These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Distribution effectiveness for space radiation dosimetry  

NASA Technical Reports Server (NTRS)

A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

Wilson, J. W.

1975-01-01

2

Radiation dosimetry and biophysical models of space radiation effects  

NASA Technical Reports Server (NTRS)

Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

2003-01-01

3

Radiation dosimetry and biophysical models of space radiation effects.  

PubMed

Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems. PMID:12959127

Cucinotta, Francis A; Wu, Honglu; Shavers, Mark R; George, Kerry

2003-06-01

4

Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics  

SciTech Connect

Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

2008-07-25

5

Fundamentals of Radiation Dosimetry  

NASA Astrophysics Data System (ADS)

The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

Bos, Adrie J. J.

2011-05-01

6

Fundamentals of Radiation Dosimetry  

SciTech Connect

The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

Bos, Adrie J. J. [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB Delft (Netherlands)

2011-05-05

7

2015 Radiation Epidemiology and Dosimetry Course  

Cancer.gov

Mark your calendars for the 2015 Radiation Epidemiology and Dosimetry Course, offered by the Radiation Epidemiology Branch, part of NCI's Division of Cancer Epidemiology and Genetics (DCEG). World renowned radiation experts will discuss basic principles and the most up-to-date thinking about the health effects of radiation exposure.

8

Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods.  

PubMed

Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the effects of direct and scattered radiation, in deterministic effects (radiodermitis, aged skin, cataracts, telangiectasia in nasal region, vasocellular epitelioms, hands depilation) and/or stochastic ones (cancer incidence). A methodology has been proposed for estimating the radiation risk or detriment from a group of six exposed interventional radiologists of the Hospital Universitario La Fe (Valencia, Spain), which had developed general exposition symptoms attributable to deterministic effects of ionizing radiation. Equivalent doses have been periodically registered using TLD's and wrist dosimeters, H(p)(10) and H(p)(0.07), respectively, and estimated through the observation of translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The software RADRISK has been applied for estimating radiation risks in these occupational radiation exposures. This software is based on transport models from epidemiological studies of population exposed to external sources of ionizing radiation, such as Hiroshima and Nagasaki atomic bomb survivors [UNSCEAR, Sources and effects of ionizing radiation: 2006 report to the general assembly, with scientific annexes. New York: United Nations; 2006]. The minimum and maximum average excess ratio for skin cancer has been, using wrist physical doses, of [1.03x10(-3), 5.06x10(-2)], concluding that there is not an increased risk of skin cancer incidence. The minimum and maximum average excess ratio for leukemia has been, using TLD physical doses, of [7.84x10(-2), 3.36x10(-1)], and using biological doses, of [1.40x10(-1), 1.51], which is considerably higher than incidence rates, showing an excess radio-induced risk of leukemia in the group under study. Finally, the maximum radiological detriment in the group, evaluated as the total number of radio-induced cancers using physical dosimetry, has been of 2.18/1000 person-year (skin and leukemia), and using biological dosimetry of 9.20/1000 PY (leukemia). As a conclusion, this study has provided an assessment of the non-deterministic effects (rate of radio-induced cancer incidence) attributable to the group under study due to their professional activity. PMID:19380209

Ramos, M; Montoro, A; Almonacid, M; Ferrer, S; Barquinero, J F; Tortosa, R; Verdú, G; Rodríguez, P; Barrios, L L; Villaescusa, J I

2010-08-01

9

Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO  

NASA Technical Reports Server (NTRS)

We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

2000-01-01

10

Analysis of MIR18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO  

Microsoft Academic Search

We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3\\/2:1 and that this ratio will increase for

F. A Cucinotta; J. W Wilson; J. R Williams; J. F Dicello

2000-01-01

11

Small fields: Nonequilibrium radiation dosimetry  

SciTech Connect

Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

Das, Indra J.; Ding, George X.; Ahnesjoe, Anders [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Oncology, Radiology and Clinical Immunology, Section of Oncology, Uppsala University, S-751 85 Uppsala and Nucletron AB, S-751 47 Uppsala (Sweden)

2008-01-15

12

Initial radiation dosimetry at Hiroshima and Nagasaki  

SciTech Connect

The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

Loewe, W.E.

1983-09-01

13

Advances in radiation therapy dosimetry  

PubMed Central

During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed. PMID:20098555

Paliwal, Bhudatt; Tewatia, Dinesh

2009-01-01

14

Remote radiation dosimetry  

DOEpatents

Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA); Hegland, Joel E. (Pullman, WA); Jones, Scott C. (Pullman, WA)

1991-01-01

15

Remote radiation dosimetry  

DOEpatents

Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

1991-03-12

16

Space radiation dosimetry.  

PubMed

In this report dosimetric measurements are presented which were performed during the missions Spacelab 1, D 1, Biocosmos 8 and Biocosmos 9. Detector packages consisting of plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters were exposed at different locations inside and outside spacecrafts behind more or less well defined shielding thicknesses. These detector systems which supplement each other in their registration characteristic allow to record all biological relevant portions of the radiation field separately. Dose equivalents for the astronauts have been calculated from the measurements using the quality factors as defined in the old and the new recommendations of the International Commission on Radiation Protection (ICRP). PMID:11538447

Reitz, G

1994-11-01

17

Advanced Semiconductor Dosimetry in Radiation Therapy  

NASA Astrophysics Data System (ADS)

Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

Rosenfeld, Anatoly B.

2011-05-01

18

Proton-beam radiation therapy dosimetry standardization  

SciTech Connect

Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report {open_quotes}Protocol for Dosimetry of Heavy Charged Particles{close_quotes} and the {open_quotes}European Code of Practice for Proton-Beam Dosimetry{close_quotes} the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed.

Gall, K.P.

1995-12-31

19

Carbon Nanotube and Carbon Fibre Based Radiation Dosimetry.  

E-print Network

??The principle of radiobiology and, hence, clinical outcomes in radiotherapy are inherently dependent on accurate radiation dosimetry. Over the last few decades, ionization chambers, thermoluminescence… (more)

Ma, Jiazhi

2008-01-01

20

Radiation Dosimetry of Binary Pulsars  

E-print Network

Companion stars exposed to high energy radiation from a primary neutron star or accreting black hole can experience significant spallation of their heavy elements, so that their atmospheres would be extremely rich in lithium, beryllium, and especially boron. In this paper we note that the detection or non-detection of these elements, and their relative abundances if detected, would provide a diagnostic of the high energy output of the primary, and possibly the shock acceleration of particles at the companion's bow shock in a pulsar wind.

David Eichler; Biman B. Nath

1995-08-04

21

A practical three-dimensional dosimetry system for radiation therapy  

SciTech Connect

There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.

Guo Pengyi; Adamovics, John; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

2006-10-15

22

Individual dosimetry for neutron radiation fields  

NASA Astrophysics Data System (ADS)

Neutron dosimetry techniques used in a dosimetric center are discussed, including film individual dosimetry for slow and fast neutrons, albedo individual dosimetry with either thermoluminescent detectors or alpha particle tracer detectors, and alpha tracer detectors using the CR-39 commercial reticulated polymer. The technique using the CR-39 is found to be easy to use, low cost and has a low neutron energy threshold.

Lembo, L.

1982-10-01

23

Summary of current radiation dosimetry results on manned spacecraft  

NASA Technical Reports Server (NTRS)

It is pointed out that the experimental data existing on radiation levels inside orbiting spacecraft are currently limited. However, it is recognized that perhaps the single most important constraint to long-term manned space activity may be related to the complex space radiation environment. For this reason, it is important to know the radiological parameters which determine the biological effects of space radiation on humans. Attention is given to radiation dose measurements, LET (linear energy transfer) spectra for HZE particles, and dosimetry data from U.S. manned spaceflights. In particular, data are now available on dose rates in spacecraft at low altitudes (less than 300 km), while insufficient measurements exist for high altitude and high inclination orbits, geostationary orbits, and many orbits in between. Very little data exist on neutron dose and spectra.

Benton, E. V.

1984-01-01

24

The MCART Radiation Physics Core: The Quest for Radiation Dosimetry Standardization  

PubMed Central

Dose-related radiobiological research results can only be meaningfully compared when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories utilize a variety of ionizing photon beams from several irradiators such as 250–320 kVp x-ray generators, 137Cs irradiators, 60Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers utilize a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. In this paper we will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date. PMID:24276553

Kazi, Abdul M.; MacVittie, Thomas J.; Lasio, Giovanni; Lu, Wei; Prado, Karl L.

2013-01-01

25

2011 Radiation Epidemiology and Dosimetry Course  

Cancer.gov

2011 - Three-day course intended for people with backgrounds in epidemiology who are interested in learning about the health effects of radiation exposure–particularly the relationship between ionizing radiation and cancer.

26

Human Biodistribution and Radiation Dosimetry of 82Rb  

PubMed Central

Prior estimates of radiation-absorbed doses from 82Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated 82Rb dosimetry using human in vivo biokinetic measurements. Methods Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate 82Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. Results The highest mean absorbed organ doses (?Gy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 ?Sv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Conclusion Our current 82Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical 82Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103—only slightly above the average annual natural background exposure in the United States (3.1 mSv). PMID:20847168

Senthamizhchelvan, Srinivasan; Bravo, Paco E.; Esaias, Caroline; Lodge, Martin A.; Merrill, Jennifer; Hobbs, Robert F.; Sgouros, George; Bengel, Frank M.

2011-01-01

27

Review of retrospective dosimetry techniques for external ionising radiation exposures.  

PubMed

The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. PMID:21183550

Ainsbury, E A; Bakhanova, E; Barquinero, J F; Brai, M; Chumak, V; Correcher, V; Darroudi, F; Fattibene, P; Gruel, G; Guclu, I; Horn, S; Jaworska, A; Kulka, U; Lindholm, C; Lloyd, D; Longo, A; Marrale, M; Monteiro Gil, O; Oestreicher, U; Pajic, J; Rakic, B; Romm, H; Trompier, F; Veronese, I; Voisin, P; Vral, A; Whitehouse, C A; Wieser, A; Woda, C; Wojcik, A; Rothkamm, K

2011-11-01

28

Radiation Protection Dosimetry Vol. 97, No. 1, pp. 6973 (2001)  

E-print Network

69 Radiation Protection Dosimetry Vol. 97, No. 1, pp. 69­73 (2001) Nuclear Technology Publishing BIOMARKERS SPECIFIC TO DENSELY-IONISING (HIGH LET) RADIATIONS D. J. Brenner, N. Okladnikova, P. Hande, L -- There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker

Brenner, David Jonathan

29

Radiation dosimetry using three-dimensional optical random access memories  

NASA Technical Reports Server (NTRS)

Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

Moscovitch, M.; Phillips, G. W.

2001-01-01

30

Medical Radiation Dosimetry: Concepts and Needs  

SciTech Connect

Radiation is used widely used in medicine for diagnostic and therapeutic applications. Both the desired effects and the potential detrimental side effects depend on the radiation dose delivered. As such it is essential to determining the radiation dose received by patients as accurately as needed to optimise the radiation procedure. Solid state dosimeters are increasingly used in medicine because of their small physical size, high sensitivity and usually low cost. Combining multiple detectors allows the detection of radiation dose distributions, an application where the distinction between radiation dosimeter and image detector starts to blur. Given the rapid development of detector technology it can be expected that the utilisation of solid-state dosimeters in medicine will continue to increase.

Kron, Tomas [Peter MacCallum Cancer Centre, Department of Physical Sciences, St Andrews Place, East Melbourne, Victoria 3002 (Australia)

2011-05-05

31

Space radiation dosimetry in low-Earth orbit and beyond  

NASA Technical Reports Server (NTRS)

Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

Benton, E. R.; Benton, E. V.

2001-01-01

32

Recommended improvements to the DS02 dosimetry system's calculation of organ doses and their potential advantages for the Radiation Effects Research Foundation.  

PubMed

The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models. PMID:22262817

Cullings, Harry M

2012-03-01

33

Personnel radiation dosimetry symposium: program and abstracts  

SciTech Connect

The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

Not Available

1984-10-01

34

Radiation protection and dosimetry issues in the medical applications of ionizing radiation  

NASA Astrophysics Data System (ADS)

The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate dosimetric assessment of the medical applications of ionizing radiation. In this paper, the aforementioned topics will be reviewed. The current status and the future trends in the implementation of the justification and optimization principles, pillars of the International System of Radiological Protection, in the medical applications of ionizing radiation will be discussed. Prospective views will be provided on the future of the system of radiological protection and on dosimetry issues in the medical applications of ionizing radiation.

Vaz, Pedro

2014-11-01

35

Age-dependent small-animal internal radiation dosimetry.  

PubMed

Rats at various ages were observed to present with different radiosensitivity and bioavailability for radiotracers commonly used in preclinical research. We evaluated the effect of age-induced changes in body weight on radiation dose calculations. A series of rat models at different age periods were constructed based on the realistic four-dimensional digital rat whole-body (ROBY) computational model. Particle transport was simulated using the MCNPX Monte Carlo code. Absorbed fractions (AFs) and specific absorbed fraction (SAFs) of monoenergetic photons/electrons and S values of eight positron-emitting radionuclides were calculated. The SAFs and S values for most source-target pairs were inversely correlated with body weight. Differences between F-18 S values for most source-target pairs were between -1.5% and -2%/10 g difference in body weight for different computational models. For specific radiotracers, the radiation dose to organs presents a negative correlation with rat body weight. The SAFs for monoenergetic photons/electrons and S values for common positron-emitting radionuclides can be exploited in the assessment of radiation dose delivered to rats at different ages and weights. The absorbed dose to organs is significantly higher in the low-weight young rat model than in the adult model, which would result in steep secondary effects and might be a noteworthy issue in laboratory animal internal dosimetry. PMID:23981782

Xie, Tianwu; Zaidi, Habib

2013-09-01

36

Effect of Brain Stem and Dorsal Vagus Complex Dosimetry on Nausea and Vomiting in Head and Neck Intensity-Modulated Radiation Therapy  

SciTech Connect

Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NV symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A prospective study will be required to depict exactly how IMRT dose affects NV.

Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc [School of Health Sciences, Medical Dosimetry Program, Department of Radiation Oncology, Anderson Cancer Center, Houston, TX (United States); Pham, Mary, E-mail: mary.pham@mdanderson.or [School of Health Sciences, Medical Dosimetry Program, Department of Radiation Oncology, Anderson Cancer Center, Houston, TX (United States); Rebueno, Neal [Department of Diagnostic Radiology, University of Texas M.D. Anderson Cancer Center, Houston (United States); Fuller, Clifton D.; Guha-Thakurta, Nandita [Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX (United States); Rosenthal, David I. [Department of Diagnostic Radiology, University of Texas M.D. Anderson Cancer Center, Houston (United States)

2011-04-01

37

Biodistribution and Radiation Dosimetry in Humans of a New PET Ligand, 18F-PBR06,  

E-print Network

and excretion. Bone had low levels of ra- dioactivity. The effective dose was 18.5 mSv/MBq. ConclusionBiodistribution and Radiation Dosimetry in Humans of a New PET Ligand, 18F-PBR06, to Image Health, National Institutes of Health, Bethesda, Maryland As a PET biomarker for inflammation

Shen, Jun

38

TLD dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility  

Microsoft Academic Search

A two-dimensional (2-D) thermoluminescence (TL) dosimetry system consisting of LiF:Mg,Cu,P (MCP-N)-based TL foils and a TLD reader equipped with a CCD camera and the large size (72mm in diameter) planchete heater, developed at the Institute of Nuclear Physics (IFJ PAN, was applied for 2-D dosimetry of X-ray microbeam radiation therapy (MRT) at the European Synchrotron Radiation Facility (ESRF) in Grenoble,

M. Ptaszkiewicz; E. Braurer-Kirsch; M. Klosowski; L. Czopyk; P. Olko

2008-01-01

39

Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students  

SciTech Connect

A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

Lavender, Charlotte, E-mail: charlavender@gmail.com; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

2014-04-01

40

Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students.  

PubMed

A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study. PMID:24332484

Lavender, Charlotte; Miller, Seth; Church, Jessica; Chen, Ronald C; Muresan, Petronella A; Adams, Robert D

2014-01-01

41

A theoretical approach for non-equilibrium radiation dosimetry  

NASA Astrophysics Data System (ADS)

This study presents a theoretical approach to the dosimetry for small and non-equilibrium radiation fields. We applied the newly developed VMCBC© algorithm to the dosimetry for megavoltage photon beams using Monte Carlo techniques. The approach assumes that a Monte Carlo simulated beam can be calibrated per incident particle at the target in an x-ray tube or in an accelerator head. Since the geometry of the accelerator head and beam defining systems can be modeled in detail, the output of a radiation beam can be accurately related to the number of incident particles through particle transport calculations. The proposed methodology is benchmarked and validated using existing radiosurgery beam commissioning data, which were experimentally measured for narrow beams defined by conical collimators with diameters ranging from 7.5 mm to 30 mm. The Monte Carlo predicted beam outputs agree with the measurement values within the uncertainty of the experiments. The Monte Carlo approach developed and introduced in this study allows the user to perform absolute radiation dosimetry in addition to relative dose distributions at locations where charged-particle equilibrium (CPE) does not exist, such as radiation dose from a narrow stereotactic radiosurgery beam, and where experimental measurements are difficult. The BEAMnrc/DOSXYZnrc code was employed in the Monte Carlo simulations.

Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

2008-07-01

42

Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies  

SciTech Connect

In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

1990-11-01

43

Radiation dosimetry of florbetapir F 18  

PubMed Central

Background Florbetapir is one of several 18F-labeled amyloid plaque imaging tracers for positron emission tomography (PET). As the bio-distribution and radiation dose of PET tracers in human research are important for estimating the relative risks and benefits, a study was conducted to obtain this information on florbetapir. Methods Nine cognitively normal subjects (six females and three males, age 58?±?10 years, weight 81?±?17 kg) received an intravenous bolus injection of 395?±?27.9 MBq of florbetapir, and whole-body emission scans were performed over approximately 6 h. Computed tomography scans were acquired for attenuation correction. Volumes of interest (VOIs) for source organs including the brain, liver, lung, heart wall, and vertebrae were defined on the PET images. The VOIs of the gallbladder, urinary bladder, and large and small intestines were also defined. Using reference man organ volumes (ICRP 30), total activity was calculated per organ for each time point. The resultant time-activity curves (TACs) were fitted with constrained exponentials. Kinetic data were entered into OLINDA/EXM software to calculate dose estimates; the dynamic urinary bladder and ICRP 30 GI tract models were employed. The effective dose (ED) for each subject was estimated from the acquired data using the adult model. Results The mean ED determined for nine healthy volunteers was 18.60?±?4.26 ?Sv/MBq or 6.88 mSv for a 370-MBq dose. The organs that received the highest radiation absorbed doses were the gallbladder, upper large intestine, small intestine, liver, and urinary bladder at 143.0?±?80.20, 74.50?±?34.20, 65.50?±?29.60, 64.40?±?22.10, and 27.10?±?11.70 ?Sv/MBq, respectively. Conclusions The ED for florbetapir has been calculated for nine healthy volunteers. At a dose of 370 MBq florbetapir, the total average ED is approximately 6.88 mSv. PMID:24401181

2014-01-01

44

Proceedings of the second conference on radiation protection and dosimetry  

SciTech Connect

The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

Swaja, R. E.; Sims, C. S. [eds.

1988-11-01

45

High LET, passive space radiation dosimetry and spectrometry  

NASA Technical Reports Server (NTRS)

The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

1995-01-01

46

Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning  

SciTech Connect

Purpose: This study aimed to compare lung dose–volume histogram (DVH) parameters such as mean lung dose (MLD) and the lung volume receiving ?20 Gy (V20) of commonly used definitions of normal lung in terms of tumor/target subtraction and to determine to what extent they differ in predicting radiation pneumonitis (RP). Methods and Materials: One hundred lung cancer patients treated with definitive radiation therapy were assessed. The gross tumor volume (GTV) and clinical planning target volume (PTV{sub c}) were defined by the treating physician and dosimetrist. For this study, the clinical target volume (CTV) was defined as GTV with 8-mm uniform expansion, and the PTV was defined as CTV with an 8-mm uniform expansion. Lung DVHs were generated with exclusion of targets: (1) GTV (DVH{sub G}); (2) CTV (DVH{sub C}); (3) PTV (DVH{sub P}); and (4) PTV{sub c} (DVH{sub Pc}). The lung DVHs, V20s, and MLDs from each of the 4 methods were compared, as was their significance in predicting radiation pneumonitis of grade 2 or greater (RP2). Results: There are significant differences in dosimetric parameters among the various definition methods (all Ps<.05). The mean and maximum differences in V20 are 4.4% and 12.6% (95% confidence interval 3.6%-5.1%), respectively. The mean and maximum differences in MLD are 3.3 Gy and 7.5 Gy (95% confidence interval, 1.7-4.8 Gy), respectively. MLDs of all methods are highly correlated with each other and significantly correlated with clinical RP2, although V20s are not. For RP2 prediction, on the receiver operating characteristic curve, MLD from DVH{sub G} (MLD{sub G}) has a greater area under curve of than MLD from DVH{sub C} (MLD{sub C}) or DVH{sub P} (MLD{sub P}). Limiting RP2 to 30%, the threshold is 22.4, 20.6, and 18.8 Gy, for MLD{sub G}, MLD{sub C}, and MLD{sub P}, respectively. Conclusions: The differences in MLD and V20 from various lung definitions are significant. MLD from the GTV exclusion method may be more accurate in predicting clinical significant radiation pneumonitis.

Wang, Weili [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, the Fourth Affiliated Hospital, China Medical University, Shenyang (China); Xu, Yaping [Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou (China); Schipper, Matthew; Matuszak, Martha M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ritter, Timothy [Department of Radiation Oncology, Veteran Administration Hospital, Ann Arbor, Michigan (United States); Cao, Yue; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kong, Feng-Ming, E-mail: fkong@gru.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Veteran Administration Hospital, Ann Arbor, Michigan (United States)

2013-08-01

47

Phantom dosimetry calculations for use in radiation-effects correlations. Technical report, 1 April 1983-30 July 1984  

SciTech Connect

Models corresponding to an adult Rhesus Monkey and a simple analogue were created in combinatorial geometry for use in Monte Carlo radiation-transport calculations. The complex monkey phantom is based on anatomical measurements of a sectioned cadaver. Adjoint Monte Carlo calculations were performed to obtain the energy- and angle-differential adjoint fluence for the mid-head, mid-thorax locations in both phantoms and active marrow in the complex monkey phantom. The results were also convoluted with free-field spectra for two TRIGA reactor exposure room configurations at the Armed Forces Radiobiological Research Institute, using the VCS code system. Comparisons are made between calculated and measured KERMA values in the simple phantom. Good agreement is obtained. However, it is found that good agreement cannot be obtained using simple scalar coupling.

Kaul, D.C.; Roberts, J.A.; Egbert, S.D.

1984-07-30

48

Quality management system in the CIEMAT Radiation Dosimetry Service.  

PubMed

This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible. PMID:21131328

Martín, R; Navarro, T; Romero, A M; López, M A

2011-03-01

49

Classical microdosimetry in radiation protection dosimetry and monitoring.  

PubMed

Classical microdosimetry concerns the measurement and analysis of the spectrum of radiation energy deposition events in simulated microscopic tissue-equivalent sites. Over the past three decades, classical microdosimetry has been extensively applied for the direct measurement of dosimetric quantities, such as the ambient dose equivalent, and for the spectroscopic properties of tissue-equivalent proportional counters that have led to methods of mixed-field analysis and particle identification. This paper reviews some of the special applications of classical microdosimetry such as the determination of kerma coefficients, differential dosimetry and aviation dosimetry. Also reviewed are some of the technological innovations related to the application of microdosimetry in operational health physics and in particular the development of multi-element proportional counters and detectors based on gas microstrip technology. PMID:12194314

Waker, A J; Schrewe, U; Burmeister, J; Dubeau, J; Surette, R A

2002-01-01

50

KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation.  

PubMed

The thermoluminescence (TL) characterizations of ?-irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different ?-irradiation doses. Peak TL intensities varied sublinearly with ?-ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of ?-ray dose. TL peak height was found to be dependant on the concentration (0.05-0.5 mol%) of added Dy in the host. PMID:23255424

Bhujbal, P M; Dhoble, S J

2013-01-01

51

Alternative statistical methods for cytogenetic radiation biological dosimetry  

E-print Network

The paper presents alternative statistical methods for biological dosimetry, such as the Bayesian and Monte Carlo method. The classical Gaussian and robust Bayesian fit algorithms for the linear, linear-quadratic as well as saturated and critical calibration curves are described. The Bayesian model selection algorithm for those curves is also presented. In addition, five methods of dose estimation for a mixed neutron and gamma irradiation field were described: two classical methods, two Bayesian methods and one Monte Carlo method. Bayesian methods were also enhanced and generalized for situations with many types of mixed radiation. All algorithms were presented in easy-to-use form, which can be applied to any computational programming language. The presented algorithm is universal, although it was originally dedicated to cytogenetic biological dosimetry of victims of a nuclear reactor accident.

Fornalski, Krzysztof Wojciech

2014-01-01

52

Results for NRPB dosimetry services in the 2000 EURADOS trial performance test. National Radiolgical Protection Board. European Radiation Dosimetry Group.  

PubMed

During 2000 a trial performance test for individual monitoring services in Europe was organised by the European Radiation Dosimetry Group (EURADOS), covering whole-body beta/photon, whole-body neutron and extremity beta/photon dosimetry for both monoenergetic and simulated workplace fields. The UK National Radiological Protection Board (NRPB), which supplies routine dosemeters to some 50,000 wearers in the UK and overseas, participated in this trial performance test. This paper presents the results obtained for the NRPB whole-body TLD, neutron (PADC) and extremity dosimetry services and comments on their performance in comparison with the overall results. PMID:12382744

Gilvin, P J; Dunderdale, J; Perkins, D K

2002-01-01

53

Effect of processor temperature on film dosimetry  

SciTech Connect

Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

Srivastava, Shiv P. [Department of Radiation Oncology, Reid Hospital and Health Care Services, Richmond, IN (United States); Das, Indra J., E-mail: idas@iupui.edu [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

2012-07-01

54

Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose  

NASA Astrophysics Data System (ADS)

Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful.

Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.; Pogue, Brian W.

2014-07-01

55

Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose.  

PubMed

Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful. PMID:24938928

Glaser, Adam K; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W

2014-07-21

56

Radiation dosimetry of radioimmunotherapy antibodies conjugated with (90)Y  

NASA Astrophysics Data System (ADS)

The ultimate objective of radiation dosimetry in the treatment of cancer is to predict the biological effects of energy deposited in cells. Radioimmunotherapy (RIT) is rapidly attracting interest as a potential new technique for cancer therapy. sp{90}Y is a potential conjugate isotope for tumor-seeking antibodies (Monoclonal antibodies). In this work, the beta dose kernel of sp{90}Y was calculated using MCNP-4B. The established correlation of beta point kernel could be then used to calculate the conventional dose distribution from the sp{90}Y activity distribution within a tumor mass. In general, the calculated point kernel is in good agreement with the published data. The activity distribution is not uniform and there are regions where there is low or no activity. These regions are known as cold-regions. The effect of the cold-regions on the therapeutic dose was studied for sp{90}Y. Calculations of microdosimetric quantities are important in an attempt to infer the mechanisms of the biological effect of ionizing radiation. In this work, the single event distributions, fsb1(z), are evaluated for sp{90}Y for two different radiotherapy cases. The first is for an isolated cancer cell with sp{90}Y bonded to the antigen at the cell surface; in this case no cross-fire effect is considered from the possible sp{90}Y attached to the surrounding cells (e.g., simulating Leukemia). The second case where the cross-fire effect is considered (e.g., simulating solid-tumors) by assuming a uniform distribution of sp{90}Y within the radiation equilibrium region of the tumor mass. The calculations were performed using the electron transport Monte Carlo code (EMCS) which is specially developed for this purpose. In each of the two cases, the single event spectrum was evaluated for both the whole cell and the cell-nucleus. EMCS simulates the electron tracks in water-vapor down to the lowest vibrational excitation energy (0.198 eV). Extension of the tracking to low energies is another significant aspect of the work. Appropriate electron interaction cross sections were developed to enable these calculations.

Al-Hussan, Khalid A. I. Eleissa

57

Development of a portable graphite calorimeter for radiation dosimetry.  

PubMed

We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively. PMID:21976250

Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

2008-01-01

58

Computer Aided Dosimetry and Verification of Exposure to Radiation  

NASA Astrophysics Data System (ADS)

In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)

Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise

2002-06-01

59

Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry  

SciTech Connect

Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of the current methods. The authors concluded that it can be used as a novel independent method for nanoparticle-enhanced radiation therapy dosimetry.

Alqathami, Mamdooh, E-mail: malq7704@uni.sydney.edu.au [Discipline of Medical Radiations, The Royal Melbourne Institute of Technology University, Victoria (Australia)] [Discipline of Medical Radiations, The Royal Melbourne Institute of Technology University, Victoria (Australia); Blencowe, Anton [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria (Australia)] [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria (Australia); Yeo, Un Jin [School of Applied Sciences and Health Innovations Research Institute, The Royal Melbourne Institute of Technology University, Victoria (Australia)] [School of Applied Sciences and Health Innovations Research Institute, The Royal Melbourne Institute of Technology University, Victoria (Australia); Doran, Simon J. [CRUK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Sutton (United Kingdom)] [CRUK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Sutton (United Kingdom); Qiao, Greg [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria (Australia)] [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria (Australia); Geso, Moshi [Discipline of Medical Radiations, The Royal Melbourne Institute of Technology University, Victoria (Australia)] [Discipline of Medical Radiations, The Royal Melbourne Institute of Technology University, Victoria (Australia)

2012-11-15

60

Health effects of low-level radiation  

Microsoft Academic Search

This book presents papers on the uses and biological effects of radiation. Topics considered include low dose irradiation, radiation sources, radiation measurements, dosimetry, epidemiology, cancer risk, dose-response relationships, x-ray radiography, genetic consequences, radiation protection, legal aspects, plutonium release from the Rocky Flats Plant, and radioactive waste management.

Hendee

1984-01-01

61

Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.  

PubMed

A Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber. Also, the intensity peak of Cerenkov radiation was measured in the irradiation angle range of 30 to 40 deg. In the results of Monte Carlo N-particle transport code simulations, the relationship between fluxes of electrons over Cerenkov threshold energy and energy deposition of a 6 MV photon beam had a nearly linear trend. Finally, percentage depth doses for the 6 MV photon beam could be obtained using the CFOD and the results were compared with those of an ionization chamber. Here, the mean dose difference was about 0.6%. It is anticipated that the novel and simple CFOD can be effectively used for measuring depth doses in radiotherapy dosimetry. PMID:23377008

Jang, Kyoung Won; Yagi, Takahiro; Pyeon, Cheol Ho; Yoo, Wook Jae; Shin, Sang Hun; Jeong, Chiyoung; Min, Byung Jun; Shin, Dongho; Misawa, Tsuyoshi; Lee, Bongsoo

2013-02-01

62

Real-time dosimetry in external beam radiation therapy  

PubMed Central

With growing complexity in radiotherapy treatment delivery, it has become mandatory to check each and every treatment plan before implementing clinically. This process is currently administered by an independent secondary check of all treatment parameters and as a pre-treatment quality assurance (QA) check for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy treatment plans. Although pre-treatment IMRT QA is aimed to ensure the correct dose is delivered to the patient, it does not necessarily predict the clinically relevant patient dose errors. During radiotherapy, treatment uncertainties can affect tumor control and may increase complications to surrounding normal tissues. To combat this, image guided radiotherapy is employed to help ensure the plan conditions are mimicked on the treatment machine. However, it does not provide information on actual delivered dose to the tumor volume. Knowledge of actual dose delivered during treatment aid in confirming the prescribed dose and also to replan/reassess the treatment in situations where the planned dose is not delivered as expected by the treating physician. Major accidents in radiotherapy would have been averted if real time dosimetry is incorporated as part of the routine radiotherapy procedure. Of late real-time dosimetry is becoming popular with complex treatments in radiotherapy. Real-time dosimetry can be either in the form of point doses or planar doses or projected on to a 3D image dataset to obtain volumetric dose. They either provide entrance dose or exit dose or dose inside the natural cavities of a patient. In external beam radiotherapy, there are four different established platforms whereby the delivered dose information can be obtained: (1) Collimator; (2) Patient; (3) Couch; and (4) Electronic Portal Imaging Device. Current real-time dosimetric techniques available in radiotherapy have their own advantages and disadvantages and a combination of one or more of these methods provide vital information about the actual dose delivered to radiotherapy patients. PMID:24179630

Prabhakar, Ramachandran

2013-01-01

63

ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT  

PubMed Central

With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

2013-01-01

64

Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT.  

PubMed

Computed tomography (CT) is the single biggest ionising radiation risk from anthropogenic exposure. Reducing unnecessary carcinogenic risks from this source requires the determination of organ and tissue absorbed doses to estimate detrimental stochastic effects. In addition, effective dose can be used to assess comparative risk between exposure situations and facilitate dose reduction through optimisation. Children are at the highest risk from radiation induced carcinogenesis and therefore dosimetry for paediatric CT recipients is essential in addressing the ionising radiation health risks of CT scanning. However, there is no well-defined method in the clinical environment for routinely and reliably performing paediatric CT organ dosimetry and there are numerous methods utilised for estimating paediatric CT effective dose. Therefore, in this study, eleven computational methods for organ dosimetry and/or effective dose calculation were investigated and compared with absorbed doses measured using thermoluminescent dosemeters placed in a physical anthropomorphic phantom representing a 10 year old child. Three common clinical paediatric CT protocols including brain, chest and abdomen/pelvis examinations were evaluated. Overall, computed absorbed doses to organs and tissues fully and directly irradiated demonstrated better agreement (within approximately 50 %) with the measured absorbed doses than absorbed doses to distributed organs or to those located on the periphery of the scan volume, which showed up to a 15-fold dose variation. The disparities predominantly arose from differences in the phantoms used. While the ability to estimate CT dose is essential for risk assessment and radiation protection, identifying a simple, practical dosimetry method remains challenging. PMID:22492218

Brady, Z; Cain, T M; Johnston, P N

2012-06-01

65

MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility  

Microsoft Academic Search

Preclinical experiments are carried out with ;20–30 mm wide, ;10 mm high parallel microbeams of hard, broad-‘‘white’’-spectrum x rays ~;50–600 keV! to investigate microbeam radiation therapy ~MRT! of brain tumors in infants for whom other kinds of radiotherapy are inadequate and\\/or unsafe. Novel physical microdosimetry ~implemented with MOSFET chips in the ‘‘edge-on’’ mode! and Monte Carlo computer-simulated dosimetry are described

E. Brauer-Krisch; A. Bravin; M. L. Lerch; A. Rosenfeld; J. Stepanek; M. Di Michiel; J. A. Laissue

2003-01-01

66

Radiation dosimetry onboard the International Space Station ISS  

Microsoft Academic Search

Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the

Thomas Berger

2008-01-01

67

Genetic and molecular dosimetry of HZE radiation (US-1 RADIAT)  

NASA Technical Reports Server (NTRS)

In order to estimate radiation exposure in space, experiments were conducted during the 1st International Microgravity Laboratory (IML-1) mission in order to isolate genetic changes in animal cells caused by cosmic rays. The space measurements were evaluated against results from synthetic cosmic rays produced by particle accelerators on the ground. The biological material used was the tiny soil nematode, Caenorhabditis elegans. The measurements were made by thermoluminescent detectors and plastic nuclear track detectors. The development and the chromosome mechanics in microgravity were studied, and the mutagenesis induced by radiation exposure was analyzed. The results showed that there are no obvious differences in the development, behavior and chromosome mechanics, as a function of gravity unloading (reproduction, self-fertilization and mating of males with hermaphrodites, gross anatomy, symmetry and gametogenesis, pairing, disjoining and recombination of chromosomes). A variety of mutants were isolated, and it was noted that mutants isolated from regions of identified high particles were more severely affected than those isolated by random screening. Linear energy transfer particles seem to favor large scale genetic lesions.

Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R. P.

1995-01-01

68

Intrinsic Dosimetry: Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass  

SciTech Connect

Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

Clark, Richard A.; Robinson, J. D.; Schwantes, Jon M.

2013-12-07

69

Intrinsic Dosimetry: Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass  

SciTech Connect

Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

Richard A. Clark; J. David Robertson; Jon M. Schwantes

2013-12-01

70

GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project  

SciTech Connect

The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

1988-11-01

71

GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project  

SciTech Connect

The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

1988-09-01

72

Dosimetry for ultraviolet radiation exposure of the eye  

NASA Astrophysics Data System (ADS)

The eye is exposed daily to UVR from skylight and ground reflections when outdoors in sunlight. Additional exposure occurs daily from artificial sources such as fluorescent lamps. Some workers, notably welders, are exposed to industrial sources of UVR. The geometry of exposure critically influences the actual UVR dose to the cornea and lens. When exposed to bright light, squinting reduces UVR exposure. the optical properties of the eye and behavioral responses to bright light both contribute to limiting actual UVR exposure. The actual daily dos of UVR is considerably less than what many previous investigators have assumed. The geometrical, as well as temporal and spectral, aspects of ocular dosimetry will be reviewed in order to allow participants a better insight into the practical impact of many laboratory studies of UVR effects upon ocular tissues.

Sliney, David H.

1994-07-01

73

Dose reduction in computed tomography: the effect of eye and testicle shielding on radiation dose measured in patients with beryllium oxide-based optically stimulated luminescence dosimetry  

Microsoft Academic Search

The aim of this study was to assess the effect of eye and testicle shielding on radiation dose to the lens and the testes\\u000a of patients undergoing CT examinations. Fifty-one male patients underwent CT twice with identical protocols initially without,\\u000a the second time with protective garments. Doses to the testes and the lenses were recorded with beryllium oxide-based dosimeters.\\u000a The

Henrik Grobe; Marian Sommer; Arne Koch; Volker Hietschold; Jürgen Henniger; Nasreddin Abolmaali

2009-01-01

74

Preparation of (K:Eu) NaSO4 phosphor for lyoluminescence dosimetry of ionising radiation.  

PubMed

Gamma ray dosimetry using lyoluminescence is a low cost and simple system. As sulphate based phosphors are used for TL radiation dosimetry they therefore seem to be a promising material for LL gamma ray dosimetry. A study on LL properties of Eu activated KNaSO4 and K3Na(SO4)2 gamma irradiated materials is reported. Eu doped KNaSO4 shows maximum LL yield in the above system. It shows a linear response from 0.06 to 10 C.kg(-1) and there is not much fading of LL intensity, indicating the phosphor to be suitable as a lyoluminescence dosimetry phosphor of ionising radiation. The doped Eu ion acts as an activator and thus enhances the LL intensity of the phosphor. PMID:12382879

Dhoble, S J

2002-01-01

75

Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.  

PubMed

There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report. PMID:23799498

Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

2013-08-01

76

Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies  

SciTech Connect

There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

none,

2013-06-06

77

Developing a high performance superoxide dismutase based electrochemical biosensor for radiation dosimetry of thallium 201  

NASA Astrophysics Data System (ADS)

To develop a new biosensor for measurement of superoxide free radical generated in radiolysis reaction, three combinations of SOD-based biosensors including Au/Cys/SOD, Au/GNP/Cys/SOD and Au/GNP/Cys/SOD/Chit were fabricated. In these biosensors Au, GNP, Cys, SOD and Chit represent gold electrode, gold nano-particles, cysteine, superoxide dismutase and chitosan, respectively. For biosensors fabrication, SOD, GNP, Cys and Chit were immobilized at the surface of gold electrode. Cyclic voltametry and chronoamperometry were utilized for evaluation of biosensors performances. The results showed that Au/GNP/Cys/SOD/Chit has significantly better responses compared to Au/Cys/SOD and Au/GNP/Cys/SOD. As a result, this biosensor was selected for dosimetry of ionizing radiation. For this purpose, thallium 201 at different volumes was added to buffer phosphate solution in electrochemical cell. To obtain analytical parameters of Au/GNP/Cys/SOD/Chit, calibration curve was sketched. The results showed that this biosensor has a linear response in the range from 0.5 to 4 Gy, detection limit 0.03 ?M. It also has a proper sensitivity (0.6038 nA/Gy), suitable long term stability and cost effective as well as high function for radiation dosimetry.

Salem, Fatemeh; Tavakoli, Hassan; Sadeghi, Mahdi; Riazi, Abbas

2014-09-01

78

Space Radiation Dosimetry with the The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL)  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector (RAD) is a compact, lightweight energetic particle an-alyzer that will fly on the NASA 2011 Mars Science Laboratory (MSL) Mission. RAD will detect and analyze energetic particle species (p, n, He, 2¡Z¡26) relevant for dosimetry on the Martian surface. The Galactic Cosmic Rays and Solar Energetic Particles produce both pri-mary and secondary radiation, with secondaries being created in both the atmosphere and the Martian regolith. Fully characterizing and understanding the surface radiation environment is fundamental to quantitatively assessing the habitability of Mars, and is an essential precursor measurement for future manned Mars missions. An extensive database to be used for calibration has been obtained for a wide range of energetic charged particle beams at the NASA Space Radiation Laboratory (NSRL) and the Heavy Ion Medical Accelerator in Chiba (HIMAC). Neutron calibration data at 5, 15, and 19 MeV were obtained at the Physikalisch-Technische Bundesanstalt. This talk will discuss the highlights of the RAD calibration campaigns and talk about what we have learned from these campaigns with respect to operating RAD on the Martian surface. We will also discuss other mission applications for RAD where dosimetry in mixed fields of energetic charged and neutral particles is needed.

Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Boehm, Eckhardt; Boettcher, Stephan; Burmeister, Soenke; Cucinotta, Francis A.; Kortmann, Onno; Martin, Cesar; Posner, Arik; Rafkin, Scot; Reitz, Guenther

79

Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry  

SciTech Connect

Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and lends support for further investigations of this novel material.

Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 and Nuclear Science and Engineering Institute, University of Missouri, E4431 Lafferre Hall, Columbia, Missouri 65211 (United States); Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States); Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, Erlangen 91058 (Germany); Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

2011-08-15

80

Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry  

PubMed Central

Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate 137Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu2+, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu2+ dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100–700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0–5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu2+ material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu2+ exhibits strong radiation hardness and lends support for further investigations of this novel material. PMID:21928642

Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

2011-01-01

81

International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard  

NASA Astrophysics Data System (ADS)

In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

Soares, Christopher

2006-03-01

82

The Application of FLUKA to Dosimetry and Radiation Therapy  

NASA Technical Reports Server (NTRS)

Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

2005-01-01

83

Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts  

SciTech Connect

This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.] [eds.

1994-10-01

84

The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation  

NASA Astrophysics Data System (ADS)

The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (?<200 nm) to UVA (315 nmradiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

2015-01-01

85

Dosimetry of Atomic Bomb Radiation in Hiroshima by Thermoluminescence of Roof Tiles  

Microsoft Academic Search

Thermoluminescence dosimetry is a powerful tool for obtaining the distribution of gamma dose, heretofore unknown, from the atomic bombs dropped on Hiroshima and Nagasaki. Roof tiles irradiated by the bombs show intense thermoluminescence, and the radiation dose for samples irradiated below 100 r by the bomb can be measured by this method.

Takenobu Higashimura; Yoneta Ichikawa; Tunahiko Sidei

1963-01-01

86

SIMON_Principles-of-Radiation-Physics-and-Dosimetry_May17-2011_Tagged  

Cancer.gov

There was an error processing the RequestError Message: CDE:PageAssemblyInstructionLoader.cs:RewriteUrl Requested URL: /publishedcontent/files/fellowship-training/training-resources-for-fellows-and-staff/rad-epi-course2011/simon_principles-of-radiation-physics-and-dosimetry_may17-2011_tagged.pdf Failed

87

Lee_Radiation-Dosimetry-and-Organ-Doses-from-Imaging_May20-201_tagged  

Cancer.gov

There was an error processing the RequestError Message: CDE:PageAssemblyInstructionLoader.cs:RewriteUrl Requested URL: /publishedcontent/files/fellowship-training/training-resources-for-fellows-and-staff/rad-epi-course2011/lee_radiation-dosimetry-and-organ-doses-from-imaging_may20-201_tagged.pdf Failed

88

Dosimetry of Atomic Bomb Radiation in Hiroshima by Thermoluminescence of Roof Tiles.  

PubMed

Thermoluminescence dosimetry is a powerful tool for obtaining the distribution of gamma dose, heretofore unknown, from the atomic bombs dropped on Hiroshima and Nagasaki. Roof tiles irradiated by the bombs show intense thermoluminescence, and the radiation dose for samples irradiated below 100 r by the bomb can be measured by this method. PMID:17757060

Higashimura, T; Ichikawa, Y; Sidei, T

1963-03-29

89

Dosimetry for Small Animal Studies Radiation Medicine Program, Princess Margaret Hospital  

E-print Network

· Monte Carlo studies #12;Small Animal Irradiation Experiments Whole Body Gammacell 40 (Best TheratronicsDosimetry for Small Animal Studies Radiation Medicine Program, Princess Margaret Hospital (Livia Garzia) · Robert Weersink #12;Outline · Systems for small animal irradiation · Image

90

Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55  

Microsoft Academic Search

Recommendations of the American Association of Physicists in Medicine (AAPM) for the radio- chromic film dosimetry are presented. These guidelines were prepared by a task group of the AAPM Radiation Therapy Committee and have been reviewed and approved by the AAPM Science Council. © 1998 American Association of Physicists in Medicine. (S0094-2405(98)00211-9)

Azam Niroomand-Rad; Charles Robert Blackwell; Bert M. Coursey; Kenneth P. Gall; James M. Galvin; William L. McLaughlin; Ali S. Meigooni; Ravinder Nath; James E. Rodgers; Christopher G. Soares

1998-01-01

91

Targeted radiotherapy dosimetry of 153Sm hydroxide macroaggregates for radiation synovectomy  

NASA Astrophysics Data System (ADS)

The dosimetry of the recently developed 153Sm hydroxide macroaggregates (153Sm-MH) for radiation synovectomy has been studied as an agent for the treatment of arthritic synovial joint diseases. This pharmaceutical formulation presents optimal properties in terms of particle size (average 4 ?m) sedimentation (0.008 cm min-1) and biological behavior. Direct measurements of depth dose distributions for this beta-gamma emitter present a difficult task; therefore, calculations of depth dose profiles are an invaluable tool for investigating the effectiveness of this therapeutic technique. In spite of the importance of these calculations there are only a few studies dealing with the experimental validation of these calculated depth dose distributions. On the present work the Monte Carlo (MCNP4B) calculated beta-gamma depth dose profiles for a liquid 153Sm beta-gamma source used in radiation synovectomy are compared with experimental depth dose distribution obtained using radiochromic dye film dosimetry (GafChromic™). The calculated and experimental depth dose distribution showed a very good agreement (within 5%) on the region where the dose deposition is dominated by the bëta-particle component (first 800 microns depth on tissue equivalent material). The agreement worsens reaching a maximum deviation of 15% at depths close to the maximum range of the beta-particles. Finally the agreement improves for the region where the gamma component accounts for one third of the total absorbed dose (depths>1 mm). The possible contributions to these differences are discussed as well as their relevance for the application of 153Sm for the treatment of rheumatoid arthritis.

Villarreal, José E.; Ferro, Guillermina; Hernández, Omar; Carmona, Juan

2001-10-01

92

Impact of Track Structure Effects on Shielding and Dosimetry  

NASA Technical Reports Server (NTRS)

Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and mutation data of various groups, and the Harderian gland tumor data of Alpen et al. Model results for the Harderian gland tumor data in comparison with data from Alpen et al. The Harderian target cell initiation cross section compares closely with the transformation cross section found for the C3H10T1/2 cell transformation data of Yang et al. The most notable feature of the cross sections are the multivalued cross sections for a given LET which implies the corresponding relative biological effectiveness (RBE) is dependent not only on the LET but also the ion type. This fact is at variance with the latest ICRP recommended quality factor which is a defined function of only the LET.

Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.

1999-01-01

93

Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry  

NASA Technical Reports Server (NTRS)

Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

2007-01-01

94

Photon dosimetry using plastic scintillators in pulsed radiation fields  

SciTech Connect

Simulations and experiments have been carried out to explore using a plastic scintillator as a dosimetry probe in the vicinity of a pulsed bremsstrahlung source in the range 4 to 20 MeV. Taking advantage of the tissue-equivalent properties of this detector in conjunction with the use of a fast digital signal processor near real-time dosimetry was shown to be possible. The importance of accounting for a broad energy electron beam in bremsstrahlung production, and photon scattering and build-up, in correctly interpreting dosimetry results at long stand-off distances is highlighted by comparing real world experiments with ideal geometry simulations. Close agreement was found between absorbed energy calculations based upon spectroscopic techniques and calculations based upon signal integration, showing a ratio between 10 MeV absorbed dose to 12 MeV absorbed dose of 0.66 at a distance of 91.4 m from the accelerator. This is compared with an idealized model simulation with a monoenergetic electron beam and without scattering, where the ratio was 0.46.

David L. Chichester; Brandon W. Blackburn; James T. Johnson; Scott W. Watson

2007-04-01

95

Development and Characterization of Remote Radiation Dosimetry Systems Using Optically Stimulated Luminescence of Al2O3:c and KBr:Eu.  

E-print Network

??Two different radiation dosimetry systems are discussed; one for in situ, high-sensitivity, inexpensive environmental monitoring, and another for near-real-time medical dosimetry. The systems are based… (more)

Klein, David Matthew

2008-01-01

96

PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)  

NASA Astrophysics Data System (ADS)

IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of radiation therapy treatment through improved clinical dosimetry to investigate and understand the dosimetric challenges of modern radiation treatments to provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry to energise and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D and semi-3D dosimetry techniques We believe the conference program, with its excellent range of expert and specialist speakers, met these objectives. Thanks are due to all invited speakers for their participation, to the Local Organising Committee members for all their hard work in making the conference happen, particularly the small core administrative support group, and to the range of academic, organisation and commercial sponsors who generously supported the meeting. The Scientific Committee members are also thanked for reviewing the submitted manuscripts and for assisting in the editorial process. Finally, all who travelled to Sydney, Australia for the meeting are acknowledged for choosing to attend and contribute to making this a successful conference. Local Conference Organising Committee David Thwaites (Conference Convener) Clive Baldock Leanne Price Elizabeth Starkey May Whitaker Peter Greer Lois Holloway Phil Vial Robin Hill Conference Scientific Committee Sven Back (Sweden) Clive Baldock (Australia) Cheng-Shie Wuu (USA) Yves de Deene (Belgium) Simon Doran (UK) Geoffrey Ibbott (USA) Andrew Jirasek (Canada) Kevin Jordan (Canada) Martin Lepage (Canada) Mark Oldham (USA) Evangelos Pappas (Greece) John Schreiner (Canada) David Thwaites (Australia) David ThwaitesClive Baldock DirectorExecutive Dean Institute of Medical PhysicsFaculty of Science School of PhysicsMacquarie University University of SydneyNorth Ryde NSW 2006NSW 2109 AustraliaAustralia The PDF also contains the conference program.

Thwaites, David; Baldock, Clive

2013-06-01

97

Operation Upshot-Knothole. Project 29. 1. Comparison and evaluation of dosimetry methods applicable to gamma radiation, Nevada Proving Ground. Report for March-June 1953  

SciTech Connect

The three major objectives and parts of this project were to compare and evaluate the accuracy and practicality of chemical vs film and other methods of gamma dosimetry for radiations encountered under bomb conditions at sites receiving (1) either prompt- or residual-gamma exposures or mixtures of both, (2) only residualgamma radiations, either neutron induced or from fission-product fallout, and (3) mixed neutron-gamma irradiation plus correlation with biological effects.

Taplin, G.V.; Sigoloff, S.C.; Douglas, C.H.; Paglia, D.E.; Heller, C.J.

1984-10-31

98

REVIEW OF THE CORRELATION BETWEEN RESULTS OF CYTOGENETIC DOSIMETRY FROM BLOOD LYMPHOCYTES AND EPR DOSIMETRY FROM TOOTH ENAMEL FOR VICTIMS OF RADIATION ACCIDENTS.  

PubMed

The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. PMID:24982260

Khvostunov, I K; Ivannikov, A I; Skvortsov, V G; Nugis, V Yu; Golub, E V

2014-06-30

99

High field magnetic resonance imaging-based gel dosimetry for small radiation fields  

NASA Astrophysics Data System (ADS)

Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

Ding, Xuanfeng

100

Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.  

PubMed

The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations. PMID:24309720

Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

2014-03-01

101

Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation  

PubMed Central

The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations. PMID:24309720

Diffenderfer, Eric S.; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K.; Mcdonough, James; Cengel, Keith A.

2014-01-01

102

PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)  

NASA Astrophysics Data System (ADS)

IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4–8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry. • Energize and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D, and semi-3D dosimetry techniques. We commend these IC3Dose 2014 conference proceedings to you and strongly believe they include significant contributions to scientific progress in this field. We would like to express our sincere gratitude to everybody involved in making the conference possible, the Scientific committee for their work on the general planning, paper review and program formulation, the distinguished invited speakers for their contributions and the local organizing committee members for all their hard work on the practical preparation for the meeting. Lars E. Olsson, Sven Bäck and Sofie Ceberg Lund University and Skåne University Hospital, Sweden International Scientific Committee Sven Bäck, Sweden (chair) Clive Baldock, Australia Sam Beddar, USA Crister Ceberg, Sweden Yves de Deene, Belgium/Australia Simon Doran, UK Geoffrey Ibbott, USA Andrew Jirasek, Canada Kevin Jordan, Canada Martin Lepage, Canada Daniel Low, USA Mark Oldham, USA Tony Popescu, Canada John Schreiner, Canada Cheng-Shie Wuu, USA David Thwaites, Australia Local Organizing Committee Sofie Ceberg (chair) Lars E. Olsson (conference chair) Fredrik Nordstrom Anneli Edvardsson Anna Karlsson Hauer Anna Bäck

Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

2015-01-01

103

EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy  

SciTech Connect

The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose verification and quality assurance of compensator-based C-IMRT.

Vaezzadeh, Seyedali [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Allahverdi, Mahmoud, E-mail: alahverdi@sina.tums.ac.ir [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nedaie, Hasan A. [Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ay, Mohammadreza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shirazi, Alireza; Yarahmadi, Mehran [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

2013-07-01

104

Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry  

NASA Astrophysics Data System (ADS)

Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

Singh, Vishwanath P.; Badiger, N. M.

2014-11-01

105

BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research  

SciTech Connect

With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

Susan Edwards

2008-05-30

106

High resolution 3D dosimetry for microbeam radiation therapy using optical CT  

NASA Astrophysics Data System (ADS)

Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

2015-01-01

107

Fabrication and optimization of a fiber-optic radiation sensor for proton beam dosimetry  

Microsoft Academic Search

In this study, we fabricated a fiber-optic radiation sensor for proton therapy dosimetry and measured the output and the peak-to-plateau ratio of scintillation light with various kinds of organic scintillators in order to select an organic scintillator appropriate for measuring the dose of a proton beam. For the optimization of an organic scintillator, the linearity between the light output and

K. W. Jang; W. J. Yoo; J. K. Seo; J. Y. Heo; J. Moon; J.-Y. Park; E. J. Hwang; D. Shin; S.-Y. Park; H.-S. Cho; B. Lee

2011-01-01

108

A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity  

Microsoft Academic Search

This paper describes a method of film dosimetry used to measure the peak-to-valley dose ratios for synchrotron microbeam radiation therapy (MRT). Two types of radiochromic film (manufactured by International Specialty Products, NJ, USA) were irradiated in a phantom and also flush against a microbeam collimator (beam width 25 µm, centre-to-centre spacing 200 µm) on beamline BL28 B2 at the SPring-8

J C Crosbie; I Svalbe; S M Midgley; N Yagi; P A W Rogers; R A Lewis

2008-01-01

109

GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation  

SciTech Connect

The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs.

Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

1988-12-01

110

Low-dose ionizing radiation and chromosome translocations: A review of the major considerations for human biological dosimetry  

Microsoft Academic Search

Chromosome translocations are a molecular signature of ionizing radiation exposure. Translocations persist significantly longer after exposure than other types of chromosome exchanges such as dicentrics. This persistence makes translocations the preferred aberration type for performing radiation dosimetry under conditions of protracted exposure or when exposure assessments are temporally delayed. Low doses of radiation are inherently difficult to quantify because the

James D. Tucker

2008-01-01

111

Computational dosimetry  

SciTech Connect

The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

Siebert, B.R.L.; Thomas, R.H.

1996-01-01

112

Dosimetry associated with exposure to non-ionizing radiation: very low frequency to microwaves.  

PubMed

The interpretation of the effects in biological systems exposed to electromagnetic (EM) fields requires knowledge of the internal fields and absorbed energy. The quantification of the specific absorption rate (SAR) is called dosimetry. The SAR given in units of watts per kilogram is a complex function of the source configuration, shape and size of the exposed subjects, orientation of the subject with respect to the source, and the frequency. The average and maximum SAR in the exposed subject may vary over many orders of magnitude for a given exposure level. In order to relate observed biological effects in exposed laboratory animals to safe exposure levels for man, both the fields within the environment and SAR within the exposed tissues must be determined. The environmental fields and the SAR can often be determined from EM theory, but in most cases one must rely on instrumentation such as field survey meters for quantifying the exposure fields and electric field probes, thermocouples, thermistors, fiber optic probes, thermography, and calorimetry for quantifying the SAR in the tissues or equivalent models. A combination of techniques, each valid for a particular model over a particular frequency range, have been used to determine average and peak SARs in humans and animals exposed to plane wave radiation. Though it has been considerably more difficult to quantify these quantities for near field and partial-body exposure conditions, progress is continually being made in this area. PMID:3679822

Guy, A W

1987-12-01

113

1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings  

NASA Technical Reports Server (NTRS)

Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

1987-01-01

114

A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity  

NASA Astrophysics Data System (ADS)

This paper describes a method of film dosimetry used to measure the peak-to-valley dose ratios for synchrotron microbeam radiation therapy (MRT). Two types of radiochromic film (manufactured by International Specialty Products, NJ, USA) were irradiated in a phantom and also flush against a microbeam collimator (beam width 25 µm, centre-to-centre spacing 200 µm) on beamline BL28 B2 at the SPring-8 synchrotron. Four experiments are reported: (1) the HD-810 and EBT varieties of radiochromic film were used to record 'peak' dose and 'valley' (regions in between peaks) dose, respectively; (2) a stack of HD-810 film sheets was microbeam-irradiated and analysed to investigate a possible dose build-up effect; (3) a very high MRT dose was delivered to HD-810 film to elicit a measurable valley dose to compare with the result obtained using broad beam radiation; (4) the half value layer of the beam with and without the microbeam collimator was measured to investigate the effect of the collimator on the beam quality. The valley dose obtained for films placed flush against the collimator was approximately 0.2% of the peak dose. Within the water phantom, the valley dose had increased to between 0.7 and 1.8% of the peak dose, depending on the depth in the phantom. We also demonstrated, experimentally and by Monte Carlo simulation, that the dose is not maximal on the surface and that there is a dose build-up effect. The microbeam collimator did not make an appreciable difference to the beam quality. The values of the peak-to-valley ratio reported in this paper are higher than those predicted by previously published Monte Carlo simulation papers.

Crosbie, J. C.; Svalbe, I.; Midgley, S. M.; Yagi, N.; Rogers, P. A. W.; Lewis, R. A.

2008-12-01

115

RESMDD'02 Radiation in Life Sciences: Hartmut F.-W. Sadrozinski , SCIPP Radiation Effects in  

E-print Network

? · Effect of OH- radicals in the damage process · Improve dosimetry of proton beam for cancer therapy Should Biologists Care about Radiation? Imaging and Therapy of Cancer Space Radiation Environment Our-and -Rays) · Protons & Light Ions ­ Physical Properties are Superior for Cancer Treatment · Defined Range

California at Santa Cruz, University of

116

A method for estimating occupational radiation dose to individuals, using weekly dosimetry data  

SciTech Connect

Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

1993-12-01

117

DESCRIPTION OF MODULAR DEVICES FOR THE MEASUREMENT OF EXTERNAL DOSIMETRY IN RADIATION PROTECTION.  

PubMed

In 2002 the Group of Radiation Dosimetry and Calibration of the Belgian Nuclear Research Centre (SCK•CEN) has developed an experimental device based on the optically stimulated luminescence (OSL) working with Al2O3:C detectors (TLD-500 and Luxel) stimulated with an argon laser. A set of devices made from different modules have been developed to permit external dosimetry measurements with thermoluminescence (TL) and OSL techniques under different conditions. This study describes these measurement devices that can be made with these modules and some of the characteristics of the different systems. These devices present several advantages in terms of measurement possibilities: a small number of modules allow the use of different detection materials (Al2O3:C, BeO, quartz electronic components and tiles) and different measurement methods (TL, CW-OSL and pulsed OSL). Some applications are commented. PMID:25236335

Genicot, Jean Louis; Boogers, Eric; Van Iersel, Mark

2014-09-18

118

Automation of radiation dosimetry using PTW dosemeter and LabVIEW™  

NASA Astrophysics Data System (ADS)

Automation of UNIDOS "Dosemeter" using personal computer (PC) is discussed in this paper. In order to save time and eliminate human operation errors during the radiation dosimetry, suitable software, using LabVIEW™ graphical programming language, was written to automate and facilitate the processes of measurements, analysis and data storage. The software calculates the calibration factor of the ionization chamber in terms of air kerma or absorbed dose to water according to IAEA dosimetry protocols. It also has the ability to print a calibration certificate. The obtained results using this software are found to be more reliable and flexible than those obtained by manual methods previously employed. Using LabVIEW™ as a development tool is extremely convenient to make things easier when software modifications and improvements are needed.

Weiss, C.; Al-Frouh, K.; Anjak, O.

2011-10-01

119

X-Tream: a novel dosimetry system for Synchrotron Microbeam Radiation Therapy  

NASA Astrophysics Data System (ADS)

Microbeam Radiation Therapy (MRT) is a radiation treatment technique under development for inoperable brain tumors. MRT is based on the use of a synchrotron generated X-ray beam with an extremely high dose rate ( ~ 20 kGy/sec), striated into an array of X-ray micro-blades. In order to advance to clinical trials, a real-time dosimeter with excellent spatial resolution must be developed for absolute dosimetry. The design of a real-time dosimeter for such a radiation scenario represents a significant challenge due to the high photon flux and vertically striated radiation field, leading to very steep lateral dose gradients. This article analyses the striated radiation field in the context of the requirements for temporal dosimetric measurements and presents the architecture of a new dosimetry system based on the use of silicon detectors and fast data acquisition electronic interface. The combined system demonstrates micrometer spatial resolution and microsecond real time readout with accurate sensitivity and linearity over five orders of magnitude of input signal. The system will therefore be suitable patient treatment plan verification and may also be expanded for in-vivo beam monitoring for patient safety during the treatment.

Petasecca, M.; Cullen, A.; Fuduli, I.; Espinoza, A.; Porumb, C.; Stanton, C.; Aldosari, A. H.; Bräuer-Krisch, E.; Requardt, H.; Bravin, A.; Perevertaylo, V.; Rosenfeld, A. B.; Lerch, M. L. F.

2012-07-01

120

Ion-kill dosimetry  

NASA Technical Reports Server (NTRS)

Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

2001-01-01

121

Space radiation dosimetry on US and Soviet manned missions  

NASA Technical Reports Server (NTRS)

Radiation measurements obtained on board U.S. and Soviet spacecraft are presented and discussed. A considerable amount of data has now been collected and analyzed from measurements with a variety of detector types in low-Earth orbit. The objectives of these measurements have been to investigate the dose and Linear Energy Transfer (LET) spectra within the complex shielding of large spacecraft. The shielding modifies the external radiation (trapped protons, electrons, cosmic ray nuclei) which, in turn, is quite dependent on orbital parameters (altitude, inclination). For manned flights, these measurements provide a crew exposure record and a data base for future spacecraft design and flight planning. For the scientific community they provide useful information for planning and analyzing data from experiments with high sensitivity to radiation. In this paper, results of measurements by both passive and active detectors are described. High-LET spectra measurements were obtained by means of plastic nuclear track detectors (PNTD's) while thermoluminescent dosimeters (TLD's) measured the dose.

Parnell, T. A.; Benton, E. V.

1995-01-01

122

Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry.  

PubMed

The integrated irradiance (energy fluence rate) within tissue can exceed the incident irradiance due to backscattered and multiply reflected light near the sample surface. This was studied quantitatively using pulsed photothermal radiometry, which measures blackbody radiation emitted by a sample during and after absorption of an optical pulse. Aqueous gels containing absorbing dye with or without various scattering materials were studied using a fast sensitive IR detector system and 1-micros tunable pulsed dye laser. For nonscattering samples, the temperature transient (T-jump) due to absorption of a laser pulse was consistent with Beer's law for homogeneous absorbing media. When scattering was present, increases of up to almost an order of magnitude in the T-jump were observed. For a given absorption coefficient, there was a proportional relationship between the increase in the T-jump and the sample's diffuse reflectance. A model describing the reflectance of diffuse radiation at the sample boundary was derived to explain this result. To test the model, the refractive index was varied with air as the external medium and was also matched to that of BaF(2) as the externalmedium. The subsurface fluence is, to areasonable approximation, given by E congruent with E(0)(l + 2bR),where E(0) is the incident fluence of an infinitely wide collimated beam, b is a coefficient strongly dependent on only the refractive index, and R is the measured diffuse reflectance of the sample. This study shows that irradiance within tissues can greatly exceed the irradiance of incident collimated light, an effect that should be accounted for in photomedical dosimetry or research. PMID:20555508

Anderson, R R; Beck, H; Bruggemann, U; Farinelli, W; Jacques, S L; Parrish, J A

1989-06-15

123

2.3.1 Biological Effects of Ionizing Radiations  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.1 Biological Effects of Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the comtents:

Kaul, A.

124

Radiation dosimetry for high LET particles in low Earth orbit  

NASA Astrophysics Data System (ADS)

Research indicates that the impact to human tissues from radiation exposure is strongly related to the LET (linear energy transfer) of the particles and particles with high LET ( ?5KeV/?m water) dominate the damage. High LET radiation in LEO (low Earth orbit) is composed mainly of galactic cosmic rays (GCR), solar energetic particles, particles trapped in the SAA (South Atlantic Anomaly), and albedo neutrons and protons scattered from the Earth's atmosphere. So far the active personal dosimeters are not available and the best passive personal dosimeters currently applied to the radiation assessment for astronauts are CR-39 detectors (for the high LET part) in combination with thermoluminescence detectors (TLDs) or optically stimulated luminescence detectors) (OSLDs) (for the low LET part). LET spectra for radiation in LEO were determined with CR-39. This paper introduces the operational principles for CR-39 detectors, describes the method of LET spectrum using CR-39 and presents the results measured with CR-39 and TEPC (tissue equivalent proportional counter) for space mission ISS-Expedition 2, STS-108, STS-112, ISS-7S, STS-114 and STS-121.

Zhou, D.; O'Sullivan, D.; Semones, E.; Zapp, N.; Johnson, S.; Weyland, M.

125

Radiation Measured for DOBIES (Dosimetry of BIological Experiments in Space)  

NASA Astrophysics Data System (ADS)

The objective of the DOBIES project is to investigate the response of biological samples to space environment. Radiation is an important factor in space exposures and it is important to estimate its impact as accurately as possible using high quality measurements. Previous studies have indicated that the biological impact is dominated by the high LET radiation. CR-39 detectors have been used very successfully for previous DOBIES experiments to measure high LET spectra (differential and integral particle fluence, absorbed dose and dose equivalent) and continue to provide excellent data in this field. The most recent DOBIES experiment was conducted from 30 September to 11 October 2009 -just at the recent period of solar minimum activity, with an exposure time of ˜11 days in the Russian Zvezda service module on ISS (International Space Station). After exposure the CR-39 detectors were recovered and chemically etched at JSC (Johnson Space Center) -SRAG (Space Radiation Analysis Group). Data scan and analysis were conducted at JSC-SRAG and DIAS (Dublin Institute for Advanced Studies). This paper will present the experimental results, including LET spectra and radiation quantities measured with DIAS/SRAG detectors and will compare the results with those obtained in other recent investigations.

Zhou, Dazhuang; O'Sullivan, D.; Vanhavere, F.; Genicot, J. L.; Spurny, F.; Jadrnickova, I.; Yukihara, E. G.; Sawakuchi, G. O.

126

Radiation Protection Dosimetry Vol. 100, Nos 14, pp. 207209 (2002)  

E-print Network

on these crystals were studied. Methods of optical absorption, X and UV excited luminescence, thermoluminescence (TL), phototransferred thermoluminescence and optically stimulated luminescence were used in these investigations for radiation detectors and solid state dosemeters. In previous work, mainly thermoluminescence (TL) methods

Chen, Reuven

127

Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988  

SciTech Connect

This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

Straume, T.; Ricker, Y.; Thut, M.

1988-08-29

128

Neutron radiation dosimetry in high altitude flight personnel.  

PubMed

In an attempt to determine cosmic radiation exposure in high altitude NASA flight personnel, eight WB-57F flight crewmen were monitored for a period of six months using a combination radiation dosimeter. Each dosimeter consisted of two thermoluminescent chips capable of measuring gamma dose and one Albedo and two Track Etch neutron dosimeters. A total of 78 flights were monitored consisting of 251 flight hours at altitudes above 14 km (45,000 ft). The maximum yearly dose equivalent measured was 104 mrem, a value well below the Maximum Permissible Dose (MPD) of 5.0 rem/y for occupational exposures and 0.5 rem/y for members of the general public. A discussion of the theory and use of several types of neutron dosimeters is included. PMID:7181814

Baily, P E

1982-08-01

129

Genetic and molecular dosimetry of HZE radiation (7-IML-1)  

NASA Technical Reports Server (NTRS)

The objectives of the study are to determine the kinetics of production and to characterize the unique aspects of genetic and developmental lesion induced in animal cells by radiation present in the space environment. Special attention is given to heavy charged particles. The organism Caenorhabditis elegans, a simple nematode, is used as a model system for a coordinated set of ground-based and flight experiments.

Nelson, Gregory A.

1992-01-01

130

Effect of Contrast Media on Megavoltage Photon Beam Dosimetry  

SciTech Connect

The purpose of this study was to quantify changes in photon beam dosimetry caused by using contrast media during computed tomography (CT) simulation and determine if the resulting changes are clinically significant. The effect of contrast on dosimetry was first examined for a single 6-MV photon beam incident on a plane phantom with a structure of varying electron densities ({rho}{sub e}) and thickness. Patient studies were then undertaken in which CT data sets were collected with and without contrast for 6 typical patients. Three patients received IV contrast (Optiray-240{sup TM}) only and 3 received IV plus oral (Gastrograffin{sup TM}) contrast. Each patient was planned using conformal multifield techniques in accordance with the department standards. Two methods were used to compare the effect of contrast on dosimetry for each patient. The phantom analysis showed that the change in dose at the isocenter for a single 10 x 10 cm{sup 2} 6-MV photon beam traversing 10 cm of a contrast-enhanced structure with {rho}{sub e} 1.22 was 7.0% (1.22 was the highest average {rho}{sub e} observed in the patient data). As a result of using contrast, increases in {rho}{sub e} were observed in structures for the 6 patients studied. Consequently, when using contrast-enhanced CT data for multifield planning, increases in dose at the isocenter and in critical structures were observed up to 2.1% and 2.5%, respectively. Planning on contrast-enhanced CT images may result in an increase in dose of up to 2.1% at the isocenter, which would generally be regarded as clinically insignificant. If, however, a critical organ is in close proximity to the planning target volume (PTV) and is planned to receive its maximum allowable dose, planning on contrast-enhanced CT images may result in that organ receiving dose beyond the recommended tolerance. In these instances, pre-contrast CT data should be used for dosimetry.

Rankine, Ashley W. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Perth, WA 6009 (Australia)], E-mail: Ashley.Rankine@health.wa.gov.au; Lanzon, Peter J.; Spry, Nigel A. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Perth, WA 6009 (Australia)

2008-10-01

131

Physical mechanism of the Schwarzschild effect in film dosimetry—theoretical model and comparison with experiments  

NASA Astrophysics Data System (ADS)

In consideration of the importance of film dosimetry for the dosimetric verification of IMRT treatment plans, the Schwarzschild effect or failure of the reciprocity law, i.e. the reduction of the net optical density under 'protraction' or 'fractionation' conditions at constant dose, has been experimentally studied for Kodak XOMAT-V (Martens et al 2002 Phys. Med. Biol. 47 2221-34) and EDR 2 dosimetry films (Djouguela et al 2005 Phys. Med. Biol. 50 N317-N321). It is known that this effect results from the competition between two solid-state physics reactions involved in the latent-image formation of the AgBr crystals, the aggregation of two Ag atoms freshly formed from Ag+ ions near radiation-induced occupied electron traps and the spontaneous decomposition of the Ag atoms. In this paper, we are developing a mathematical model of this mechanism which shows that the interplay of the mean lifetime ? of the Ag atoms with the time pattern of the irradiation determines the magnitude of the observed effects of the temporal dose distribution on the net optical density. By comparing this theory with our previous protraction experiments and recent fractionation experiments in which the duration of the pause between fractions was varied, a value of the time constant ? of roughly 10 s at room temperature has been determined for EDR 2. The numerical magnitude of the Schwarzschild effect in dosimetry films under the conditions generally met in radiotherapy amounts to only a few per cent of the net optical density (net OD), so that it can frequently be neglected from the viewpoint of clinical applications. But knowledge of the solid-state physical mechanism and a description in terms of a mathematical model involving a typical time constant of about 10 s are now available to estimate the magnitude of the effect should the necessity arise, i.e. in cases of large fluctuations of the temporal pattern of film exposure.

Djouguela, A.; Kollhoff, R.; Rühmann, A.; Willborn, K. C.; Harder, D.; Poppe, B.

2006-09-01

132

Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology  

SciTech Connect

The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

Hill, Robin L.; Rathbone, Bruce A.

2010-08-01

133

Review on the characteristics of radiation detectors for dosimetry and imaging.  

PubMed

The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented. PMID:25229250

Seco, Joao; Clasie, Ben; Partridge, Mike

2014-10-21

134

Dosimetry protocol for the forthcoming clinical trials in synchrotron stereotactic radiation therapy (SSRT)  

SciTech Connect

Purpose: An adequate dosimetry protocol for synchrotron radiation and the specific features of the ID17 Biomedical Beamline at the European Synchrotron Radiation Facility are essential for the preparation of the forthcoming clinical trials in the synchrotron stereotactic radiation therapy (SSRT). The main aim of this work is the definition of a suitable protocol based on standards of dose absorbed to water. It must allow measuring the absolute dose with an uncertainty within the recommended limits for patient treatment of 2%-5%. Methods: Absolute dosimetry is performed with a thimble ionization chamber (PTW semiflex 31002) whose center is positioned at 2 g cm{sup -2} equivalent depth in water. Since the available synchrotron beam at the ESRF Biomedical Beamline has a maximum height of 3 mm, a scanning method was employed to mimic a uniform exposition of the ionization chamber. The scanning method has been shown to be equivalent to a broad beam irradiation. Different correction factors have been assessed by using Monte Carlo simulations. Results: The absolute dose absorbed to water at 80 keV was measured in reference conditions with a 2% global uncertainty, within the recommended limits. The dose rate was determined to be in the range between 14 and 18 Gy/min, that is to say, a factor two to three times higher than the 6 Gy/min achievable in RapidArc or VMAT machines. The dose absorbed to water was also measured in a RW3 solid water phantom. This phantom is suitable for quality assurance purposes since less than 2% average difference with respect to the water phantom measurements was found. In addition, output factors were assessed for different field sizes. Conclusions: A dosimetry protocol adequate for the specific features of the SSRT technique has been developed. This protocol allows measuring the absolute dose absorbed to water with an accuracy of 2%. It is therefore satisfactory for patient treatment.

Prezado, Y.; Vautrin, M.; Martinez-Rovira, I. [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble (France); and others

2011-03-15

135

Geometric correction for spherical ion chambers. [space radiation dosimetry  

NASA Technical Reports Server (NTRS)

The dose at the center and the average dose of a spherical ion chamber were calculated for various inner and outer radii for a radiation spectrum described by E raised to a negative exponent, where the exponent ranges from 2.5 to 7. When the ratio of the chamber's inner radius to the wall thickness is small, the dose at the center does not deviate significantly from the average dose. However, when the ratio equals 5, the center dose exceeds the average dose by about 100% for an exponent of 7, and by about 30% for an exponent of 2.5.

Khandelwal, G. S.; Costner, C. M.; Wilson, J. W.

1974-01-01

136

Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry  

NASA Astrophysics Data System (ADS)

This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

Krstaji?, Nikola; Doran, Simon J.

2006-12-01

137

CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.  

PubMed

A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. PMID:23792213

Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C

2013-08-30

138

Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223.  

PubMed

The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation. PMID:25186375

Sechopoulos, Ioannis; Sabol, John M; Berglund, Johan; Bolch, Wesley E; Brateman, Libby; Christodoulou, Emmanuel; Flynn, Michael; Geiser, William; Goodsitt, Mitchell; Jones, A Kyle; Lo, Joseph Y; Maidment, Andrew D A; Nishino, Kazuyoshi; Nosratieh, Anita; Ren, Baorui; Segars, W Paul; Von Tiedemann, Miriam

2014-09-01

139

Low-dose ionizing radiation and chromosome translocations: a review of the major considerations for human biological dosimetry.  

PubMed

Chromosome translocations are a molecular signature of ionizing radiation exposure. Translocations persist significantly longer after exposure than other types of chromosome exchanges such as dicentrics. This persistence makes translocations the preferred aberration type for performing radiation dosimetry under conditions of protracted exposure or when exposure assessments are temporally delayed. Low doses of radiation are inherently difficult to quantify because the frequency of induced events is low and the background level of translocations among unexposed subjects can show considerable variability. Analyses of translocation frequencies can be confounded by several factors, including age of the subject, lifestyle choices such as cigarette smoking, the presence of clones of abnormal cells, and possibly genotypic variability among subjects. No significant effects of gender or race have been observed, but racial differences have not been completely ruled out. Translocation analyses may be complicated by the presence of different types of exchanges, i.e., reciprocal or non-reciprocal, and because translocations sometimes occur as a component of complex exchanges that include other forms of chromosome rearrangements. Rates of radiation exposure, ranging from acute to chronic, are known to influence the accumulation of translocations and may also affect their persistence. The influences on translocation frequencies of low-dose radiation hypersensitivity as well as the bystander effect and the adaptive response remain poorly characterized. Thus, quantifying the relationship between radiation dose and the frequency of translocations in any given subject requires attention to multiple issues. Part of the solution to understanding the in vivo dose-response relationship is to have accurate estimates of the baseline levels of translocations in healthy unexposed subjects, and some work in this area has been accomplished. Long-term cytogenetic follow-up of exposed subjects is needed to characterize translocation persistence, which is especially relevant for risk analyses. More work also needs to be done in the area of quantifying the role of known confounders. Characterizing the role of genotype will be especially important. Improvements in the ability to use translocation frequencies for low-dose biological dosimetry will require scoring very large numbers of cells per subject, which may be accomplished by developing a rapid automated image analysis system. This work would enhance our comprehension of the effects of low-dose radiation exposure and could lead to significant improvements in understanding the relationship between chromosome damage and human health. PMID:18485804

Tucker, James D

2008-01-01

140

Multi-dimensional fiber-optic radiation sensor for ocular proton therapy dosimetry  

NASA Astrophysics Data System (ADS)

In this study, we fabricated a multi-dimensional fiber-optic radiation sensor, which consists of organic scintillators, plastic optical fibers and a water phantom with a polymethyl methacrylate structure for the ocular proton therapy dosimetry. For the purpose of sensor characterization, we measured the spread out Bragg-peak of 120 MeV proton beam using a one-dimensional sensor array, which has 30 fiber-optic radiation sensors with a 1.5 mm interval. A uniform region of spread out Bragg-peak using the one-dimensional fiber-optic radiation sensor was obtained from 20 to 25 mm depth of a phantom. In addition, the Bragg-peak of 109 MeV proton beam was measured at the depth of 11.5 mm of a phantom using a two-dimensional sensor array, which has 10×3 sensor array with a 0.5 mm interval.

Jang, K. W.; Yoo, W. J.; Moon, J.; Han, K. T.; Park, B. G.; Shin, D.; Park, S.-Y.; Lee, B.

2012-12-01

141

Ce{sup 3+}-doped fibers for remote radiation dosimetry  

SciTech Connect

A radioluminescent (RL) dosimetric system, based on a SiO{sub 2} optical fiber with the core doped by Ce{sup 3+} ions as luminescent activators has been investigated. Structural and optical properties of the luminescent fiber have been studied by Raman, refractive index, RL and scintillation time decay measurements, and compared to those obtained on bulk material. The RL response of a composite fiber made of a short portion of active Ce-doped fiber coupled to a long commercial one has been investigated by x-ray irradiation. A linear RL intensity response has been found in the dose rate interval 6x10{sup -3}-40 mGy/s together with a good radiation hardness, suggesting possible application in low-dose monitoring.

Vedda, A.; Chiodini, N.; Di Martino, D.; Fasoli, M.; Keffer, S.; Lauria, A.; Martini, M.; Moretti, F.; Spinolo, G.; Nikl, M.; Solovieva, N.; Brambilla, G. [Department of Materials Science and INFM/CNR, University of Milano-Bicocca, Via Cozzi 53, I-20125 Milan (Italy); Institute of Physics ASCR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Optoelectronics Research Centre, University of Southampton, Southampton, S0171BJ (United Kingdom)

2004-12-27

142

Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose  

NASA Astrophysics Data System (ADS)

This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.

Nunes, Josane C.

1991-02-01

143

Radiation Protection Dosimetry Vol. 84, Nos. 14, pp. 4346 (1999)  

E-print Network

MODELLING THE PRE-DOSE EFFECT IN THERMOLUMINESCENCE R. Chen* and P. L. Leung Department of Physics thermoluminescence (TL) materials by or irradiation followed by an anneal at high temperature is a well

Chen, Reuven

144

Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications  

PubMed Central

During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose measurements in clinical applications. A brief review of the recent developments is presented. PMID:19893698

Pradhan, A. S.; Lee, J. I.; Kim, J. L.

2008-01-01

145

1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1  

NASA Technical Reports Server (NTRS)

Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

Ochoa, Agustin, Jr. (editor)

1989-01-01

146

Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry  

NASA Astrophysics Data System (ADS)

Polyacrylamide gels (PAGs) are used for magnetic resonance imaging radiation dosimetry. Fourier transform (FT) Raman spectroscopy studies were undertaken to investigate cross-linking changes during the copolymerization of polyacrylamide gels in the spectral range of 200-3500 . Vibrational bands of 1285 and 1256 were assigned to acrylamide and bis-acrylamide single binding modes. Bands were found to decrease in amplitude with increasing absorbed radiation dose as a result of copolymerization. Principal component regression was performed on FT-Raman spectra of PAG samples irradiated to 50 Gy. Two components were found to be sufficient to account for 98.7% of the variance in the data. Cross validation was used to establish the absorbed radiation dose of an unknown PAG sample from the FT-Raman spectra. The calculated correlation coefficient between measured and predictive samples was 0.997 with a standard error of estimate of 0.976 and a standard error of prediction of 1.140. Results demonstrate the potential of FT-Raman spectroscopy for ionizing radiation dosimetry using polyacrylamide gels.

Baldock, C.; Rintoul, L.; Keevil, S. F.; Pope, J. M.; George, G. A.

1998-12-01

147

Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer.  

PubMed

The purpose of this study was to check the setup and dose delivered to the patients during intraoperative electron beam radiation therapy (IORT) for prostate cancer. Twenty eight patients underwent IORT after radical prostatectomy for prostate cancer by means of a dedicated mobile accelerator, Novac7 (by Hitesys, SpA, Italy). A 9 MeV electron beam at high dose per pulse was used. Eighteen patients received IORT at escalating doses of 16, 18, and 20 Gy at 85% isodose, six patients for each dose level. Further, ten patients received 20 Gy at 85% isodose. The electron applicator position was checked in all cases by means of two orthogonal images obtained with brilliance intensifier. Target and organ at risk doses were measured in vivo by a MOSFETs dosimetry system. MOSFETs and microMOSFET dosimeters were inserted into sterile catheters and directly positioned into the rectal lumen, for ten patients, and into the bladder to urethra anastomosis, in the last 14 cases. Verification at 0 degree led to very few adjustments of setup while verifications at 90 degrees often suggested to bring the applicator closer to the target. In vivo dosimetry showed an absorbed dose into the rectum wall < or =1% of the total dose. The average dose value inside the anastomosis, for the 12 patients analyzed, was 23.7 Gy with a standard deviation of +/-7.6%, when the prescription was 20 Gy at 85% isodose. Using a C-arm mobile image intensifier, it is possible to assess if the positioning is correct and safe. Radio-opaque clips and liquid were necessary to obtain good visible images. In vivo MOSFETs dosimetry is feasible and reliable. A satisfactory agreement between measured and expected doses was found. PMID:17879783

Soriani, Antonella; Landoni, Valeria; Marzi, Simona; Iaccarino, Giuseppe; Saracino, Biancamaria; Arcangeli, Giorgio; Benassi, Marcello

2007-08-01

148

Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer  

SciTech Connect

The purpose of this study was to check the setup and dose delivered to the patients during intraoperative electron beam radiation therapy (IORT) for prostate cancer. Twenty eight patients underwent IORT after radical prostatectomy for prostate cancer by means of a dedicated mobile accelerator, Novac7 (by Hitesys, SpA, Italy). A 9 MeV electron beam at high dose per pulse was used. Eighteen patients received IORT at escalating doses of 16, 18, and 20 Gy at 85% isodose, six patients for each dose level. Further, ten patients received 20 Gy at 85% isodose. The electron applicator position was checked in all cases by means of two orthogonal images obtained with brilliance intensifier. Target and organ at risk doses were measured in vivo by a MOSFETs dosimetry system. MOSFETs and microMOSFET dosimeters were inserted into sterile catheters and directly positioned into the rectal lumen, for ten patients, and into the bladder to urethra anastomosis, in the last 14 cases. Verification at 0 deg. led to very few adjustments of setup while verifications at 90 deg. often suggested to bring the applicator closer to the target. In vivo dosimetry showed an absorbed dose into the rectum wall {<=}1% of the total dose. The average dose value inside the anastomosis, for the 12 patients analyzed, was 23.7 Gy with a standard deviation of {+-}7.6%, when the prescription was 20 Gy at 85% isodose. Using a C-arm mobile image intensifier, it is possible to assess if the positioning is correct and safe. Radio-opaque clips and liquid were necessary to obtain good visible images. In vivo MOSFETs dosimetry is feasible and reliable. A satisfactory agreement between measured and expected doses was found.

Soriani, Antonella; Landoni, Valeria; Marzi, Simona; Iaccarino, Giuseppe; Saracino, Biancamaria; Arcangeli, Giorgio; Benassi, Marcello [Laboratory of Medical Physics, Istituto Regina Elena, via Elio Chianesi 53, 00144, Rome (Italy); Division of Radiotherapy, Istituto Regina Elena, via Elio Chianesi 53, 00144, Rome (Italy); Laboratory of Medical Physics, Istituto Regina Elena, via Elio Chianesi 53, 00144, Rome (Italy)

2007-08-15

149

Optimising the therapeutic ratio of radioimmunotherapy; an investigation of the roles of chimerisation, fractionation and radiation dosimetry  

NASA Astrophysics Data System (ADS)

Radioimmunotherapy (RIT) is a targeted form of treatment for cancer which uses tumour-associated antibodies to selectively deliver a therapeutic radionuclide to sites of disease. In lymphoma, radioimmunotherapy has proved a remarkably effective agent due to the high radiosensitivity of the tumour and its propensity to undergo apoptosis following irradiation. However, success in the treatment of the more radioresistant common solid tumours has been less successful, and for these patients RIT remains investigative. The effectiveness of RIT is limited by non-specific irradiation of normal tissues whilst antibody remains in the circulation, in particular bone marrow, and also by immunogenicity of antibody which does not allow for repeated therapy. In the first chapter I have hypothesised that lymphomas expressing the interleukin-2 receptor might be effectively treated using a radiolabeled antibody to this receptor. In a phase I/II clinical study, 131I labelled CHT-25, a chimeric antibody against the IL-2Ra chain, has shown encouraging evidence of efficacy in the 9 patients with multiply- relapsed lymphomas treated so far. In addition, use of this antibody has been associated with low immunogenicity allowing for repeated therapies to be given. In the second chapter I have hypothesised that dosimetry led, individual patient therapy, might further optimise 1311 CHT-25 treatment. To investigate this I have used marrow toxicity as a biological assay of absorbed dose and shown that simple, but individual, patient biodistribution indices correlate better with observed toxicity than the population-based dose estimates currently employed. I have proposed that adoption of individual patient dosimetry using tracer studies is worthy of further investigation for the future development of 131I- CHT-25. In the third chapter I have hypothesised that dose fractionation might improve the therapeutic ratio of RIT. This has been investigated in a pre-clinical human colorectal xenograft model in nude mice using 131I-A5B7, a murine antibody against CEA. In this setting fractionation neither reduces normal tissue toxicity nor increases the effectiveness of therapy. This thesis demonstrates, using both pre-clinical and clinical data, how the therapeutic ratio of RIT might be improved through antibody design, leading to reduced immunogenicity, dose fractionation and radiation dosimetry, and proposes how these approaches might be used to optimise the effectiveness of RIT in the clinic.

Violet, John Albert

2007-12-01

150

Handbook of radiation effects  

Microsoft Academic Search

This book emphasizes radiation effects on solid state devices from exposure to the types of radiation found outside the atmosphere (in space, or in the vicinity of an exploding nuclear device). It contains a basic study of radiation shielding of payload components for payloads in space and specifically covers radiation effects on minority and majority carriers, optical media and organic

A. Holmes-Siedle; L. Adams

1993-01-01

151

Epid Dosimetry  

NASA Astrophysics Data System (ADS)

Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

Greer, Peter B.; Vial, Philip

2011-05-01

152

Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak  

NASA Astrophysics Data System (ADS)

In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

2014-05-01

153

Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.  

PubMed

In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak. PMID:24880371

Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

2014-05-01

154

Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak  

SciTech Connect

In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)] [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)] [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

2014-05-15

155

Radiation Protection Dosimetry Vol. 97, No. 3, pp. 279-285 (2001)  

E-print Network

to the biological effects of low levels of ionising radiation have such large uncertainties. Given the data have protection than the basic assumptions regarding the actions of ionising radiation at low levels. As well for radiation protection. David Brenner is Professor of Radiation Oncology and Public Health at Columbia

Brenner, David Jonathan

156

Evaluation of a fast method of EPID-based dosimetry for intensity modulated radiation therapy  

PubMed Central

Electronic portal imaging devices (EPIDs) could potentially be useful for Intensity Modulated Radiation Therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed to be effective imaging devices, but not dosimeters, and as a result they do not measure dose in tissue-equivalent materials. EPIDose (Sun Nuclear, Melbourne, FL) is a tool designed for the use of EPIDs in IMRT QA that uses raw MV EPID images (no additional build-up and independent of gantry angle, but with dark and flood field corrections applied) to estimate absolute dose planes normal to the beam axis in a homogeneous media, i.e. similar to conventional IMRT QA methods. However, because of the inherent challenges of the EPID-based dosimetry, validating and commissioning such a system must be done very carefully, exploring the range of use cases and using well-proven “standards” for comparison. In this work, a multi-institutional study was performed to verify accurate EPID image to dose plane conversion over a variety of conditions. Converted EPID images were compared to 2D diode array absolute dose measurements for one hundred and eighty eight (188) fields from twenty eight (28) clinical IMRT treatment plans generated using a number of commercially available treatment planning systems (TPS) covering various treatment sites including prostate, head and neck, brain, and lung. The data included three beam energies (6, 10, and 15 MV) and both step-and-shoot and dynamic MLC fields. Out of 26,207 points of comparison over 188 fields analyzed the average overall field pass rate was 99.7% when 3mm/3% DTA criteria were used (range 94.0-100 per field). The pass rates for more stringent criteria were 97.8% for 2mm/2% DTA (range 82.0-100 per field), and 84.6% for 1mm/1% DTA (range 54.7-100 per field). Individual patient specific sites as well as different beam energies followed similar trends to the overall pass rates. PMID:20592703

Nelms, Benjamin E.; Rasmussen, Karl H.; Tomé, Wolfgang A.

2010-01-01

157

The Influence of Stopping Powers upon Dosimetry for Radiation Therapy with Energetic Ions  

NASA Astrophysics Data System (ADS)

Following a recent recommendation from the International Atomic Energy Agency (IAEA), air filled ionization chambers (calibrated in terms of absorbed dose to water) should be used for the dosimetry in radiation therapy with fast ions. According to IAEA, the main source of uncertainty in the dose determination is resulting from the stopping power ratio water to air, which is introduced in order to convert the dose measured in the air cavity to the dose to water, which is used as the standard reference medium. We show that our knowledge of suitable stopping power data is very limited, but that the dependence of the stopping power ratio on the mean ionization energies Iwater and Iair is dominating this quantity over a large energy range. We discuss the I-values used in ICRU Reports 37, 49, and 73, and we show how the various choices affect the ratio of stopping powers and the stopping power ratio. In doing so, we also investigate a choice of I-values differing from the ICRU recommendations. The stopping power ratio is calculated as the fluence-weighted average ratio of stopping powers using the Monte Carlo program SHIELD-HIT v2, for primary carbon ions at 50 and 400 MeV/nucleon, including the effect of secondary fragments produced by nuclear reactions. Using a single set of I-values for all primary and secondary particles, we find that the stopping power ratio hardly differs from the simple ratio of stopping powers for C ions over a large energy range. Compared to an earlier result [O. Geithner et al., Phys. Med. Biol. 51 (2006) 2279] there are some minor differences, arising from a combination of different I-values from different stopping power tables (ICRU 49 for protons and alphas, ICRU 73 for the heavier ions). For the very low energy region, which is important for dosimetrical measurements close to the Bragg peak, the simple ratio of stopping powers is no longer valid. When using a consistent set of I-values it is shown that the deviation of the stopping power ratio (including nuclear fragmentation) from the recommendation of IAEA is very small at high energies, but increases up to 3% in the stopping region. Concerning future investigations, we think it is worthwhile to reanalyze the various sources of I-values taking into account not only stopping power data but also precision range measurements, since the calculated ranges critically depend on the selected I-value.

Paul, Helmut; Geithner, Oksana; Jäkel, Oliver

158

Thermoluminescence properties of LiF:Mg,Cu,Na,Si pellets in radiation dosimetry.  

PubMed

Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets have been developed for application in radiation dosimetry. LiF:M,Cu,Na,Si TL pellets were made from TL powders using a sintering process, that is, pressing and heat treatment. These pellets have a diameter of 4.5 mm, and a thickness of 0.8 mm are blue in colour and have a mass of 28 mg each. After 400 pellets had been produced they were irradiated with 137Cs gamma radiation and samples having a sensitivity within a +/-5% standard deviation were selected for experimental use. In the present study, the physical and dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets were investigated for their emission spectrum, dose response, energy response and fading characteristics. Photon irradiation for the experiments was carried out using X ray beams and a 137Cs gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and 10(-6) - 10(2) Gy respectively. The glow curves were measured with a manual type thermoluminescence dosimetry reader (system 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of 5 degrees C.s(-1). the main dosimetric peak of the glow curve appeared at 234 degrees C, its activation energy was 2.34 eV and the frequency factor was 1.00 x 10(23). The TL emission spectrum appeared at the blue region centred at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to the 137Cs response were within +/-20% in the overall photon energy region. No fading of the TL sensitivity of the pellets stored at room temperature was found over the course of a year. Therefore LiF:Mg,Cu,Na,Si TL pellets can be used for personal dosimetry, but more research is needed to improve the characteristics for repeated use. PMID:12382923

Nam, Y M; Kim, J L

2002-01-01

159

Potential application of pure silica optical flat fibers for radiation therapy dosimetry  

NASA Astrophysics Data System (ADS)

Pure silica optical flat fibers (FF) have been proposed as the basis for a novel radiation sensor by the measurement of the thermoluminescence (TL) produced. In this paper the TL performance of the FFs were studied. Using a linear accelerator (LINAC) delivering doses in the range 0.2-10.0 Gy, the TL dosimetric glow curves of the FFs were studied with respect to 6 MeV electron and 6 MV photon beams. When exposed to 6 MeV electron irradiation, the pure silica FFs displayed a supralinear response starting from 2 Gy up to 10.0 Gy. While for 6 MV photon irradiation, the FFs shows linear characteristic (f(D)=1) nearly up to 2 Gy. The TL intensity (Im) of the main peak of FFs is 1.5 times higher for 6 MeV electron beams than for 6 MV photon beams. The maximum peak temperature (Tm) it is not affected by the type of irradiation used at the same dose while the maximum TL intensity (Im) was found to be dependent on the type of radiation used. Overall results indicate that the pure silica FFs can be used as radiation sensors in the high-dose therapy dosimetry.

Alawiah, A.; Bauk, S.; Abdul-Rashid, H. A.; Gieszczyk, W.; Hashim, S.; Mahdiraji, G. A.; Tamchek, N.; Bradley, D. A.

2015-01-01

160

A wireless transmission low-power radiation sensor for in vivo dosimetry  

NASA Astrophysics Data System (ADS)

The aim of the paper is to illustrate the design and the performance of a microelectronic circuit composed of a dosimeter, an oscillator, a modulator, a transmitter and an antenna. The device was designed for specific in vivo dosimetry applications. However, the layout area of less than 1 mm2 makes it suitable for a large variety of applications, from spot radiation monitoring systems in medicine to accurate measurements of radiation level in high-energy physics experiments. Moreover, due to its extremely low-power budget, it might be also of interest for space applications. The chip embeds a re-programmable floating-gate transistor configured as a radiation sensor and a read-out circuit. Prototype chips have been fabricated and tested exploiting a commercial 180 nm, four-metal CMOS technology. Characterization tests of the performance of the Ultra-Wide Band transmission are summarized. The dosimeter prototype has an estimated sensitivity of 1 mV/rad within a total absorbed dose range up to 10 krad. The read-out circuit is powered with 3.3 V and the total power consumption is very low, i.e. about 165 ?W, making it also upgradable with a remote power system.

Fuschino, F.; Gabrielli, A.; Baldazzi, G.; Campana, R.; Valentinetti, S.; Crepaldi, M.; Demarchi, D.; Villani, G.

2014-02-01

161

The effects of high ambient radon on thermoluminescence dosimetry readings.  

PubMed

The effect of a high level of ambient (222)Rn gas on thermoluminescence dosemeters (TLDs) is examined. Groups of LiF:Mg,Ti and CaF(2):Dy TLDs were exposed to (222)Rn under controlled environmental conditions over ?7 d using a luminous (226)Ra aircraft dial. LiF:Mg,Ti TLDs were tested bare, and both types were tested mounted in cards used for environmental dosimetry and mounted in cards enclosed in plastic badges. A passive continuous radon monitor was used to measure the (222)Rn level in the small chamber during the experiments. The data were analysed to determine the relationship between the integrated (222)Rn level and the TLD response. Although both LiF:Mg,Ti and CaF(2):Dy TLDs showed a strong response to (222)Rn, the badges prevented measurable radon detection by the TLDs within. The TLDs were not used to directly measure the radon concentration; rather, a correction for its influence was desired. PMID:21177272

Harvey, John A; Kearfott, Kimberlee J

2011-11-01

162

Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system  

NASA Astrophysics Data System (ADS)

This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

Petric, Martin Peter

163

Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events.  

PubMed

Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans. PMID:24729594

Flood, Ann Barry; Boyle, Holly K; Du, Gaixin; Demidenko, Eugene; Nicolalde, Roberto J; Williams, Benjamin B; Swartz, Harold M

2014-06-01

164

JPL Radiation Effects Facilities  

NASA Technical Reports Server (NTRS)

Radiation Effects Group investigates the effects of space radiation on present and future microelectronic and optoelectronic technologies, evaluate the risk of using them in specific space missions, and recommend component and design techniques for JPL and NASA programs to reduce reliability risk from space radiation.

Thorbourn, Dennis

2013-01-01

165

Radiation effects in space  

SciTech Connect

The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)

Fry, R.J.M.

1986-01-01

166

Medical radiation exposure and accidents. Dosimetry and radiation protection. Do we only benefit the patient?  

PubMed

This article presents and discusses new information on the old Hippocratic moto of "...not to harm but to benefit the patient". Some radiation accidents are due to medical errors. Millions of medical tests exposing radiation are performed every day worldwide increasing and sometimes exceeding the annual permissible dose administered to the general population. Public authorities are now seriously concerned about medical radiation overused. In U.S.A. both the House of Representatives and the Food and Drug Administration have recently delt with this problem. Others and we have suggested before and the International Atomic Energy Agency now proposes: a "Smart Card" for every individual who receives medical radiation. In this card the amount of medical radiation administered will be recorded. It is time to issue rules for protection of the public from medical radiation overdose. PMID:20808982

Grammaticos, Philip; Lyra, Maria

2010-01-01

167

Estimating the effective density of engineered nanomaterials for in vitro dosimetry  

NASA Astrophysics Data System (ADS)

The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by benchtop centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro.

Deloid, Glen; Cohen, Joel M.; Darrah, Tom; Derk, Raymond; Rojanasakul, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip

2014-03-01

168

(Biological dosimetry)  

SciTech Connect

The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

Preston, R.J.

1990-12-17

169

1990 IEEE Annual Conference on Nuclear and Space Radiation Effects, 27th, Reno, NV, July 16-20, 1990, Proceedings  

NASA Technical Reports Server (NTRS)

Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, single-event upset and latchup, isolation technologies, device and integrated circuit effects and hardening, spacecraft charging and electromagnetic effects.

Fleetwood, Daniel M. (editor)

1990-01-01

170

Whole-body distribution and radiation dosimetry of (68)Ga-NOTA-RGD, a positron emission tomography agent for angiogenesis imaging.  

PubMed

(68)Ga labeled NOTA-RGD was a recently developed positron emission tomography (PET) radiotracer for the visualization of angiogenesis, and is regarded as a promising imaging agent for cancer and several other disorders. In this study, we investigated the whole-body distribution and radiation dosimetry of (68)Ga-NOTA-RGD in humans. Ten cancer patients (53.7 ± 13.5 years; 61.5 ± 7.4 ?kg) participated in this study. PET scans were performed using a PET/computed tomography (scanner in three-dimensional mode). After an intravenous injection of 172.4 ± 20.5 ?MBq of (68)Ga-NOTA-RGD, eight serial whole-body scans were performed during 90 minutes. Volumes of interest were drawn manually over the entire volumes of the urinary bladder, the gallbladder, heart, kidneys, liver, lungs, pancreas, spleen, and stomach. Time-activity curves were obtained from serial PET scan data. Residence times were calculated from areas under curve of time-activity curves and used as input to the OLINDA/EXM 1.1 software. The uptake of (68)Ga-NOTA-RGD was highest in the kidneys and urinary bladder. Radiation doses to kidneys and urinary bladder were 71.6 ± 28.4 ?? Gy/MBq and 239.6 ± 56.6? ? Gy/MBq. Mean effective doses were 25.0 ± 4.4 ?? Sv/MBq using International Commission of Radiation Protection (ICRP) publication 60 and 22.4 ± 3.8 ?? Sv/MBq using ICRP publication 103 weighting factor. We evaluated the radiation dosimetry of (68)Ga labeled NOTA-RGD, which has an acceptable effective radiation dose. PMID:22149685

Kim, Joong Hyun; Lee, Jae Sung; Kang, Keon Wook; Lee, Ho-Young; Han, Sae-Won; Kim, Tae-You; Lee, Yun-Sang; Jeong, Jae Min; Lee, Dong Soo

2012-02-01

171

Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.  

PubMed

South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1). PMID:21502300

Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S

2011-07-01

172

Uptake of Tl-201 in the testes: Implications for radiation dosimetry  

SciTech Connect

The radiation dose to the testes from Tl-201 chloride has been an outstanding question for a number of years. Previous studies have presented kinetic data for the testes with percentage uptake ranging over nearly an order of magnitude from 0.15% to 1.2%. Gupta et al. studied the uptake of Tl-201 in testes and reported an uptake of 0.9-1.2%, with no clearance to 24 hours. Use of the value reported by Gupta et al. results in an estimated dose to the testes in the adult of 0.82 mGy/MBq, and causes the testes to be identified as the highest dose organ. In our crossover study we evaluated Tl-201 uptake in the testes of 28 patients who received Tl-201 chloride plus D-Ribose, an experimental clearance agent, and Tl-201 chloride plus a placebo 7 to 14 days later. Quantitative measurements were made under a scintillation camera imaging protocol (following exercise and administration of D-Ribose or the placebo) at approximately 1.5, 4.5, 8, 24, and 48 hr, and 7 to 14 days post injection, during which the isolated testes were shielded from the body background. Images were acquired for 5 minutes at early times and 10 to 15 minutes at the latest time. The data were fit to a two component exponential curve. Uptake and clearance parameters were not significantly different between the two regimens. Mean uptake was 0.31 {plus_minus} 0.11%; the mean residence time in the testes was 0.26 {plus_minus}0.08 hr. The testes dose using this new residence time is about 0.20 mGy/MBq. This estimate should form the basis for testicular radiation dosimetry of Tl-201 chloride.

Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States); Thomas, S.R. [Univ. of Cincinnati, OH (United States); Wilson, R.A. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

1995-05-01

173

Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry  

SciTech Connect

Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup ?4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup ?5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

Cavan, Alicia, E-mail: alicia.cavan@cdhb.health.nz [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand and Christchurch Hospital, Private Bag 4710, Christchurch 8140 (New Zealand)] [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand and Christchurch Hospital, Private Bag 4710, Christchurch 8140 (New Zealand); Meyer, Juergen, E-mail: juergen@uw.edu [Department of Radiation Oncology, University of Washington, 1959 Northeast Pacific Street, Box 356043, Seattle, Washington 98195 (United States)] [Department of Radiation Oncology, University of Washington, 1959 Northeast Pacific Street, Box 356043, Seattle, Washington 98195 (United States)

2014-02-15

174

Radiation effects in space  

SciTech Connect

As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

Fry, R.J.M.

1987-07-01

175

An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals.  

PubMed

The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms. PMID:24353030

Andersson, M; Johansson, L; Minarik, D; Mattsson, S; Leide-Svegborn, S

2014-12-01

176

From ``micro`` to ``macro`` internal dosimetry  

SciTech Connect

Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

Fisher, D.R.

1994-06-01

177

The effect of patient inhomogeneities in oesophageal 192Ir HDR brachytherapy: a Monte Carlo and analytical dosimetry study  

Microsoft Academic Search

The effect of patient inhomogeneities surrounding the oesophagus on the dosimetry planning of an upper thoracic oesophageal 192Ir HDR brachytherapy treatment is studied. The MCNPX Monte Carlo code is used for dosimetry in a patient-equivalent phantom geometry and results are compared in terms of isodose contours as well as dose volume histograms with corresponding calculations by a contemporary treatment planning

G. Anagnostopoulos; D. Baltas; E. Pantelis; P. Papagiannis; L. Sakelliou

2004-01-01

178

NASA astronaut dosimetry: Implementation of scalable human phantoms and benchmark comparisons of deterministic versus Monte Carlo radiation transport  

NASA Astrophysics Data System (ADS)

Astronauts are exposed to a unique radiation environment in space. United States terrestrial radiation worker limits, derived from guidelines produced by scientific panels, do not apply to astronauts. Limits for astronauts have changed throughout the Space Age, eventually reaching the current National Aeronautics and Space Administration limit of 3% risk of exposure induced death, with an administrative stipulation that the risk be assured to the upper 95% confidence limit. Much effort has been spent on reducing the uncertainty associated with evaluating astronaut risk for radiogenic cancer mortality, while tools that affect the accuracy of the calculations have largely remained unchanged. In the present study, the impacts of using more realistic computational phantoms with size variability to represent astronauts with simplified deterministic radiation transport were evaluated. Next, the impacts of microgravity-induced body changes on space radiation dosimetry using the same transport method were investigated. Finally, dosimetry and risk calculations resulting from Monte Carlo radiation transport were compared with results obtained using simplified deterministic radiation transport. The results of the present study indicated that the use of phantoms that more accurately represent human anatomy can substantially improve space radiation dose estimates, most notably for exposures from solar particle events under light shielding conditions. Microgravity-induced changes were less important, but results showed that flexible phantoms could assist in optimizing astronaut body position for reducing exposures during solar particle events. Finally, little overall differences in risk calculations using simplified deterministic radiation transport and 3D Monte Carlo radiation transport were found; however, for the galactic cosmic ray ion spectra, compensating errors were observed for the constituent ions, thus exhibiting the need to perform evaluations on a particle differential basis with common cross-section libraries.

Bahadori, Amir Alexander

179

2.3.2 Biological Effects of Non-Ionizing Radiations  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.2 Biological Effects of Non-Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the contents:

Bernhardt, J. H.

180

'In vivo' Dosimetry in Tangential and Axilosupraclavicular Radiation Fields for Breast Cancer Postmastectomy  

SciTech Connect

This work is an 'in vivo' dosimetry study for breast cancer patients, treated with external radiotherapy. Patients who have suffered a modified radical mastectomy have been included in the study. Measurements will be made with thermoluminescent dosimeters and with radiochromic films. Such dosimetry will let us know the dose distribution in the zone which the applied beams overlap and compare the measureddose with that calculated one using the Eclipse 6.5 (Varian) planning system.

Garcia, Heredia A.; Ruiz, Trejo C. G.; Buenfil, Burgos A. E. [Instituto de Fisica, UNAM, A.P. 20-364 Mexico D.F. 01000 (Mexico); Gamboa de Buen, I. [Instituto de Ciencias Nucleares, UNAM A.P. 70-543, Mexico D.F. 04510 (Mexico); Poitevin, Chacon M. A.; Flores, J. M. Castro; Rodriguez, M. Ponce; Angeles, Zaragoza S. O. [Instituto Nacional de Cancerologia, Av. San Fernando 22, Mexico D.F. 14080 (Mexico)

2008-08-11

181

``In vivo'' Dosimetry in Tangential and Axilosupraclavicular Radiation Fields for Breast Cancer Postmastectomy''  

NASA Astrophysics Data System (ADS)

This work is an "in vivo" dosimetry study for breast cancer patients, treated with external radiotherapy. Patients who have suffered a modified radical mastectomy have been included in the study. Measurements will be made with thermoluminescent dosimeters and with radiochromic films. Such dosimetry will let us know the dose distribution in the zone which the applied beams overlap and compare the measureddose with that calculated one using the Eclipse 6.5 (Varian) planning system.

García, Heredia A.; Ruiz, Trejo C. G.; Gamboa de Buen, I.; Poitevin, Chacón M. A.; Flores, J. M. Castro; Rodríguez, M. Ponce; Ángeles, Zaragoza S. O.; Buenfil, Burgos A. E.

2008-08-01

182

A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction  

PubMed Central

It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end. PMID:18540047

Xu, X George; Bednarz, Bryan; Paganetti, Harald

2014-01-01

183

Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation  

SciTech Connect

Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2014-06-15

184

Microcircuit radiation effects databank  

NASA Technical Reports Server (NTRS)

Radiation test data submitted by many testers is collated to serve as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. Total dose damage information and single event upset cross sections, i.e., the probability of a soft error (bit flip) or of a hard error (latchup) are presented.

1983-01-01

185

Potential of Hybrid Computational Phantoms for Retrospective Heart Dosimetry After Breast Radiation Therapy: A Feasibility Study  

SciTech Connect

Purpose: Current retrospective cardiovascular dosimetry studies are based on a representative patient or simple mathematic phantoms. Here, a process of patient modeling was developed to personalize the anatomy of the thorax and to include a heart model with coronary arteries. Methods and Materials: The patient models were hybrid computational phantoms (HCPs) with an inserted detailed heart model. A computed tomography (CT) acquisition (pseudo-CT) was derived from HCP and imported into a treatment planning system where treatment conditions were reproduced. Six current patients were selected: 3 were modeled from their CT images (A patients) and the others were modelled from 2 orthogonal radiographs (B patients). The method performance and limitation were investigated by quantitative comparison between the initial CT and the pseudo-CT, namely, the morphology and the dose calculation were compared. For the B patients, a comparison with 2 kinds of representative patients was also conducted. Finally, dose assessment was focused on the whole coronary artery tree and the left anterior descending coronary. Results: When 3-dimensional anatomic information was available, the dose calculations performed on the initial CT and the pseudo-CT were in good agreement. For the B patients, comparison of doses derived from HCP and representative patients showed that the HCP doses were either better or equivalent. In the left breast radiation therapy context and for the studied cases, coronary mean doses were at least 5-fold higher than heart mean doses. Conclusions: For retrospective dose studies, it is suggested that HCP offers a better surrogate, in terms of dose accuracy, than representative patients. The use of a detailed heart model eliminates the problem of identifying the coronaries on the patient's CT.

Moignier, Alexandra, E-mail: alexandra.moignier@irsn.fr [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)] [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Derreumaux, Sylvie; Broggio, David; Beurrier, Julien [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)] [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Chea, Michel; Boisserie, Gilbert [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France)] [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France); Franck, Didier; Aubert, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)] [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Mazeron, Jean-Jacques [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France)] [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France)

2013-02-01

186

Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry  

NASA Astrophysics Data System (ADS)

High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

2011-03-01

187

[Genetic effects of radiation].  

PubMed

This paper is a short review of genetic effect of radiation. This includes methods and results of a large-scale genetic study on specific loci in mice and of various studies in the offspring of atomic-bomb survivors. As for the latter, there is no results obtained which suggest the effect of parental exposure to radiation. Further, in recent years, studies are conducted to the offspring born to parents who were survivors of childhood cancers. In several reports, the mean gonad dose is quite large whereas in most instances, the results do not indicate genetic effect following parental exposure to radiation. Possible reasons for the difficulties in detecting genetic effect of radiation are discussed. PMID:22514926

Nakamura, Nori

2012-03-01

188

1988 IEEE Annual Conference on Nuclear and Space Radiation Effects, 25th, Portland, OR, July 12-15, 1988, Proceedings  

NASA Technical Reports Server (NTRS)

The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.

Coakley, Peter G. (editor)

1988-01-01

189

Polymer gel dosimetry.  

PubMed

Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

2010-03-01

190

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

Rathbone, Bruce A.

2005-02-25

191

COMPUTATIONAL LYMPHATIC NODE MODELS IN PEDIATRIC AND ADULT HYBRID PHANTOMS FOR RADIATION DOSIMETRY  

PubMed Central

We developed models of lymphatic nodes for 6 pediatric and 2 adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right), and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old, and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-, and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in 6 lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for smaller phantoms due to the shorter inter-organ distances compared to the bigger phantoms. By testing sensitivity of S values to random sampling and voxel resolution, we confirmed that the lymph node model is reasonably stable and consistent for different random samplings and voxel resolutions. PMID:23391692

Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

2013-01-01

192

The UF family of reference hybrid phantoms for computational radiation dosimetry  

NASA Astrophysics Data System (ADS)

Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.

Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

2010-01-01

193

Radiation Effects In Space  

SciTech Connect

Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

Tripathi, Ram K. [NASA Langley Research Center, MS - 188 E, Hampton VA 23681 (United States)

2011-06-01

194

1991 IEEE Annual Conference on Nuclear and Space Radiation Effects, 28th, San Diego, CA, July 15-19, 1991, Proceedings  

NASA Technical Reports Server (NTRS)

Various papers on nuclear science are presented. The general topics addressed are: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, isolation technologies, device radiation response and hardening, microcircuit radiation response and hardening, single-event phenomena, hardness assurance and testing techniques, spacecraft charging, space environments and effects.

Millward, Douglas G. (editor)

1991-01-01

195

Study of the secondary neutral radiation in proton therapy: Toward an indirect in vivo dosimetry  

SciTech Connect

Purpose: Secondary particles produced in the collision of protons with beam modifiers are of concern in proton therapy. Nevertheless, secondary radiation can provide information on the dosimetric parameters through its dependency on the modulating accessories (range shifter and range modulating wheel). Relatively little data have been reported in the literature for low-energy proton beams. The present study aims at characterizing the neutron and photon secondary radiation at the low-energy proton therapy facility of the Centre Antoine Lacassagne (CAL), and studying their correlation to the dosimetric parameters to explore possible practical uses of secondary radiation in the treatment quality for proton therapy. Methods: The Monte Carlo code MCNPX was used to simulate the proton therapy facility at CAL. Neutron and photon fluence, {Phi}, and ambient dose equivalent per proton dose, H*(10)/D, were determined across the horizontal main plane spanning the whole treatment room. H*(10)/D was also calculated at two positions of the treatment room where dosimetric measurements were performed for validation of the Monte Carlo calculations. Calculations and measurements were extended to 100 clinical spread-out Bragg Peaks (SOBPs) covering the whole range of therapeutic dose rates (D/MU) employed at CAL. In addition, the values of D and MU were also calculated for each SOBP and the results analyzed to study the relationship between secondary radiation and dosimetric parameters. Results: The largest production of the secondary particles takes place at the modulating devices and the brass collimators located along the optical bench. Along the beam line and off the beam axis to 2.5 m away, H*(10)/D values ranged from 5.4 {mu}Sv/Gy to 5.3 mSv/Gy for neutrons, and were 1 order of magnitude lower for photons. H*(10)/D varied greatly with the distance and angle to the beam axis. A variation of a factor of 5 was found for the different range of modulations (SOBPs). The ratios between calculations and measurements were 2.3 and 0.5 for neutrons and photons, respectively, and remained constant for all the range of SOBPs studied, which provided validation for the Monte Carlo calculations. H*(10)/D values were found to correlate to the proton dose rate D/MU with a power fit, both for neutrons and photons. This result was exploited to implement a system to obtain D/MU values from the measurement of the integrated photon ambient dose equivalent H*(10) during treatment, which provides a method to control the dosimetric parameters D/MU and D. Conclusions: The treatment room at CAL is moderately polluted by secondary particles. The constant ratio between measurements and calculations for all SOBPs showed that simulations correctly predict the dosimetric parameters and the dependence of the production of secondary particles on the modulation. The correlation between H*(10)/D and D/MU is a useful tool for quality control and is currently used at CAL. This system works as an indirect in vivo dosimetry method, which is so far not feasible in proton therapy. This tool requires very simple instrumentation and can be implemented from the measurement of either photons or neutrons.

Carnicer, A.; Letellier, V.; Rucka, G.; Angellier, G.; Sauerwein, W.; Herault, J. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France); Institut Curie, Centre de Protontherapie, Campus Universitaire d'Orsay, Batiment 101, 91898 Orsay Cedex (France); Hopital de la Croix Rouge, Centre de radiotherapie St Louis, Rue Andre Blondel, 83100 Toulon (France); Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France); Universitaet Duisburg-Essen, Universitaetsklinikum Essen, Strahlenklinik, 45122 Essen (Germany); Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

2012-12-15

196

Doped SiO2 telecommunication fibre as a 1-D detector for radiation therapy dosimetry  

NASA Astrophysics Data System (ADS)

Present studies concern Ge-doped SiO2 telecommunication fibre as a high spatial resolution 1-D thermoluminescence (TL) system for radiotherapeutic dosimetry. Using tube xray bremsstrahlung sources operating at kilovoltage energies, these fibres have been shown to offer linear response, from < 1Gy up to in excess of 30 Gy. Measurement of the photoelectron dose enhancement resulting from use of a moderately high atomic number medium (iodinated contrast media) demonstrates the fibres to have the local dose sensitivity required of interface dosimetry. In PMMA, the TL yield is ~60% greater in the presence of iodine than in its absence.

Abdul Rahman, A. T.; Abdul Sani, Siti Fairus; Bradley, D. A.

2012-02-01

197

Microcircuit radiation effects databank  

NASA Technical Reports Server (NTRS)

This databank is the collation of radiation test data submitted by many testers and serves as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. It contains radiation sensitivity results from ground tests and is divided into two sections. Section A lists total dose damage information, and section B lists single event upset cross sections, I.E., the probability of a soft error (bit flip) or of a hard error (latchup).

1983-01-01

198

The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: study of errors in dosimetry.  

PubMed

To provide direct estimates of cancer risk after low-dose protracted exposure to ionizing radiation, a large-scale epidemiological study of nuclear industry workers was conducted in 15 countries. As part of this study, identification and quantification of errors in historical recorded doses was conducted based on a review of dosimetric practices and technologies in participating facilities. The main sources of errors on doses from "high-energy" photons (100-3000 keV) were identified as the response of dosimeters in workplace exposure conditions and historical calibration practices. Errors related to dosimetry technology and radiation fields were quantified to derive period- and facility-specific estimates of bias and uncertainties in recorded doses. This was based on (1) an evaluation of predominant workplace radiation from measurement studies and dosimetry expert assessment and (2) an estimation of the energy and geometry response of dosimeters used historically in study facilities. Coefficients were derived to convert recorded doses to H(p) (10) and organ dose, taking into account different aspects of the calibration procedures. A parametric, lognormal error structure model was developed to describe errors in doses as a function of facility and time period. Doses from other radiation types, particularly neutrons and radionuclide intake, could not be adequately reconstructed in the framework of the 15-Country Study. Workers with substantial doses from these radiation types were therefore identified and excluded from analyses. Doses from "lower-energy" photons (<100 keV) and from "higher-energy" photons (>3 MeV) were estimated to be small. PMID:17388692

Thierry-Chef, I; Marshall, M; Fix, J J; Bermann, F; Gilbert, E S; Hacker, C; Heinmiller, B; Murray, W; Pearce, M S; Utterback, D; Bernar, K; Deboodt, P; Eklof, M; Griciene, B; Holan, K; Hyvonen, H; Kerekes, A; Lee, M-C; Moser, M; Pernicka, F; Cardis, E

2007-04-01

199

Evaluation of The Combined Effects of Hyperthermia, Cobalt-60 Gamma Rays and IUdR on Cultured Glioblastoma Spheroid Cells and Dosimetry Using TLD-100  

PubMed Central

Objective In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy. Improving the potential efficacy of radiation therapy after combining to hyperthermia depends on the magnitude of the differential sensitization of the hyperthermic effects or on the differential cytotoxicity of the radiation effects on the tumor cells. In this study, we evaluated the combined effects of IUdR, hyperthermia and gamma rays of 60Co on human glioblastoma spheroids culture. Materials and Methods In this experimental study,the cultured spheroids with 100µm diameter were treated by 1 µM IUdR, 43°C hyperthermia for an hour and 2 Gy gamma rays, respectively. The DNA damages induced in cells were compared using alkaline comet assay method, and dosimetry was then performed by TLD-100. Comet scores were calculated as mean ± standard error of mean (SEM) using one-way ANOVA. Results Comparison of DNA damages induced by IUdR and hyperthermia + gamma treatment showed 2.67- and 1.92-fold enhancement, respectively, as compared to the damages induced by radiation alone or radiation combined IUdR. Dosimetry results showed the accurate dose delivered to cells. Conclusion Analysis of the comet tail moments of spheroids showed that the radiation treatments combined with hyperthermia and IUdR caused significant radiosensitization when compared to related results of irradiation alone or of irradiation with IUdR. These results suggest a potential clinical advantage of combining radiation with hyperthermia and indicate effectiveness of hyperthermia treatment in inducing cytotoxicity of tumor cells. PMID:24611138

Neshasteh-Riz, Ali; Rahdani, Rozhin; Mostaar, Ahmad

2014-01-01

200

Application of radiation physics to improve dosimetry in early breast cancer radiotherapy  

Microsoft Academic Search

Radiotherapy for early breast cancer has been shown to be a highly effective treatment in a number of long term studies. The radiation dose uniformity of the current standard treatments is often poor, however, with dose variations across the breast much higher than those recommended in international guidelines. This work aimed to explore methods for improving this aspect of the

Ellen Mary Donovan; Ellen Mary

2005-01-01

201

Protocol for emergency EPR dosimetry in fingernails  

Technology Transfer Automated Retrieval System (TEKTRAN)

There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

202

Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry  

NASA Astrophysics Data System (ADS)

Changes induced by radiation in the UV-vis and Infrared absorbance spectra of fluoropolymer films were investigated. Samples (3×1 cm 2) of commercially available fluoropolymers, tetrafluoropolymer homopolymer (PTFE-Tecnofluor/DuPont) and its copolymers with hexafluoropropylene (FEP 1000 C-DuPont) and perfluoroalkoxy (PFA 500 CLP-Dupont) were irradiated with 60Co gamma radiation in free air at electronic equilibrium conditions with absorbed doses between 1 and 150 kGy. Studies of environmental condition effects, such as temperature and light, pre- and post-irradiation stability and dose range useful response were carried out. Fluoropolymers are very stable when exposed to different ambient conditions; the dosimetric wavelength is characteristic for each type of fluoropolymer and a linear correlation was found between gamma radiation dose and optical response.

Galante, A. M. S.; Galante, O. L.; Campos, L. L.

2010-07-01

203

A-bomb survivor dosimetry update  

SciTech Connect

A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

Loewe, W.E.

1982-06-01

204

Evolution over the past century of quantities and units in radiation dosimetry.  

PubMed

Following the discovery of x-rays in November 1895, of radioactivity in February 1896 and of radium in December 1898 a large number of proposals were made for x-ray units and for radium units. These were based on various radiation effects, including blackening of photographic film, chemical effects, fluorescence and skin erythema. Some were also based on the ionisation effect, and it was this effect which eventually, in 1937, became the basis for all future radiological units of measurement, without any differentiation between x-rays and radium gamma-rays. During this period the International Commission on Radiation Units and Measurement (ICRU) and the International Commission on Radiological Protection (ICRP) were set up by the International Congress of Radiology (ICR), as well as some national committees on this topic. This led to a series of reports in respect of (1) fundamental quantities and units for general use produced by the ICRU and (2) quantities and units for use in radiation protection produced by the ICRU and ICRP. In regard to the latter series, alternating contributions from the two commissions were made over the years, but these have resulted in a dual approach to the subject: (a) the ICRP's mean-value quantities for dose-limitation purposes and (b) the ICRU's point-value quantities for measurement purposes, with conversion factors between them. This review summarises this historical evolution over the past century. PMID:17341801

Jennings, W Alan

2007-03-01

205

DEVELOPMENTS AND TRENDS IN BIOEQUIVALENT DOSIMETRY.  

PubMed

Significant progress in radiobiology has refined the understanding of radiation-induced biological response at the cellular level and challenged the conventional application of a macroscopic description of radiation action to dosimetry in favour of a microscopic approach. Pioneering experiments, which investigated the stochastics of energy deposition from ionising radiations in volumes of cellular dimensions, contributed to the recognition of microdosimetry as a new scientific discipline. The first quantitative applications of Monte Carlo track structure simulations in radiobiology, however, supported evidence for target sizes of particular biological importance being in the nanometre regime. Bioequivalent dosimetry attempts to link particular features of the response of physical detectors with biological endpoints, exploiting clusters of multiple ionisations within nanometre scales in solid-state, gas- and water-filled devices. This approach supports the continued development of new concepts and quantities in radiation protection to permit evaluation of the biological effectiveness of radiations of different quality independently of dose and dose rate. PMID:25183836

Hajek, M

2014-09-01

206

Radiation-induced color centers in LiF for dosimetry at high absorbed dose rates  

NASA Astrophysics Data System (ADS)

Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 10 2 to 10 7 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses.

McLaughlin, William L.; Miller, Arne; Ellis, Stuart C.; Lucas, Arthur C.; Kapsar, Barbara M.

1980-09-01

207

Cancer risk among atomic bomb survivors. The RERF Life Span Study. Radiation Effects Research Foundation  

Microsoft Academic Search

This article summarizes the risk of cancer among the survivors of the atomic bombing of Hiroshima and Nagasaki. We focus primarily on the risk of death from cancer among individuals in the Life Span Study sample of the Radiation Effects Research Foundation from 1950 through 1985 based on recently revised dosimetry procedures. We report the risk of cancer other than

Y. Shimizu; W. J. Schull; H. Kato

1990-01-01

208

1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings  

NASA Technical Reports Server (NTRS)

The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

Van Vonno, Nick W. (editor)

1992-01-01

209

A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications  

SciTech Connect

In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France)] [France; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France)] [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France)] [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France)] [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France)] [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece)] [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France)] [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece)] [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany)] [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France)] [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others

2014-06-15

210

Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica.  

PubMed

In this study we investigated the use of a DNA dosimeter to accurately measure changes in ultraviolet B radiation (UVBR; 280-315 nm) under Antarctic ozone hole conditions. Naked DNA solution in quartz tubes was exposed to ambient solar radiation at Rothera Research Station, Antarctica, between October and December 1998 for 3 h during UVBR peak hours (1200-1500 h). Trends in UVBR-mediated DNA damage (formation of cyclobutane pyrimidine dimers [CPD]) were related to cloud cover, ozone-column depth and spectroradiometric measurements of ambient radiation. Ozone-column depths ranged from 130 to 375 DU during the study period, resulting in highly variable UVBR doses, from 1.6 to 137 kJ m(-2) over the 3 h exposure, as measured by spectroradiometry. There was a strong positive correlation (86%) between dosimeter CPD concentrations and DNA-weighted UVBR doses. Ozone depth was a strong predictor of DNA damage (63%), and there was no significant relationship between CPD formation and cloud cover. Subtle changes in spectral characteristics caused by ozone depletion were detected by the biodosimeter; the highest CPD concentrations were observed in October when ozone-mediated shifts favored shorter wavelengths of UVBR. We conclude that the DNA biodosimeter is an accurate indicator of biologically effective UVBR, even under highly variable ozone conditions. PMID:12403448

George, Alison L; Peat, Helen J; Buma, Anita G J

2002-09-01

211

Degradation of cellulose nitrate with fast neutrons and gamma rays and their application in radiation dosimetry  

NASA Astrophysics Data System (ADS)

Fast and moderated neutrons emitted from 252Cf as well as low doses of gamma rays from 60Co, produce damaging effects in cellulose nitrate which can be determined viscometrically by calculating the average molecular weight at different doses. Samples were exposed to different doses of gamma rays (1 × 10 -4 to 1 Gy) and fission neutron fluences (10 5-10 11 n/cm 2) in free space and on a paraffin phantom. The effect of phantom thickness and phantom-to-detector distance on the detector readout have been investigated. The results revealed that the predominant bulk effects of radiation on CN is accelerated degradation by random chain scission. Empirical formulae have been given to calculate the absorbed doses of gamma rays and fast neutrons from the measured average molecular weight of the irradiated samples.

Fadel, M. A.; Khalil, W. A.; ABD-Alla, R. A.

1985-05-01

212

Patient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging.  

PubMed

Until recently, the radiation dose to patients undergoing the 90Y selective internal radiation treatment (SIRT) procedure is determined by applying the partition model to 99mTc MAA pretreatment scan. There can be great uncertainty in radiation dose calculated from this approach and we presented a method to compute the 3D dose distributions resulting from 90Y SIRT based on 90Y positron emission tomography (PET) imaging. Five 90Y SIRT treatments were retrospectively analyzed. After 90Y SIRT, patients had 90Y PET/CT imaging within 6 hours of the procedure. To obtain the 3D dose distribution of the patients, their respective 90Y PET images were convolved with a Monte Carlo generated voxel dose kernel. The sensitivity of the PET/CT scanner for 90Y was determined through phantom studies. The 3D dose distributions were then presented in DICOM RT dose format. By applying the linear quadratic model to the dose data, we derived the biologically effective dose and dose equivalent to 2 Gy/fraction delivery, taking into account the spatial and temporal dose rate variations specific for SIRT. Based on this data, we intend to infer tumor control probability and risk of radiation induced liver injury from SIRT by comparison with established dose limits. For the five cases, the mean dose to target ranged from 51.7 ± 28.6 Gy to 163 ± 53.7 Gy. Due to the inhomogeneous nature of the dose distribution, the GTVs were not covered adequately, leading to very low values of tumor control probability. The mean dose to the normal liver ranged from 21.4 ± 30.7 to 36.7 ± 25.9 Gy. According to QUANTEC recommendation, a patient with primary liver cancer and a patient with metastatic liver cancer has more than 5% risk of radiotherapy-induced liver disease (RILD). PMID:24036875

Ng, Sherry C; Lee, Victor H; Law, Martin W; Liu, Rico K; Ma, Vivian W; Tso, Wai Kuen; Leung, To Wai

2013-01-01

213

US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129  

NASA Technical Reports Server (NTRS)

Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

Heinrich, M. R. (editor); Souza, K. A. (editor)

1981-01-01

214

The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry  

Microsoft Academic Search

In radiation cancer therapy, the aim is to destroy the tumour cells in the treated area while minimizing damage to the surrounding normal tissue. Synchrotron microbeam radiation therapy offers considerable promise in this respect, based on knowledge that normal tissue can tolerate high doses of radiation over small volumes. At the ESRF microbeam radiation therapy facility, one of the several

A. T. Abdul Rahman; D. A. Bradley; S. J. Doran; Brochard Thierry; Elke Bräuer-Krisch; A. Bravin

2010-01-01

215

Radiation Effects: Core Project  

NASA Technical Reports Server (NTRS)

The risks to personnel in space from the naturally occurring radiations are generally considered to be one of the most serious limitations to human space missions, as noted in two recent reports of the National Research Council/National Academy of Sciences. The Core Project of the Radiation Effects Team for the National Space Biomedical Research Institute is the consequences of radiations in space in order to develop countermeasure, both physical and pharmaceutical, to reduce the risks of cancer and other diseases associated with such exposures. During interplanetary missions, personnel in space will be exposed to galactic cosmic rays, including high-energy protons and energetic ions with atomic masses of iron or higher. In addition, solar events will produce radiation fields of high intensity for short but irregular durations. The level of intensity of these radiations is considerably higher than that on Earth's surface, and the biological risks to astronauts is consequently increased, including increased risks of carcinogenesis and other diseases. This group is examining the risk of cancers resulting from low-dose, low-dose rate exposures of model systems to photons, protons, and iron by using ground-based accelerators which are capable of producing beams of protons, iron, and other heavy ions at energies comparable to those encountered in space. They have begun the first series of experiments using a 1-GeV iron beam at the Brookhaven National Laboratory and 250-MeV protons at Loma Linda University Medical Center's proton synchrotron facility. As part of these studies, this group will be investigating the potential for the pharmaceutical, Tamoxifen, to reduce the risk of breast cancer in astronauts exposed to the level of doses and particle types expected in space. Theoretical studies are being carried out in a collaboration between scientists at NASA's Johnson Space Center and Johns Hopkins University in parallel with the experimental program have provided methods and predictions which are being used to assess the levels of risks to be encountered and to evaluate appropriate strategies for countermeasures. Although the work in this project is primarily directed toward problems associated with space travel, the problem of protracted exposures to low-levels of radiation is one of national interest in our energy and defense programs, and the results may suggest new paradigms for addressing such risks.

Dicello, John F.

1999-01-01

216

4.2 Methods for Internal Dosimetry  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

Noßke, D.; Mattsson, S.; Johansson, L.

217

ESTIMATING SOLAR RADIATION EXPOSURE IN WETLANDS USING RADIATION MODELS, FIELD DATA, AND GEOGRAPHIC INFORMATION SYSTEMS  

EPA Science Inventory

This seminar will describe development of methods for the estimation of solar radiation doses in wetlands. The methodology presents a novel approach to incorporating aspects of solar radiation dosimetry that have historically received limited attention. These include effects of a...

218

Ultraviolet radiation (UVR) dosimetry system and the use of Ge-doped silica optical fibres  

NASA Astrophysics Data System (ADS)

Previous studies have shown that over exposure to ultraviolet radiation (UVR), either from sunlight or artificial sources, can cause severe biological effects including cataracts, photokeratitis and skin cancer. In this respect, there exists the need to introduce a sensitive UV dosimetric material capable of measuring radiation dose to high accuracy in order to deliver UVR safely and efficiently. Present study has focussed on the investigation of the potential thermoluminescent (TL) sensitivity of commercially available germanium (Ge)-doped silica (SiO2) optical fibres subjected to UVR. The main interest of this study is to find out whether these doped SiO2 optical fibres can be used as a sensible integrator of environmental UV exposures. In the present study, commercially available Ge-doped SiO2 optical fibres have been used with a core diameter of 11 ?m (CorActive, Canada), 23 ?m (Central Glass and Ceramic Research Institute Kolkata, India) and 50 ?m (Central Glass and Ceramic Research Institute Kolkata, India) and a cladding diameter of 125±0.1 ?m, irradiated over a wide range of UV dose. Results have shown that these fibres exhibit a linear dose response (with correlation coefficient better than 0.9852). The 50 ?m fibre produces greater TL response than that obtained for 11- and 23 ?m fibres. The TL results are compared with that of the well-established TL dosimeter material lithium fluoride.

Abdul Rahman, Ahmad Taufek; Abu Bakar, Noor Khairunnisa; Chandra Paul, Mukul; Bradley, D. A.

2014-11-01

219

Spallation radiation damage and dosimetry for accelerator transmutation of waste applications  

SciTech Connect

Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ferguson, P.D. [Missouri Univ., Rolla, MO (United States). Dept. of Nuclear Engineering; Sommer, W.F. [Los Alamos National Lab., NM (United States)

1993-10-01

220

Unruh radiation and Interference effect  

E-print Network

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

2011-02-23

221

Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor  

SciTech Connect

Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

1998-12-31

222

Radioactive decay data tables: A handbook of decay data for application to radiation dosimetry and radiological assessments  

NASA Astrophysics Data System (ADS)

Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.

Kocher, D. C.; Smith, J. S.

223

Correction-less dosimetry of nonstandard photon fields: a new criterion to determine the usability of radiation detectors.  

PubMed

In the IAEA-AAPM dosimetry formalism, detector measurements in general nonstandard conditions are corrected using the factor k(f(clin),f(msr))(Q(clin),Q(msr)). This factor needs to be evaluated on a case-by-case basis which is difficult to accomplish in practice. The present paper aims to provide a method that allows neglecting correction factors for small and composite IMRT fields by first determining a radiation detector's usability in these fields. Detailed models of nine radiation detectors are built: four ionization chambers (NE2571, A12, A1SL, A14), three small field detectors (PTW31018 microLion, PTW60003 natural diamond, PTW60012 unshielded diode) and two near water-equivalent detectors (alanine, W1 scintillating fiber). Using the egs_chamber Monte Carlo code, dose response functions at 6 MV and 25 MV are sampled for each detector and their corresponding volume of water. These functions are then used with a newly derived criterion to evaluate an upper bound ?(f(ns),f(msr))(Q(ns),Q(msr)) on the variable ?(f(ns),f(msr))(Q(ns),Q(msr)) if no field collimation/modulation occurs over a given perturbation zone. The variable ?(f(ns),f(msr))(Q(ns),Q(msr)) is defined as the absolute value of the relative deviation from unity of a nonstandard field quality correction factor k(f(ns),f(msr))(Q(ns),Q(msr)). Using the same criterion, perturbation zones are evaluated by finding the smallest field size allowed for correction-less dosimetry with a given tolerance ?(f(ns),f(msr))(Q(ns),Q(msr)). For composite fields, the sensitivity of detectors to the non-uniformity of virtual symmetric collapsed beams over regions of interest specified by the criterion is studied to estimate an upper bound ? ?(f(ns),f(ref))(Q(ns),Q) on ?(f(ns),f(ref))(Q(ns),Q) for a given beam flatness. Finally, a newly defined perturbation function is used to minimize the perturbations of the microLion chamber through density compensation. The theoretical criterion shows good agreement with full Monte Carlo simulations of ?(f(ns),f(msr))(Q(ns) Q(msr)). Perturbation zones are shown to be sensitive to both the energy of the beam and the orientation of the detector. The density-compensated microLion shows significantly improved response in both axial and radial orientations in small and composite IMRT fields. Finally, the new Exradin W1 scintillator is shown to have ?(f(ns),f(msr))(Q(ns),Q(msr)) values under 1% in small fields. The methods presented in this work theoretically show that correction-less dosimetry of nonstandard field can be accomplished by knowing the limit of usability of radiation detectors in these conditions. Potential applications include small field output factor measurements and absolute absorbed dose to water verification in the QA of clinical IMRT fields. PMID:25118890

Kamio, Y; Bouchard, H

2014-09-01

224

Verification of motion induced thread effect during tomotherapy using gel dosimetry  

NASA Astrophysics Data System (ADS)

The purpose of the study was to evaluate how breathing motion during tomotherapy (Accuray, CA, USA) treatment affects the absorbed dose distribution. The experiments were carried out using gel dosimetry and a motion device simulating respiratory-like motion (HexaMotion, ScandiDos, Uppsala, Sweden). Normoxic polyacrylamide gels (nPAG) were irradiated, both during respiratory-like motion and in a static mode. To be able to investigate interplay effects the static absorbed dose distribution was convolved with the motion function and differences between the dynamic and convolved static absorbed dose distributions were interpreted as interplay effects. The expected dose blurring was present and the interplay effects formed a spiral pattern in the lower dose volume. This was expected since the motion induced affects the preset pitch and the theoretically predicted thread effect may emerge. In this study, the motion induced thread effect was experimentally verified for the first time.

Edvardsson, Anneli; Ljusberg, Anna; Ceberg, Crister; Medin, Joakim; Ambolt, Lee; Nordström, Fredrik; Ceberg, Sofie

2015-01-01

225

Effect of spine hardware on small spinal stereotactic radiosurgery dosimetry.  

PubMed

Monte Carlo (MC) modeling of a 6 MV photon beam was used to study the dose perturbation from a titanium rod 5 mm in diameter in various small fields range from 2 × 2 to 5 × 5 cm(2). The results showed that the rod increased the dose to water by ?6% at the water-rod interface because of electron backscattering and decreased the dose by ?7% in the shadow of the rod because of photon attenuation. The Pinnacle(3) treatment planning system calculations matched the MC results at the depths more than 1 cm past the rod when the correct titanium density of 4.5 g cm(-3) was used, but significantly underestimated the backscattering dose at the water-rod interface. A CT-density table with a top density of 1.82 g cm(-3) (cortical bone) is a practical way to reduce the dosimetric error from the artifacts by preventing high density assignment to them, but can underestimates the attenuation by the titanium rod by 6%. However, when multi-beam with intensity modulation is used in actual patient spinal stereotactic radiosurgery treatment, the dosimetric effect of assigning 4.5 instead of 1.82 g cm(-3) to titanium implants is complicated. It ranged from minimal effect to 2% dose difference affecting 15% target volume in the study. When hardware is in the beam path, density override to the titanium hardware is recommended. PMID:24018829

Wang, Xin; Yang, James N; Li, Xiaoqiang; Tailor, Ramesh; Vassilliev, Oleg; Brown, Paul; Rhines, Laurence; Chang, Eric

2013-10-01

226

TOPICAL REVIEW: Polymer gel dosimetry  

NASA Astrophysics Data System (ADS)

Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

2010-03-01

227

Topical Review: Polymer gel dosimetry  

PubMed Central

Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

2010-01-01

228

Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities  

NASA Astrophysics Data System (ADS)

In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of Hp(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

Hälg, Roger A.; Besserer, Jürgen; Boschung, Markus; Mayer, Sabine; Clasie, Benjamin; Kry, Stephen F.; Schneider, Uwe

2012-12-01

229

Vaginal vault brachytherapy: the effect of varying bladder volumes on normal tissue dosimetry.  

PubMed

This study was designed to assess the impact of bladder volume on dosimetry to critical normal structures in vaginal vault brachytherapy using a single line source vaginal applicator. 30 consecutive patients undergoing vaginal vault brachytherapy were studied by CT scanning with the applicator in situ and the bladder empty and then with the bladder containing either 35 ml of water (10 patients), 70 ml of water (10 patients) or 100 ml of water (10 patients). The scans were then analysed with isodose distributions overlayed to determine changes in dosimetry. No effect on bladder dose was seen with increasing volume compared with the empty bladder; however, there was a reduction in amount of small bowel within the high dose treatment region as bladder volume increased. With 100 ml bladder volume, the reduction reached 57.5% compared with the empty bladder. We conclude that vaginal vault brachytherapy should be undertaken with a bladder volume of at least 100 ml, which will considerably reduce the amount of small bowel in the irradiation volume with no increase in bladder dose. PMID:11026862

Hoskin, P J; Vidler, K

2000-08-01

230

Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies  

SciTech Connect

Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, and tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.

Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Chandramouli, Visvanathan; Hatami, Ahmad [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States)] [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Huang, Hsuan-Ming; Wu, Chunying [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States)] [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States)] [Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

2014-03-15

231

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

Rathbone, Bruce A.

2009-08-28

232

Practical dosimetry methods for the determination of effective skin and breast dose for a modern CT system, incorporating partial irradiation and prospective cardiac gating  

PubMed Central

Objective For CT coronary angiography (CTCA), a generic chest conversion factor returns a significant underestimate of effective dose. The aim of this manuscript is to communicate new dosimetry methods to calculate weighted CT dose index (CTDIw), effective dose, entrance surface dose (ESD) and organ dose to the breast for prospectively gated CTCA. Methods CTDIw in 32 cm diameter Perspex phantom was measured using an adapted technique, accounting for the segmented scan characteristic. Gafchromic XRCT film (International Speciality Products, New Jersey, NJ) was used to measure the distribution and magnitude of ESD. Breast dose was measured using high sensitivity metal oxide semiconductor field-effect transistors and compared to the computer based imaging performance assessment of CT scanners (ImPACT) dosimetry calculations. Results For a typical cardiac scan the mean ESD remained broadly constant (7–9 mGy) when averaged over the circumference of the Perspex phantom. Typical absorbed dose to the breast with prospectively gated protocols was within the range 2–15 mGy. The subsequent lifetime attributable risk (LAR) of cancer incidence to the breast was found at 0.01–0.06 for a 20-year-old female. This compares favourably to 100 mGy (LAR ?0.43) for a retrospectively gated CTCA. Conclusions Care must be taken when considering radiation dosimetry associated with prospectively gated scanning for CTCA and a method has been conveyed to account for this. Breast doses for prospectively gated CTCA are an order of magnitude lower than retrospectively gated scans. Optimisation of cardiac protocols is expected to show further dose reduction. PMID:21896660

Loader, R J; Gosling, O; Roobottom, C; Morgan-Hughes, G; Rowles, N

2012-01-01

233

Plasma miRNA as Biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry  

Microsoft Academic Search

The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles

Wanchang Cui; Jinfang Ma; Yulei Wang; Shyam Biswal

2011-01-01

234

Evaluation of the biodistribution and radiation dosimetry of the 18F-labelled amyloid imaging probe [18F]FACT in humans  

PubMed Central

Background The biodistribution and radiation dosimetry of the 18F-labelled amyloid imaging probe ([18F] FACT) was investigated in humans. Methods Six healthy subjects (three males and three females) were enrolled in this study. An average of 160.8 MBq of [18F] FACT was intravenously administered, and then a series of whole-body PET scans were performed. Nineteen male and 20 female source organs, and the remainder of the body, were studied to estimate time-integrated activity coefficients. The mean absorbed dose in each target organ and the effective dose were estimated from the time-integrated activity coefficients in the source organs. Biodistribution data from [18F] FACT in mice were also used to estimate absorbed doses and the effective dose in human subjects; this was compared with doses of [18F] FACT estimated from human PET data. Results The highest mean absorbed doses estimated using human PET data were observed in the gallbladder (333 ± 251 ?Gy/MBq), liver (77.5 ± 14.5 ?Gy/MBq), small intestine (33.6 ± 30.7 ?Gy/MBq), upper large intestine (29.8 ± 15.0 ?Gy/MBq) and lower large intestine (25.2 ± 12.6 ?Gy/MBq). The average effective dose estimated from human PET data was 18.6 ± 3.74 ?Sv/MBq. The highest mean absorbed dose value estimated from the mouse data was observed in the small intestine (38.5 ?Gy/MBq), liver (25.5 ?Gy/MBq) and urinary bladder wall (43.1 ?Gy/MBq). The effective dose estimated from the mouse data was 14.8 ?Sv/MBq for [18F] FACT. Conclusions The estimated effective dose from the human PET data indicated that the [18F] FACT PET study was acceptable for clinical purposes. PMID:23618099

2013-01-01

235

Numerical assessment of radiation binary targeted therapy for HER-2 positive breast cancers: advanced calculations and radiation dosimetry  

NASA Astrophysics Data System (ADS)

In our previous publication (Mundy et al 2006 Phys. Med. Biol. 51 1377) we have described the theoretical assessment of our novel approach in radiation binary targeted therapy for HER-2 positive breast cancers and summarized the future directions in this area of research. In this paper we advanced the numerical analysis to show the detailed radiation dose distribution for various neutron sources in combination with the required boron concentration and allowed radiation skin doses. We once again proved the feasibility of the concept and will use these data and conclusions to start with the experimental verifications.

Sztejnberg Gonçalves-Carralves, Manuel L.; Jevremovic, Tatjana

2007-07-01

236

Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry  

NASA Astrophysics Data System (ADS)

The subject of this study is the 'shift of the effective point of measurement', ?z, well known as a method of correction compensating for the 'displacement effect' in photon and electron beam dosimetry. Radiochromic EBT 1 films have been used to measure the 'true' TPR curves of 6 and 15 MV photons and 6 and 9 MeV electrons in the solid water-equivalent material RW3. For the Roos and Markus chambers, the cylindrical 'PinPoint', 'Semiflex' and 'Rigid-Stem' chambers, the 2D-Array and the E-type silicon diode (all from PTW-Freiburg), the positions of the effective points of measurement have been determined by direct or indirect comparison between their TPR curves and those of the EBT 1 film. Both for the Roos and Markus chambers, we found ?z = (0.4 ± 0.1) mm, which confirms earlier experimental and Monte Carlo results, but means a shortcoming of the 'water-equivalent window thickness' formula. For the cylindrical chambers, the ratio ?z/r was observed to increase with r, confirming a recent Monte Carlo prediction by Tessier (2010 E2-CN-182, Paper no 147, IDOS, Vienna) as well as the experimental observations by Johansson et al (1978 IAEA Symp. Proc. (Vienna) IAEA-SM-222/35 pp 243-70). According to a theoretical consideration, the shift of the effective point of measurement from the reference point of the detector is caused by a gradient of the fluence of the ionizing particles. As the experiments have shown, the value of ?z depends on the construction of the detector, but remains invariant under changes of radiation quality and depth. Other disturbances, which do not belong to the class of 'gradient effects', are not corrected by shifting the effective point of measurement.

Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

2011-07-01

237

Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study  

SciTech Connect

Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

Pham, Daniel, E-mail: Daniel.Pham@petermac.org [Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Foroudi, Farshad; Siva, Shankar [Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

2013-10-01

238

On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry  

NASA Astrophysics Data System (ADS)

A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/? with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/? values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/? values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/?)graphite,air and (µen/?)graphite,water are 1.5%, and 0.5% for (µen/?)water,air, decreasing gradually down to uc = 0.1% for the three µen/? ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res. 70 58-81), except for the lowest energy range (radiodiagnostic) where it is concluded that current databases and their systematic analysis represent an improvement over the older Hubbell estimations. The results for (µen/?)graphite,air for the gamma-ray dosimetry range are moderately higher than those of Seltzer and Bergstrom (2005 private communication).

Andreo, Pedro; Burns, David T.; Salvat, Francesc

2012-04-01

239

Dosimetry of mixed neutron and gamma radiation with paired Fricke solutions in light and heavy water.  

PubMed

Paired Fricke solutions, made up from light water or heavy water and 0.8N in H2SO4 and 1 mM in Fe(NH4)2(SO4)2 and NaCl, were calibrated with 60Co gamma rays and with mixed neutron and gamma radiation from a 252Cf source. Absorbance increases, AL and AH, in light- and heavy-water Fricke dosimeters, respectively, increased with fast-neutron and gamma-ray tissue doses, Dn (GY) and D gamma (GY), of the mixed radiation as follows: AL = 0.00178Dn + 0.00371D gamma; AH = 0.00121Dn + 0.00442 D gamma. G-values of 7.2 and 5.5 were obtained for 252Cf neutrons in light- and heavy-water Fricke dosimeters, respectively. When we applied the pair of equations to AL and AH values observed after exposure to mixed radiation in a nuclear reactor, resulting Dn and D gamma values agreed within 10% to doses measured with paired ionization chambers. Doses required for Fricke dosimeters were 5 Gy or more. In contrast, we found that micronuclear yields in onion roots can measure the neutron component of mixed radiation fields at the order of 10 cGy with reasonable accuracy even if the neutron to gamma-ray dose ratio is unknown. PMID:8840720

Himit, M; Itoh, T; Endo, S; Fujikawa, K; Hoshi, M

1996-06-01

240

Thermoluminescence characterization of functionalized grafted polymers and its application for radiation dosimetry at low doses  

NASA Astrophysics Data System (ADS)

Functionalized polymers were prepared by radiation-induced graft copolymerization of binary monomer system acrylic acid/acrylamide (AAc/AAm) onto low-density polyethylene (LDPE) and polypropylene (PP) films using direct radiation-grafting technique. Sulfonation was carried out for the prepared grafted copolymers using concentrated sulfuric acid (97%) at 60 degrees C for 15 min. The grafted and sulfonated grafted films found to have good properties such as thermal stability and hydrophilic properties. The sulfonated grafted films found to have a better hydrophilic character than the grafted ones due to ionic character resulted by this conversion. The thermoluminescence (TL) characteristics of a set of grafted and sulfonated films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterization has been performed by means of infrared spectroscopy. Their TL responses have been tested with radiotherapy beams of Co-60 photons in the dose range 0.1-7 Gy. The dosimetric characterization has yielded a very good reproducibility and is independent of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the samples compares favorably with that of the standard TLD100 dosimeters. Finally, at the same dose, the TL response for LDPE-g-P (AAm/AAc) films is higher than the PP-g-P(AAm/AAc), and the sulfonated grafted films are more sensitive to radiation than the grafted ones.

Diab, H. M.; Ghaffar, A. M.; El-Arnaouty, M. B.

2005-09-01

241

The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry  

NASA Astrophysics Data System (ADS)

In radiation cancer therapy, the aim is to destroy the tumour cells in the treated area while minimizing damage to the surrounding normal tissue. Synchrotron microbeam radiation therapy offers considerable promise in this respect, based on knowledge that normal tissue can tolerate high doses of radiation over small volumes. At the ESRF microbeam radiation therapy facility, one of the several aspects being investigated is measurement of very high dose gradients (changing by hundreds of Gy over ˜10 ?m), as there is no established physical dosimetric system simultaneously providing accurate measurements of the doses in the microbeam peaks and valleys. Monte Carlo simulations have been obtained but these have yet to be validated by measurements. One possible means of obtaining micro dosimetric evaluations is use of the thermoluminescence (TL) produced by optical fibres. Previous studies at conventional electron linac radiotherapy facilities have shown that germanium-doped silica fibres offer useful sensitivity to radiotherapy doses it is being further established that commercially produced Ge-doped optical fibres can provide a TL-yield reproducibility of better than 4% (1 SD). Present experiments have investigated the thermoluminescence response of such fibres at incident energies of several tens of keV, for a wide range of doses, from 1 Gy to 10 kGy, revealing a linear correlation of r2?0.998 up to a dose of 2 kGy, encompassing the dosimetric needs of both conventional and synchrotron microbeam radiotherapy.

Abdul Rahman, A. T.; Bradley, D. A.; Doran, S. J.; Thierry, Brochard; Bräuer-Krisch, Elke; Bravin, A.

2010-07-01

242

Antidamping effect of radiation reaction  

Microsoft Academic Search

The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that

G. Wang; H. Li; Y. F. Shen; X. Z. Yuan; J. Zi

2010-01-01

243

1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings  

NASA Technical Reports Server (NTRS)

The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

Ellis, Thomas D. (editor)

1986-01-01

244

Characterisation of the thermoluminescence (TL) properties of tailor-made Ge-doped silica glass fibre for applications in medical radiation therapy dosimetry  

NASA Astrophysics Data System (ADS)

We have investigated the characterisation of new fabricated material Ge doped silica glass thermoluminescence TL dosimeter (Photonic Research Centre, University of Malaya) for medical radiation dosimetry at therapy energy. Previously, the dosimeter has been studied to provide ideal dosimetry system, suitable to ensure an accurate delivery of radiation doses to tumour tissue while minimising the amount of radiation administrated to healthy tissue. Both energies of photon and electron were used in this experiment for a dose range of 1 to 5 Gy. The various sizes of core diameter Ge doped silica glass (120, 241, 362, 483 and 604 ?m) were exposed by using linear accelerator at Pantai Medical Centre. For both energies, the optical fibres were found to produce a flat response to a fixed photon and electron doses to within 4% (S.D) of the mean of the TL distribution. In terms of dose response, the fibres provide linear response over the range investigated, from a fraction of 1-5 Gy. The finding shows 120 ?m fibres have 1.82 greater dose response than 604 pm fibres irradiated at 6 MV photon with a fixed dose of 3 Gy. While for electron energy 12 MeV, the response shows 120 ?m fibres have 1.58 greater dose response compared to 604 ?m fibres. The good responses are suitable to make these tailor-made doped silica fibres a promising TL material for use as a dosimetric system in medical radiation therapy.

Zahaimi, N. A.; Zin, H.; Mahdiraji, G. A.; Rahman, A. L. Abdul; Bradley, D. A.; Rahman, A. T. Abdul

2014-11-01

245

Uranium Dispersion and Dosimetry (UDAD) Code  

Microsoft Academic Search

The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area

M. H. Momeni; Y. Yuan; A. J. Zielen

1979-01-01

246

BIOLOGICAL EFFECTS OF RADIOFREQUENCY RADIATION  

EPA Science Inventory

The document presents a critical review of the available literature on the biological effects of radiofrequency (RF) radiation. The objective was to summarize and evaluate the existing database for use in developing RF-radiation exposure guidance for the general public. The frequ...

247

Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications  

NASA Astrophysics Data System (ADS)

The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

Massillon-JL, G.

2010-12-01

248

Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium-Contaminated Sites  

SciTech Connect

This report summarizes 4 years of research achievements in this Office of Science (BER), U.S. Department of Energy (DOE) project. The research described was conducted by scientists and supporting staff at Lovelace Respiratory Research Institute (LRRI)/Lovelace Biomedical and Environmental Research Institute (LBERI) and the Southern Urals Biophysics Institute (SUBI). All project objectives and goals were achieved. A major focus was on obtaining improved cancer risk estimates for exposure via inhalation to plutonium (Pu) isotopes in the workplace (DOE radiation workers) and environment (public exposures to Pu-contaminated soil). A major finding was that low doses and dose rates of gamma rays can significantly suppress cancer induction by alpha radiation from inhaled Pu isotopes. The suppression relates to stimulation of the body's natural defenses, including immunity against cancer cells and selective apoptosis which removes precancerous and other aberrant cells.

Scott, Bobby R.; Tokarskaya, Zoya B.; Zhuntova, Galina V.; Osovets, Sergey V.; Syrchikov, Victor A., Belyaeva, Zinaida D.

2007-12-14

249

Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications  

SciTech Connect

The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

Massillon-JL, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 DF (Mexico)

2010-12-07

250

The small-animal radiation research platform (SARRP): dosimetry of a focused lens system  

Microsoft Academic Search

A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy

Hua Deng; Christopher W. Kennedy; Elwood Armour; Erik Tryggestad; Eric Ford; Todd McNutt; Licai Jiang; John Wong

2007-01-01

251

Aircrew dosimetry using the predictive code for aircrew radiation exposure (PCAIRE)  

Microsoft Academic Search

During 2003, a portable instrument suite was used to conduct cosmic radiation measurements on 49 jet-altitude flights, which brings the total number of in-flight measurements by this research group to over 160 flights since 1999. From previous measurements, correlations have been developed to allow for the interpolation of the dose-equivalent rate for any global position, altitude and date. The result

B. J. Lewis; L. G. I. Bennett; A. R. Green; A. Butler; M. Desormeaux; F. Kitching; M. J. McCall; B. Ellaschuk; M. Pierre

2005-01-01

252

Dosimetry for a microbeam array generated by synchrotron radiation at SPring8  

Microsoft Academic Search

A microbeam array was formed with a multi-slit collimator (MSC) for research on radiation therapy (MRT). Kodak EDR2 film was used to measure the dose distribution of the microbeam array. The calibration curve of optical density of the film with respect to a dose was established using a standard Farmer chamber and 60Co gamma-ray source. The peak dose of 3.6Gy\\/s

Masami Torikoshi; Yumiko Ohno; Naoto Yagi; Keiji Umetani; Yoshiya Furusawa

2008-01-01

253

10 CFR 835.1304 - Nuclear accident dosimetry.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835...Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations...individuals to radiation from a nuclear accident is possible, shall provide...

2013-01-01

254

10 CFR 835.1304 - Nuclear accident dosimetry.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835...Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations...individuals to radiation from a nuclear accident is possible, shall provide...

2012-01-01

255

10 CFR 835.1304 - Nuclear accident dosimetry.  

...2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835...Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations...individuals to radiation from a nuclear accident is possible, shall provide...

2014-01-01

256

10 CFR 835.1304 - Nuclear accident dosimetry.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835...Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations...individuals to radiation from a nuclear accident is possible, shall provide...

2011-01-01

257

10 CFR 835.1304 - Nuclear accident dosimetry.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835...Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations...individuals to radiation from a nuclear accident is possible, shall provide...

2010-01-01

258

The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry.  

PubMed

Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment--as in the case of the European Union's SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTOR(TM), the eight 50th percentile fetal phantoms from that study were systematically combined in Rhinoceros(TM) with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38?weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature. PMID:25030913

Maynard, Matthew R; Long, Nelia S; Moawad, Nash S; Shifrin, Roger Y; Geyer, Amy M; Fong, Grant; Bolch, Wesley E

2014-08-01

259

The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry  

NASA Astrophysics Data System (ADS)

Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38?weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

2014-08-01

260

Aircrew dosimetry using the Predictive Code for Aircrew Radiation Exposure (PCAIRE).  

PubMed

During 2003, a portable instrument suite was used to conduct cosmic radiation measurements on 49 jet-altitude flights, which brings the total number of in-flight measurements by this research group to over 160 flights since 1999. From previous measurements, correlations have been developed to allow for the interpolation of the dose-equivalent rate for any global position, altitude and date. The result was a Predictive Code for Aircrew Radiation Exposure (PCAIRE), which has since been improved. This version of the PCAIRE has been validated against the integral route dose measurements made at commercial aircraft altitudes during the 49 flights. On most flights, the code gave predictions that agreed to the measured data (within +/- 25%), providing confidence in the use of PCAIRE to predict aircrew exposure to galactic cosmic radiation. An empirical correlation, based on ground-level neutron monitoring data, has also been developed for the estimation of aircrew exposure from solar energetic particle (SEP) events. This model has been used to determine the significance of SEP exposure on a theoretical jet altitude flight during GLE 42. PMID:16604653

Lewis, B J; Bennett, L G I; Green, A R; Butler, A; Desormeaux, M; Kitching, F; McCall, M J; Ellaschuk, B; Pierre, M

2005-01-01

261

Investigation of the use of Ge-doped optical fibre for in vitro IMRT prostate dosimetry  

Microsoft Academic Search

In this study, the thermoluminescence (TL) yield of Ge-doped optical fibres for in vitro dosimetry has been investigated for the verification of Intensity Modulated Radiation Therapy (IMRT) three-dimensional (3D) dose distributions. Ge-doped optical fibres offer many advantages over conventional dosimetry systems including high sensitivity, minimal fading, and cost effectiveness. IMRT verification plans using the Varian Eclipse treatment planning system for

Noramaliza M. Noor; M. Hussein; D. A. Bradley; A. Nisbet

2011-01-01

262

Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy  

PubMed Central

Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

2013-01-01

263

Dosimetry of secondary cosmic radiation up to an altitude of 30 km.  

PubMed

Dosimetric measurements in the field of secondary cosmic radiation were extensively made during the last years. Since the majority of these measurements were performed on-board passenger aircraft at altitudes between 10 and 12 km, measurements at higher altitudes are desirable for the verification of the legal dose assessment procedures for aircrew. A simple solution is to use a high-altitude balloon that reaches altitudes as high as 30 km. In this work, it is shown that the dose rate profile up to 30 km can be measured with acceptable uncertainties using a Si-detector. PMID:24345463

Wissmann, F; Burda, O; Khurana, S; Klages, T; Langner, F

2014-10-01

264

Modification of Shirt Buttons for Retrospective Radiation Dosimetry after a Radiological Event  

PubMed Central

Preliminary results are presented for a personal radiation dosimeter in the form of a clothing button to provide gamma-ray dose estimation for clinically significant external radiation exposures to the general public due to a radiological incident, such as a Radiological Dispersal Device. Rods of thermoluminescent material (LiF:Mg,Ti and LiF:Mg,Cu,P) were encapsulated in plastic “buttons”, attached to shirts, and subjected to three cycles of home or commercial laundering or dry cleaning, including ironing or pressing. The buttons were subsequently exposed to doses of 137Cs gamma rays ranging from 0.75 to 8.2 Gy. The rods were removed from the buttons and their light output compared to their responses when bare or to the responses of a set of calibration rods of the same type and from the same manufacturer. In all three of the comparisons for LiF:Mg,Ti rods the relative responses of the rods in buttons changed by 2-6% relative to the same rods before cleaning. In both comparisons for LiF:Mg,Cu,P rods, the response of laundered rods was 1-3% lower than for the same rods before cleaning. Both these materials are potential candidates for button dosimeters. PMID:21451325

Marino, Stephen A.; Johnson, Gary W.; Schiff, Peter B.; Brenner, David J.

2010-01-01

265

Radiation dosimetry for the adult female and fetus from iodine-131 administration in hyperthyroidism  

SciTech Connect

Through a study of the iodine kinetics of 127 patients, we have developed radiation dose estimates to major organs and the fetus for patients with varying degrees of hyperthyroidism. We observed a negative correlation between maximum thyroid uptake and biologic half-time of iodine in the thyroid and used this correlation to predict the biologic half-time at fixed values of maximum thyroid uptake. Dose estimates to the bladder, gonads, marrow, thyroid, uterus, and whole body were estimated for maximum thyroid uptakes from 20% to 100%. Bladder dose varied from 0.6 to 1.0 mGy/MBq and dose to the uterus varied from 0.036 to 0.063 mGy/MBq under different model assumptions. Dose estimates to the fetus and fetal thyroid were approximated at all stages of pregnancy. Average fetal dose was a maximum between 0 and 2 mo of pregnancy, with the maximum ranging from 0.048 mGy/MBq to 0.083 mGy/MBq, depending on model assumptions. Some radiation risks for irradiation of the fetus and the fetal thyroid are discussed.

Stabin, M.G.; Watson, E.E.; Marcus, C.S.; Salk, R.D. (Oak Ridge Associated Univ., TN (USA))

1991-05-01

266

Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry  

SciTech Connect

Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O'Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

2013-01-01

267

Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry.  

PubMed

Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important. PMID:23973016

Anker, Christopher J; O'Donnell, Kristen; Boucher, Kenneth M; Gaffney, David K

2013-01-01

268

Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms  

SciTech Connect

Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET radiotracers used in clinical and research settings. The mass scaling method for positron-emitters can be used to derive patient-specific S-values from data of reference phantoms.

Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland)] [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Bolch, Wesley E. [Departments of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Departments of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland 20850 (United States)] [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland 20850 (United States); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland) [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

2013-10-15

269

Internal dosimetry technical basis manual  

SciTech Connect

The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

Not Available

1990-12-20

270

Development of the optimal radiochromic film dosimetry system for measurement of IMRT radiation beams  

NASA Astrophysics Data System (ADS)

The complex dose patterns that result in Intensity Modulated Radiation Therapy make the typical QA of a second calculation insufficient for ensuring safe treatment of patients. Many facilities choose to deliver the treatment to film inserted in a phantom and calculate the dose delivered as an additional check of the treatment plan. Radiochromic films allow for measurements without the use of a processor in the current digital age. International Specialty Products developed Gafchromic EBT film, which is a radiochromic film having a useful range of 1 -- 800 cGy. EBT film properties are fully analyzed including studies of uniformity, spectral absorption, exposure sensitivity, energy dependence and post exposure density growth. Dosimetric performance on commercially available digitizers is studied with specific attention on the shortcomings. Finally, a custom designed scanner is built specifically for EBT film and its unique properties. Performance of the EBT digitizer is analyzed and compared against currently available scanners.

Baker, Jameson Todd

271

NOTE: Fast laser scanning optical-CT apparatus for 3D radiation dosimetry  

NASA Astrophysics Data System (ADS)

Optical computed tomography (optical-CT) of 3D radiation dosimeters is a promising avenue for delivering an economic and reliable quality control of radiotherapy treatments such as intensity modulated radiotherapy, brachytherapy and stereotactic radiosurgery. The main problems in transferring 3D dosimeters to clinical setting have been in (1) the complexity of manufacture and behaviour of 3D dosimeters and (2) time-consuming readout and analysis of 3D dosimeters. This paper addresses the readout problem by showing that fast (20 min tomography scan), precise (projection absorbance signal-to-noise ratio is greater than 100:1 across the absorbance range 0.2 to 1.5) and accurate (good linearity in the calibration curve) measurements are possible using a novel method of optically scanning a laser beam across the 3D dosimeter.

Krstajic, Nikola; Doran, Simon J.

2007-06-01

272

Cherenkov radiation dosimetry in water tanks – video rate imaging, tomography and IMRT & VMAT plan verification  

NASA Astrophysics Data System (ADS)

This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

2015-01-01

273

Geometric effects on blackbody radiation  

NASA Astrophysics Data System (ADS)

Planck's formula for blackbody radiation was formulated subject to the assumption that the radiating body is much larger than the emitted wavelength. We demonstrate that thermal radiation exceeding Planck's law may occur in a narrow spectral range when the local radius of curvature is comparable with the wavelength of the emitted radiation. Although locally the spectral enhancement may be of several orders of magnitude, the deviation from the Stefan-Boltzmann law is less than one order of magnitude. The fluctuation-dissipation theorem needs to be employed for adequate assessment of the spectrum in this regime. Several simple examples are presented as well as experimental results demonstrating the effect. For each configuration a geometric form factor needs to be incorporated into Planck's formula in order to properly describe the emitted radiation.

Reiser, Ariel; Schächter, Levi

2013-03-01

274

Three dimensional radiation dosimetry in lung-equivalent regions by use of a radiation sensitive gel foam: Proof of principle  

SciTech Connect

A polymer hydrogel foam is proposed as a potential three dimensional experimental dosimeter for radiation treatment verification in low-density tissue such as the lung. A gel foam is created by beating a radiation sensitive polymer gel mixture in an anoxic atmosphere. The mass density of the gel foam is in the order of 0.25-0.35 kg/dm{sup 3}. Both nuclear magnetic resonance (NMR) spin-spin relaxation rate (R2) and magnetization transfer ratio (MTR) have been used to map the dose distribution from the gel dosimeter. It is found that MTR has significant advantages compared to R2 for mapping the dose distribution in the polymer gel foam dosimeters. The magnetization transfer ratio is found to be less dependent on the density and microstructure of the gel foam dosimeter while spin-spin relaxation dispersion has been observed making the spin-spin relaxation rate dependent on the interecho time interval. Optical microscopy reveals a microstructure that shows great similarity with human lung tissue. It is also shown how NMR hydrogen proton density measurements can be used to map the density distributions in gel dosimeters.

Deene, Yves de; Vergote, Koen; Claeys, Carolien; De Wagter, Carlos [Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium and MR Department, Ghent University Hospital, De Pintelaan 185, 9000 Gent (Belgium); Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Gent (Belgium)

2006-07-15

275

Radiation Therapy: Preventing and Managing Side Effects  

MedlinePLUS

... radiation therapy Preventing and managing side effects of radiation therapy When the radiation damages nearby healthy tissue, ... to reduce side effects is by using radioprotective ( ray -dee-o pro- TEK -tiv) drugs. These are ...

276

A reference radiation facility for dosimetry at flight altitude and in space.  

PubMed

A reference facility for the intercomparison of active and passive detectors in high-energy neutron fields is available at CERN since 1993. A positive charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction are filtered by a shielding of either 80 cm of concrete or 40 cm of iron. Behind the iron shielding, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shielding, the neutron spectrum has a pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. The facility is used for a variety of investigations with active and passive neutron dosimeters. Its use for measurements related to the space programme is discussed. PMID:11770525

Ferrari, A; Mitaroff, A; Silari, M

2001-01-01

277

A CUDA Monte Carlo simulator for radiation therapy dosimetry based on Geant4  

NASA Astrophysics Data System (ADS)

Geant4 is a large-scale particle physics package that facilitates every aspect of particle transport simulation. This includes, but is not limited to, geometry description, material definition, tracking of particles passing through and interacting with matter, storage of event data, and visualization. As more detailed and complex simulations are required in different application domains, there is much interest in adapting the code for parallel and multi-core architectures. Parallelism can be achieved by tracking many particles at the same time. The complexity in the context of a GPU/CUDA adaptation is the highly serialized nature of the Geant4 package and the presence of large lookup tables that guide the simulation. This work presents G4CU, a CUDA implementation of the core Geant4 algorithm adapted for dose calculations in radiation therapy. For these applications the geometry is a block of voxels and the physics is limited to low energy electromagnetic physics. These features allow efficient tracking of many particles in parallel on the GPU. Experiments with radiotherapy simulations in G4CU demonstrate about 40 times speedups over Geant4.

Henderson, N.; Murakami, K.; Amako, K.; Asai, M.; Aso, T.; Dotti, A.; Kimura, A.; Gerritsen, M.; Kurashige, H.; Perl, J.; Sasaki, T.

2014-06-01

278

Image guidance during breast radiotherapy: a phantom dosimetry and radiation-induced second cancer risk study  

NASA Astrophysics Data System (ADS)

Imaging procedures utilised for patient position verification during breast radiotherapy can add a considerable dose to organs surrounding the target volume on top of therapeutic scatter dose. This study investigated the dose from a breast kilovoltage cone-beam CT (kV-CBCT), a breast megavoltage fan-beam CT (MV-FBCT), and a TomoDirectTM breast treatment. Thermoluminescent dosimeters placed within a female anthropomorphic phantom were utilised to measure the dose to various organs and tissues. The contralateral breast, lungs and heart received 0.40 cGy, 0.45 cGy and 0.40 cGy from the kV-CBCT and 1.74 cGy, 1.39 cGy and 1.73 cGy from the MV-FBCT. In comparison to treatment alone, daily imaging would increase the contralateral breast, contralateral lung and heart dose by a relative 12%, 24% and 13% for the kV-CBCT, and 52%, 101% and 58% for the MV-FBCT. The impact of the imaging dose relative to the treatment dose was assessed with linear and linear-quadratic radiation-induced secondary cancer risk models for the contralateral breast. The additional imaging dose and risk estimates presented in this study should be taken into account when considering an image modality and frequency for patient position verification protocols in breast radiotherapy.

Quinn, A.; Holloway, L.; Metcalfe, P.

2013-06-01

279

Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy  

NASA Astrophysics Data System (ADS)

The purpose of this work is to define safe irradiation protocols in microbeam radiation therapy. The intense synchrotron-generated x-ray beam used for the treatment is collimated and delivered in an array of 50 ?m-sized rectangular fields with a centre-to-centre distance between microplanes of 400 ?m. The absorbed doses received by the tumour and the healthy tissues in a human head phantom have been assessed by means of Monte Carlo simulations. The identification of safe dose limits is carried out by evaluating the maximum peak and valley doses achievable in the tumour while keeping the valley doses in the healthy tissues under tolerances. As the skull receives a significant fraction of the dose, the dose limits are referred to this tissue. Dose distributions with high spatial resolution are presented for various tumour positions, skull thicknesses and interbeam separations. Considering a unidirectional irradiation (field size of 2×2 cm2) and a centrally located tumour, the largest peak and valley doses achievable in the tumour are 55 Gy and 2.6 Gy, respectively. The corresponding maximum valley doses received by the skin, bone and healthy brain are 4 Gy, 14 Gy and 7 Gy (doses in one fraction), respectively, i.e. within tolerances (5% probability of complication within 5 years).

Martínez-Rovira, I.; Sempau, J.; Fernández-Varea, J. M.; Bravin, A.; Prezado, Y.

2010-08-01

280

Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy.  

PubMed

The purpose of this work is to define safe irradiation protocols in microbeam radiation therapy. The intense synchrotron-generated x-ray beam used for the treatment is collimated and delivered in an array of 50 microm-sized rectangular fields with a centre-to-centre distance between microplanes of 400 microm. The absorbed doses received by the tumour and the healthy tissues in a human head phantom have been assessed by means of Monte Carlo simulations. The identification of safe dose limits is carried out by evaluating the maximum peak and valley doses achievable in the tumour while keeping the valley doses in the healthy tissues under tolerances. As the skull receives a significant fraction of the dose, the dose limits are referred to this tissue. Dose distributions with high spatial resolution are presented for various tumour positions, skull thicknesses and interbeam separations. Considering a unidirectional irradiation (field size of 2 x 2 cm(2)) and a centrally located tumour, the largest peak and valley doses achievable in the tumour are 55 Gy and 2.6 Gy, respectively. The corresponding maximum valley doses received by the skin, bone and healthy brain are 4 Gy, 14 Gy and 7 Gy (doses in one fraction), respectively, i.e. within tolerances (5% probability of complication within 5 years). PMID:20647606

Martínez-Rovira, I; Sempau, J; Fernández-Varea, J M; Bravin, A; Prezado, Y

2010-08-01

281

Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.  

PubMed

Individual dosimetry service based on thermoluminescence (TLD) detectors has started its activity at the Institute of Nuclear Physics (IFJ) in Krakow in 1965. In 2002, the new Laboratory of Individual and Environment Dosimetry (Polish acronym LADIS) was established and underwent the accreditation according to the EN-PN-ISO/IEC 17025 standard. Nowadays, the service is based on the worldwide known standard thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), developed at IFJ, processed in automatic thermoluminescent DOSACUS or RE2000 (Rados Oy, Finland) readers. Laboratory provides individual monitoring in terms of personal dose equivalent H(p)(10) and H(p)(0.07) in photon and neutron fields, over the range from 0.1 mSv to 1 Sv, and environmental dosimetry in terms of air kerma K(a) over the range from 30 ?Gy to 1 Gy and also ambient dose equivalent H*(10) over the range from 30 ?Sv to 1 Sv. Dosimetric service is currently performed for ca. 3200 institutions from Poland and abroad, monitored on quarterly and monthly basis. The goal of this paper is to identify the main activities leading to the highest radiation exposures in Poland. The paper presents the results of statistical evaluation of ? 100,000 quarterly H(p)(10) and K(a) measurements performed between 2002 and 2009. Sixty-five per cent up to 90 % of all individual doses in Poland are on the level of natural radiation background. The dose levels between 0.1 and 5 mSv per quarter are the most frequent in nuclear medicine, veterinary and industrial radiography sectors. PMID:21183549

Budzanowski, Maciej; Kope?, Renata; Obryk, Barbara; Olko, Pawe?

2011-03-01

282

Radiation-induced cardiovascular effects  

NASA Astrophysics Data System (ADS)

Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

Tapio, Soile

283

Carcinogenic Effects of Ionising Radiation  

Microsoft Academic Search

\\u000a Within less than a decade after the discovery of the X-ray by Roentgen, in1895, cancer was recognized to be a late complication\\u000a of injury by ionizing radiation, and for decades thereafter it was assumed that cancer would result only from doses large\\u000a enough to cause severe damage of tissue. In the interim, the carcinogenic effects of ionising radiation have been

Arthur C. Upton

284

Pharmacokinetics, Metabolism, Biodistribution, Radiation Dosimetry, and Toxicology of 18F-Fluoroacetate (18F-FACE) in Non-human Primates  

PubMed Central

Introduction To facilitate the clinical translation of 18F-fluoroacetate (18F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of 18F-FACE were determined in non-human primates. Methods 18F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with 18F-FACE (165.4± 28.5 MBq), followed by dynamic positron emission tomography (PET) imaging of the thoracoabdominal area during 0–30 min post-injection and static whole-body PET imaging at 40, 100, and 170 min. Serial blood samples and a urine sample were obtained from each animal to determine the time course of 18F-FACE and its radiolabeled metabolites. Electrocardiograms and hematology analyses were obtained to evaluate the acute and delayed toxicity of diagnostic dosages of 18F-FACE. The time-integrated activity coefficients for individual source organs and the whole body after administration of 18F-FACE were obtained using quantitative analyses of dynamic and static PET images and were extrapolated to humans. Results The blood clearance of 18F-FACE exhibited bi-exponential kinetics with half-times of 4 and 250 min for the fast and slow phases, respectively. A rapid accumulation of 18F-FACE-derived radioactivity was observed in the liver and kidneys, followed by clearance of the radioactivity into the intestine and the urinary bladder. Radio-HPLC analyses of blood and urine samples demonstrated that 18F-fluoride was the only detectable radiolabeled metabolite at the level of less than 9% of total radioactivity in blood at 180 min after the 18F-FACE injection. The uptake of free 18F-fluoride in the bones was insignificant during the course of the imaging studies. No significant changes in ECG, CBC, liver enzymes, or renal function were observed. The estimated effective dose for an adult human is 3.90–7.81 mSv from the administration of 185–370 MBq of 18F-FACE. Conclusions The effective dose and individual organ radiation absorbed doses from administration of a diagnostic dosage of 18F-FACE are acceptable. From a pharmacologic perspective, diagnostic dosages of 18F-FACE are non-toxic in primates and, therefore, could be safely administered to human patients for PET imaging. PMID:21437735

Nishii, Ryuichi; Tong, William; Wendt, Richard; Soghomonyan, Suren; Mukhopadhyay, Uday; Balatoni, Julius; Mawlawi, Osama; Bidaut, Luc; Tinkey, Peggy; Borne, Agatha; Alauddin, Mian; Gonzalez-Lepera, Carlos; Yang, Bijun; Gelovani, Juri G.

2014-01-01

285

Radiation effects on human heredity.  

PubMed

In experimental organisms such as fruit flies and mice, increased frequencies in germ cell mutations have been detected following exposure to ionizing radiation. In contrast, there has been no clear evidence for radiation-induced germ cell mutations in humans that lead to birth defects, chromosome aberrations, Mendelian disorders, etc. This situation exists partly because no sensitive and practical genetic marker is available for human studies and also because the number of people exposed to large doses of radiation and subsequently having offspring was small until childhood cancer survivors became an important study population. In addition, the genome of apparently normal individuals seems to contain large numbers of alterations, including dozens to hundreds of nonfunctional alleles. With the number of mutational events in protein-coding genes estimated as less than one per genome after 1 gray (Gy) exposure, it is unsurprising that genetic effects from radiation have not yet been detected conclusively in humans. PMID:23988120

Nakamura, Nori; Suyama, Akihiko; Noda, Asao; Kodama, Yoshiaki

2013-01-01

286

Radiation effects program  

NASA Astrophysics Data System (ADS)

No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

1985-09-01

287

Ultraviolet dosimetry  

SciTech Connect

An ultraviolet radiation dosimeter is described comprising: a sensor exposed to ultraviolet radiation impinging upon the sensor and responsive thereto for developing a signal corresponding to the level of the radiation. The sensor includes a filter medium that exhibits a transmissivity of the radiation that rises at about three-hundred-seventy nanometers and extends to below three-hundred nanometers, and a filtering layer that exhibits a peak transmissivity at substantially three-hundred-twenty-two nanometers. It also consists of a processor responsive to the signal and accumulating a representation of the magnitude of the signal as effectively integrated with elapsed time of exposure of the sensor to the radiation; and means responsive to the representation for yielding an indication of the degree of such accumulation.

Leber, L.C.; Tenhulzen, N.L.

1987-11-03

288

Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.  

PubMed Central

Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods. PMID:10807562

Barton, H A; Clewell, H J

2000-01-01

289

Effects of seed migration on post-implant dosimetry of prostate brachytherapy  

SciTech Connect

Brachytherapy using permanent seed implants has been an effective treatment for prostate cancer. However, seeds will migrate after implant, thus making the evaluation of post-implant dosimetry difficult. In this study, we developed a computer program to simulate seed migration and analyzed dosimetric changes due to seed migration at various migration amounts. The study was based on 14 patients treated with Pd-103 at the James Cancer Hospital. Modeling of seed migration, including direction, distance as well as day of migration, was based on clinical observations. Changes of commonly used dosimetric parameters as a function of migration amount (2, 4, 6 mm respectively), prostate size (from 20 to 90 cc), and prostate region (central vs peripheral) were studied. Change of biological outcome (tumor control probability) due to migration was also estimated. Migration reduced prostate D90 to 99{+-}2% of original value in 2 mm migration, and the reduction increased to 94{+-}6% in 6 mm migration. The reduction of prostate dose led to a 14% (40%) drop in the tumor control probability for 2 mm (6 mm) migration, assuming radiosensitive tumors. However, migration has less effect on a prostate implanted with a larger number of seeds. Prostate V100 was less sensitive to migration than D90 since its mean value was still 99% of original value even in 6 mm migration. Migration also showed a different effect in the peripheral region vs the central region of the prostate, where the peripheral mean dose tended to drop more significantly. Therefore, extra activity implanted in the peripheral region during pre-plan can be considered. The detrimental effects of migration were more severe in terms of increasing the dose to normal structures, as rectum V50 may be 70% higher and urethra V100 may be 50% higher in the case of 6 mm migration. Quantitative knowledge of these effects is helpful in treatment planning and post-implant evaluation.

Gao, M.; Wang, J. Z.; Nag, S.; Gupta, N. [Department of Radiation Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio 43210 (United States) and Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois (United States); Department of Radiation Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio 43210 (United States); Department of Radiation Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio 43210 (United States) and Kaiser Permanente Radiation Oncology, Santa Clara, California (United States); Department of Radiation Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio 43210 (United States)

2007-02-15

290

Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation.  

PubMed

The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ? kidney) and organ cross dose (liver ? kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ? kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study. PMID:24859803

Hickson, Kevin J; O'Keefe, Graeme J

2014-09-01

291

Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis  

NASA Astrophysics Data System (ADS)

The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

1998-11-01

292

20. Ruhm, W. et al. The dosimetry system DS86 and the neutron discrepancy in Hiroshima--historical review, present status, and future options. Radiat. Environ. Biophys. 37, 293310 (1998).  

E-print Network

. Collection of Investigative Reports on Atomic Bomb Disaster 34­35 (Science Council of Japan, Tokyo, 1953). 22. Yamasaki, F. & Sugimoto, A. Collection of Investigative Reports on Atomic Bomb Disaster 18­19 (Science of Atomic Bomb Radiation Dosimetry in Hiroshima And Nagasaki-Final Report Vol. 2 (ed. Roesch, W. C.) 283

Losos, Jonathan B.

293

Dosimetry in Nuclear Medicine Diagnosis and Therapy  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

Noßke, D.; Mattsson, S.; Johansson, L.

294

Thermoluminescence and Thermoluminescent Dosimetry, v. 3  

SciTech Connect

This work is a comprehensive review and guide to the fields of thermoluminescence and thermoluminescent dosimetry. Three up-to-date volumes contain useful tables, illustrations, formulas and references to aid researchers in radiation and nuclear science, dosimetry and solid state physics. Volume III focuses on clinical and archeological-geological applications of TLD. Detailed technical information on TL instrumentation is also included.

Horowitz, Y.S.

1984-01-01

295

Mitigation of Space Radiation Effects  

NASA Astrophysics Data System (ADS)

During low earth orbit and deep space missions, humans and spacecraft systems are exposed to high energy particles emanating from basically three sources: geomagnetically-trapped protons and electrons (Van Allen Belts), extremely high energy galactic cosmic radiation (GCR), and solar proton events (SPEs). The particles can have deleterious effects if not properly shielded. For humans, there can be a multitude of harmful effects depending on the degree of exposure. For spacecraft systems, especially electronics, the effects can range from single event upsets (SEUs) to catastrophic effects such as latchup and burnout. In addition, some materials, radio-sensitive experiments, and scientific payloads are subject to harmful effects. To date, other methods have been proposed such as electrostatic and electromagnetic shielding, but these approaches have not proven feasible due to cost, weight, and safety issues. The only method that has merit and has been effective is bulk or parasitic shielding. In this paper, we discuss in detail the sources of the space radiation environment, spacecraft, human, and onboard systems modeling methodologies, transport of these particles through shielding materials, and the calculation of the dose effects. In addition, a review of the space missions to date and a discussion of the space radiation mitigation challenges for lunar and deep space missions such as lunar outposts and human missions to Mars are presented.

Atwell, William

2012-02-01

296

Radiation Effects in Graphite  

SciTech Connect

The requirements for a solid moderator are reviewed and the reasons that graphite has become the solid moderator of choice discussed. The manufacture and properties of some currently available near-isotropic and isotropic grades are described. The major features of a graphite moderated reactors are briefly outlined. Displacement damage and the induced structural and dimensional changes in graphite are described. Recent characterization work on nano-carbons and oriented pyrolytic graphites that have shed new light on graphite defect structures are reviewed, and the effect of irradiation temperature on the defect structures is highlighted. Changes in the physical properties of nuclear graphite caused by neutron irradiation are reported. Finally, the importance of irradiation induced creep is presented, along with current models and their deficiencies.

Burchell, Timothy D [ORNL

2012-01-01

297

Heavy-ion dosimetry  

SciTech Connect

This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

Schimmerling, W.

1980-03-01

298

Thermal effects in radiation processing  

SciTech Connect

The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

Zagorski, Z.P.

1984-10-21

299

Effects of nuclear interactions on energy and stopping power in proton beam dosimetry  

Microsoft Academic Search

Most experimental methods for proton beam dosimetry require stopping power values and proton energy distributions in the irradiated materials. At proton energies of interest in radiotherapy, nuclear interactions in biological tissue or in tissue-equivalent materials are not negligible. As a consequence of nuclear interactions the primary proton fluence is attenuated and lower energy secondary protons and other charged particles are

R. F. Laitano; M. Rosetti; M. Frisoni

1996-01-01

300

Experiment K-6-24, K-6-25, K-6-26. Radiation dosimetry and spectrometry  

NASA Technical Reports Server (NTRS)

Radiation experiments flown by the University of San Francisco on the Cosmos 1887 spacecraft were designed to measure the depth dependence of both total dose and heavy particle flux, dose and dose equivalent, down to very thin shielding. Three experiments were flown and were located both inside and outside the Cosmos 1887 spacecraft. Tissue absorbed dose rates of 264 to 0.028 rad d(-1) under shielding of 0.013 to 3.4 g/sq cm of (7)LiF were found outside the spacecraft and 0.025 rad d(-1) inside. Heavy particle fluxes of 3.43 to 1.03 x 10 to the minus 3rd power cm -2 sub s -1 sub sr -1 under shielding of 0.195 to 1.33 g/sq cm plastic were found outside the spacecraft and 4.25 times 10 to the minus 4th power cm -2 sub s -1 sub sr -1 inside (LET infinity H2O greater than or equal to 4 keV/micron m). The corresponding heavy particle dose equivalent rates outside the spacecraft were 30.8 to 19.8 mrem d(-1) and 11.4 mrem d(-1) inside. The large dose and particle fluxes found at small shielding thicknesses emphasize the importance of these and future measurements at low shielding, for predicting radiation effects on space materials and experiments where shielding is minimal and on astronauts during EVA. The Cosmos 1887 mission contained a variety of international radiobiological investigations to which the measurements apply. The high inclination orbit (62 degrees) of this mission provided a radiation environment which is seldom available to U.S. investigators. The radiation measurements will be compared with those of other research groups and also with those performed on the Shuttle, and will be used to refine computer models employed to calculate radiation exposures on other spacecraft, including the Space Station.

Benton, E. V.; Frank, A.; Benton, E. R.; Dudkin, V.; Marennyi, A.

1990-01-01

301

Dosimetry of intensive synchrotron microbeams  

Microsoft Academic Search

Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (?20 kGy\\/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance

M. L. F. Lerch; M. Petasecca; A. Cullen; A. Hamad; H. Requardt; E. Bräuer-Krisch; A. Bravin; V. L. Pervertaylo; A. B. Rosenfeld

302

The importance of 3D dosimetry  

NASA Astrophysics Data System (ADS)

Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

Low, Daniel

2015-01-01

303

The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification  

SciTech Connect

Purpose: The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. Methods: An inverse pyramid IMRT field, consisting of six regular and elongated 3 Multiplication-Sign 20 cm{sup 2} field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. Results: The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 Multiplication-Sign 5 cm{sup 2} field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 Multiplication-Sign 5 cm{sup 2}. On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 Multiplication-Sign 20 cm{sup 2} at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 Multiplication-Sign 20 cm{sup 2}. Conclusions: This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.

Srivastava, R. P.; De Wagter, C. [Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Gent (Belgium)

2012-10-15

304

Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry  

PubMed Central

In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high ?/?), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the initial activity ratio and the S value ratio between the two. In some scenarios, projected BED based on both the cortex and the medulla is a more appropriate constraint on the administered activity than the BED based on the cortex only. Furthermore, different fractionated regimens were considered to reduce renal toxicity. The MIRD-based BED formalism is expected to be useful for patient-specific adjustments of activity and to facilitate the investigation of dose-toxicity correlations with respect to dose-rate and tissue repair mechanism. PMID:18404947

Baechler, Sébastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

2010-01-01

305

Effect of radiation on prostatic growth  

Microsoft Academic Search

Radiation is increasingly important in the treatment of prostatic carcinoma. The effect and mechanism of action of radiation on prostatic growth was studied using the ventral prostate of the testosterone-treated rat. Prostatic radiation blocked testosterone-stimulated prostatic growth. Electron microscopy showed this inhibition to be associated with spdcific morphologic alterations. While radiation caused profound inhibition of prostatic DNA synthesis, only modest

G. Sufrin; W. D. W. Heston; T. Hazra; D. S. Coffey

1976-01-01

306

NRC (Nuclear Regulatory Commission) TLD (Thermoluminescent Dosimetry) direct radiation monitoring network: Progress report, July-September 1987  

Microsoft Academic Search

The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution,

R. Struckmeyer; N. McNamara; L. Cohen

1987-01-01

307

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor revision. Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, 9.2.

Rathbone, Bruce A.

2007-03-12

308

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

Rathbone, Bruce A.

2011-04-04

309

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

Rathbone, Bruce A.

2010-04-01

310

Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)  

NASA Astrophysics Data System (ADS)

This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy?1·s?1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

2015-01-01

311

EFFECT OF RADIOFREQUENCY RADIATION ON THERMOREGULATION  

EPA Science Inventory

In the past 30 years there have been numerous studies on the patho-physiological effects of exposure to radiofrequency (RF) radiation. t is clear that the majority of these effects can be attributed to the thermogenic action of RF radiation. uring exposure to RF radiation the the...

312

The Chernobyl experience in the area of retrospective dosimetry.  

PubMed

The Chernobyl accident, which occurred on 26 April 1986 at a nuclear power plant located less than 150 km north of Kiev, was the largest nuclear accident to date. The unprecedented scale of the accident was determined not only by the amount of released activity, but also by the number of workers and of the general public involved, and therefore exposed to increased doses of ionising radiation. Due to the unexpected and large scale of the accident, dosimetry techniques and practices were far from the optimum; personal dosimetry of cleanup workers (liquidators) was not complete, and there were no direct measurements of the exposures of members of the public. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. In response, substantial efforts have been made to reconstruct doses for the main exposed cohorts, using a broad variety of newly developed methods: analytical, biological and physical (electron paramagnetic resonance spectroscopy of teeth, thermoluminescence of quartz) and modelling. This paper reviews the extensive experience gained by the National Research Center for Radiation Medicine, Academy of Medical Sciences, Ukraine in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up the medical consequences of the Chernobyl accident and study health effects of ionizing radiation, particularly Ukrainian-American studies of cataracts and leukaemia among liquidators. PMID:22394623

Chumak, Vadim V

2012-03-01

313

Fast neutron dosimetry  

SciTech Connect

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01

314

Joint USNRC/EC consequence uncertainty study: The ingestion pathway, dosimetry and health effects expert judgment elicitations and results  

SciTech Connect

The US Nuclear Regulatory Commission (USNRC) and the European Commission (EC) have conducted a formal expert judgment elicitation jointly to systematically collect the quantitative information needed to perform consequence uncertainty analyses on a broad set of commercial nuclear power plants. Information from three sets of joint US/European expert panels was collected and processed. Information from the three sets of panels was collected in the following areas: in the phenomenological areas of atmospheric dispersion and deposition, in the areas of ingestion pathways and external dosimetry, and in the areas of health effects and internal dosimetry. This exercise has demonstrated that the uncertainty for particular issues as measured by the ratio of the 95th percentile to the 5th percentile can be extremely large (orders of magnitude), or rather small (factor of two). This information has already been used by many of the experts that were involved in this process in areas other than the consequence uncertainty field. The benefit to the field of radiological consequences is just beginning as the results of this study are published and made available to the consequence community.

Harper, F. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L. [Delft Univ. of Technology (Netherlands); Abbott, M. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others

1996-08-01

315

Handbook of Anatomical Models for Radiation Dosimetry (To be published in 2009 in "Series in Medical Physics and Biomedical Engineering")  

E-print Network

in External Beam Radiation Therapy Harald Paganetti Chapter 26 Image-Guided Radiation Treatment Planning Mesh-Based and Anatomically Adjustable Adult Phantoms and a Case Study in Virtual Calibration of Lung Computational Phantoms in the GEANT4 Monte Carlo Code for Radiation Treatment Involving Protons Harald Paganetti

Linhardt, Robert J.

316

TG69: Radiographic film for megavoltage beam dosimetry  

Microsoft Academic Search

TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT),

Sujatha Pai; Indra J. Das; James F. Dempsey; Kwok L. Lam; Thomas J. Losasso; Arthur J. Olch; Jatinder R. Palta; Lawrence E. Reinstein; Dan Ritt; Ellen E. Wilcox

2007-01-01

317

Quantum dosimetry and online visualization of X-ray and charged particle radiation in commercial aircraft at operational flight altitudes with the pixel detector Timepix  

NASA Astrophysics Data System (ADS)

We investigate the application of the hybrid semiconductor pixel detector Timepix for precise characterization, quantum sensitivity dosimetry and visualization of the charged particle radiation and X-ray field inside commercial aircraft at operational flight altitudes. The quantum counting capability and granularity of Timepix provides the composition and spectral-characteristics of the X-ray and charged-particle field with high sensitivity, wide dynamic range, high spatial resolution and particle type resolving power. For energetic charged particles the direction of trajectory and linear energy transfer can be measured. The detector is operated by the integrated readout interface FITPix for power, control and data acquisition together with the software package Pixelman for online visualization and real-time data processing. The compact and portable radiation camera can be deployed remotely being controlled simply by a laptop computer. The device performs continuous monitoring and accurate time-dependent measurements in wide dynamic range of particle fluxes, deposited energy, absorbed dose and equivalent dose rates. Results are presented for in-flight measurements at altitudes up to 12 km in various flights selected in the period 2006-2013.

Granja, Carlos; Pospisil, Stanislav

2014-07-01

318

INTRINSIC DOSIMETRY: A POTENTIAL NEW TOOL FOR NUCLEAR FORENSICS INVESTIGATIONS  

SciTech Connect

Thermoluminescence (TL) dosimetry was used to measure dose effects on the raw stock material of borosilicate container glass from different geographical locations. Effects were studied at times up to 60 days post-irradiation at doses from 0.15 to 20 Gy. The minimum detectable dose using this technique was estimated to be 0.15 Gy which is roughly equivalent to a 24 hr irradiation 1 cm from a 50 ng source of 60Co. Two peaks were identified in the TL glow curve, a relatively unstable peak around 125°C and a more stable peak around 225°C. Differences in TL glow curve shape and intensity were also observed for the glasses from different geographical origins. We investigate radiation induced defects in glass to further develop the technique of intrinsic dosimetry–the measurement of the total absorbed dose received by the walls of a container holding radioactive material. Intrinsic dosimetry is intended to be used as an interrogation tool to provide enhanced pathway information on interdicted or newly discovered waste containers of unknown origin or history by considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container. One hypothetical scenario is presented to illustrate the application of intrinsic dosimetry to waste management and nuclear forensics.

Clark, Richard A.; Miller, Steven D.; Robertson, Dave J.; Gregg, Roger A.; Murphy, Mark K.; Schwantes, Jon M.

2010-08-11

319

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, and 9.2. Rev 0.2 (8/28/2009) Updated Chapters 3, 5, 6, 8 and 9. Chapters 6 and 8 were significantly expanded. References in the Preface and Chapters 1, 2, 4, and 7 were updated to reflect updates to DOE documents. Approved by HPDAC on 6/2/2009. Rev 1.0 (1/1/2010) Major revision. Updated all chapters to reflect the Hanford site wide implementation on January 1, 2010 of new DOE requirements for occupational radiation protection. The new requirements are given in the June 8, 2007 amendment to 10 CFR 835 Occupational Radiation Protection (Federal Register, June 8, 2007. Title 10 Part 835. U.S., Code of Federal Regulations, Vol. 72, No. 110, 31904-31941). Revision 1.0 to the manual replaces ICRP 26 dosimetry concepts and terminology with ICRP 60 dosimetry concepts and terminology and replaces external dose conversion factors from ICRP 51 with those from ICRP 74 for use in measurement of operational quantities with dosimeters. Descriptions of dose algorithms and dosimeter response characteristics, and field performance were updated to reflect changes in the neutron quality factors used in the measurement of operational quantities.

Rathbone, Bruce A.

2010-01-01

320

Radiation effects in the environment  

SciTech Connect

Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

1999-04-01

321

Monte Carlo Investigation on the Effect of Heterogeneities on Strut Adjusted Volume Implant (SAVI) Dosimetry  

NASA Astrophysics Data System (ADS)

Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.

Koontz, Craig

322

All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry  

NASA Astrophysics Data System (ADS)

The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

Kramer, R.; Khoury, H. J.; Vieira, J. W.; Loureiro, E. C. M.; Lima, V. J. M.; Lima, F. R. A.; Hoff, G.

2004-12-01

323

Solid-State Personal Dosimetry  

NASA Technical Reports Server (NTRS)

This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

2005-01-01

324

Effects of low-level radiation  

Microsoft Academic Search

The effects of low-level radiation inhumans are usually estimated by extrapolation from high-level effects. Biological radiation effects from low-level radiation can be defined as those from doses below which no deterministic or graded biological responses will occur. In addition, the health consequences are almost all probabilistic. There is incomplete knowledge regarding the role of sex, age at exposure, co-factors, or

Goldman

1993-01-01

325

Material Effectiveness for Radiation Shielding  

NASA Technical Reports Server (NTRS)

Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

2003-01-01

326

Low level radiation: biological effects  

Microsoft Academic Search

It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved.

Loken

1983-01-01

327

THE BIOLOGICAL EFFECTS OF IONIZING RADIATION  

E-print Network

THE BIOLOGICAL EFFECTS OF IONIZING RADIATION Lesley Hines lhines@ehs.ufl.edu Environmental Health and Recovery Single-strand breaks · Most DNA damage is repaired, with no long-term effects Double-strand breaks · Delayed effects- may appear months or years after a radiation exposure ­ Examples: cataract formation

Slatton, Clint

328

A survey of space radiation effects  

NASA Technical Reports Server (NTRS)

The effects of space radiation and its significance for space missions, as they increase in scope, duration, and complexity are discussed. Type of radiation hazard may depend on location or on special equipment used. It is emphasized that it is necessary to search for potential radiation problems in the design stage of a mission. Problem areas such as radiation damage to solar cells and the revolutionary advances are discussed. Radiation effect to electronics components other than solar cells, and several specialized areas such as radioactivity and luminescence are also examined.

Hill, C. W.

1980-01-01

329

A dynamic dosimetry model for radioactive exposure scenarios in Arabidopsis thaliana.  

PubMed

To obtain a better understanding on how non-human biota are affected by exposure to environmental radioactivity, it is essential to link observed effects to a correct estimate of absorbed ionising radiation dose. Current wildlife dose rate and risk assessment tools are not set up to assess changes in dose rate during organism development. This paper presents a dosimetry model for assessing dose rate and absorbed dose during seedling development of the model plant Arabidopsis thaliana. We included growth and radionuclide absorption dynamics into the dose calculations. This model was subsequently used to compare the dose and dose rate calculations for three radionuclides, (241)Am (?-radiation), (90)Sr (?-radiation) and (133)Ba (?-radiation), in a standard exposure scenario. We show that growth influences dose and dose rate and that this influence depends on the radionuclide and the organ involved. The use of dynamic dosimetry models greatly improves the dose calculations for effect studies. PMID:24440508

Biermans, Geert; Horemans, Nele; Hens, Niel; Vives i Batlle, Jordi; Vandenhove, Hildegarde; Cuypers, Ann

2014-04-21

330

Microbeam Radiation Therapy: Tissue Dose Penetration and BANG-Gel Dosimetry of Thick-Beams' Array Intelacing  

SciTech Connect

The tissue-sparing effect of parallel, thin (narrower than 100em) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68mm ('thick microbeams') retain part of their sparing effect in the rat's CNS, and that two such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically bis acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20mmx20mmx20mm target deep into the skull. Furthermore, the 80-20% dose falloff was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes.

Dilmanian, F.; Romanelli, P; Zhong, Z; Wang, R; Wagshul, M; Kalef-Ezra, J; Maryanski, M; Rosen, E; Anschel, D

2008-01-01

331

The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.  

PubMed

Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system. PMID:24909235

Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

2014-07-01

332

Investigation of the dosimetry of chest tomosynthesis  

NASA Astrophysics Data System (ADS)

Chest tomosynthesis has recently been introduced to healthcare as a low-dose alternative to CT or as a tool for improved diagnostics in chest radiography with only a modest increase in radiation dose to the patient. However, no detailed description of the dosimetry for this type of examination has been presented. The aim of this work was therefore to investigate the dosimetry of chest tomosynthesis. The chest tomosynthesis examination was assumed to be performed using a stationary detector and a vertically moving x-ray tube, exposing the patient from different angles. The Monte Carlo based computer software PCXMC was used to determine the effective dose delivered to a standard-sized patient from various angles using different assumptions of the distribution of the effective dose over the different projections. The obtained conversion factors between input dose measures and effective dose for chest tomosynthesis for different angular intervals were then compared with the horizontal projection. The results indicate that the error introduced by using conversion factors for the PA projection in chest radiography for estimating the effective dose of chest tomosynthesis is small for normally sized patients, especially if a conversion factor between KAP and effective dose is used.

Svalkvist, Angelica; Zachrisson, Sara; Månsson, Lars Gunnar; Båth, Magnus

2009-02-01

333

Multiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation Response Effects of Radiation Quality and HypoxiaEffects of Radiation Quality and Hypoxia  

E-print Network

Multiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation Response Effects of Radiation Quality and HypoxiaEffects of Radiation Quality and Hypoxia Robert D. Stewart, Ph.D.Robert D. Stewart, Ph

Stewart, Robert D.

334

Potential health effects of space radiation  

NASA Technical Reports Server (NTRS)

Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

Yang, Chui-Hsu; Craise, Laurie M.

1993-01-01

335

A dosimetry study precisely outlining the heart substructure of left breast cancer patients using intensity-modulated radiation therapy.  

PubMed

The purpose of this study was to evaluate the feasibility of delineating the substructure of the heart by using 64-slice spiral CT coronary angiography (CTA) in breast cancer patients who underwent left breast-conserving surgery, and to compare the dosimetric differences between the targets and organs at risk in the prone and supine positions in intensity-modulated radiation therapy (IMRT) planning. From January to December 2011, ten patients who underwent left breast-conserving surgery were enrolled in this study. CTA was performed in both the supine and prone positions during the simulation, and conventional scanning without CTA was performed at the same time. Image registration was performed for paired image series using a commercially available planning system. In a conventional image series, the clinical target volume (CTV) of the whole breast, planning target volume (PTV), bilateral lungs (L-Lung, R-Lung), spinal cord, contralateral breast (R-Breast), and heart were delineated. In the CTA image series, the left ventricular (LV) and left anterior descending coronary arteries (LAD) and the planning risk volume (LAD-PRV) of the LAD (LAD with a 1 cm margin) were outlined. For each patient, two separate IMRT plans were developed for the supine and prone positions. A total of 20 plans were generated. The following indicators were compared: Dmean and D95 for the PTV; Dmean, V5, and V20 for the left lung; Dmean, V10, V20, V25, V30, and V40 for the heart and its substructures (LAD-PRV, LV); Dmean and V5 for the right lung; and Dmax and Dmean for the right breast. Using CTA to delineate the substructures of the heart is simple and straightforward. Plans for both the prone and supine positions reached the prescribed dose for the PTV without significant differences. Dose distributions were acceptable for both the prone and supine positions. However, the LAD-PRV, LV, heart, and L-Lung received smaller doses in the prone position plans than in the supine position plans. The Dmean values reduced by 445.83 cGy (p = 0.043), 575.00 cGy (p = 0.003), 402.00 cGy (p = 0.039), and 553.33 cGy (p = 0.004) in the LAD-PRV, LV, heart, and L-Lung. In addition, the V25 lessened 12.54% (p = 0.042) and 8.70% (p = 0.019) in the LV and heart, while the V20 was decreased 8.57% (p = 0.042), 15.21% (p = 0.026), 12.59% (p = 0.011), and 10.62% (p = 0.006) in the LAD-PRV, LV, heart, and L-Lung, respectively. Similarly, the V10 and V30 were reduced by 28.31% (p = 0.029) and 5.54% (p = 0.034) in the heart, while the V5 was cut back 27.86% (p = 0.031) in the L-Lung. For most Asian women with average-sized breasts after breast conserving treatment (BCT), prone positioning during IMRT radiation will reduce the dose to the ipsilateral lung, heart, and substructures of the heart, which may reduce the incidence of cardiovascular events after radiotherapy more than radiation therapy performed in a supine position. Using CTA to delineate the substructures of the heart is easy and intuitive. It is cost-effective and highly recommended for breast cancer IMRT. However, the dose-volume limits of the heart substructures remain to be determined. PMID:25207559

Fan, Ling-li; Luo, Yang-kun; Xu, Jing-hui; He, Ling; Wang, Jie; Du, Xiao-bo

2014-01-01

336

A Bayesian hierarchical method to account for random effects in cytogenetic dosimetry based on calibration curves.  

PubMed

The dicentric chromosome assay (DCA) is one of the most sensitive and reliable methods of inferring doses of radiation exposure in patients. In DCA, one calibration curve is prepared in advance by in vitro irradiation to blood samples from one or sometimes multiple healthy donors in considering possible inter-individual variability. Although the standard method has been demonstrated to be quite accurate for actual dose estimates, it cannot account for random effects, which come from such as the blood donor used to prepare the calibration curve, the radiation-exposed patient, and the examiners. To date, it is unknown how these random effects impact on the standard method of dose estimation. We propose a novel Bayesian hierarchical method that incorporates random effects into the dose estimation. To demonstrate dose estimation by the proposed method and to assess the impact of inter-individual variability in samples from multiple donors on the estimation, peripheral blood samples from 13 occupationally non-exposed, non-smoking, healthy individuals were collected and irradiated with gamma rays. The results clearly showed significant inter-individual variability and the standard method using a sample from a single donor gave anti-conservative confidence interval of the irradiated dose. In contrast, the Bayesian credible interval for irradiated dose calculated by the proposed method using samples from multiple donors properly covered the actual doses. Although the classical confidence interval of calibration curve with accounting inter-individual variability in samples from multiple donors was roughly coincident with the Bayesian credible interval, the proposed method has better reasoning and potential for extensions. PMID:25156016

Mano, Shuhei; Suto, Yumiko

2014-11-01

337

The effects of variations in the density and composition of eye materials on ophthalmic brachytherapy dosimetry  

SciTech Connect

In ophthalmic brachytherapy dosimetry, it is common to consider the water phantom as human eye anatomy. However, for better clinical analysis, there is a need for the dose determination in different parts of the eye. In this work, a full human eye is simulated with MCNP-4C code by considering all parts of the eye, i.e., the lens, cornea, retina, choroid, sclera, anterior chamber, optic nerve, and bulk of the eye comprising vitreous body and tumor. The average dose in different parts of this full model of the human eye is determined and the results are compared with the dose calculated in water phantom. The central axes depth dose and the dose in whole of the tumor for these 2 simulated eye models are calculated as well, and the results are compared.

Asadi, Somayeh [Department of Physics, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Masoudi, Seyed Farhad, E-mail: masoudi@kntu.ac.ir [Department of Physics, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, Majid [Department of Radiation Application, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

2012-04-01

338

Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons  

NASA Technical Reports Server (NTRS)

The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

Schaefer, H. J.

1974-01-01

339

Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.  

EPA Science Inventory

Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

340

RADIATION EFFECTS IN CIRCULAR ELECTRON ACCELERATORS  

Microsoft Academic Search

The effects of radiation emission on the motion of electrons in high ; energy synchrotrons are analyzed. The damping rates and quantum excitation of ; the three principal modes of oscillation are derived for strong focusing and ; constant gradient accelerators. Methods for correcting the radiation effects for ; strong focusing accelerators are discussed. (auth);

Kenneth Robinson

1958-01-01

341

Radiation Effects in Nuclear Waste Materials  

SciTech Connect

The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

William j. Weber; Lumin Wang; Jonathan Icenhower

2004-07-09

342

Radiation effects in ice: New results  

NASA Astrophysics Data System (ADS)

Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices.

Baragiola, R. A.; Famá, M.; Loeffler, M. J.; Raut, U.; Shi, J.

2008-06-01

343

Aging and Radiation Effects in Stockpile Electronics  

SciTech Connect

It is likely that aging is affecting the radiation hardness of stockpile electronics, and we have seen apparent examples of aging that affects the electronic radiation hardness. It is also possible that low-level intrinsic radiation that is inherent during stockpile life will damage or in a sense age electronic components. Both aging and low level radiation effects on radiation hardness and stockpile reliability need to be further investigated by using both test and modeling strategies that include appropriate testing of electronic components withdrawn from the stockpile.

Hartman, E.F.

1999-03-25

344

The biological effects of UVA radiation  

SciTech Connect

Interest in the biological effects of longwave radiation has increased dramatically in the last few years. The contributors to this state of the art volume discuss the most current knowledge of biological effects of UVA and provide guidelines regarding acceptable human exposure to this type of radiation. Contents include: historical aspects of UVA effects; mechanisms of UVA photosensitization; photorecovery by UVA; photoaugmentation of UVB effects by UVA; effects of UVA radiation on tissues of the eye; new UVA sunscreen; and recommendations for future research and possible actions.

Urbach, F.; Gange, R.

1986-01-01

345

Effective dose: a radiation protection quantity.  

PubMed

Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of the relative contribution of each tissue to the radiation detriment of stochastic effects from whole-body low-linear energy transfer irradiations. The rounded values of tissue and radiation weighting factors are chosen by ICRP on the basis of available scientific data from radiation epidemiology and radiation biology, and they are therefore subject to adjustment as new scientific information becomes available. Effective dose is a single, risk-related dosimetric quantity, used prospectively for planning and optimisation purposes, and retrospectively for demonstrating compliance with dose limits and constraints. In practical radiation protection, it has proven to be extremely useful. PMID:23089010

Menzel, H-G; Harrison, J

2012-01-01

346

Dosimetry implant for treating restenosis and hyperplasia  

DOEpatents

The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

2014-09-16

347

BNCT treatments - a human dosimetry evaluation  

SciTech Connect

This paper summarizes a comprehensive calculational study that provides an assessment of the radiation dose received by a glioblastoma multiforme patient treated by boron neutron capture therapy in Japan in mid-1993. This work is an extension of an earlier dosimetry evaluation of a different patient and uses a similar methodology to calculate the radiation doses.

Storr, G.J. [ANSTO, Menai (Australia); Wheeler, F.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1994-12-31

348

Continuous three-dimensional radiation dosimetry in tissue-equivalent phantoms using electron paramagnetic resonance in L-. cap alpha. -alanine  

SciTech Connect

A new tissue-equivalent phantom material has been developed which also acts as a dosimeter. The new phantom material has a similar elemental composition to that of soft tissue and has a density 1.1 g/cm/sup 3/. The phantom has an agar-gel base, and contains crystallized L-..cap alpha..-alanine which traps radiation-induced free radicals. Samples from the phantom were analyzed by an electron paramagnetic resonance (EPR) spectrometer and the intensity of the EPR signal was related to the absorbed dose. When calibrated, the phantom material acts as a dosimeter, with applications in radiation therapy.

Wielopolski, L.; Maryanski, M.; Ciesielski, B.; Forman, A.; Reinstein, L.E.; Meek, A.G.

1987-07-01

349

Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer  

PubMed Central

Prostate-specific membrane antigen (PSMA) is a type II integral membrane protein expressed on the surface of prostate cancer (PCa) cells, particularly in androgen-independent, advanced, and metastatic disease. Previously, we demonstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-18F-fluorobenzyl-Lcysteine (18F-DCFBC) could image an experimental model of PSMA-positive PCa using PET. Here, we describe the initial clinical experience and radiation dosimetry of 18F-DCFBC in men with metastatic PCa. Methods Five patients with radiologic evidence of metastatic PCa were studied after the intravenous administration of 370 MBq (10 mCi) of 18F-DCFBC. Serial PET was performed until 2 h after administration. Time- activity curves were generated for selected normal tissues and metastatic foci. Radiation dose estimates were calculated using OLINDA/EXM 1.1. Results Most vascular organs demonstrated a slow decrease in radioactivity concentration over time consistent with clearance from the blood pool, with primarily urinary radiotracer excretion. Thirty-two PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease. Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases, although further validation is needed. The highest mean absorbed dose per unit administered radioactivity (µGy/MBq) was in the bladder wall (32.4), and the resultant effective dose was 19.9 ± 1.34 µSv/MBq (mean ± SD). Conclusion Although further studies are needed for validation, our findings demonstrate the potential of 18F-DCFBC as a new positron-emitting imaging agent for the detection of metastatic PCa. This study also provides dose estimates for 18F-DCFBC that are comparable to those of other PET radiopharmaceuticals such as 18F-FDG. PMID:23203246

Cho, Steve Y.; Gage, Kenneth L.; Mease, Ronnie C.; Senthamizhchelvan, Srinivasan; Holt, Daniel P.; Jeffrey-Kwanisai, Akimosa; Endres, Christopher J.; Dannals, Robert F.; Sgouros, George; Lodge, Martin; Eisenberger, Mario A.; Rodriguez, Ronald; Carducci, Michael A.; Rojas, Camilo; Slusher, Barbara S.; Kozikowski, Alan P.; Pomper, Martin G.

2013-01-01

350

Radiation effects in optoelectronic devices. [Review  

SciTech Connect

Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given.

Barnes, C.E.; Wiczer, J.J.

1984-05-01

351

Personnel neutron dosimetry  

SciTech Connect

This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

Hankins, D.

1982-04-01

352

Dosimetry of low-energy protons and light ions.  

PubMed

For the vertical beam facility at the 14 MV Munich tandem accelerator, various techniques for dosimetry were tested for radiation fields of low-energy protons and light ions (4He, 12C and 16O). A reference dose was determined from the fluence of particles by counting individual particles. A parallel-plate Markus chamber with a small sensitive air volume was used for beam dosimetry applying the ICRU protocol. The doses measured with the ionization chamber were compared with doses evaluated from the fluence measurements. Alternative dose measurements were performed using MTS-N LiF:Mg, Ti thermoluminescence detectors (TLDs) and a photometrically evaluated Fricke chemical dosimeter. An uncertainty of 8% was found in the determination of the dose relative to the reference method. Effects of an inhomogeneous energy loss and a finite track length of the projectiles in the sensitive detector volume of the dosimeters had to be taken into account. PMID:11229727

Besserer, J; Bilski, P; de Boer, J; Kwiecien, T; Moosburge, M; Olko, P; Quicken, P

2001-02-01

353

2.2.1 Ionizing Radiation  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.2.1 Ionizing Radiation' of the Section '2.2 Kinds of Radiation' of the Chapter '2 Radiation and Biological Effects' with the contents:

Kasch, K.-U.

354

Health effects of low level radiation  

Microsoft Academic Search

Radiation is of many different types, almost all of which have been held to affect health in one way or another. However, it is the effects of ionizing radiation that have given rise to the most controversy and for which the need for assessment is most urgent. That there has been - and continues to be - much controversy about

R. Doll; S. Darby

1990-01-01

355

Effects of ionizing radiation on hippocampal excitability  

SciTech Connect

Ionizing radiation causes striking changes in hippocampal activity in vivo. Changes in neuronal firing patterns and spiking activity in electroencephalographic recordings appear at doses as low as 4 Gy. Accompanying exposure to ionizing radiation is a breakdown in blood brain barrier and a decrease in cerebral blood flow. In an effort to define the mechanisms of radiation damage to neuronal excitability, without these complicating factors, the effects of radiation on neuronal activity in hippocampal slices were investigated. Damage is likely to result from generation of free radicals. Since peroxide mixed with iron produces hydroxyl free radicals through the Fenton reaction, peroxidative damage was evaluated on hippocampal slices for comparison.

Pellmar, T.C.; Tolliver, J.M.

1986-01-01

356

Dosimetry of Heterogeneously Distributed Radionuclides with Applications to Radioimmunotherapy  

Microsoft Academic Search

The dosimetry of internally deposited radionuclides has been investigated for applications to radioimmunotherapy. The assumptions inherent in the MIRD method of dose calculation are shown to be inappropriate to the task of dosimetry for nonuniformly distributed radionuclides emitting lowly penetrating radiations. A method using the concept of dose point kernels has been developed, expanding the MIRD method to regions of

Douglas John Simpkin

1991-01-01

357

Organ-specific dosimetry in spinal radiography: an analysis of genetic and somatic effects  

SciTech Connect

Radiation doses absorbed by the uterus, ovary, testicle and active bone marrow are computed for cervical, thoracic, lumbar, full spine and chest series performed under typical office conditions. Assuming a nonthreshold, linear relationship between dose and radiogenic effect, the computed tissue-specific doses are used to estimate the probability that each X-ray series might enhance the statistical probability of occurrence of an adult leukemia fatality of the irradiated patient; a childhood leukemia, mental retardation or cancer fatality as a result of fetal irradiation; or a variety of sex cell chromosomal aberrations in irradiated patients. It is concluded that the greatest hazard to active bone marrow, the uterus and the gonads is posed by lumbar and full spine radiography and that the need to adequately justify such exposure is mandatory; furthermore, in these series, irradiation of the ovary is 10 times as great as that of the testicle. Lumbar radiographic examinations can be made significantly safer by the elimination of the lumbosacral spot view.

Fickel, T.E.

1988-02-01

358

The Effects of Ionizing Radiation on Mammalian Cells.  

ERIC Educational Resources Information Center

Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

Biaglow, John E.

1981-01-01

359

Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy  

SciTech Connect

Purpose: To date, most intensity-modulated radiation therapy (IMRT) delivery has occurred using linear accelerators (linacs), although helical tomotherapy has become commercially available. To quantify the dosimetric difference, we compared linac-based and helical tomotherapy-based treatment plans for IMRT of the oropharynx. Methods and Materials: We compared the dosimetry findings of 10 patients who had oropharyngeal carcinoma. Five patients each had cancers in the base of the tongue and tonsil. Each plan was independently optimized using either the CORVUS planning system (Nomos Corporation, Sewickly, PA), commissioned for a Varian 2300 CD linear accelerator (Varian Medical Systems, Palo Alto, CA) with 1-cm multileaf collimator leaves, or helical tomotherapy. The resulting treatment plans were evaluated by comparing the dose-volume histograms, equivalent uniform dose (EUD), dose uniformity, and normal tissue complication probabilities. Results: Helical tomotherapy plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose reduction for organs at risk (OARs) surrounding the base of tongue and the tonsil were 17.4% and 27.14% respectively. An 80% reduction in normal tissue complication probabilities for the parotid glands was observed in the tomotherapy plans relative to the linac-based plans. The standard deviation of the planning target volume dose was reduced by 71%. In our clinic, we use the combined dose-volume histograms for each class of plans as a reference goal for helical tomotherapy treatment planning optimization. Conclusions: Helical tomotherapy provides improved dose homogeneity and normal structure dose compared with linac-based IMRT in the treatment of oropharyngeal carcinoma resulting in a reduced risk for complications from focal hotspots within the planning target volume and for the adjacent parotid glands.

Sheng Ke [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)]. E-mail: ks2mc@virginia.edu; Molloy, Janelle A. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Read, Paul W. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

2006-07-01

360

Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer  

Microsoft Academic Search

A combination of radioiodine scanning and quantitative radiation dosimetry was used to evaluate responses to therapeutic irradiation with 131I in 76 patients with thyroid adenocarcinoma. Fifty patients received 131I treatment for ablation of residual thyroid tissue after surgical thyroidectomy, and 26 had 131I treatment for metastatic thyroid cancer. Successful ablation was observed in patients receiving higher radiation doses to the

Harry R. Maxon; Stephen R. Thomas; Vicki S. Hertzberg; James G. Kereiakes; I-Wen Chen; Matthew I. Sperling; Eugene L. Saenger

1983-01-01

361

RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS  

EPA Science Inventory

The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding at the atomic, microscopic, and macroscopic levels of radiation effects in glass and ceramics that provides the underpinning science and models for evaluation an...

362

Assurance Against Radiation Effects on Electronics  

NASA Technical Reports Server (NTRS)

Contents include the following: The Space Radiation Environment. The Effects on Electronics. The Environment in Action. NASA Approaches to Commercial Electronics: the mission mix, flight projects, and proactive research. Final Thoughts: atomic interactions, direct ionization, interaction with nucleus.

LaBel, Kenneth A.

2004-01-01

363

Radiation effects in the lung.  

PubMed Central

This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. The latter is an inflammatory reaction with intra-alveolar and septal edema accompanied by epithelial and endothelial desquamation. The critical role of type II pneumonocytes is discussed. One favored hypothesis suggests that the primary response of the lung is an increase in microvascular permeability. The plasma proteins overwhelm the lymphatic and other drainage mechanisms and this elicits the secondary response of type II cell hyperplasia. This, in its turn, produces an excess of surfactant that ultimately causes the fall in compliance, abnormal gas exchange values, and even respiratory failure. The inflammatory early reaction may progress to chronic fibrosis. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. Emphasis is placed on the data showing that alpha emitters are at least an order of magnitude more hazardous than beta/gamma radiation and on recent data showing that the more homogeneous the irradiation of the lung, the greater is the carcinogenic hazard which contradicts the so-called "hot particle" theory. Images FIGURE 6. PMID:3549278

Coggle, J E; Lambert, B E; Moores, S R

1986-01-01

364

Radiation Effect on Human Tissue  

NASA Technical Reports Server (NTRS)

Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered for use in assessing human cancer risk related to exposure to space radiation. This potential use must be integrated within the specified multidisciplinary context in order to create a new tool of molecular epidemiology that can hopefully then realistically assess this cancer risk.

Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

2002-01-01

365

Annual Conference on Nuclear and Space Radiation Effects, 18th, University of Washington, Seattle, WA, July 21-24, 1981, Proceedings  

NASA Technical Reports Server (NTRS)

Single event upset phenomena are discussed, taking into account cosmic ray induced errors in IIL microprocessors and logic devices, single event upsets in NMOS microprocessors, a prediction model for bipolar RAMs in a high energy ion/proton environment, the search for neutron-induced hard errors in VLSI structures, soft errors due to protons in the radiation belt, and the use of an ion microbeam to study single event upsets in microcircuits. Basic mechanisms in materials and devices are examined, giving attention to gamma induced noise in CCD's, the annealing of MOS capacitors, an analysis of photobleaching techniques for the radiation hardening of fiber optic data links, a hardened field insulator, the simulation of radiation damage in solids, and the manufacturing of radiation resistant optical fibers. Energy deposition and dosimetry is considered along with SGEMP/IEMP, radiation effects in devices, space radiation effects and spacecraft charging, EMP/SREMP, and aspects of fabrication, testing, and hardness assurance.

Tasca, D. M.

1981-01-01

366

Quenching Effect, Signal to Noise, Contrast to Noise Ratios on Scintillator Screens for Proton Beam Dosimetry System  

NASA Astrophysics Data System (ADS)

There has been dosimetry using scintillator screen for proton quality assurance recently. To develop a proton beam dosimetry system using scintillator, we evaluated the dosimetric properties and imaging quality for three kinds of scintillator screens. Proton beam ranges of 6, 9, and 12 g/cm2 were determined in a water phantom using an ion chamber. Beam current was optimized about each scintillator screen at proton beam ranges of 6, 9, and 12 g/cm2. Dose rate was in beam condition of proton treatment. For comparison of the dosimetric properties, the quenching correction factors and standard deviations for the scintillator screens (C6H6, Gd2O2S:Tb, and Gd2O2S) were obtained using the relation between the light yield (scintillator-relative output) and the dose distribution (diode-relative output). The image qualities for the scintillator screens were compared, using the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR), in consideration of the physical properties of the scintillator materials. After correction of the quenching effect, the correction factor for scintillator screen Gd2O2S:Tb was the lowest, at 0.004 g/(cm2 MeV). The standard deviations of the difference between the yields measured by the scintillator screens and the diode detector averaged 1, 1.3, and 1.3, respectively, at all of the ranges from origin to the peak position. The dosimetric properties of scintillator screens were no large difference. The SNRs of the scintillator screens (C6H6, Gd2O2S:Tb, and Gd2O2S) averaged 28.67, 40.18, and 24.56, respectively, at all ranges. The CNRs of the scintillator screens (C6H6, Gd2O2S:Tb, and Gd2O2S) averaged 0.44, 0.33, and 0.42, respectively, at all ranges. The highest SNR and the lowest CNR of scintillator screen Gd2O2S:Tb were more excellent than those of the other scintillator screens. We evaluated the dosimetric properties in terms of the quenching-effect correction factors, standard deviations image qualities in terms of SNR and CNR about scintillator screens. The correction factor and standard deviation for scintillator screens made no large difference. Scintillator screen Gd2O2S:Tb had the highest value of SNR and the lowest value of CNR, and accordingly was considered to be best in proton beam imaging quality.

Kim, Seonkyu; Byeong Lee, Se; Yoo, Seung Hoon; Cho, Sungkoo; Kim, Dong Wook; Shin, Dongho; Park, Sung Yong; Kim, Chan Hyeong; Lee, Sang Hoon

2012-04-01

367

Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045  

SciTech Connect

A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

Kerr GD, Frome EL, Watkins JP, Tankersley WG

2009-12-14

368

Ninth Annual Warren K. Sinclair Keynote Address: effects of childhood radiation exposure: an issue from computed tomography scans to Fukushima.  

PubMed

The acute and chronic effects of radiation on children have been and will continue to be of great social, public health, scientific, and clinical importance. The focus of interest on ionizing radiation and children has been clear for over half a century and ranges from the effects of fallout from nuclear weapons testing to exposures from accidents, natural radiation, and medical procedures. There is a loosely stated notion that "children are three to five times more sensitive to radiation than adults." Is this really true? In fact, children are at greater risk for some health effects, but not all. For a few sequelae, children may be more resistant than adults. Which are those effects? How and why do they occur? While there are clear instances of increased risk of some radiation-induced tumors in children compared to adults, there are other tumor types in which there appears to be little or no difference in risk by age at exposure and some in which published models that assume the same relative increase in risks for child compared to adult exposures apply to nearly all tumor types are not supported by the scientific data. The United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) has a task group producing a comprehensive report on the subject. The factors to be considered include relevant radiation sources; developmental anatomy and physiology; dosimetry; and stochastic, deterministic, and hereditary effects. PMID:24077040

Mettler, Fred A; Constine, Louis S; Nosske, Dietmar; Shore, Roy E

2013-11-01

369

[Effects of radiation exposure on human body].  

PubMed

There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of cells results in acute disorder, and then DNA mis-repair and mutation is speculated to cause cancer. The extent to which this kind of cellular response could reduce the low-dose radiation risk is a major challenge for future research. PMID:22514910

Kamiya, Kenji; Sasatani, Megumi

2012-03-01

370

Thermoluminescence and Thermoluminescent Dosimetry, v. 2  

SciTech Connect

This work is a comprehensive, in-depth review and guide to the fields of thermoluminescence and thermoluminescent dosimetry. Three up-to-date volumes contain useful tables, illustrations, formulas and references to aid researchers in radiation and nuclear science, dosimetry and solid state physics. Volume II provides the first comprehensive review of phototransferred TL to appear in literature. It also examines the TL dose response, the use of TLDs in various radiation fields, and the general cavity theory. The concepts of track structure theory are introduced.

Horowitz, Y.S.

1984-01-01

371

Radiative Effects of Tropical Thin Cirrus Clouds  

NASA Astrophysics Data System (ADS)

It is important to understand the radiative impacts of thin cirrus clouds that occur frequently in the atmosphere. In this study, the frequency of occurrence and optical depths of tropical thin cirrus clouds are derived and averaged over 1° X 1° boxes on the basis of the Moderate-Resolution Imaging Spectroradiometer (MODIS) level-2 cirrus reflectance. It is found that about 40% of the Moderate-Resolution Imaging Spectroraiometer (MODIS) pixels flagged as clear sky contain detectible thin cirrus clouds. To investigate the radiative effects of thin cirrus clouds we simulate outgoing longwave radiation (OLR), radiative flux, and heating rate using LibRadtran radiative transfer code. The background gaseous absorption properties are considered on the basis of the correlated k-distribution method. The single-scattering properties of cirrus clouds, including the extinction efficiency, single-scattering albedo and asymmetry factor, are parameterized with respect to the effective particle size (2.0~3100?m) and wavelength (0.2~100?m). In this model, thin cirrus clouds are inserted in layers from 10 to 12km. The radiative heating rate is calculated as a function of ice water content (IWC) and particle habit. The cloud radiative forcing is calculated at the top of atmosphere (TOA) and bottom of atmosphere (BOA) as a function of IWC. For the simulation of global distributions of cirrus radiative forcing, the retrieved optical depths of thin cirrus clouds and the Atmospheric Infrared Sounder (AIRS) atmospheric profiles are used.

Lee, J.; Yang, P.; Gao, B.

2006-12-01

372

Correlated Uncertainties in Radiation Shielding Effectiveness  

NASA Technical Reports Server (NTRS)

The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

2013-01-01

373

Development of a fiber-optic dosimeter based on modified direct measurement for real-time dosimetry during radiation diagnosis  

NASA Astrophysics Data System (ADS)

For applying modified direct measurement, we developed a fiber-optic dosimeter (FOD) with two dosimeter probes to infer the entrance surface dose (ESD) at the center of an x-ray beam field without the obstruction of radiation imaging. The dosimeter probe of the FOD was fabricated by coupling a plastic scintillating fiber to a plastic optical fiber. Under varying exposure parameters, we measured the scintillating light signals using two dosimeter probes, which were placed at the center and the edge of the beam field, respectively, and compared the results with the absorbed doses obtained using a conventional semiconductor dosimeter. Various correlations between the two dosimeter probes according to the exposure parameters were obtained for measuring ESD using a new modified direct measurement approach during a medical imaging task.

Yoo, W. J.; Shin, S. H.; Jeon, D.; Han, K.-T.; Hong, S.; Kim, S. G.; Cho, S.; Lee, B.

2013-09-01

374

Properties of thin film radiation detectors and their application to dosimetry and quality assurance in x-ray imaging  

NASA Astrophysics Data System (ADS)

The characteristics of two different types of thin-film radiation detectors are experimentally investigated: organic photovoltaic cells (OPV) and a new self-powered detector that operates based on high-energy secondary electrons (HEC). Although their working principles are substantially different, they both can be used for radiation detection and image formation in medical applications. OPVs with different active layer material thicknesses and aluminum electrode areas were fabricated. The OPV cell consisted of P3HT: PCBM photoactive materials, composed of donor and acceptor semiconducting organic materials, sandwiched between an aluminum electrode as anode and an indium tin oxide (ITO) electrode as a cathode. The detectors were exposed to 60150 kVp x rays, which generated photocurrent in the active layer. The electric charge production in the OPV cells was measured. The net current as function of beam energy (kVp) was proportional to ~1/kVp0.45 when adjusted for x-ray beam output. The best combination of parameters for these cells was 270-nm active layer thicknesses for 0.7cm-2 electrode area. The measured current ranged from about 0.7 to 2.4 nA/cm2 for 60-150 kVp, corresponding to about 0.09 -- 0.06 nA/cm2/mGy, respectively, when adjusted for the output x-ray source flux. The HEC detection concept was recently proposed and experimentally demonstrated by a UML/HMS research group. HEC detection employs direct conversion of high-energy electron current to detector signal without external power and amplification. The potential of using HEC detectors for diagnostic imaging application was investigated by using a heterogeneous phantom consisting of a water cylinder with Al and wax rod inserts.

Elshahat, Bassem

375

Reference dosimetry using radiochromic film.  

PubMed

The objectives of this study are to identify and quantify factors that influence radiochromic film dose response and to determine whether such films are suitable for reference dosimetry. The influence of several parameters that may introduce systematic dose errors when performing reference dose measurements were investigated. The effect of the film storage temperature was determined by comparing the performance of three lots of GAFCHROMIC EBT2 films stored at either 4ºC or room temperature. The effect of high (> 80%) or low (< 20%) relative humidity was also determined. Doses measured in optimal conditions with EBT and EBT2 films were then compared with an A12 ionization chamber measurement. Intensity-modulated radiation therapy quality controls using EBT2 films were also performed in reference dose. The results obtained using reference dose measurements were compared with those obtained using relative dose measurements. Storing the film at 4ºC improves the stability of the film over time, but does not eliminate the noncatalytic film development, seen as a rise in optical density over time in the absence of radiation. Relative humidity variations ranging from 80% to 20% have a strong impact on the optical density and could introduce dose errors of up to 15% if the humidity were not controlled during the film storage period. During the scanning procedure, the film temperature influences the optical density that is measured. When controlling for these three parameters, the dose differences between EBT or EBT2 and the A12 chamber are found to be within ± 4% (2? level) over a dose range of 20-350 cGy. Our results also demonstrate the limitation of the Anisotropic Analytical Algorithm for dose calculation of highly modulated treatment plans. PMID:23149793

Girard, Frédéric; Bouchard, Hugo; Lacroix, Frédéric

2012-01-01

376

Acute effects of solar particle event radiation  

PubMed Central

A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animals exposed to space flight stressors combined with the types of radiation expected during an SPE. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations: gamma rays or electrons). All animal studies described have been approved by the University of PA IACUC. Some conclusions from recent CARR investigations are as follows: (i) the relative biological effectiveness (RBE) values for SPE-like protons compared with standard reference radiations (gammas or electrons) for white blood cells (WBCs) vary greatly between mice, ferrets and pigs, with the RBE values being greater in ferrets than those in mice, and considerably greater in pigs compared with those in ferrets or mice [1, 2]. This trend for the data suggests that the RBE values for WBCs in humans could be considerably greater than those observed in small mammals, and SPE proton radiation may be far more hazardous to humans than previously estimated from small animal studies. (ii) Very low doses of SPE proton radiation (25 cGy) increase blood clotting times in ferrets, and the low SPE-like dose rate has more severe effects than high dose rate radiation [3]. (iii) Results from pig and ferret studies suggest that disseminated intravascular coagulation is a major cause of death at doses near the LD50 level for SPE-like proton and gamma radiation. (iv) Exposure to SPE-like proton or gamma radiation, in combination with simulated microgravity (hindlimb suspension), leads to a very high level of morbidity/mortality in mice given a bacterial challenge with non-toxic levels of Pseudomonas aeruginosa or Klebsiella pneumoniae; the threshold for this effect was 1.5 Gy. (v) T-cell activation was reduced in mice exposed to SPE-like radiation with or without simulated hypogravity (either partial weight suspension or hindlimb suspension) (e.g. [4]). (vi) Radiation and simulated hypogravity had synergistic effects on immune system biological endpoints (e.g. [5]). (vii) Pigs exposed to simulated SPE radiation exhibited increases in intracranial pressure that remained elevated over the 90-day experimental period. (viii) A major sparing effect of SPE-like low dose rate radiation (compared with the results for high dose rate radiation) was observed for ferret emesis parameters, such that the differences between the results for ferret exposure to low dose rate radiation (50 cGy/h) and controls were not statistically significant (for doses up to 2 Gy). For high dose rate SPE proton radiation, the threshold value for retching was 75 cGy, and for ferret vomiting, it was 1 Gy.

Kennedy, Ann R.; Weissman, Drew; Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Wan, X. Steven; Romero-Weaver, Ana L.; Diffenderfer, Eric S.; Lin, L.; Cengel, K.

2014-01-01

377

Stochasticity Effects in Quantum Radiation Reaction  

NASA Astrophysics Data System (ADS)

When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

Neitz, N.; Di Piazza, A.

2013-08-01

378

A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning  

SciTech Connect

Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

Hobbs, Robert F.; McNutt, Todd [Johns Hopkins University, Baltimore, MD (United States); Baechler, Sebastien [University Institute of Radiation Physics, University of Lausanne (Switzerland); He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L. [Johns Hopkins University, Baltimore, MD (United States); Shokek, Ori [York Cancer Center, York, PA (United States); Sgouros, George, E-mail: gsgouro1@jhmi.edu [Johns Hopkins University, Baltimore, MD (United States)

2011-07-15

379

Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams  

NASA Astrophysics Data System (ADS)

This study examines variations of bone and mucosal doses with variable soft tissue and bone thicknesses, mimicking the oral or nasal cavity in skin radiation therapy. Monte Carlo simulations (EGSnrc-based codes) using the clinical kilovoltage (kVp) photon and megavoltage (MeV) electron beams, and the pencil-beam algorithm (Pinnacle3 treatment planning system) using the MeV electron beams were performed in dose calculations. Phase-space files for the 105 and 220 kVp beams (Gulmay D3225 x-ray machine), and the 4 and 6?MeV electron beams (Varian 21 EX linear accelerator) with a field size of 5 cm diameter were generated using the BEAMnrc code, and verified using measurements. Inhomogeneous phantoms containing uniform water, bone and air layers were irradiated by the kVp photon and MeV electron beams. Relative depth, bone and mucosal doses were calculated for the uniform water and bone layers which were varied in thickness in the ranges of 0.5-2 cm and 0.2-1 cm. A uniform water layer of bolus with thickness equal to the depth of maximum dose (dmax) of the electron beams (0.7 cm for 4 MeV and 1.5 cm for 6 MeV) was added on top of the phantom to ensure that the maximum dose was at the phantom surface. From our Monte Carlo results, the 4 and 6 MeV electron beams were found to produce insignificant bone and mucosal dose (<1%), when the uniform water layer at the phantom surface was thicker than 1.5 cm. When considering the 0.5 cm thin uniform water and bone layers, the 4 MeV electron beam deposited less bone and mucosal dose than the 6 MeV beam. Moreover, it was found that the 105 kVp beam produced more than twice the dose to bone than the 220 kVp beam when the uniform water thickness at the phantom surface was small (0.5 cm). However, the difference in bone dose enhancement between the 105 and 220 kVp beams became smaller when the thicknesses of the uniform water and bone layers in the phantom increased. Dose in the second bone layer interfacing with air was found to be higher for the 220 kVp beam than that of the 105 kVp beam, when the bone thickness was 1 cm. In this study, dose deviations of bone and mucosal layers of 18% and 17% were found between our results from Monte Carlo simulation and the pencil-beam algorithm, which overestimated the doses. Relative depth, bone and mucosal doses were studied by varying the beam nature, beam energy and thicknesses of the bone and uniform water using an inhomogeneous phantom to model the oral or nasal cavity. While the dose distribution in the pharynx region is unavailable due to the lack of a commercial treatment planning system commissioned for kVp beam planning in skin radiation therapy, our study provided an essential insight into the radiation staff to justify and estimate bone and mucosal dose.

Chow, James C. L.; Jiang, Runqing

2012-06-01

380

The effects of radiation on angiogenesis  

PubMed Central

The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation – charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis. PMID:24160185

2013-01-01

381

Improved dosimetry techniques for intravascular brachytherapy  

NASA Astrophysics Data System (ADS)

Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated using Monte Carlo-based radiation transport code MCNP and tabulated for a range of different coronary geometries and different radionuclides. A new technique using imaging techniques such as intravascular ultrasound and angiography to assess dosimetry for realistic coronary arteries is also introduced. The results indicate the need for accurate assessment of post-intervention clinical measurements such as minimal lumen diameter and residual plaque burden and incorporating them into dose calculations.

Sehgal, Varun

382

Framework and need for dosimetry and measurements: quantitation matters.  

PubMed

It has always been recognized that radiation measurements and dosimetry (M &8; D) play a crucial role in developing radiation protection programs for workers and members of the public, particularly as they relate to mitigating potential health risks from exposure to radiation. The National Council on Radiation Protection and Measurements (NCRP) has always devoted significant resources to these scientific disciplines in terms of its published reports, and it is anticipated that this emphasis will continue. This includes focus on both external and internal radiation exposure as well as radiation and radioactivity measurement methodology. NCRP, as part of its management of scientific activities, has designated Program Area Committee 6 to focus on radiation M &8; D. This paper briefly describes how radiation M &8; D has been addressed historically in terms of NCRP activities. It reports how the emphases have changed over the years and how NCRP has worked effectively with other radiation protection organizations, such as the International Commission on Radiological Protection, to leverage its expertise in advancing the science of M &8; D. Current and prospective activities in M &8; D by NCRP are also described to frame the future in these areas of interest necessary for the optimum application of radiation protection principles and programs. PMID:25551503

Guilmette, Raymond A

2015-02-01

383

Radiation effects concerns at a spallation source  

SciTech Connect

Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab.

Sommer, W.F.

1990-01-01

384

Heavy ion passive dosimetry with silver halide single crystals  

NASA Technical Reports Server (NTRS)

A method of detecting radiation damage tracks due to heavy particles in large single crystals of the silver halides is described. The tracks, when made visible with a simple electrical apparatus, appear similar to tracks in emulsions. The properties of the crystals, the technique of printing out the tracks, and evidence concerning the threshold energy for registering particles indicates that this method may find application in heavy ion dosimetry. The method has been found to be sensitive to stopping He nuclei and relativistic M group cosmic rays. Some impurities strongly influence the printout of the tracks, and the effects of these impurities are discussed.

Childs, C. B.; Parnell, T. A.

1972-01-01

385

Breast dosimetry in clinical mammography  

NASA Astrophysics Data System (ADS)

The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric measurements enabled the development of analytical equations to calculate the whole breast area, estimate for the skin layer thickness and optimal location for automatic exposure control ionization chamber. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

Benevides, Luis Alberto Do Rego

386

A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry  

SciTech Connect

Purpose: The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along thex axis, the axis parallel to the elongated light source. At constant dose, the measured optical densitiy profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. Methods: For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along thex axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. Results: The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at positionx into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. Conclusions: The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.

Poppinga, D., E-mail: daniela.poppinga@uni-oldenburg.de; Schoenfeld, A. A.; Poppe, B. [Medical Radiation Physics, Carl v. Ossietzky University, Oldenburg 26127, Germany and Department for Radiation Oncology, Pius Hospital, Oldenburg 26121 (Germany)] [Medical Radiation Physics, Carl v. Ossietzky University, Oldenburg 26127, Germany and Department for Radiation Oncology, Pius Hospital, Oldenburg 26121 (Germany); Doerner, K. J. [Radiotherapy Department, General Hospital, Celle 29223 (Germany)] [Radiotherapy Department, General Hospital, Celle 29223 (Germany); Blanck, O. [CyberKnife Center Northern Germany, Güstrow 18273, Germany and Department for Radiation Oncology, University Clinic Schleswig-Holstein, Lübeck 23562 (Germany)] [CyberKnife Center Northern Germany, Güstrow 18273, Germany and Department for Radiation Oncology, University Clinic Schleswig-Holstein, Lübeck 23562 (Germany); Harder, D. [Medical Physics and Biophysics, Georg-August-University, Göttingen 37073 (Germany)] [Medical Physics and Biophysics, Georg-August-University, Göttingen 37073 (Germany)

2014-02-15

387

Contrasting the direct radiative effect and direct radiative forcing of aerosols  

E-print Network

The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

Heald, Colette L.

388

A small-scale anatomical dosimetry model of the liver  

NASA Astrophysics Data System (ADS)

Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

2014-07-01

389

Plutonium, Mineralogy and Radiation Effects  

NASA Astrophysics Data System (ADS)

During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long-term accumulation of radiation damage as a function of the thermal period of a geologic repository. As an example, with a 10 wt.% loading of 239Pu, Gd2Ti2O7 will become amorphous in less than 1,000 years, while Gd2Zr2O7 will persist as a disordered defect fluorite structure. Thus, the radiation stability of different pyrochlores is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

Ewing, R. C.

2006-05-01

390

Differences in Radiation Dosimetry and Anorectal Function Testing Imply That Anorectal Symptoms May Arise From Different Anatomic Substrates  

SciTech Connect

Purpose: To explore the influence of functional changes and dosimetric parameters on specific incontinence-related anorectal complaints after prostate external beam radiotherapy and to estimate dose-effect relations for the anal wall and rectal wall. Methods and Materials: Sixty patients, irradiated for localized prostate cancer, underwent anorectal manometry and barostat measurements to evaluate anal pressures, rectal capacity, and rectal sensory functions. In addition, 30 untreated men were analyzed as a control group. In 36 irradiated patients, the anal wall and rectal wall were retrospectively delineated on planning computed tomography scans, and dosimetric parameters were retrieved from the treatment plans. Functional and dosimetric parameters were compared between patients with and without complaints, focusing on urgency, incontinence, and frequency. Results: After external beam radiotherapy, reduced anal pressures and tolerated rectal volumes were observed, irrespective of complaints. Patients with urgency and/or incontinence showed significantly lower anal resting pressures (mean 38 and 39 vs. 49 and 50 mm Hg) and lower tolerated rectal pressures (mean 28 and 28 vs. 33 and 34 mm Hg), compared to patients without these complaints. In patients with frequency, almost all rectal parameters were reduced. Several dosimetric parameters to the anal wall and rectal wall were predictive for urgency (e.g., anal D{sub mean}>38Gy), whereas some anal wall parameters correlated to incontinence and no dose-effect relation for frequency was found. Conclusions: Anorectal function deteriorates after external beam radiotherapy. Different incontinence-related complaints show specific anorectal dysfunctions, suggesting different anatomic and pathophysiologic substrates: urgency and incontinence seem to originate from both anal wall and rectal wall, whereas frequency seems associated with rectal wall dysfunction. Also, dose-effect relations differed between these complaints. This implies that anal wall and rectal wall should be considered separate organs in radiotherapy planning.

Smeenk, Robert Jan, E-mail: r.smeenk@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hopman, Wim P.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hoffmann, Aswin L.; Lin, Emile N.J.Th. van; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

2012-01-01

391

Clinical results of an EPID-based in-vivo dosimetry method for pelvic cancers treated by intensity-modulated radiation therapy.  

PubMed

The purpose of our work was to investigate the feasibility of using an EPID-based in-vivo dosimetry method initially designed for conformal fields on pelvic dynamic IMRT fields. The method enables a point dose delivered to the patient to be calculated from the transit signal acquired with an electronic portal imaging device (EPID). After defining a set of correction factors allowing EPID pixel values to be converted into absolute doses, several tests on homogeneous water-equivalent phantoms were performed to estimate the validity of the method in reference conditions. The effects of different treatment parameters, such as delivered dose, field size dependence and patient thickness were also studied. The model was first evaluated on a group of 53 patients treated by 3D conformal radiotherapy (3DCRT) and then on 92 patients treated by IMRT, both for pelvic cancers. For each measurement, the dose was reconstructed at the isocenter (DREC) and compared with the dose calculated by our treatment planning system (DTPS). Excellent agreement was found between DREC and DTPS for both techniques. For 3DCRT treatments, the mean deviation between DREC and DTPS for the 211 in-vivo dose verifications was equal to -1.0  ±  2.2% (1SD). Concerning IMRT treatments, the averaged deviation for the 418 fields verified was equal to -0.3 ± 2.6% (1SD) proving that the method is able to reconstruct a dose for dynamic IMRT pelvic fields. Based on these results, tolerance criteria and action levels were established before its implementation in clinical routine. PMID:24656798

Camilleri, J; Mazurier, J; Franck, D; Dudouet, P; Latorzeff, I; Franceries, X