibration factor was found to be 2826 ± 17 tracks.cm-2.mSv-1. The sensitivity of the dosimeter was observed to be increased significantly using a converter enriched in 10B (99% 10B).

  8. Method and Apparatus for Measuring Radiation Quantities

    DOEpatents

    Roberts, N O

    1955-01-25

    This patent application describes a compact dosimeter for measuring X-ray and gamma radiation by the use of solutions which undergo a visible color change upon exposure to a predetermined quantity of radiation.

  9. ESR spectrometric characterization of the methyl viologen dosimeter in poly(vinyl alcohol) film

    NASA Astrophysics Data System (ADS)

    Nishimoto, Sei-Ichi; Ye, Mu; Lu, Yiqun; Kawamura, Takashi; Kagiya, Tsutomu

    A dosimeter of poly(vinyl alcohol) (PVA) film containing methyl viologen dichloride (MV 2+ (Cl -) 2) was characterized by means of ESR and u.v. spectrometries. γ-irradiation of the MV 2+-PVA dosimeter induced one-electron reduction of MV 2+· to thecation radical (MV +), thus giving rise to blue coloration. The resulting MV +· showed an ESR signal with a g-factor of 2.0031. The yield of MV +· at a given radiation dose was estimated from duplicate integral of the ESR first-derivative spectra by reference to 1,1'-diphenyl-2-picrylhydrazyl (DPPH). The yield of MV +· thus estimated increased linearly with increasing the radiation dose up to about 1.4 Mrad. The ESR spectrometry of MV +· showed a linear correlation with the u.v. spectrometric method reported previously.

  10. Atlas of nuclear emulsion micrographs from personnel dosimeters of manned space missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1976-01-01

    A collection of micrographs is presented taken from nuclear emulsions of personnel dosimeter packs carried by the astronauts on near-earth orbital and lunar missions. It is intended as a pictorial record and illustration of the radiation environment in space and as a supplement to earlier reports and publications of the laboratory in which the emulsion findings have been presented in detail for individual missions. A complete list of those earlier accounts precedes the picture sections.

  11. TH-C-17A-08: Monte Carlo Based Design of Efficient Scintillating Fiber Dosimeters

    SciTech Connect

    Wiles, A; Loyalka, S; Rangaraj, D; Izaguirre, E

    2014-06-15

    Purpose: To accurately predict Cherenkov radiation generation in scintillating fiber dosimeters. Quantifying Cherenkov radiation provides a method for optimizing fiber dimensions, orientation, optical filters, and photodiode spectral sensitivity to achieve efficient real time imaging dosimeter designs. Methods: We develop in-house Monte Carlo simulation software to model polymer scintillation fibers' fluorescence and Cherenkov emission in megavoltage clinical beams. The model computes emissions using generation probabilities, wavelength sampling, fiber photon capture, and fiber transport efficiency and incorporates the fiber's index of refraction, optical attenuation in the Cherenkov and visible spectrum and fiber dimensions. Detector component selection based on parameters such as silicon photomultiplier efficiency and optical coupling filters separates Cherenkov radiation from the dose-proportional scintillating emissions. The computation uses spectral and geometrical separation of Cherenkov radiation, however other filtering techniques can expand the model. Results: We compute Cherenkov generation per electron and fiber capture and transmission of those photons toward the detector with incident electron beam angle dependence. The model accounts for beam obliquity and nonperpendicular electron fiber impingement, which increases Cherenkov emission and trapping. The rotational angle around square fibers shows trapping efficiency variation from the normally incident minimum to a maximum at 45 degrees rotation. For rotation in the plane formed by the fiber axis and its surface normal, trapping efficiency increases with angle from the normal. The Cherenkov spectrum follows the theoretical curve from 300nm to 800nm, the wavelength range of interest defined by silicon photomultiplier and photodiode spectral efficiency. Conclusion: We are able to compute Cherenkov generation in realistic real time scintillating fiber dosimeter geometries. Design parameters incorporate

  12. Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterise epithermal/thermal neutron beams for NCT.

    PubMed

    Gambarini, G; Artuso, E; Giove, D; Felisi, M; Volpe, L; Barcaglioni, L; Agosteo, S; Garlati, L; Pola, A; Klupak, V; Viererbl, L; Vins, M; Marek, M

    2015-12-01

    The reliability of Fricke gel dosimeters in form of layers for measurements aimed at the characterization of epithermal neutron beams has been studied. By means of dosimeters of different isotopic composition (standard, containing (10)B or prepared with heavy water) placed against the collimator exit, the spatial distribution of gamma and fast neutron doses and of thermal neutron fluence are attained. In order to investigate the accuracy of the results obtained with in-air measurements, suitable MC simulations have been developed and experimental measurements have been performed utilizing Fricke gel dosimeters, thermoluminescence detectors and activation foils. The studies were related to the epithermal beam designed for BNCT irradiations at the research reactor LVR-15 (Řež). The results of calculation and measurements have revealed good consistency of gamma dose and fast neutron 2D distributions obtained with gel dosimeters in form of layers. In contrast, noticeable modification of thermal neutron fluence is caused by the neutron moderation produced by the dosimeter material. Fricke gel dosimeters in thin cylinders, with diameter not greater than 3mm, have proved to give good results for thermal neutron profiling. For greater accuracy of all results, a better knowledge of the dependence of gel dosimeter sensitivity on radiation LET is needed. PMID:26249744

  13. The development of an energy-independent personnel neutron dosimeter using CR-39

    SciTech Connect

    Doremus, S.W.

    1989-01-01

    The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylene radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.

  14. A Practical Science Investigation for Middle School Students: Designing a Simple Cost Effective Chemical Solar Padiation Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Larsen, Kim; Parisi, Alfio; Schouten, Peter; Brennan, Chris

    2012-01-01

    A practical exercise for developing a simple cost-effective solar ultraviolet radiation dosimeter is presented for use by middle school science students. Specifically, this exercise investigates a series of experiments utilising the historical blue print reaction, combining ammonium iron citrate and potassium hexacyanoferrate to develop an…

  15. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  16. Radiological properties of nanocomposite Fricke gel dosimeters for heavy ion beams.

    PubMed

    Maeyama, Takuya; Fukunishi, Nobuhisa; Ishikawa, Kenichi L; Fukasaku, Kazuaki; Fukuda, Shigekazu

    2016-06-01

    The radiological properties of nanocomposite Fricke gel (NC-FG) dosimeters prepared with different concentrations of nano-clay, perchloric acid and ferrous ions in deaerated conditions were investigated under carbon and argon ion beam irradiation covering a linear-energy-transfer (LET) range of 10 to 3000 eV/nm. We found that NC-FG exhibits radiological properties distinct from those of conventional Fricke gel. The radiation sensitivity of NC-FG is independent of the LET and is nearly constant even at very high LET (3000 eV/nm) values in the Bragg peak region of the argon ion beam. In addition, whereas conventional Fricke gel dosimeters only operate under acidic conditions, NC-FG dosimeters function under both acidic and neutral conditions. The radiation sensitivity decreases with decreasing nano-clay concentration in NC-FG, which indicates that the nano-clay plays a vital role in the radiation-induced oxidation of Fe(2.) PMID:26968632

  17. Possibility of ozone depletion monitoring in conditions of opaque atmosphere using D-dosimeter

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.

    2002-01-01

    Variations of solar ultraviolet (UV) radiation by clouds and aerosols that have a comparable effect on UVB (280-315 nm) caused by variations in stratospheric ozone hinder accurate detecting mid-latitude UVB trends. In this connection it is desirable to use a UVB dosimeter that has at least two independent parameters, namely, a parameter responding to the integral intensity of UVB radiation and an additional one exclusively sensitive to the short wavelength variations in solar UV spectrum related to ozone depletion. The desired spectral selectivity is intrinsic in D-dosimeter that was recently introduced for an in situ monitoring of vitamin D synthetic capacity of solar UVB radiation. D-dosimeter is based on an in vitro model of vitamin D synthesis. The photoreaction rate (decay of provitamin D and formation of previtamin D) depends upon the integral UV intensity whereas maximum achievable concentration of previtamin D is solely dictated by the spectral position of the short-wave edge of solar spectrum. This makes it possible to reveal ozone depletion under conditions of opaque atmosphere when clouds and aerosols attenuate solar UV flux like a gray filter.

  18. Radiological properties of nanocomposite Fricke gel dosimeters for heavy ion beams

    PubMed Central

    Maeyama, Takuya; Fukunishi, Nobuhisa; Ishikawa, Kenichi L.; Fukasaku, Kazuaki; Fukuda, Shigekazu

    2016-01-01

    The radiological properties of nanocomposite Fricke gel (NC-FG) dosimeters prepared with different concentrations of nano-clay, perchloric acid and ferrous ions in deaerated conditions were investigated under carbon and argon ion beam irradiation covering a linear-energy-transfer (LET) range of 10 to 3000 eV/nm. We found that NC-FG exhibits radiological properties distinct from those of conventional Fricke gel. The radiation sensitivity of NC-FG is independent of the LET and is nearly constant even at very high LET (3000 eV/nm) values in the Bragg peak region of the argon ion beam. In addition, whereas conventional Fricke gel dosimeters only operate under acidic conditions, NC-FG dosimeters function under both acidic and neutral conditions. The radiation sensitivity decreases with decreasing nano-clay concentration in NC-FG, which indicates that the nano-clay plays a vital role in the radiation-induced oxidation of Fe2+. PMID:26968632

  19. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  20. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study.

    PubMed

    Al-Karmi, Anan M; Ayaz, Ali Asghar H; Al-Enezi, Mamdouh S; Abdel-Rahman, Wamied; Dwaikat, Nidal

    2015-09-01

    Alanine dosimeters in the form of pure alanine powder in PMMA plastic tubes were investigated for dosimetry in a clinical application. Electron paramagnetic resonance (EPR) spectroscopy was used to measure absorbed radiation doses by detection of signals from radicals generated in irradiated alanine. The measurements were performed for low-dose ranges typical for single-fraction doses often used in external photon beam radiotherapy. First, the dosimeters were irradiated in a solid water phantom to establish calibration curves in the dose range from 0.3 to 3 Gy for 6 and 18 MV X-ray beams from a clinical linear accelerator. Next, the dosimeters were placed at various locations in an anthropomorphic pelvic phantom to measure the dose delivery of a conventional four-field box technique treatment plan to the pelvis. Finally, the doses measured with alanine dosimeters were compared against the doses calculated with a commercial treatment planning system (TPS). The results showed that the alanine dosimeters have a highly sensitive dose response with good linearity and no energy dependence in the dose range and photon beams used in this work. Also, a fairly good agreement was found between the in-phantom dose measurements with alanine dosimeters and the TPS dose calculations. The mean value of the ratios of measured to calculated dose values was found to be near unity. The measured points in the in-field region passed dose-difference acceptance criterion of 3% and those in the penumbral region passed distance-to-agreement acceptance criterion of 3 mm. These findings suggest that the pure alanine powder in PMMA tube dosimeter is a suitable option for dosimetry of radiotherapy photon beams. PMID:26138456

  1. Performance evaluation of a colorimetric hydrazine dosimeter

    NASA Astrophysics Data System (ADS)

    Brenner, Karen P.; Rose-Pehrsson, Susan L.

    1994-06-01

    A dosimeter for real-time, colorimetric detection of hydrazine in air has been developed. The passive badge consists of a dosimeter card containing a vanillin solution coated on a thin paper substrate. The active patch consists of a thick cellulose substrate coated with a vanillin solution. When placed in a plastic sample holder attached to a personnel pump, up to 5 L/min can be drawn through the active badge substrate. Through a condensation reaction, vanillin reacts with hydrazine to form a colored product that absorbs in the visible region. The hydrazone formed in the reaction is yellow; its intensity is proportional to the dose. When exposed passively to hydrazine, the experimental detection limit is less than 20 ppb-hrs. Extrapolated results indicate a detection limit of less than 5 ppb-hrs for long sampling periods. Actively sampling of hydrazine vapors gives an experimental detection limit of less than 100 ppb-L at a sample rate of 5 L/min. Relative humidity effects on badge response were minor. High humidity enhanced the color development on the vanillin badge; while low humidity had no effect on badge response. Interference testing of the dosimeters revealed a tobacco smoke interference. Preliminary shelf life tests indicated no decrease in sensitivity to hydrazine when stored at room temperature for 6 months.

  2. Gadolinium-Based Nanoparticles and Radiation Therapy for Multiple Brain Melanoma Metastases: Proof of Concept before Phase I Trial

    PubMed Central

    Kotb, Shady; Detappe, Alexandre; Lux, François; Appaix, Florence; Barbier, Emmanuel L.; Tran, Vu-Long; Plissonneau, Marie; Gehan, Hélène; Lefranc, Florence; Rodriguez-Lafrasse, Claire; Verry, Camille; Berbeco, Ross; Tillement, Olivier; Sancey, Lucie

    2016-01-01

    Nanoparticles containing high-Z elements are known to boost the efficacy of radiation therapy. Gadolinium (Gd) is particularly attractive because this element is also a positive contrast agent for MRI, which allows for the simultaneous use of imaging to guide the irradiation and to delineate the tumor. In this study, we used the Gd-based nanoparticles, AGuIX®. After intravenous injection into animals bearing B16F10 tumors, some nanoparticles remained inside the tumor cells for more than 24 hours, indicating that a single administration of nanoparticles might be sufficient for several irradiations. Combining AGuIX® with radiation therapy increases tumor cell death, and improves the life spans of animals bearing multiple brain melanoma metastases. These results provide preclinical proof-of-concept for a phase I clinical trial. PMID:26909115

  3. Water-equivalent dosimeter array for small-field external beam radiotherapy

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc; Lacroix, Frederic; Roy, Rene; Beaulieu, Luc

    2007-05-15

    With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1x1 and 0.5x5.0 cm{sup 2} fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.

  4. A Fault-Tolerant Radiation-Robust Mass Storage Concept for Highly Scaled Flash Memory

    NASA Astrophysics Data System (ADS)

    Fuchs, Cristian M.; Trinitis, Carsten; Appel, Nicolas; Langer, Martin

    2015-09-01

    Future spacemissions will require vast amounts of data to be stored and processed aboard spacecraft. While satisfying operational mission requirements, storage systems must guarantee data integrity and recover damaged data throughout the mission. NAND-flash memories have become popular for space-borne high performance mass memory scenarios, though future storage concepts will rely upon highly scaled flash or other memory technologies. With modern flash memory, single bit erasure coding and RAID based concepts are insufficient. Thus, a fully run-time configurable, high performance, dependable storage concept, requiring a minimal set of logic or software. The solution is based on composite erasure coding and can be adjusted for altered mission duration or changing environmental conditions.

  5. Role of gel dosimeters in boron neutron capture therapy.

    PubMed

    Khajeali, Azim; Farajollahi, Ali Reza; Khodadadi, Roghayeh; Kasesaz, Yaser; Khalili, Assef

    2015-09-01

    Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process. PMID:26070173

  6. Nonisocentric Treatment Strategy for Breast Radiation Therapy: A Proof of Concept Study

    SciTech Connect

    Li, Ruijiang Xing, Lei; Horst, Kathleen C.; Bush, Karl

    2014-03-15

    Purpose: To propose a nonisocentric treatment strategy as a special form of station parameter optimized radiation therapy, to improve sparing of critical structures while preserving target coverage in breast radiation therapy. Methods and Materials: To minimize the volume of exposed lung and heart in breast irradiation, we propose a novel nonisocentric treatment scheme by strategically placing nonconverging beams with multiple isocenters. As its name suggests, the central axes of these beams do not intersect at a single isocenter as in conventional breast treatment planning. Rather, the isocenter locations and beam directions are carefully selected, in that each beam is only responsible for a certain subvolume of the target, so as to minimize the volume of irradiated normal tissue. When put together, the beams will provide an adequate coverage of the target and expose only a minimal amount of normal tissue to radiation. We apply the nonisocentric planning technique to 2 previously treated clinical cases (breast and chest wall). Results: The proposed nonisocentric technique substantially improved sparing of the ipsilateral lung. Compared with conventional isocentric plans using 2 tangential beams, the mean lung dose was reduced by 38% and 50% using the proposed technique, and the volume of the ipsilateral lung receiving ≥20 Gy was reduced by a factor of approximately 2 and 3 for the breast and chest wall cases, respectively. The improvement in lung sparing is even greater compared with volumetric modulated arc therapy. Conclusions: A nonisocentric implementation of station parameter optimized radiation therapy has been proposed for breast radiation therapy. The new treatment scheme overcomes the limitations of existing approaches and affords a useful tool for conformal breast radiation therapy, especially in cases with extreme chest wall curvature.

  7. The Highly Miniaturised Radiation Monitor: Concept, Design and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yulia; Irshad, Ranah; Griffin, Doug; Araujo, Henrique; Mitchell, Edward; Turchetta, Renato; Woodward, Simon; Velagapudi, Bindu; Menicucci, Alessandra; Daly, Eamonn

    2015-04-01

    The high energy plasma population, i.e. inside the radiation belts and within solar energetic particle events, is extremely damaging to satellite electronics and human health. Therefore monitoring, understanding of the physics behind and prediction of space radiation strength is a crucial aspect of space weather research and applications. In addition, the availability of good quality housekeeping data on the ionizing radiation environment in and around spacecraft systems is recognised as highly desirable for the efficient design and operation of spacecraft. Yet the engineering and economic costs of integrating such sensors into flight systems are a serious barrier to their widespread adoption. In light of this, the Highly Miniaturised Radiation Monitor (HMRM) has been developed by the Science and Technology Facilities Council and Imperial College London within the framework of an ESA technology development contract. The device is significantly smaller and lighter than current space technology with modest power requirements (1W) meaning that it has negligible impact on the spacecraft's overall resources. Furthermore, its simple electrical and data interfaces result in minimal integration costs. The HMRM is designed as a real-time radiation monitor with provides additional scientific data sets, such as reconstructed particle spectra of high-energy plasma population. The instrument energy coverage of 35 keV - 6 MeV for electrons and 600 keV - 500 MeV for protons makes the HMRM an ideal instrument to monitor and study the radiation environment of near-Earth space and to be widely used for space weather monitoring and research.

  8. Comparison of the fiber optic dosimeter and semiconductor dosimeter for use in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Yoo, W. J.; Shin, S. H.; Sim, H. I.; Hong, S.; Kim, S. G.; Jang, J. S.; Kim, J. S.; Jeon, H. S.; Kwon, G. W.; Jang, K. W.; Cho, S.; Lee, B.

    2014-05-01

    A fiber-optic dosimeter (FOD) was fabricated using a plstic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure entrance surface dose (ESD) in diagnostic radiology. Under changing tube current and irradition time of the digital radiography (DR) system, we measured the scintillating light and the ESD simultaneously. As experiemtnal results, the total counts of the FOD were changed in a manner similar to the ESDs of the semiconductor dosimeter (SCD). In conclusion, we demonstrated that the proposed FOD minimally affected the diagnostic information of DR image while the SCD caused serious image artifacts.

  9. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  10. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  11. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  12. Students' Conceptions about "Radiation": Results from an Explorative Interview Study of 9th Grade Students

    ERIC Educational Resources Information Center

    Neumann, Susanne; Hopf, Martin

    2012-01-01

    One basis of good teaching is to know about your students' preconceptions. Studies about typical ideas that students bring to the science classroom have been and continue to be a major field in science education research. This study aims to explore associations and ideas that students have regarding "radiation", a term widely used in various…

  13. Some Radiation Techniques Used in the GU-3 Gamma Irradiator

    SciTech Connect

    Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana; Kongjika, Efigjeni

    2007-04-23

    Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.

  14. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity

    NASA Astrophysics Data System (ADS)

    Koeva, V. I.; Olding, T.; Jirasek, A.; Schreiner, L. J.; McAuley, K. B.

    2009-05-01

    This study reports on efforts to increase the dose sensitivity of polymer gel dosimeters used in 3D radiation dosimetry. The potential of several different cosolvents is investigated, with the aim of increasing the solubility of N,N'-methylene-bisacrylamide crosslinker in polymer gel dosimeters. Glycerol and isopropanol increase the limit for the crosslinker solubility from approximately 3% to 5% and 10% by weight, respectively. This enables the manufacture of polymer gel dosimeters with much higher levels of crosslinking than was previously possible. New dosimeter recipes containing up to 5 wt% N,N'-methylene-bisacrylamide were subjected to spatially uniform radiation and were studied using nuclear magnetic resonance (NMR), as well as x-ray and optical CT techniques. The resulting dosimeters exhibit dose sensitivities that are up to 2.7 times higher than measured for a typical dosimeters with 3% N,N'-methylene-bisacrylamide without the addition of cosolvent. Two additional cosolvents (n-propanol and sec-butanol) were deemed unsuitable for practical dosimeters due to incompatibility with gelatin, cloudiness prior to irradiation, and immiscibility with water when large quantities of cosolvent were used. The dosimeters with high N,N'-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had high optical clarity prior to irradiation, but did not produce suitable optical CT results for non-uniformly irradiated gels due to polymer development outside of the high dose regions of the pencil beams and significant light scatter. Further experiments are required to determine whether cosolvents can be used to manufacture gels with sufficiently high dose sensitivity for readout using x-ray computed tomography.

  15. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    PubMed

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter. PMID:6823508

  16. Response of Panasonic dosimeters to submersion exposure by sup 133 Xe

    SciTech Connect

    Hoffman, J.M.; Catchen, G.L. )

    1990-01-01

    The dose response to {sup 133}Xe radiation of several types of Panasonic 800 series thermoluminescent dosimeters (TLD) were evaluated. The dosimeters were exposed by submersion in {sup 133}Xe gas. The relative sensitivities of the lithium borate and the calcium sulfate phosphors were determined for several configurations. The TLDs were exposed in the holders (as the devices came from the vendor) with various shields covering the elements, and they were exposed with the TLDs removed from the holders. Some dosimeters were exposed, both in holders and out of holders (TL insert only configuration), both in plastic bags and free in air. For the in-holder configuration, the responses of the heavily shielded (greater than 170 mg cm-2) elements were used to obtain the photon dose-rate component, and the responses of the lightly shielded (less than 13 mg cm-2) element were used to obtain the beta component. Similarly, for the insert-only configurations, the observed over-response of the calcium sulfate phosphors to low-energy photons could be used to separate the beta dose rate component. By using the calculated beta doses, correction factors were determined for the apparent under-responses of the elements to beta radiation. The results of both methods are consistent. These results also suggest that the beta component could be used in environmental monitoring as a more sensitive means to determine {sup 133}Xe activities in clouds and to separate some of the effects of submersion exposure from those of distant exposure.

  17. The use of hydrogenous material for sensitizing pMOS dosimeters to neutrons

    SciTech Connect

    Kronenberg, S.; Brucker, G.J.

    1995-02-01

    This paper is concerned with the application of PMOS dosimeters to measuring neutron dose by the use of hydrogenous materials to convert incident neutron flux to recoil protons. These latter charged particles can generate electron-hole pairs, and consequently, charge trapping takes place at the MOS interfaces, and threshold voltage shifts are produced. The use of PMOS devices for measuring gamma doses has been described extensively in the literature. Clearly, if measurable voltage shifts could be generated in a MOS device by neutrons, then a radiation detection instrument containing two MOS devices, back to back, with hydrogenous shields, and one MOS dosimeter without a converter would allow 4{pi} measurements of neutron and gamma doses to be made. The results obtained in this study indicate that paraffin or polyethylene will convert incident, 2.82 MeV neutrons to recoil protons, which subsequently cause measurable voltage shifts.

  18. Application of Multivariate Modeling for Radiation Injury Assessment: A Proof of Concept

    PubMed Central

    Bolduc, David L.; Villa, Vilmar; Sandgren, David J.; Ledney, G. David; Blakely, William F.; Bünger, Rolf

    2014-01-01

    Multivariate radiation injury estimation algorithms were formulated for estimating severe hematopoietic acute radiation syndrome (H-ARS) injury (i.e., response category three or RC3) in a rhesus monkey total-body irradiation (TBI) model. Classical CBC and serum chemistry blood parameters were examined prior to irradiation (d 0) and on d 7, 10, 14, 21, and 25 after irradiation involving 24 nonhuman primates (NHP) (Macaca mulatta) given 6.5-Gy 60Co Υ-rays (0.4 Gy min−1) TBI. A correlation matrix was formulated with the RC3 severity level designated as the “dependent variable” and independent variables down selected based on their radioresponsiveness and relatively low multicollinearity using stepwise-linear regression analyses. Final candidate independent variables included CBC counts (absolute number of neutrophils, lymphocytes, and platelets) in formulating the “CBC” RC3 estimation algorithm. Additionally, the formulation of a diagnostic CBC and serum chemistry “CBC-SCHEM” RC3 algorithm expanded upon the CBC algorithm model with the addition of hematocrit and the serum enzyme levels of aspartate aminotransferase, creatine kinase, and lactate dehydrogenase. Both algorithms estimated RC3 with over 90% predictive power. Only the CBC-SCHEM RC3 algorithm, however, met the critical three assumptions of linear least squares demonstrating slightly greater precision for radiation injury estimation, but with significantly decreased prediction error indicating increased statistical robustness. PMID:25165485

  19. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    SciTech Connect

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends were identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered.

  20. Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters

    SciTech Connect

    Cartwright, L. E.; Suchowerska, N.; Yin, Y.; Lambert, J.; Haque, M.; McKenzie, D. R.

    2010-05-15

    Purpose: In pelvic brachytherapy treatments, the rectum is an organ at risk. The authors have developed an array of scintillation dosimeters suitable for in vivo use that enables quality assurance of the treatment delivery and provides an alert to potential radiation accidents. Ultimately, this will provide evidence to direct treatment planning and dose escalation and correlate dose with the rectal response. Methods: An array of 16 scintillation dosimeters in an insertable applicator has been developed. The dosimeters were calibrated simultaneously in a custom designed circular jig before use. Each dosimeter is optically interfaced to a set of pixels on a CCD camera located outside the treatment bunker. A customized software converts pixel values into dose rate and accumulates dose for presentation during treatment delivery. The performance of the array is tested by simulating brachytherapy treatments in a water phantom. The treatment plans were designed to deliver a known dose distribution on the surface of the rectal applicator, assumed to represent the dose to the rectal wall. Results: The measured doses were compared to those predicted by the treatment plan and found to be in agreement to within the uncertainty in measurement, usually within 3%. The array was also used to track the progression of the source as it moved along the catheter. The measured position was found to agree with the position reported by the afterloader to within the measurement uncertainty, usually within 2 mm. Conclusions: This array is capable of measuring the actual dose received by each region of the rectal wall during brachytherapy treatments. It will provide real time monitoring of treatment delivery and raise an alert to a potential radiation accident. Real time dose mapping in the clinical environment will give the clinician additional confidence to carry out dose escalation to the tumor volume while avoiding rectal side effects.

  1. Comparison of two different types of LiF:Mg,Cu,P thermoluminescent dosimeters for detection of beta rays (beta-TLDs) from 90Sr/90Y, 85Kr and 147Pm sources.

    PubMed

    Grassi, Elisa; Sghedoni, Roberto; Piccagli, Vando; Fioroni, Federica; Borasi, Giovanni; Iori, Mauro

    2011-05-01

    Targeted radionuclide therapies in nuclear medicine departments increasingly depend on using unsealed beta radiation sources in the labeling of peptides and antibodies. Monitoring doses received by the fingers and hands during these procedures is best accomplished with TLD dosimeters that can be located at the fingertips. The present study examines the response of two TLD dosimeters (MCP-Ns and GR200A) to 90Sr/90Y, 85Kr, and 147Pm. The dosimeters were supplied by two different services, and all irradiations were performed at the PTB Institute in Germany. Each dosimetry service evaluated the dosimeters without knowledge that they had been purposefully irradiated. The accuracy and precision of the dosimeters were evaluated as a function of delivered dose, energy of beta particles and angular incidence. The results are compared to performance measures recommended by the IEC. Both dosimeter types displayed significant energy dependence. Angular dependence was moderate. Accuracy and precision as a function of dose (linearity) differed between the two systems, with the MCP-Ns being noticeably better than the GR200A. The superior precision makes the MCP-Ns much more useful for extremity dose measurements. The differences between these two dosimeter systems reinforce the need to evaluate a dosimeter carefully before using it in the daily work routine. PMID:21451322

  2. Proof of concept of MRI-guided tracked radiation delivery: tracking one-dimensional motion

    NASA Astrophysics Data System (ADS)

    Crijns, S. P. M.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2012-12-01

    In radiotherapy one aims to deliver a radiation dose to a tumour with high geometrical accuracy while sparing organs at risk (OARs). Although image guidance decreases geometrical uncertainties, treatment of cancer of abdominal organs is further complicated by respiratory motion, requiring intra-fraction motion compensation to fulfil the treatment intent. With an ideal delivery system, the optimal method of intra-fraction motion compensation is to adapt the beam collimation to the moving target using a dynamic multi-leaf collimator (MLC) aperture. The many guidance strategies for such tracked radiation delivery tested up to now mainly use markers and are therefore invasive and cannot deal with target deformations or adaptations for OAR positions. We propose to address these shortcomings using the online MRI guidance provided by an MRI accelerator and present a first step towards demonstration of the technical feasibility of this proposal. The position of a phantom subjected to one-dimensional (1D) periodic translation was tracked using a fast 1D MR sequence. Real-time communication with the MR scanner and control of the MLC aperture were established. Based on the time-resolved position of the phantom, tracked radiation delivery to the phantom was realized. Dose distributions for various delivery conditions were recorded on a gafchromic film. Without motion a sharply defined dose distribution is obtained, whereas considerable blur occurs for delivery to a moving phantom. With compensation for motion, the sharpness of the dose distribution is nearly restored. The total latency in our motion management architecture is approximately 200 ms. Combination of the recorded phantom and aperture positions with the planned dose distribution enabled the reconstruction of the delivered dose in all cases, which illustrates the promise of online dose accumulation and confirms that latency compensation could further enhance our results. For a simple 1D tracked delivery scenario, the

  3. Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.

    ERIC Educational Resources Information Center

    Diamond, Philip

    A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…

  4. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    SciTech Connect

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  5. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  6. A remote fiber optic dosimeter network for detecting hydrazine vapor

    SciTech Connect

    Klimcak, C.; Radhakrishnan, G.; Jaduszliwer, B.

    1995-12-31

    A fiber optic chemical dosimeter has been developed for use in the remote detection of vapors of toxic amine rocket fuels (hydrazine and its substituted derivatives) that are used as Air Force and civilian launch sites. The dosimeter employs a colorimetric indicating reagent immobilized in a porous sol-gel cladding on multimode fiber. This reagent reacts selectively with the fuel vapor to produce a strongly absorbing cladding that introduces light propagation losses in the fiber; these losses indicate the presence of hydrazine (N{sub 2}H{sub 4}) vapor. The absorption occurs over a broad spectral range ideally suited for interrogation by semiconductor diode lasers. The authors have shown that the dosimeter yields an average hydrazine detectivity of 2.3 exposures of the dosimeter to laboratory air have not adversely affected the dosimeter. Additionally, its response to ammonia vapor has been determined to be 9,200 times smaller than its response to hydrazine vapor.

  7. Sources of pulsed radiation

    SciTech Connect

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table.

  8. A scintillating fiber dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  9. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive.

  10. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  11. Fricke gel dosimeter with improved sensitivity for low-dose-level measurements.

    PubMed

    Valente, Mauro; Molina, Wladimir; Carrizales Silva, Lila; Figueroa, Rodolfo; Malano, Francisco; Pérez, Pedro; Santibañez, Mauricio; Vedelago, José

    2016-01-01

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue-equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, independence of dose rate and incident direction, as well as linear dose response. This work presents the development and characterization of an improved Fricke gel system, based on modified chemical compositions, making possible its application in clinical radiology due to its improved sensitivity. Properties of standard Fricke gel dosimeter for high-dose levels are used as a starting point, and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low-dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose-dependency, showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain an adequate dosimeter response for low-dose levels. A suitable composition from among those studied is selected as a good candidate for low-dose-level radiation dosimetry consisting of a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, Xylenol orange, and tridistilled water. Dosimeter samples are prepared in standard vials for in-phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated using typical X-ray tubes for radiology and calibrated Farmer-type ionization chamber is used as reference to measure dose rates inside phantoms at vial locations. Once sensitive material composition is optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels

  12. High-resolution gel dosimetry of a HDR brachytherapy source using normoxic polymer gel dosimeters: Preliminary study

    NASA Astrophysics Data System (ADS)

    Hurley, C.; McLucas, C.; Pedrazzini, G.; Baldock, C.

    2006-09-01

    Polymer gel dosimetry has been shown to be an effective tool in the analysis of radiotherapy treatments in cancer therapy, being used to map the dose distribution around an irradiation pattern of a polymer gel dosimeter. Combined with high-resolution magnetic resonance imaging (MRI), polymer gel dosimetry can be an effective dosimetry tool to map dose distributions with high spatial resolution (˜100 μm). Previously polyacrylamide polymer gel dosimetry required a strict hypoxic environment to protect the gel from oxygen infiltration as oxygen inhibits the polymerization reaction used to correlate to absorbed dose. However, with the advent of normoxic polymer gels, a strict hypoxic environment is not required. Normoxic polymer gel dosimeters can be manufactured under normal atmospheric conditions. This study assessed the use of a MAGIC normoxic polymer gel dosimeter to accurately map the dose distribution of a single-line irradiation and a point source irradiation from a brachytherapy radiation source administered through a nylon catheter inserted into the gel dosimeter. The phantoms were irradiated to a dose of 10 Gy at 2 mm from the source center and imaged using high-resolution MRI with an in-plane pixel size of 0.1055 mm/pixel. Good agreement was found between the dose points predicted by the computer treatment-planning system and the measured normalized dose profiles in the gel dosimeter. The use of normoxic polymer gel dosimeters with high-resolution MRI evaluation shows promise as an effective tool in applications requiring accurate dose distributions in high resolution, such as intravascular brachytherapy.

  13. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    SciTech Connect

    Sina, S; Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M; Faghihi, R

    2014-06-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.

  14. Performance Evaluation of a Multichannel All-In-One Phantom Dosimeter for Dose Measurement of Diagnostic X-ray Beam

    PubMed Central

    Jeon, Hyesu; Yoo, Wook Jae; Shin, Sang Hun; Kwon, Guwon; Kim, Mingeon; Kim, Hye Jin; Song, Young Beom; Jang, Kyoung Won; Youn, Won Sik; Lee, Bongsoo

    2015-01-01

    We developed a multichannel all-in-one phantom dosimeter system composed of nine sensing probes, a chest phantom, an image intensifier, and a complementary metal-oxide semiconductor (CMOS) image sensor to measure the dose distribution of an X-ray beam used in radiation diagnosis. Nine sensing probes of the phantom dosimeter were fabricated identically by connecting a plastic scintillating fiber (PSF) to a plastic optical fiber (POF). To measure the planar dose distribution on a chest phantom according to exposure parameters used in clinical practice, we divided the top of the chest phantom into nine equal parts virtually and then installed the nine sensing probes at each center of the nine equal parts on the top of the chest phantom as measuring points. Each scintillation signal generated in the nine sensing probes was transmitted through the POFs and then intensified by the image intensifier because the scintillation signal normally has a very low light intensity. Real-time scintillation images (RSIs) containing the intensified scintillation signals were taken by the CMOS image sensor with a single lens optical system and displayed through a software program. Under variation of the exposure parameters, we measured RSIs containing dose information using the multichannel all-in-one phantom dosimeter and compared the results with the absorbed doses obtained by using a semiconductor dosimeter (SCD). From the experimental results of this study, the light intensities of nine regions of interest (ROI) in the RSI measured by the phantom dosimeter were similar to the dose distribution obtained using the SCD. In conclusion, we demonstrated that the planar dose distribution including the entrance surface dose (ESD) can be easily measured by using the proposed phantom dosimeter system. PMID:26569252

  15. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  16. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  17. Sensor structure concepts for the analysis or local radiation exposure of biological samples at terahertz and millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Dornuf, Fabian; Dörr, Roland; Lämmle, David; Schlaak, Helmut F.; Krozer, Viktor

    2016-03-01

    We have studied several sensor concepts for biomedical applications operating in the millimeter wave and terahertz range. On one hand, rectangular waveguide structure were designed and extended with microfluidic channels. In this way a simple analysis of aqueous solutions at various waveguide bands is possible. In our case, we focused on the frequency range between 75 GHz and 110 GHz. On the other hand, planar sensor structures for aqueous solutions have been developed based on coplanar waveguides. With these planar sensors it is possible to concentrate the interaction volume on small sensor areas, which achieve a local exposure of the radiation to the sample. When equipping the sensor with microfluidic structures the sample volume could be reduced significantly and enabled a localized interaction with the sensor areas. The sensors are designed to exhibit a broadband behavior up to 300 GHz. Narrow-band operation can also be achieved for potentially increased sensitivity by using resonant structures. Several tests with Glucose dissolved in water show promising results for the distinction of different glucose levels at millimeter wave frequencies. The planar structures can also be used for the exposure of biological cells or cell model systems like liposomes with electromagnetic radiation. Several studies are planned to distinguish on one hand the influence of millimeter wave exposure on biological systems and also to have a spectroscopic method which enables the analysis of cell processes, like membrane transport processes, with millimeter wave and terahertz frequencies by focusing the electric field directly on the analyzing sample.

  18. Response of thermoluminescent dosimeters to photons simulated with the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Moralles, M.; Guimarães, C. C.; Okuno, E.

    2005-06-01

    Personal monitors composed of thermoluminescent dosimeters (TLDs) made of natural fluorite (CaF 2:NaCl) and lithium fluoride (Harshaw TLD-100) were exposed to gamma and X rays of different qualities. The GEANT4 radiation transport Monte Carlo toolkit was employed to calculate the energy depth deposition profile in the TLDs. X-ray spectra of the ISO/4037-1 narrow-spectrum series, with peak voltage (kVp) values in the range 20-300 kV, were obtained by simulating a X-ray Philips MG-450 tube associated with the recommended filters. A realistic photon distribution of a 60Co radiotherapy source was taken from results of Monte Carlo simulations found in the literature. Comparison between simulated and experimental results revealed that the attenuation of emitted light in the readout process of the fluorite dosimeter must be taken into account, while this effect is negligible for lithium fluoride. Differences between results obtained by heating the dosimeter from the irradiated side and from the opposite side allowed the determination of the light attenuation coefficient for CaF 2:NaCl (mass proportion 60:40) as 2.2 mm -1.

  19. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Alexander, K.; Schreiner, L. J.; McAuley, K. B.

    2015-06-01

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation.

  20. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.

    PubMed

    Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C

    2015-06-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion. PMID:25773266

  1. Development of an alanine dosimeter for gamma dosimetry in mixed environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.

    1992-12-31

    L-{alpha}a-Alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance (EPR) spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by calculations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including the ACRR and SPR-III reactors.

  2. Development of an alanine dosimeter for gamma dosimetry in mixed environments -- Summary of research

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.

    1994-02-01

    L-{alpha}-alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by irradiations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including those provided by the Annular Core Research Reactor and Sandia Pulsed Reactor.

  3. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers.

    PubMed

    Nasr, A T; Alexander, K; Schreiner, L J; McAuley, K B

    2015-06-21

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation. PMID:26020840

  4. External radiation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  5. The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance

    SciTech Connect

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1983-10-01

    To evaluate the tolerance of the rat spinal cord to small radiation doses per fraction, an increasing number of fractions is required for induction of paralysis. The assessment of doses of 1-2 Gy, as used in the clinic, would require that over 100 fractions be given. The validity of replacing part of a fractionated irradiation of the spinal cord by a single large dose has been tested. Fractionated irradiation doses with 18 MeV X rays were followed by a ''top-up'' dose of 15 Gy as a single treatment. This is the fraction size of a treatment with two irradiation doses leading to paralysis in 50% of the animals (ED 50). Fractionated treatments were carried out with 2, 5, 10 and 20 fractions followed by the top-up dose of 15 Gy. the isoeffect curve, as a function of the number of fractions, has the same slope as experiments performed without top-up dose. The results show that the quality and quantity of cellular repair is not modified when part of a multifractionated exposure is replaced by a larger top-dose. An important consequence of this finding is, that in treatments with unequal fraction sizes, the partial tolerances can simply be added. Since a top-up dose can replace a sizable number of irradiation treatments, its application will allow investigations of the extent of sublethal damage repair for fraction sizes as low as 1 Gy.

  6. Concepts and strategies for lunar base radiation protection - Prefabricated versus in-situ materials

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.

    1992-01-01

    The most recently accepted environment data are used as inputs for the Langley nucleon and heavy-ion transport codes, BRYNTRN and HZETRN, to examine the shield effectiveness of lunar regolith in comparison with commercially-used shield materials in nuclear facilities. Several of the fabricated materials categorized as neutron absorbers exhibit favorable characteristics for space radiation protection. In particular, polyethylene with additive boron is analyzed with regard to response to the predicted lunar galactic cosmic ray and solar proton flare environment during the course of a complete solar cycle. Although this effort is not intended to be a definitive trade study for specific shielding recommendations, attention is given to several factors that warrant consideration in such trade studies. For example, the transporting of bulk shield material to the lunar site as opposed to regolith-moving and processing equipment is assessed on the basis of recent scenario studies. The transporting of shield material from Earth may also be a viable alternative to the use of regolith from standpoints of cost-effectiveness, EVA time required, and risk factor.

  7. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  8. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    PubMed

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy. PMID:27480452

  9. SU-E-T-265: Presage Thin Sheet Dosimeter Characterization

    SciTech Connect

    Dumas, M; Rakowski, J

    2014-06-01

    Purpose: To quantify the sensitivity and stability of the Presage dosimeter in sheet form for different concentrations of chemicals and for a diverse range of clinical photon energies. Methods: Presage polymer dosimeters are formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green reporting dye, and bromoform radical initiator in 1mm thick sheets. The chemicals are well mixed together, cast in an aluminum mold, and left to cure at 60 psi for a minimum of 2 days. Dosimeter response will be characterized at multiple energies including Co-60, 6 MV, 15 MV, 50 kVp, and 250 kVp. The dosimeters are read by an Epson 10000 XL scanner at 800 dpi, 2{sup 16} bit depth. Red component images are analyzed with ImageJ. Results: Analysis of optical density verse dose for Co-60 energies indicates that the bromoform containing Presage was able to quantify dose from 0 to 300 Gy, with saturation beyond 300 Gy. Initial results show two regions of linear response, 0–100 Gy and 150–300 Gy. The 150–300 Gy region has a sensitivity of 0.0024 net OD/Gy. Further results on other energies are still in progress. Conclusions: This work shows the potential for use of thin sheets of Presage dosimeter as a dosimeter capable of being analyzed with a flatbed scanner.

  10. Limitations of using dosimeters in impulse noise environments.

    PubMed

    Kardous, Chucri A; Willson, Robert D

    2004-07-01

    The National Institute for Occupational Safety and Health (NIOSH) investigated the capabilities of noise dosimeters to measure personal exposure to impulse noise. The two leading types of commercially available dosimeters were evaluated in terms of their ability to measure and integrate impulses generated from gunfire during live-fire exercises at a law enforcement indoor firing range. Sound measurements were conducted throughout the firing range using dosimeters, sound level meters, and a measurement configuration that consisted of a quarter-inch microphone and a digital audiotape recorder to capture the impulse waveforms. Personal dosimetry was conducted on eight shooters, an observer, and the range master. Peak levels from gunfire reached 163 decibels (dB), exceeding the nominal input limit of the dosimeters. The dosimeters "clipped" the impulses by acting as if the gunfire had a maximum level of 146 dB. In other cases, however, peak levels (e.g., 108 dB) were below the dosimeter input limits, but the dosimeters still showed a peak level of 146 dB. Although NIOSH recommends that sound levels from 80 to 140 dB (A-weighted) be integrated in the calculation of dose and the time-weighted average, our present data suggest this criterion may be inadequate. These results showed that some instruments are incapable of providing accurate measures of impulse sounds because of their electroacoustic limitations. PMID:15238316

  11. A Clinical Concept for Interfractional Adaptive Radiation Therapy in the Treatment of Head and Neck Cancer

    SciTech Connect

    Jensen, Alexandra D.; Nill, Simeon; Huber, Peter E.; Bendl, Rolf; Debus, Juergen; Muenter, Marc W.

    2012-02-01

    Purpose: To present an approach to fast, interfractional adaptive RT in intensity-modulated radiation therapy (IMRT) of head and neck tumors in clinical routine. Ensuring adequate patient position throughout treatment proves challenging in high-precision RT despite elaborate immobilization. Because of weight loss, treatment plans must be adapted to account for requiring supportive therapy incl. feeding tube or parenteral nutrition without treatment breaks. Methods and Materials: In-room CT position checks are used to create adapted IMRT treatment plans by stereotactic correlation to the initial setup, and volumes are adapted to the new geometry. New IMRT treatment plans are prospectively created on the basis of position control scans using the initial optimization parameters in KonRad without requiring complete reoptimization and thus facilitating quick replanning in daily routine. Patients treated for squamous cell head and neck cancer (SCCHN) in 2006-2007 were evaluated as to necessity/number of replannings, weight loss, dose, and plan parameters. Results: Seventy-two patients with SCCHN received IMRT to the primary site and lymph nodes (median dose 70.4 Gy). All patients received concomitant chemotherapy requiring supportive therapy by feeding tube or parenteral nutrition. Median weight loss was 7.8 kg, median volume loss was approximately 7%. Fifteen of 72 patients required adaptation of their treatment plans at least once. Target coverage was improved by up to 10.7% (median dose). The increase of dose to spared parotid without replanning was 11.7%. Replanning including outlining and optimization was feasible within 2 hours for each patient, and treatment could be continued without any interruptions. Conclusion: To preserve high-quality dose application, treatment plans must be adapted to anatomical changes. Replanning based on position control scans therefore presents a practical approach in clinical routine. In the absence of clinically usable online

  12. Calibration system for albedo neutron dosimeters

    SciTech Connect

    Rothermich, N.E.

    1981-01-01

    Albedo neutron dosimeters have proven to be effective as a method of measuring the dose from neutron exposures that other types of neutron detectors cannot measure. Results of research conducted to calibrate an albedo neutron dosemeter are presented. The calibration procedure consisted of exposing the TLD chips to a 46 curie /sup 238/PuBe source at known distances, dose rates and exposure periods. The response of the TLD's is related to the dose rate measured with a dose rate meter to obtain the calibration factor. This calibration factor is then related to the ratio of the counting rates determined by 9-inch and 3-inch Bonner spheres (also called remmeters) and a calibration curve was determined. 17 references, 10 figures, 3 tables.

  13. Characterization of a nuclear accident dosimeter

    SciTech Connect

    Burrows, R.A.

    1995-12-01

    The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL`s PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University.

  14. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  15. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  16. A new dosimeter formulation for deformable 3D dose verification

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Skyt, P. S.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2015-01-01

    We present the characteristics of a new silicone-based radiochromic dosimeter containing the leuco-malachite green (LMG) dye. The dose response as well as the dose-rate and photon-energy dependence of the dosimeter were characterized. To optimise the dose response, different concentrations of the chemical components were investigated. The dose response was found to decrease exponentially as a function of time after irradiation. A cylindrical dosimeter was produced and irradiated with a volumetric modulated arc therapy plan; the standard deviation between measured and calculated dose was 5% of the total dose.

  17. Production of element correction factors for thermoluminescent dosimeters

    SciTech Connect

    Plato, P.; Miklos, J.

    1985-11-01

    Approximately 80 processors of personal dosimetry in the United States use thermoluminescent dosimeters (TLDs). Recent demands that dosimetry processors be able to measure radiation doses to within +/- 50% of the correct value have focused attention on the reproducibility of the TL elements within each TLD. The phosphors for these TLDs are manufactured by three companies. A dosimetry processor faces three options concerning the quality of the TL elements purchased; trust the supplier's quality control program, screen new TL elements and discard those that are extremely bad, or use element correction factors (ECFs). The first option results in dosimetry processors failing the +/- 50% accuracy requirement due to excessive variability among the TL elements. The second option still permits large precision errors that come close to the +/- 50% accuracy requirement. This paper advocates the third option and presents a 10-step procedure to produce ECFs. The procedure ensures that the ECFs represent only variations among the TL elements and not variations caused by stability problems with the TLD reader. Following is an example of ECF production for 3000 TLDs.

  18. Dose measurements in intraoral radiography using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Azorín, C.; Azorín, J.; Aguirre, F.; Rivera, T.

    2015-01-01

    The use of X-ray in medicine demands to expose the patient and the professional to the lowest radiation doses available in agreement with ALARA philosophy. The reference level for intraoral dental radiography is 7 mGy and, in Mexico, a number of examinations of this type are performed annually. It is considered that approximately 25% of all the X-rays examinations carried out in our country correspond to intraoral radiographies. In other hand, most of the intraoral X-ray equipment correspond to conventional radiological systems using film, which are developed as much manual as automatically. In this work the results of determining the doses received by the patients in intraoral radiological examinations made with different radiological systems using LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters are presented. In some conventional radiological systems using film, when films are developed manual or automatically, incident kerma up to 10.61 ± 0.74 mGv were determined. These values exceed that reference level suggested by the IAEA and in the Mexican standards for intraoral examinations.

  19. Characterization of power transistors as high dose dosimeters

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Corda, U.; Kovacs, A.; Peimel-Stuglik, Z.; Gombia, E.

    2009-02-01

    A bipolar transistor, previously investigated as a possible radiation dosimeter and tested under industrial irradiation conditions in high-activity gamma and high-energy, high-power electron beam facilities has been subjected to stability test in order to understand its behaviour and help to improve its performances. Charge carrier lifetime was measured for several sets of transistors which were then irradiated with various doses (3-60 kGy): seven sets with 60Co gamma rays and eight with a 10 MeV electron beam. After irradiation all the transistors were measured and each set was divided into three groups: one group was left untreated, the second group was heated at 100 °C for 30 minutes and the third group was heated at 150 °C for 30 minutes, for testing the stability of the lifetime. Our data showed that heat treatment quite successfully eliminates post-irradiation changes in the response. Response measurements of the irradiated transistors, heat-treated and untreated, were carried out at room temperature over several weeks after irradiation to establish post-irradiation stability and assess if these transistors could be used for recording dose history. Calibration curves in the range 3-60 kGy for the thermally treated and untreated devices are presented. Dependence of the response of the transistors on the temperature of the measurements in the range 20-50 °C is reported.

  20. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  1. Dosimetry of ionising radiation in modern radiation oncology.

    PubMed

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  2. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    PubMed

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  3. Personal noise dosimeters: accuracy and reliability in varied settings.

    PubMed

    Cook-Cunningham, Sheri Lynn

    2014-01-01

    This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units) in both pink noise (PN) environments and natural environments (NEs) through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3) Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a) All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b) all dosimeters were within the recommended American National Standard Institute (ANSI) SI.25-1991 standard of ±2 dB (A) of a reference measurement; and (c) all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A) when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students). This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D) were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera) while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured during

  4. A deployable high temperature superconducting coil (DHTSC) - A novel concept for producing magnetic shields against both solar flare and Galactic radiation during manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Cocks, F. Hadley

    1991-01-01

    The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.

  5. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification

  6. Proposal for a new radiation dose control system for future manned space flights.

    PubMed

    Semkova, J V; Dachev TsP; Matviichuk YuN; Koleva, R T; Baynov, P T; Tomov, B T; Botolier-Depois, J F; Nguen, V D; Lebaron-Jacobs, L; Siegrist, M; Duvivier, E; Almarcha, B; Petrov, V M; Shurshakov, V A; Makhmutov, V S

    1995-01-01

    Radiation risk on a future long-duration manned space mission appears to be one of the basic factors in planning and designing the mission. Since 1988 different active dosimetric investigations has been performed on board the MIR space station by the Bulgarian-Russian dosimeter-radiometer LIULIN and French tissue-equivalent proportional counters CIRCE and NAUSICAA. A joint French-Bulgarian-Russian dosimetry experiment and the dosimetry-radiometry system RADIUS-MD have been developed for the future MARS-96 mission. On the base of the results and experience of these investigations a conception for a new radiation dose control system for the future orbital stations, lunar bases and interplanetary space ships is proposed. The proposed system which consists of different instruments will allow personal radiation control for crew members, radiation monitoring inside and outside each habitat, analysis and forecasting of the situation and will suggest procedures to minimize the radiation risk. PMID:11540998

  7. Proposal for a new radiation dose control system for future manned space flights

    NASA Astrophysics Data System (ADS)

    Semkova, J. V.; Dachev, Ts. P.; N. Matviichuk, Yu.; Koleva, R. T.; Baynov, P. T.; Tomov, B. T.; Botolier-Depois, J. F.; Nguen, V. D.; Lebaron-Jacobs, L.; Siegrist, M.; Duvivier, E.; Almarcha, B.; Petrov, V. M.; Shurshakov, V. A.; Makhmutov, V. S.

    Radiation risk on a future long-duration manned space mission appears to be one of the basic factors in planning and designing the mission. Since 1988 different active dosimetric investigations has been performed on board the MIR space station by the Bulgarian-Russian dosimeter-radiometer LIULIN and French tissue-equivalent proportional counters CIRCE and NAUSICAA. A joint French-Bulgarian-Russian dosimetry experiment and the dosimetry-radiometry system RADIUS-MD have been developed for the future MARS-96 mission. On the base of the results and experience of these investigations a conception for a new radiation dose control system for the future orbital stations, lunar bases and interplanetary space ships is proposed. The proposed system which consists of different instruments will allow personal radiation control for crew members, radiation monitoring inside and outside each habitat, analysis and forecasting of the situation and will suggest procedures to minimize the radiation risk.

  8. Neutron contribution to CaF2:Mn thermoluminescent dosimeter response in mixed (n/y) field environments.

    SciTech Connect

    DePriest, Kendall Russell; Griffin, Patrick Joseph

    2003-07-01

    Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by postexperiment analysis because the TLD reading system cannot distinguish between photon- and neutron-produced response. Using a model of an aluminum-equilibrated TLD-400 (CaF{sub 2}:Mn) chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determine the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

  9. Neutron Contribution to CaF2:Mn Thermoluminescent Dosimeter Response in Mixed (n/y) Field Environments

    SciTech Connect

    DEPRIEST, KENDALL R.

    2002-11-01

    Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by post-experiment analysis because the TLD reading system cannot distinguish between photon and neutron produced response. Using a model of an aluminum-equilibrated TLD-400 chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have dosimetry quality experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determined the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

  10. Enhancement in sensitivity of nitro blue tetrazolium polyvinyl alcohol film dosimeters by sodium formate and Triton X-100

    NASA Astrophysics Data System (ADS)

    Rabaeh, Khalid A.; Basfar, Ahmed A.; Moussa, Akram A.

    2012-04-01

    Nitro blue tetrazolium polyvinyl alcohol film dosimeters, NBT-PVA were prepared and evaluated based on radiation-induced reduction of NBT2+. NBT-PVA film dosimeters containing different concentrations of NBT dye from 1 to 5 mM were prepared in a solution of ethanol. The dosimeters were irradiated with ϒ-ray from 60Co source at doses up to 50 kGy. UV/vis spectrophotometer was used to investigate the optical density of un-irradiated and irradiated films in terms of absorbance at 529 nm. The absorbance increases with absorbed dose up to 50 kGy for NBT-PVA film dosimeters. The dose sensitivity of NBT-PVA film increases strongly with increase of concentrations of NBT dye. The effects of irradiation temperature, humidity, dose rate and the stability of the response of the films after irradiation were investigated. A considerable increase was observed in the dose response of NBT-PVA film by adding appropriate concentration of sodium formate and Triton X-100.

  11. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  12. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept

    SciTech Connect

    Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H.; Geiser, Dominik; Pica, Alessia; Aebersold, Daniel M.

    2014-08-15

    Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.

  13. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  14. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  15. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  16. Diamond-based off-line dosimeters for environmental control in space flights

    NASA Astrophysics Data System (ADS)

    De Sio, Antonio; Pace, Emanuele; Giannini, A.; Bruzzi, Mara; Miglio, Stefania; Scaringella, Monica; Bucciolini, Marta; Woerner, Eckhard; Wild, Christoph; Donati, Alessandro; Zolesi, Valfredo; Cotronei, Vittorio

    2010-01-01

    Biological experiments in space and ongoing human space missions devoted to the solar system exploration require significant advancements in the radiation environment monitoring systems. Radiation hazard has to be continuously monitored and the evaluation of the biological damage suffered should be calculated within short time. In this paper we demonstrate the feasibility of using polycrystalline diamond films as dosimeters for space applications. The charge trapped into deep intra-gap defect levels during radiation exposure, and released during a high-temperature thermal scan to give thermally stimulated current (TSC), has been integrated as a function of time to evaluate the absorbed dose. The capability of diamond films to detect low doses has been demonstrated down to the mGys range. First application of these dosimeters in a real twelve-day, low Earth orbit, space mission has been carried out. TSC results have been proved to give correct evaluation of the dose absorbed during the space mission, assessing the capabilities of synthetic diamond and TSC read-out system as a proper dosimetry technique for space applications.

  17. [Metrological and operating characteristics of thermoluminescent and photographic film dosimeters for the centralized individual dosimetric monitoring of medical personnel].

    PubMed

    Kalmykov, L Z; Gorelik, G I; Stadnik, L L; Romanova, I N; Kovalevskaia, L N

    1989-07-01

    Characteristics of a TLD thermoluminescent kit with LiF detectors of TLD and DTG-4 types (diameters 3.5 and 5 mm) and TLD-400 were compared with those of a kit of IFKU-1 individual photographic film badges. Individual thermoluminescent dosimeters record a total dose of occupational and background irradiation, and film badges--a dose of occupational irradiation only. It should be taken into account in radiation-hygienic interpretation of individual dosimetric control readings. PMID:2761377

  18. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  19. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  20. Rock cooling history using thermoluminescence of natural radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Biswas, Rabiul; Herman, Frederic

    2016-04-01

    Recently, optical luminescences from quartz and feldspar have been proposed to have great potential in low temperature thermochronology (<100°C). The present study aims to explore thermoluminescence (TL) of feldspar to determine cooling history of rock. The advantage of thermoluminescence over optical luminesce is single TL glow curve has different thermal and athermal stability at different temperature of the glow curve, which can be determined by computerized glow curve deconvolution (CGCD) method and estimation of rate of anomalous fading in the laboratory. The rock samples were collected from Alex Knob of Franz Josef glacier, New Zealand, which is expected to be one of the rapidly exhuming settings in Southern Alps. The natural luminescence levels, which are in the dynamic equilibrium because of competition between growth due to ambient radioactivity and decay due thermal and athermal loss, are determined using multiple aliquot regeneration (MAR) protocol. Multiple thermal signals with wide range of thermal stability, extracted from composite glow curve, particularly low temperature part which is more sensitive to ambient temperature, is promising for better constraint on late stage cooling history.

  1. Response of the Hanford Combination Neutron Dosimeter in plutonium environments

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.

    1996-02-01

    This report documents response characteristics and the development of dose algorithms for the Hanford Combination Neutron Dosimeter (HCNO) implemented on January 1, 1995. The HCND was accredited under the U.S. Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) during 1994. The HCND employs two neutron dose components consisting of (1) an albedo thermoluminescent dosimeter (TLD), and (2) a track-etch dosimeter (TED). Response characteristics of these two dosimeter components were measured under the low-scatter conditions of the Hanford 318 Building Calibration Laboratory, and under the high-scatter conditions in the workplace at the Plutonium Finishing Plant (PFP). The majority of personnel neutron dose at Hanford (currently and historically) occurs at the PFP. National Institute of Standards and Technology (NIST) traceable sources were used to characterize dosimeter response in the laboratory. At the PFP, neutron spectra and dose-measuring instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters, were used to determine the neutron dose under several configurations from three different plutonium sources: (1) plutonium tetrafluoride, (2) plutonium metal, and (3) plutonium oxide. In addition, measurements were performed at many selected work locations. The HCNDs were included in all measurements. Comparison of dosimeter- and instrument-measured dose equivalents provided the data necessary to develop HCND dose algorithms and to assess the accuracy of estimated neutron dose under actual work conditions.

  2. Thermoluminescence and optical characteristics of ZrO2 powder as a TL dosimeter

    NASA Astrophysics Data System (ADS)

    Montalvo, T. R.; Tenorio, L. O.; Nieto, J. A.; Celis, A. C.; Ordonez, C. V.; Fonseca, R. S.

    2004-11-01

    A description of the preparation of zirconium oxide (ZrO2) polycrystalline powder by the sol-gel method is presented. To prepare ZrO2 powder to be used as a thermoluminescent (TL) phosphor in dosimetric application, it is necessary to analyze some structural properties before, such as it's crystallinity. In this work, the property was verified using X-ray diffraction. ZrO2 polycrystalline powder obtained was subjected to thermal treatment by heating up to 1000 degrees C. Both the absorption spectrum and the emission spectrum were also studied. The TL glow curve of ZrO2 powder exhibited a peak when it was exposed to a radiation field. Results of analyzing optical properties and the preliminary results of studying the TL in ZrO2, indicate that the latter is a good candidate to be used as a TL dosimeter in radiation ionizing and UV-radiation fields.

  3. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  4. Relative response of the alanine dosimeter to medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Anton, M.; Büermann, L.

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation. Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series. Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series. For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  5. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication. PMID:26216572

  6. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters

    NASA Astrophysics Data System (ADS)

    Doran, Simon; Gorjiara, Tina; Kacperek, Andrzej; Adamovics, John; Kuncic, Zdenka; Baldock, Clive

    2015-01-01

    Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called ‘quenching effect’). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined. Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE®, using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE® used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an

  7. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters.

    PubMed

    Doran, Simon; Gorjiara, Tina; Kacperek, Andrzej; Adamovics, John; Kuncic, Zdenka; Baldock, Clive

    2015-01-21

    Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called 'quenching effect'). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined.Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE(®), using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE(®) used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an

  8. PDT dose dosimeter for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  9. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  10. Ultraviolet radiation (UVR) (290-400 nm) radiometry of solar simulation for experimental radiation in drug and chemical photosensitization

    NASA Astrophysics Data System (ADS)

    Young, A. R.; Magnus, I. A.; Gibbs, N. K.

    1982-02-01

    The ultraviolet radiation (UVR) radiometry of solar simulated radiation in a long-term photocarcinogenesis project is described. The methods used were (a) a phototherapy radiometer, (b) an electronic integrating dosimeter, (c) indirect spectroradiometry,and (d) polysulphone and naladixic film badge dosimeters for UV-B (280-315 nm) and UV-A (315-400 nm) radiation, respectively. The merits of the various methods are discussed. The importance of reliable and practical UVR radiometry is emphasised.

  11. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    NASA Astrophysics Data System (ADS)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm‑2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm‑2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  12. Angular dependence of mammographic dosimeters in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Bradley, Lena R.; Carton, Ann-Katherine; Maidment, Andrew D. A.

    2010-04-01

    Digital Breast Tomosynthesis (DBT) is an emerging imaging modality that combines tomography with conventional digital mammography. In developing DBT dosimetry, a direct application of mammographic dosimetry has appeal. However, DBT introduces rotation of the x-ray tube relative to the dosimeter, thus raising questions about the angular dependence of mammographic dosimeters. To measure this dependence, two ionization chambers, two solid-stated detectors, and one photodiode were rotated relative to an incident Mo/Mo x-ray beam. In this isocentric DBT simulation, the signal of each dosimeter was studied over an angular range of 180° for tube voltages of 26 to 34 kV. One ionization chamber was then modeled numerically to study the response to various monoenergetic beams. The results show that all dosimeters underestimate dose to varying degrees; solid-state detectors show the greatest angular dependence while ionization chambers show the least. Correction factors were computed from the data for isocentric DBT images using projection angles up to +/-25° these factors ranged from 1.0014 to 1.1380. The magnitude of the angular dependence generally decreased with increasing energy, as shown with both the measured and modeled data. As a result, the error arising in measuring DBT dose with a mammographic dosimeter varies significantly; it cannot always be disregarded. The use of correction factors may be possible but is largely impractical, as they are specific to the dosimeter, x-ray beam, and DBT geometry. Instead, an angle-independent dosimeter may be more suitable for DBT.

  13. Description and evaluation of the Hanford personnel dosimeter program from 1944 through 1989. [Contain Glossary

    SciTech Connect

    Wilson, R.H.; Fix, J.J.; Baumgartner, W.V.; Nichols, L.L.

    1990-09-01

    This report describes the evolution of personnel dosimeter technology at Hanford since the inception of Hanford operations in 1944. Each of the personnel dosimeter systems used by people working or visiting Hanford is described. In addition, the procedures used to calibrate and calculate dose for each of the dosimeter systems are described. The accuracy of the recorded dose, primarily whole body deep dose, for the different dosimeter systems is evaluated. The evaluation is based on an extensive review of historical literature, as well as a 1989 intercomparison study of all film dosimeters and performance testing of the thermoluminescent dosimeter, also conducted during 1989. 73 refs., 40 figs., 41 tabs.

  14. Application of CVD diamonds as dosimeters of soft X-ray emission from plasma sources

    NASA Astrophysics Data System (ADS)

    Krása, J.; Juha, L.; Vorlíček, V.; Cejnarová, A.

    2004-05-01

    The thermoluminescent properties of polycrystalline chemical vapour deposition (CVD) diamond, as free-standing CVD cutting tool material, type CVDITE-CDM (De Beers Company), were studied with respect to its use in the dosimetry of soft X-ray emission from laser-produced plasma. The range of linearity for 5.9-keV radiation was measured to be only two orders of magnitude, ranging from a sensitivity threshold of ˜0.01 to ˜2 Gy. In this linearity range, the sensitivity of CVD diamonds is about 65 times lower than the sensitivity of TLD-100 dosimeters. The unpolished (grained) face of CVD diamonds shows ˜1.5-times higher thermoluminescence (TL) response after irradiation than the polished face, in the high-temperature range, but the polished face shows slightly higher TL response in the low-temperature range. A strong TL sensitivity to the blue portion of the visible light spectrum was measured. Simultaneous irradiation of TLD-100 dosimeters and CVD diamonds by soft X-rays emitted from a laser-produced plasma showed that CVDITE-CDM diamonds can be applied as detectors of intense soft X-ray radiation.

  15. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.

    PubMed

    Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick

    2012-01-01

    In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets. PMID:22584173

  16. Concept of Fractal Dimension use of Multifractal Cloud Liquid Models Based on Real Data as Input to Monte Carlo Radiation Models

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.

    1999-01-01

    The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.

  17. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  18. NRC TLD Direct Radiation Monitoring Network: Volume 15, No. 1. Progress report, January--March 1995

    SciTech Connect

    Struckmeyer, R.

    1995-05-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the first quarter of 1995.

  19. NRC TLD direct radiation monitoring network: Progress report, April--June 1997. Volume 17, Number 2

    SciTech Connect

    Struckmeyer, R.

    1997-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the second quarter of 1997.

  20. NRC TLD Direct Radiation Monitoring Network. Progress report, July--September 1993: Volume 13, No. 3

    SciTech Connect

    Struckmeyer, R.

    1993-11-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1993.

  1. Site-specific calibration of the Hanford personnel neutron dosimeter

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford`s Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated {sup 252}Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST).

  2. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

  3. Fabrication and characterization of a real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-07-01

    There is a pressing need for a low cost, passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on the deposition of a radiochromic thin film on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500 cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively. An improved optical fiber probe fabrication method is presented.

  4. Initial experience with optical-CT scanning of RadBall Dosimeters.

    PubMed

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-12-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  5. Initial experience with optical-CT scanning of RadBall Dosimeters

    PubMed Central

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-01-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  6. Initial experience with optical-CT scanning of RadBall Dosimeters

    NASA Astrophysics Data System (ADS)

    Oldham, M.; Clift, C.; Thomas, A.; Farfan, E.; Foley, T.; Jannik, T.; Adamovics J.; Holmes, C.; Stanley, S.

    2010-11-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments.

  7. A Comprehensive Evaluation of NIPAM Polymer Gel Dosimeters on Three Orthogonal Planes and Temporal Stability Analysis

    PubMed Central

    Shih, Cheng-Ting

    2016-01-01

    Polymer gel dosimeters have been proven useful for dose evaluation in radiotherapy treatments. Previous studies have demonstrated that using a polymer gel dosimeter requires a 24 h reaction time to stabilize and further evaluate the measured dose distribution in two-dimensional dosimetry. In this study, the short-term stability within 24 h and feasibility of N-isopropylacrylamide (NIPAM) polymer gel dosimeters for use in three-dimensional dosimetry were evaluated using magnetic resonance imaging (MRI). NIPAM gels were used to measure the dose volume in a clinical case of intensity-modulated radiation therapy (IMRT). For dose readouts, MR images of irradiated NIPAM gel phantoms were acquired at 2, 5, 12, and 24 h after dose delivery. The mean standard errors of dose conversion from using dose calibration curves (DRC) were calculated. The measured dose volumes at the four time points were compared with those calculated using a treatment planning system (TPS). The mean standard errors of the dose conversion from using the DRCs were lower than 1 Gy. Mean pass rates of 2, 5, 12, and 24 h axial dose maps calculated using gamma evaluation with 3% dose difference and 3 mm distance-to-agreement criteria were 83.5% ± 0.9%, 85.9% ± 0.6%, 98.7% ± 0.3%, and 98.5% ± 0.9%, respectively. Compared with the dose volume histogram of the TPS, the absolute mean relative volume differences of the 2, 5, 12, and 24 h measured dose volumes were lower than 1% for the irradiated region with an absorbed dose higher than 2.8 Gy. It was concluded that a 12 h reaction time was sufficient to acquire accurate dose volume using the NIPAM gels with MR readouts. PMID:27192217

  8. Photon and neutron kerma coefficients for polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    El-Khayatt, A. M.; Vega-Carrillo, Hector Rene

    2015-08-01

    Neutron and gamma ray kerma coefficients were calculated for 17 3D dosimeters, for the neutron and gamma ray energy ranges extend from 2.53×10-8 to 29 MeV and from 1.0×10-3 to 20 MeV, respectively. The calculated kermas given here for discrete energies and the kerma coefficients are referred to as "point-wise data". Curves of gamma ray kermas showed slight dips at about 60 keV for most 3D dosimeters. Also, a noticeable departure between thermal and epithermal neutrons kerma sets for water and polymers has been observed. Finally, the obtained results could be useful for dose estimation in the studied 3D dosimeters.

  9. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  10. Monte Carlo simulation experiments on box-type radon dosimeter

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-01

    Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the

  11. PREVENTION OF INJURY FROM X-RADIATION

    PubMed Central

    Holden, Francis R.; Tochilin, Eugene; Hine, Charles H.; Lewis, Leon

    1951-01-01

    Despite continued advances in x-ray technology, evidence indicates that x-radiation injuries occur today to an excessive degree. These injuries have led to a progressive stiffening of standards of permissible exposure, especially in the past 15 years. Protection from radiation damage is logically based on dosimetry, preferably administered by a centralized service laboratory. The experience of two large hospitals in the control of x-radiation exposure is cited. Personnel exposed to x-radiation may be monitored by either pocket dosimeters of the ion chamber or electroscope type or by standardized film badge dosimeters. A recently developed film badge dosimeter that measures effective x-ray energy and radiation exposure in a quantitative manner is described. PMID:14812354

  12. Prevention of injury from x-radiation.

    PubMed

    HOLDEN, F R; TOCHILIN, E; HINE, C H; LEWIS, L

    1951-03-01

    Despite continued advances in x-ray technology, evidence indicates that x-radiation injuries occur today to an excessive degree. These injuries have led to a progressive stiffening of standards of permissible exposure, especially in the past 15 years. Protection from radiation damage is logically based on dosimetry, preferably administered by a centralized service laboratory. The experience of two large hospitals in the control of x-radiation exposure is cited. Personnel exposed to x-radiation may be monitored by either pocket dosimeters of the ion chamber or electroscope type or by standardized film badge dosimeters. A recently developed film badge dosimeter that measures effective x-ray energy and radiation exposure in a quantitative manner is described. PMID:14812354

  13. Study of L-aspartic acid for its possible use as a dosimeter in the interval of 3.4-20 kGy at different irradiation temperatures

    NASA Astrophysics Data System (ADS)

    Meléndez-López, Adriana; Negrón-Mendoza, Alicia; Gómez-Vidales, Virginia; Uribe, Roberto M.; Ramos-Bernal, Sergio

    2014-11-01

    Certain commercial applications of radiation processing increase the efficiency of chemical reactions at low temperatures to decrease the free radicals in the bulk material and avoid the synergistic effects of heat. Such applications have motivated the search for a reliable, low-temperature dosimeter for use under the conditions of the irradiation process. For this purpose, polycrystalline samples of L-aspartic acid (2-aminobutanedioic acid) were irradiated with gamma rays at low temperatures and doses in the kiloGray range (3.4-64 kGy). The potential use of the aspartic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. These radicals can be studied and quantified using electron spin resonance (ESR). The response curves at different temperatures show that the intensity of the ESR spectra (the five characteristic lines) depends on the dose received. The response of the dosimeter increases with increasing temperature, and this relationship is linear up to 20 kGy at 298 K. The decay characteristics show that the change in the ESR signal over time is low and reproducible. In addition, the L-aspartic acid dosimeter is easy to handle and has low cost.

  14. Method of protecting a radiochromic optical waveguide dosimeter from adverse temperature effects. Patent Application

    SciTech Connect

    Kronenberg, S.

    1985-09-26

    A radiochromic optical waveguide dosimeter is protected from the adverse temperature effects of exposure in the desired operational temperature range of -40 C to +60 C by flattening the round plastic tubing to be used for the fabrication of the dosimeter until the tubing attains an elliptical cross section and then fabricating the dosimeter from the tubing having the elliptical cross section.

  15. The Development, Characterization, and Performance Evaluation of a New Combination Type Personnel Neutron Dosimeter

    NASA Astrophysics Data System (ADS)

    Liu, Chwei-Jeng

    A new combination type personnel neutron dosimeter has been designed and developed at the Oak Ridge National Laboratory (ORNL). The combination personnel neutron dosimeter (CPND) consists of a Harshaw albedo neutron thermoluminescent dosimeter (two pairs of TLD-600/TLD-700) and two bubble detectors (one BD-100R and one BDS-1500 from Bubble Technology Industries, Canada). The CPND was developed with the aim of having crude neutron spectrometric capability, universal applicability, better angular response, and an improved lower limit of detection (LLD). The CPND has been well characterized in the following areas: reusability, linearity, lower limit of detection (LLD), detection capability in mixed neutron-gamma fields, angular dependence, and neutron energy dependence. The characterization was accomplished with irradiations using a ^{238} Pu-Be source, a ^{252} Cf(D_2O) source, a ^{252}Cf source, a ^ {252}Cf(PE) source, monoenergetic neutrons from accelerator and reactor filtered beams, ^ {137}Cs, and X-rays. Optimum signal readout procedures, signal processing techniques, routine operational usage, and neutron dose equivalent evaluation algorithms for the CPND were developed with the goals of having the best precision and accuracy as well as being convenient to use. Various reference spectra were developed to evaluate the performance (mainly the spectrometric and the dose equivalent measurement capabilities) of the CPND. The performance of the CPND was evaluated by in-situ tests in radiation fields existing in the working environment at ORNL. The spectra in these areas were measured previously with a calibrated Bonner multisphere spectrometer. The CPND also was tested with laboratory radioisotopic sources in single-source and multi-source exposure situations. Finally, the CPND was tested by participating in the fourteenth Personnel Dosimetry Intercomparison Study. The results of the tests mentioned above demonstrated that the CPND meets the ambitious design purposes

  16. A method to correct for stray light in telecentric optical-CT imaging of radiochromic dosimeters

    PubMed Central

    Thomas, Andrew; Newton, Joseph

    2011-01-01

    Radiochromic plastic and gel materials have recently emerged which can yield 3D dose information over clinical volumes in high resolution. These dosimeters can provide a much more comprehensive verification of complex radiation therapy treatments than can be achieved by conventional planar and point dosimeters. To achieve full clinical potential, these dosimeters require a fast and accurate read-out technology. Broad-beam optical-computed tomography (optical-CT) systems have shown promise, but can be sensitive to stray light artifacts originating in the imaging chain. In this work we present and evaluate a method to correct for stray light artifacts by deconvolving a measured, spatially invariant, point spread function (PSF). The correction was developed for the DLOS (Duke large field-of-view optical-CT scanner) in conjunction with radiochromic PRESAGE® dosimeters. The PSF was constructed from a series of acquisitions of projection images of various sized apertures placed in the optical imaging chain. Images were acquired with a range of exposure times, and for a range of aperture sizes (0.2–11 mm). The PSF is investigated under a variety of conditions, and found to be robust and spatially invariant, key factors enabling the viability of the deconvolution approach. The spatial invariance and robustness of the PSF are facilitated by telecentric imaging, which produces a collimated light beam and removes stray light originating upstream of the imaging lens. The telecentric capability of the DLOS therefore represents a significant advantage, both in keeping stray light levels to a minimum and enabling viability of an accurate PSF deconvolution method to correct for the residual. The performance of the correction method was evaluated on projection images containing known optical-density variations, and also on known 3D dose distributions. The method is shown to accurately account for stray light on small field dosimetry with corrections up to 3% in magnitude shown

  17. Progress Toward Electrostatic Radiation Shielding of Interplanetary Spacecraft: Strategies, Concepts and Technical Challenges of Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem

  18. Personal dose equivalent for photons and its variation with dosimeter position.

    PubMed

    Zankl, M

    1999-02-01

    This work presents conversion coefficients per air kerma free-in-air for the personal dose equivalent, Hp(10), calculated according to its definition by the International Commission on Radiation Units and Measurements as a quantity in the human body. The values were calculated using Monte Carlo methods for various dosimeter positions in the trunk of a voxel model of an adult male, and they are given for various directions of incidence of broad parallel photon beams with energies between 10 keV and 10 MeV. It is shown that the numerical values of the personal dose equivalent depend on the exact position of the dosimeter, with maximum differences between 12% and 80%, depending on the beam geometry. It is further shown that the recommended calibration quantity Hp slab(10), which has been used in ICRP Publication 74 and ICRU Report 57 in the absence of data in the human body to approximate personal dose equivalent, does represent the latter quantity in a sensible way for some, but not all, beam geometries. Comparison of the values for the personal dose equivalent of this work with effective dose revealed that Hp(10) is a conservative estimate or close approximation of E for most irradiation geometries and photon energies. PMID:9929127

  19. Investigation of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry

    SciTech Connect

    Luo, Guang-Wen; Qi, Zhen-Yu Deng, Xiao-Wu; Rosenfeld, Anatoly

    2014-05-15

    Purpose: To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters forin vivo intensity modulated radiation therapy (IMRT) dosimetry. Methods: Several MOSFETs were irradiated atd{sub max} using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. Results: More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Conclusions: Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.

  20. EPR dosimetric properties of 2-methylalanine pellet for radiation processing application

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.; Ali, Laila I.; Moustafa, H.; Tadros, Soad M.

    2014-09-01

    The dosimetric characteristics of γ-radiation induced free radicals in 2-methylalanine (2MA) pellet dosimeter are investigated using electron paramagnetic resonance (EPR) in the high-dose range of 1-100 kGy. The EPR spectrum of γ-irradiated 2MA exhibits an isotropic EPR signal with seven lines. The dosimeter response is humidity independent in the range of 33-76% relative humidity. The manufactured dosimeter is typically adipose tissue equivalent in the energy level of 0.1-15 MeV. The overall uncertainty (2σ) of the dosimeter is less than 6.9%.

  1. Tracking and Monitoring with Dosimeter-Enabled ARG-US RFID System - 12009

    SciTech Connect

    Anderson, J.; Lee, H.; De Lurgio, P.; Kearney, C.M.; Craig, B.; Soos, I.H.; Tsai, H.; Liu, Y.; Shuler, J.

    2012-07-01

    Automated monitoring and tracking of materials with radio frequency identification (RFID) technology can significantly improve both the operating efficiency of radiological facilities and the application of the ALARA (as low as reasonably achievable) principle in them. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy (DOE) Packaging and Certification Program to use in managing sensitive nuclear and radioactive materials. Several ARG-US systems are in various stages of deployment and advanced testing across DOE sites. ARG-US utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users. In conjunction with global positioning system (GPS) tracking provided by TRANSCOM, the system can also monitor and track packages during transport. A compact dosimeter has been incorporated in the ARG-US tags via an onboard universal asynchronous receiver/transmitter interface. The detector has a wide measurement range for gamma radiation - from 0.1 mSv/h to 8 Sv/h. The detector is able to generate alarms for both high and low radiation and for a high cumulative dose. In a large installation, strategically located dosimeter-enabled tags can yield an accurate, real-time, 2D or 3D dose field map that can be used to enhance facility safety, security, and safeguards. This implementation can also lead to a reduced need for manned surveillance and reduced exposure of personnel to radiation, consistent with the ALARA principle at workplaces. (authors)

  2. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    PubMed Central

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-01-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology. PMID:24694678

  3. Hanford Personnel Dosimeter supporting studies FY-1980. [Lead abstract

    SciTech Connect

    Endres, G.W.R.; Cummings, F.M.; Aldrich, J.M.; Thorson, M.R.; Kathren, R.L.

    1981-02-01

    Separate abstracts were prepared for the 10 sections of this report which describe fundamental characteristics of the Hanford multipurpose personnel dosimeter (HMPD). Abstracts were not prepared for Appendix A and Appendix B which deal with calculated standard deviations for 100 mrem mixed field exposures and detailed calculations of standard deviations, respectively. (KRM)

  4. Influence of preparation and calibration method of PAGAT dosimeter on TSE MR readout results

    NASA Astrophysics Data System (ADS)

    Vávrů, K.; Dvořák, P.; Tintěra, J.; Spěváček, V.

    2013-06-01

    In this study PAGAT dosimeter evaluation by TSE sequence was tested. PAGAT dosimeter preparation procedure was modified to increase the dosimeter sensitivity. Because THPC reacts with gelatin, adding THPC to monomer solution prior to dissolved gelatine helps exploit THPC as an antioxidant. Turbo spin echo sequence enables to evaluate gel dosimeter with 3D equidistant resolution in a reasonable scanning time. Glass walls of the phantom cause problems both by computing inaccuracies and MR imaging artefacts. The inner dosimeter volume is not affected by these inaccuracies and should be used for radiotherapy plan verification.

  5. Deconnable self-reading pocket dosimeter containment with self-contained light

    SciTech Connect

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1995-12-31

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  6. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOEpatents

    Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.

    1996-01-01

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  7. Concept of an Innovative Photoluminescent Sensor for Radiative Heat Flux Measurement During Super-Orbital Re-Entry

    NASA Astrophysics Data System (ADS)

    Conte, L.; Trifoni, E.; De Filippis, F.; Marraffa, L.

    2014-06-01

    In this work is presented the idea, the physical principle, and a first layout of an innovative sensor capable to collect the VUV contribution to radiative heat flux both for onboard flight measurements and plasma wind tunnel tests.

  8. Thermoluminescence dosimeters with narrow bandpass filters

    SciTech Connect

    Walker, Scottie W.

    2004-07-20

    A dosimetry method exposes more than one thermoluminescence crystals to radiation without using conventional filters, and reads the energy stored in the crystals by converting the energy to light in a conventional manner, and then filters each crystal output in a different portion of the spectrum generated by the crystals.

  9. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    SciTech Connect

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  10. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    SciTech Connect

    Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S; Gao, M; Pankuch, M; Boyer, S; Mah, D; Pillainayagam, M; Schreuder, A

    2014-06-15

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.

  11. Bidimensional silicon dosimeter: Development and characterization

    NASA Astrophysics Data System (ADS)

    Talamonti, C.; Bruzzi, M.; Marrazzo, L.; Menichelli, D.; Scaringella, M.; Bucciolini, M.

    2011-12-01

    Clinical dosimetry in radiotherapy is a well known matter but high conformal radiotherapy modalities (Intensity Modulated Radiation Therapy (IMRT), stereotactic treatments with photons and protons, Intensity Modulated Proton Therapy (IMPT)) possess problems due to small radiation fields with high dose gradients, variation in space and time of the dose rate and variation in space and time of the beam energy spectrum. A modular dosimetric detector, adequate for 2D pre-treatment dose verifications, has been developed in the framework of the European Integrated project MAESTRO. The detector is a monolithic segmented sensor obtained by n-type implantation on a 50 μthick epitaxial silicon p-type layer; this is later used to guarantee improved radiation hardness of the device against the accumulated dose. The detector is composed of a matrix of 21×21 pixels with a size of 2×2 mm 2 each and a 3 mm center-to-center distance. A full dosimetric characterization of the detector was performed with photon and proton beams and with gammas from a 60Co unit. Results have been compared with those obtained with a Farmer and a CC13 Scanditronix/Welhoffer ion chamber as well as with the silicon matrix MapCHECK™. The first application of the MAESTRO prototype in the dosimetric verification of a clinical IMRT field is also reported. Results show that our modular detector represents a valuable tool for quality assurance in IMRT dose delivery and for high precision radiotherapy techniques.

  12. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  13. Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry

    NASA Astrophysics Data System (ADS)

    Mrozik, Anna; Marczewska, B.; Bilski, P.; Kłosowski, M.

    2014-11-01

    The rapid assessment of the radiation dose after unexpected exposure is a task of accidental dosimetry. In case of a radiological accident glasses originating from mobile phone screens, placed usually near the human body, could be used as emergency thermoluminescent (TL) personal dosimeters. The time between irradiation and TL readout is crucial and therefore preparation of the mobile phone screens and their readout conditions should be optimized. The influence of the samples etching, bleaching and selection of the optical filters based on measurement of the emission spectrum of irradiated glass samples during heating for different types of mobile phones were the subjects of our investigation. Obtained results showed that glasses extracted from different brands of mobile phones have different dosimetric properties but all of them give a luminescent signal which can be used to calculate the dose.

  14. An investigation into the potential influence of oxygen on the efficiency of the PRESAGE® dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, M.; Blencowe, A.; Ibbott, G.

    2015-01-01

    The influence of atmospheric oxygen on the efficiency of the PRESAGE® dosimeter was investigated. Batches of PRESAGE® and reporting system solution were deoxygenated using nitrogen and compared to similar batches that were exposed to atmospheric oxygen during fabrication. The overall results show little influence of oxygen on the characteristics of PRESAGE® with the radical initiator oxidizing the leucomalachite green in the presence of oxygen. However, when deoxygenating the reporting system the sensitivity to radiation dose increased by 30% compared to the non-deoxygenated system. A slight improvement in sensitivity (5%) was achieved by deoxygenating the PRESAGE® precursors prior to casting. The results suggest that the solid polyurethane matrix is not permeable to atmospheric oxygen. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of PRESAGE® under the conditions investigated.

  15. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications

    SciTech Connect

    Lacroix, Frederic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A. Sam; Beaulieu, Luc

    2008-08-15

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility ({+-}0.8%) in-field and good accuracy ({+-}1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.

  16. Underwater deployment of the polyphenylene oxide dosimeter combined with a neutral density filter to measure long-term solar UVB exposures.

    PubMed

    Schouten, P W; Parisi, A V

    2012-07-01

    Numerous studies have conclusively shown how solar ultraviolet radiation (UV) (290-400 nm) has a negative impact upon underwater ecosystems. As a consequence of this, UV must be accurately evaluated in aquatic locations by employing a non-invasive measurement technique in order to better understand the damage it causes on both a macro and micro scale and provide solutions on how to manage its impact over both short and long time scales. Specifically, the UVB (290-320 nm) has the highest potential for causing stress to marine organisms. This manuscript details the deployment of a cost-effective and easily useable UVB detection dosimeter based on polyphenylene oxide (PPO) combined with a neutral density filter (NDF) derived from polyethylene. A long-term calibration regime performed over an extensive solar zenith angle range (SZA) in summer at a semi-tropical location showed that the PPO dosimeter used in conjunction with a polyethylene NDF could measure UVB exposures underwater up to 125 h in daylight (11-12 days approximately) before reaching near total saturation, providing an exposure limit as much as seven times greater that what was previously achievable with PPO dosimeters deployed without an NDF and approximately 42 times larger than those measured previously with polysulphone dosimeters. PMID:22551692

  17. TL and OSL dose response of LiF:Mg,Ti and Al2O3:C dosimeters using a PMMA phantom for IMRT technique quality assurance.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; Cruz, José C; Campos, Letícia L

    2015-06-01

    The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures. PMID:25698672

  18. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  19. In vivo dosimetry with optically stimulated dosimeters and RTQA2 radiochromic film for intraoperative radiotherapy of the breast

    SciTech Connect

    Price, Caleb; Pederson, Aaron; Frazier, Chanté; Duttenhaver, John

    2013-09-15

    Purpose: Measurements were taken with optically stimulated luminescence dosimeters (OSLDs) and with RTQA2 radiochromic film to evaluate the use of each for in vivo dosimetry with intraoperative radiotherapy of the breast.Methods: Nonlinear calibration curves were established for OSLDs and RTQA2 radiochromic film using the Intrabeam 50 kV{sub p} source. Measurements were taken in a water phantom and compared to absolute dose measurements taken with an ionization chamber to investigate the characteristics of both types of dosimeters, including energy response and radiative absorption. In vivo readings were taken on the skin and in the tumor cavity using OSLDs and RTQA2 radiochromic film for 10 patients and 20 patients respectively. A prescription of 20 Gy to the surface of the applicator was used for all in vivo measurements in this study.Results: OSLDs were found to have an approximate uncertainty of ±7% for readings near the surface of the applicator and ±17% for readings at distances typical to the skin. The radiative absorption by OSLD was negative, indicating that this type of dosimeter absorbs less radiation than water in the targeted intraoperative radiotherapy energy range. RTQA2 film exhibited no energy dependence and all film readings were within ±8% of the delivered dose. The maximum radiative absorption in film was 8.5%. Radiochromic film measurements were found to be on average 18.2 ± 3.3 Gy for the tumor cavity and 2.1 ± 0.8 Gy for positions on the skin superior and inferior to the Intrabeam applicator. Average cavity measurements taken with OSLDs were 15.9 ± 3.9 Gy and average skin doses were 1.4 ± 0.8 Gy.Conclusions: OSLDs produce results with an uncertainty comparable to other dosimeters near the surface of the applicator but the uncertainty increases to an unacceptably high level with distance from the applicator. RTQA2 radiochromic film is shown to be accurate both at the surface of the applicator and at distances of 1–2 cm.

  20. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    SciTech Connect

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    2004-09-10

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with opening angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.

  1. Method and means for radiation dosimetry

    DOEpatents

    Shulte, J. W.; Suttle, J. F.

    1960-10-18

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  2. Radiation Safety in Pediatric Orthopaedics.

    PubMed

    Caird, Michelle S

    2015-01-01

    Patients, surgeons, and staff are exposed to ionizing radiation in pediatric orthopaedic surgery from diagnostic studies and imaging associated with procedures. Estimating radiation dose to pediatric patients is based on complex algorithms and dose to surgeons and staff is based on dosimeter monitoring. Surgeons can decrease radiation exposure to patients with careful and thoughtful ordering of diagnostic studies and by minimizing exposure intraoperatively. Surgeon and staff radiation exposure can be minimized with educational programs, proper shielding and positioning intraoperatively, and prudent use of intraoperative imaging. Overall, better awareness among pediatric orthopaedic surgeons of our role in radiation exposure can lead to improvements in radiation safety. PMID:26049299

  3. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  4. Photodiode-Based, Passive Ultraviolet Dosimeters

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Gray, Perry

    2004-01-01

    Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.

  5. [Measurement of the Dose Rate Using Dosimeters in Interventional Radiology and Its Difficulty].

    PubMed

    Yoshida, Hidenori; Takahashi, Chiharu; Narita, Nobuhiro; Mizusawa, Yasuhiko; Sekiya, Masaru; Ohkubo, Masaki

    2016-01-01

    In equipment used for interventional radiology (IVR), automatic exposure control (AEC) is incorporated to obtain the X-ray output suitable for the treatment of targeted lesions. For the AEC, users select a region as the signal sensing region (measuring field, MF) in the flat panel detector; MFs with various sizes and shapes were pre-defined and prepared in the system. The aim of this study was to examine the change of measured dose rate with the selection of MFs, the type of dosimeters (the ionization chamber dosimeter and the semiconductor dosimeter), and the dosimeter placement relative to the direction of X-ray tube (from cathode to anode). The IVR equipment was Allura Xper FD20/10 (Philips Medical Systems), and six kinds of built-in MFs were used. It was found that dose rate measured by the ionization chamber dosimeter showed a variation of -2 mGy/min with the MFs and the ionization chamber dosimeter placement. The dose rate measured by the semiconductor dosimeter showed more variation than the ionization chamber dosimeter. The change of dose rate with the dosimeter placement would be caused by the MF overlapping the dosimeter which would affect the AEC (the X-ray output). Also, the change of dose rate with the dosimeter placement was considered to be related to the heel effect of the X-ray beam. When performing dose rate measurements, we should notice that the selection of MFs, the type of dosimeters, and the dosimeter placement would affect the measured values. PMID:26796935

  6. New sintered thermoluminescent dosimeters for personnel and environmental dosimetry.

    PubMed

    Prokic, M S

    1982-06-01

    We discuss the development of an original method preparing thermoluminescent dosimeters using magnesium borate and calcium sulfate materials activated with rare earths. This method is based upon the effect of sensitized thermoluminescent emission of basic TLD phosphors as well as on the method for producing these in solid form. Our technique resulted in unique TLD's in the form of sintered thermoluminescent dosimeters. For one of these, MgB4O7:RE+, the thermoluminescent response is up to five times more sensitive than non-sensitized magnesium borate thermoluminescent material. The other TLD, CaSO4:RE+, has dosimetric characteristics which stay unchanged and are equivalent with characteristics of the well-known calcium sulfate TLD phosphors. These new types of sintered TLD's are highly promising for personnel and environmental dosimetry. PMID:7107292

  7. A new electronic neutron dosimeter (END) for reliable personal dosimetry

    NASA Astrophysics Data System (ADS)

    Ing, H.; Cousins, T.; Andrews, H. R.; Machrafi, R.; Voevodskiy, A.; Kovaltchouk, V.; Clifford, E. T. H.; Robins, M.; Larsson, C.; Hugron, R.; Brown, J.

    2008-04-01

    Tests of existing electronic neutron dosimeters by military and civilian groups have revealed significant performance limitations. To meet the operational requirements of emergency response personnel to a radiological/nuclear incident as well as those in the nuclear industry, a new END has been developed. It is patterned after a unique commercial neutron spectral dosemeter known as the N-probe. It uses a pair of small special scintillators on tiny photomultiplier tubes. Special electronics were designed to minimize power consumption to allow for weeks of operation on a single charge. The size, performance, and data analysis for the END have been designed to meet/exceed international standards for electronic neutron dosimeters. Results obtained with the END prototype are presented.

  8. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  9. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  10. Quantification of Inlet Impedance Concept and a Study of the Rayleigh Formula for Noise Radiation from Ducted Fan Engines

    NASA Technical Reports Server (NTRS)

    Posey, Joe W.; Dunn, M. H.; Farassat, F.

    2004-01-01

    This paper addresses two aspects of duct propagation and radiation which can contribute to more efficient fan noise predictions. First, we assess the effectiveness of Rayleigh's formula as a ducted fan noise prediction tool. This classical result which predicts the sound produced by a piston in a flanged duct is expanded to include the uniform axial inflow case. Radiation patterns using Rayleigh's formula with single radial mode input are compared to those obtained from the more precise ducted fan noise prediction code TBIEM3D. Agreement between the two methods is excellent in the peak noise regions both forward and aft. Next, we use TBIEM3D to calculate generalized radiation impedances and power transmission coefficients. These quantities are computed for a wide range of operating parameters. Results were obtained for higher Mach numbers, frequencies, and circumferential mode orders than have been previously published. Viewed as functions of frequency, calculated trends in lower order inlet impedances and power transmission coefficients are in agreement with known results. The relationships are more oscillatory for higher order modes and higher Mach numbers.

  11. Occupational Radiation Exposure from C Arm Fluoroscopy During Common Orthopaedic Surgical Procedures and its Prevention

    PubMed Central

    Samuel, Sumant; Saran, Atul K; Mahajan, M K; Mam, M K

    2015-01-01

    Background: Image intensifiers have become popular due to the concept of minimally invasive surgeries leading to decreasing invasiveness, decreased operative time, and less morbidity. The drawback, however, is an increased risk of radiation exposure to surgeon, patient and theatre staff. These exposures have been of concern due to their potential ability to produce biological effects. The present study was embarked upon to analyse the amount of radiation received by orthopedic surgeons in India using standard precautionary measures and also to bring awareness about the use of image intensifier safety in everyday practice. Materials and Methods: Twelve right-handed male orthopedic surgeons (4 senior consultants, 5 junior consultants and 3 residents) were included in a three month prospective study for radiation exposure measurement with adequate protection measures in all procedures requiring C Arm fluoroscopy. Each surgeon was provided with 5 Thermo Luminescent Dosimeter (TLD) badges which were tagged at the level of neck, chest, gonads and both wrists. Operative time and exposure time of each procedure was recorded. Exposure dose of each badge at the end of the study was obtained and the results were analysed. Results: Mean radiation exposure to all the parts were well within permissible limits. There was a significantly positive correlation between the exposure time and the exposure dose for the left wrist (r=0.735, p<0.01) and right wrist (r=0.58, p<0.05). The dominant hand had the maximum exposure overall. Conclusion: Orthopaedic surgeons are not classified radiation workers. The mean exposure doses to all parts of the body were well within permissible limits. Nothing conclusive, however, can be said about the stochastic effects (chance effects like cancers). Any amount of radiation taken is bound to pose an additional occupational hazard. It is thus desirable that radiation safety precautions should be taken and exposures regularly monitored with at least one

  12. Reference dosimeter system of the iaea

    NASA Astrophysics Data System (ADS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  13. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  14. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  15. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose

    SciTech Connect

    Jursinic, Paul A.

    2010-01-15

    Purpose: A new type of in vivo dosimeter, an optically stimulated luminescent dosimeter (OSLD), has now become commercially available for clinical use. The OSLD is a plastic disk infused with aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C). Crystals of Al{sub 2}O{sub 3}:C, when exposed to ionizing radiation, store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. The effects of accumulated dose on OSLD response were investigated. Methods: The OSLDs used in this work were nanodot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x rays and gamma rays from Co-60 and Ir-192. The signal on the OSLDs after irradiation is removed by optical annealing with a 150 W tungsten-halogen lamp or a 14 W compact fluorescent lamp was investigated. Results: It was found that OSLD response to dose was supralinear and this response was altered with the amount of accumulated dose to the OSLD. The OSLD response can be modeled by a quadratic and an exponential equation. For accumulated doses up to 60 Gy, the OSLD sensitivity (counts/dose) decreases and the extent of supralinear increases. Above 60 Gy of accumulated dose the sensitivity increases and the extent of supralinearity decreases or reaches a plateau, depending on how the OSLDs were optically annealed. With preirradiation of OSLDs with greater than 1 kGy, it is found that the sensitivity reaches a plateau 2.5 folds greater than that of an OSLD with no accumulated dose and the supralinearity disappears. A regeneration of the luminescence signal in the dark after full optical annealing occurs with a half time of about two days. The extent of this regeneration signal depends on the amount of accumulated dose. Conclusions: For in vivo dosimetric measurements, a precision of

  16. Functional Evaluation of the DOZA DKG-05D Electronic Dosimeter System

    SciTech Connect

    Piper, Roman K.; Scherpelz, Robert I.

    2009-11-04

    small problems with non-linearity over a range of doses, but these non-linearities were at extremely low and very high doses and would not adversely affect the performance in our intended application. The testing resulted in the general conclusion that the DOZA DKG-05D is suitable for use in PPRA applications for real-time indication of dose received by a user and for estimation of stay times in radiation zones. It can be used as a supplement to a passive dosimeter, but it should not be used for measuring the user’s dose of record.

  17. Development of an operational multicomponent personnel neutron dosimeter/spectrometer DOSPEC

    SciTech Connect

    Griffith, R.V.; McMahon, T.A.

    1983-10-26

    A multicomponent dosimeter has been developed that uses an albedo detector to provide the measurement of low energy neutrons and as a screening element. It also contains track detector components, CR-39 and polycarbonate, which are only processed if the TLD indicates there has been an exposure to neutrons. Since the three components have significantly different energy responses, the dosimeter can act as a crude spectrometer. This report describes the dosimeter and briefly summarizes its use experience. 10 refs., 2 figs., 2 tabs.

  18. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOEpatents

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  19. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  20. Solid-state dosimeters: A new approach for mammography measurements

    SciTech Connect

    Brateman, Libby F.; Heintz, Philip H.

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the SStD and