Science.gov

Sample records for radiation fields encountered

  1. Jupiter radiation test levels and their expected impact on an encounter mission

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.

    1972-01-01

    The upper limit, of electron and proton fluences for a thermoelectric outer planet spacecraft mission in a near-Jupiter environment, for use as radiation design restraints, were extracted from a model of the Jovian trapped radiation belts. Considerations of radiation effects in semiconductor devices were employed to construct simplified radiation test levels based on the design restraints. Corresponding levels, based on the nominal belt models, are one to three orders of magnitude smaller. In terms of expected radiation-induced degradation in semiconductor devices, an encounter with an environment as severe as the design restraints would require hardening the system in order to guarantee high reliability. On the other hand, the nominal levels would only necessitate care in the selection of components and the avoidance of certain semiconductor components.

  2. Estimates of trapped radiation encountered on low-thrust trajectories through the Van Allen belts

    NASA Technical Reports Server (NTRS)

    Karp, I. M.

    1973-01-01

    Estimates were made of the number of trapped protons and electrons encountered by vehicles on low-thrust trajectories through the Van Allen belts. The estimates serve as a first step in assessing whether these radiations present a problem to on-board sensitive components and payload. The integrated proton spectra and electron spectra are presented for the case of a trajectory described by a vehicle with a constant-thrust acceleration A sub c equal to 0.001 meter/sq sec. This value of acceleration corresponds to a trip time of about 54 days from low earth orbit to synchronous orbit. It is shown that the time spent in the belts and hence the radiation encountered vary nearly inversely with the value of thrust acceleration. Thus, the integrated spectral values presented for the case of A sub c = 0.001 meter/sq sec can be generalized for any other value of thrust acceleration by multiplying them by the factor 0.001/A sub c.

  3. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  4. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  7. Development and Characterization of a High Throughput Screen to investigate the delayed Effects of Radiations Commonly Encountered in Space

    NASA Astrophysics Data System (ADS)

    Morgan, W. F.

    Astronauts based on the space station or on long-term space missions will be exposed to high Z radiations in the cosmic environment In order to evaluate the potentially deleterious effects of exposure to radiations commonly encountered in space we have developed and characterized a high throughput assay to detect mutation deletion events and or hyperrecombination in the progeny of exposed cells This assay is based on a plasmid vector containing a green fluorescence protein reporter construct We have shown that after stable transfection of the vector into human or hamster cells this construct can identify mutations specifically base changes and deletions as well as recombination events e g gene conversion or homologous recombination occurring as a result of exposure to ionizing radiation Our focus has been on those events occurring in the progeny of an irradiated cell that are potentially associated with radiation induced genomic instability rather than the more conventional assays that evaluate the direct immediate effects of radiation exposure Considerable time has been spent automating analysis of surviving colonies as a function of time after irradiation in order to determine when delayed instability is induced and the consequences of this delayed instability The assay is now automated permitting the evaluation of potentially rare events associated with low dose low dose rate radiations commonly encountered in space

  8. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  9. Hawking radiation and interacting fields

    E-print Network

    Marco Frasca

    2014-12-08

    Hawking radiation is generally derived using a non-interacting field theory. Some time ago, Leahy and Unruh showed that, in two dimensions with a Schwarzschild geometry, a scalar field theory with a quartic interaction gets the coupling switched off near the horizon of the black hole. This would imply that interaction has no effect on Hawking radiation and free theory for particles can be used. Recently, a set of exact classical solutions for the quartic scalar field theory has been obtained. These solutions display a massive dispersion relation even if the starting theory is massless. When one considers the corresponding quantum field theory, this mass gap becomes a tower of massive excitations and, at the leading order, the theory is trivial. We apply these results to Hawking radiation for a Kerr geometry and prove that the Leahy-Unruh effect is at work. Approaching the horizon the scalar field theory has the mass gap going to zero. We devise a technique to study the interacting scalar theory very near the horizon increasing the coupling. As these solutions are represented by a Fourier series of plane waves, Hawking radiation can be immediately obtained with well-known techniques. These results open a question about the behavior of the Standard Model of particles very near the horizon of a black hole where the interactions turn out to be switched off and the electroweak symmetry could be restored.

  10. Semianalytical estimates of scattering thresholds and gravitational radiation in ultrarelativistic black hole encounters

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Hinderer, Tanja; Lemos, Madalena; Pretorius, Frans; Yunes, Nicolas; Sperhake, Ulrich

    2010-05-15

    Ultrarelativistic collisions of black holes are ideal gedanken experiments to study the nonlinearities of general relativity. In this paper we use semianalytical tools to better understand the nature of these collisions and the emitted gravitational radiation. We explain many features of the energy spectra extracted from numerical relativity simulations using two complementary semianalytical calculations. In the first calculation we estimate the radiation by a 'zero-frequency limit' analysis of the collision of two point particles with finite impact parameter. In the second calculation we replace one of the black holes by a point particle plunging with arbitrary energy and impact parameter into a Schwarzschild black hole, and we explore the multipolar structure of the radiation paying particular attention to the near-critical regime. We also use a geodesic analogy to provide qualitative estimates of the dependence of the scattering threshold on the black hole spin and on the dimensionality of the spacetime.

  11. Quasi light fields: Extending the light field to coherent radiation

    E-print Network

    Accardi, Anthony J.

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

  12. 221B Lecture Notes Quantum Field Theory IV (Radiation Field)

    E-print Network

    Murayama, Hitoshi

    this commutation relation, we introduce the photon creation and annihilation operators [ai (p), aj (q)] = ij p Early development of quantum mechanics was led by the fact that electro- magnetic radiation221B Lecture Notes Quantum Field Theory IV (Radiation Field) 1 Quantization of Radiation Field

  13. 221B Lecture Notes Quantum Field Theory III (Radiation Field)

    E-print Network

    Murayama, Hitoshi

    this commutation relation, we introduce the photon creation and annihilation operators [ai (p), aj (q)] = ij p Early development of quantum mechanics was led by the fact that electro- magnetic radiation221B Lecture Notes Quantum Field Theory III (Radiation Field) 1 Quantization of Radiation Field

  14. Quasi light fields: extending the light field to coherent radiation

    E-print Network

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  15. The response of survey meters to pulsed radiation fields

    SciTech Connect

    McCall, R.C.; Ipe, N.E.

    1987-11-01

    The response of most survey meters to steady radiation fields is fairly well known and documented. However, hardly any data is available in the literature regarding the response of these instruments to pulsed radiation. Pulsed radiation fields are encountered, e.g., in the vicinity of linear electron accelerators or klystrons. An instrument that ordinarily responds well to the average dose rate spread out evenly in time may not be able to cope with such a high dose rate. Instruments which have long dead times such as Geiger Mueller and proportional counters tend to become saturated in such fields and only count repetition rate. Ionization chambers are less influenced, however, they must be operated with adequate voltage to overcome recombination losses. Scintillation survey meters may become non-linear at higher dose rates for pulsed radiation because the photomultiplier cannot handle the instantaneous currents that are required. Because of the need to test the response of different radiation detection instruments to pulsed fields, a pulsed x-ray facility has been built (I/sub p/87). A brief description of this facility is given along with tests of several different instruments. 5 refs., 4 figs., 1 tab.

  16. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G? B? {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  17. Identifying the Discomfort: An Examination of Ethical Issues Encountered by MSW Students during Field Placement

    ERIC Educational Resources Information Center

    Dodd, Sarah-Jane

    2007-01-01

    The purpose of this descriptive study was to determine which ethical issues graduate social work students experienced most frequently during their field placement, the resources students used to resolve these issues, and whether such resources were helpful. The results indicate that conflicts concerning beneficence versus agency policy and…

  18. Encounters with fierce dogs and itchy bedbugs: why my first field work failed

    PubMed Central

    2014-01-01

    This essay, which is the fifth in the series “Recollections, Reflections, and Revelations: Personal Experiences in Ethnobiology”, is a personal reminiscence by the researcher on his first field experience in Turkey in the late 1970s, which was a failure from an ethnobiological point of view but a success for a social scientist pursuing Turkic studies. The author later returned to ethnobiology during subsequent fieldwork on the Faroes. PMID:24885471

  19. Chemical Processes in Astrophysical Radiation Fields

    SciTech Connect

    Stancil, P.C.; Dalgarno, A.

    1997-12-31

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented.

  20. Near-field radiation in nanoscale gaps

    E-print Network

    Sambegoro, Poetro Lebdo

    2011-01-01

    The theoretical calculations for near-field radiation heat transfer based on a local dielectric constant approach indicate that the heat transfer will go to infinity as the gap becomes very small. To correct this anomaly, ...

  1. Gravitational waves from galaxy encounters

    E-print Network

    V. Quilis; A. C. González-García; D. Sáez; J. A. Font

    2007-04-23

    We discuss the emission of gravitational radiation produced in encounters of dark matter galactic halos. To this aim we perform a number of numerical simulations of typical galaxy mergers, computing the associated gravitational radiation waveforms as well as the energy released in the processes. Our simulations yield dimensionless gravitational wave amplitudes of the order of $10^{-13}$ and gravitational wave frequencies of the order of $10^{-16}$ Hz, when the galaxies are located at a distance of 10 Mpc. These values are of the same order as those arising in the gravitational radiation originated by strong variations of the gravitational field in the early Universe, and therefore, such gravitational waves cannot be directly observed by ground-based detectors. We discuss the feasibility of an indirect detection by means of the B-mode polarization of the Cosmic Microwave Background (CMB) induced by such waves. Our results show that the gravitational waves from encounters of dark matter galactic halos leave much too small an imprint on the CMB polarization to be actually observed with ongoing and future missions.

  2. Gravitational waves from galaxy encounters

    SciTech Connect

    Quilis, Vicent; Saez, Diego; Font, Jose A.; Gonzalez-Garcia, A. Cesar

    2007-05-15

    We discuss the emission of gravitational radiation produced in encounters of dark matter galactic halos. To this aim we perform a number of numerical simulations of typical galaxy mergers, computing the associated gravitational radiation waveforms as well as the energy released in the processes. Our simulations yield dimensionless gravitational wave amplitudes of the order of 10{sup -13} and gravitational wave frequencies of the order of 10{sup -16} Hz, when the galaxies are located at a distance of 10 Mpc. These values are of the same order as those arising in the gravitational radiation originated by strong variations of the gravitational field in the early Universe, and therefore, such gravitational waves cannot be directly observed by ground-based detectors. We discuss the feasibility of an indirect detection by means of the B-mode polarization of the cosmic microwave background (CMB) induced by such waves. Our results show that the gravitational waves from encounters of dark matter galactic halos leave much too small an imprint on the CMB polarization to be actually observed with ongoing and future missions.

  3. Scattering by an electromagnetic radiation field

    E-print Network

    Donato Bini; Andrea Geralico

    2014-08-21

    Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin $\\frac12$ and electromagnetic (spin 1) fields, is studied too.

  4. The Local Interstellar Ultraviolet Radiation Field Richard Conn Henry

    E-print Network

    The Local Interstellar Ultraviolet Radiation Field Richard Conn Henry Maryland Space Grant interstellar ultraviolet radiation field, under various assumptions concerning the albedo a of the interstellar that ultraviolet radiation is capable of profoundly affecting the chemistry of the interstellar medium

  5. Radiation Entropy and Near-Field Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  6. Symmetries of Type N Pure Radiation Fields

    NASA Astrophysics Data System (ADS)

    Ahsan, Zafar; Ali, Musavvir

    2015-05-01

    The geometrical symmetries corresponding to the continuous groups of collineations and motions generated by a null vector l are considered. These symmetries have been translated into the language of Newman-Penrose formalism for pure radiation (PR) type N fields. It is seen that for such fields, conformal, special conformal and homothetic motions degenerate to motion. The concept of free curvature, matter curvature and matter affine collineations have been discussed and the conditions under which PR type N fields admit such collineations have been obtained. Moreover, it is shown that the projective collineation degenerate to matter affine, special projective, conformal, special conformal, null geodesic and special null geodesic collineations. It is also seen that type N pure radiation fields admit Maxwell collineation along the propagation vector l.

  7. The Local Interstellar Ultraviolet Radiation Field

    E-print Network

    Richard Conn Henry

    2002-01-03

    I have used the Hipparcos Input Catalog, together with Kurucz model stellar atmospheres, and information on the strength of the interstellar extinction, to create a model of the expected intensity and spectral distribution of the local interstellar ultraviolet radiation field, under various assumptions concerning the albedo a of the interstellar grains. (This ultraviolet radiation field is of particular interest because of the fact that ultraviolet radiation is capable of profoundly affecting the chemistry of the interstellar medium.) By comparing my models with the observations, I am able to conclude that the albedo a of the interstellar grains in the far ultraviolet is very low, perhaps a = 0.1. I also advance arguments that my present determination of this albedo is much more reliable than any of the many previous (and conflicting) ultraviolet interstellar grain albedo determinations. Beyond this, I show that the ultraviolet background radiation that is observed at high galactic latitudes must be extragalactic in origin, as it cannot be backscatter of the interstellar radiation field.

  8. Radiation reaction in high-intensity fields

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-10-01

    Since the development of a radiating electron model by Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model of the so-called "radiation reaction". Recently, this effect has become important in ultra-intense laser-electron (plasma) interactions. In our recent research, we found a way of stabilizing the radiation reaction by quantum electrodynamics (QED) vacuum fluctuation [K Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014); K. Seto, Prog. Theor. Exp. Phys. 2015, 023A01 (2015)]. On the other hand, the modification of the radiated field by highly intense incoming laser fields should be taken into account when the laser intensity is higher than 10^{22} W/cm2, which could be achieved by next-generation ultra-short-pulse 10 PW lasers, like the ones under construction for the ELI-NP facility. In this paper, I propose a running charge-mass method for the description of the QED-based synchrotron radiation by high-intensity external fields with stabilization by the QED vacuum fluctuation as an extension from the model by Dirac.

  9. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  10. Haemopoietic cell renewal in radiation fields

    NASA Astrophysics Data System (ADS)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  11. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S. (Los Alamos, NM); Jones, Michael E. (Los Alamos, NM)

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  12. Voyager: Neptune Encounter Highlights

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Voyager encounter data are presented in computer animation (CA) and real (R) animation. The highlights include a view of 2 full rotations of Neptune. It shows spacecraft trajectory 'diving' over Neptune and intercepting Triton's orbit, depicting radiation and occulation zones. Also shown are a renegade orbit of Triton and Voyager's encounter with Neptune's Magnetopause. A model of the spacecraft's complex maneuvers during close encounters of Neptune and Triton is presented. A view from Earth of Neptune's occulation experiment is is shown as well as a recreation of Voyager's final pass. There is detail of Voyager's Image Compensation technique which produces Voyager images. Eighteen images were produced on June 22 - 23, 1989, from 57 million miles away. A 68 day sequence which provides a stroboscopic view - colorization approximates what is seen by the human eye. Real time images recorded live from Voyager on 8/24/89 are presented. Photoclinometry produced the topography of Triton. Three images are used to create a sequence of Neptune's rings. The globe of Neptune and 2 views of the south pole are shown as well as Neptune rotating. The rotation of a scooter is frozen in images showing differential motion. There is a view of rotation of the Great Dark Spot about its own axis. Photoclinometry provides a 3-dimensional perspective using a color mosaic of Triton images. The globe is used to indicate the orientation of Neptune's crescent. The east and west plumes on Triton are shown.

  13. The Voyager 2 Neptune encounter

    SciTech Connect

    Tsurutani, B.T. )

    1989-10-01

    The findings made by the Voyager 2 Neptune encounter are reviewed. Data on the bowshock, magnetic field, magnetosphere, rings, plasma sheet, aurora, moons, and dust of Neptune are discussed. Findings made concerning Triton are summarized.

  14. Cellular response to modulated radiation fields

    NASA Astrophysics Data System (ADS)

    Claridge Mackonis, E.; Suchowerska, N.; Zhang, M.; Ebert, M.; McKenzie, D. R.; Jackson, M.

    2007-09-01

    Cell survival following exposure to spatially modulated beams, as created by intensity-modulated radiotherapy (IMRT), is investigated. In vitro experiments were performed using malignant melanoma cells (MM576) exposed to a therapeutic megavoltage photon beam. We compared cell survival in modulated fields with cell survival in uniform control fields. Three different spatial modulations of the field were used: a control 'uniform' field in which all cells in a flask were uniformly exposed; a 'quarter' field in which 25% of cells at one end of the flask were exposed and a 'striped' field in which 25% of cells were exposed in three parallel stripes. The cell survival in both the shielded and unshielded regions of the modulated fields, as determined by a clonogenic assay, were compared to the cell survival in the uniform field. We have distinguished three ways in which cell survival is influenced by the fate of neighbouring cells. The first of these (type I effect) is the previously reported classical Bystander effect, where cell survival is reduced when communicating with irradiated cells. We find two new types of Bystander effect. The type II effect is an observed increase in cell survival when nearby cells receive a lethal dose. The type III effect is an increase in the survival of cells receiving a high dose of radiation, when nearby cells receive a low dose. These observations of the Bystander effects emphasize the need for improved radiobiological models, which include communicated effects and account for the effects of modulated dose distribution.

  15. Constraining the Intergalactic Radiation Field with Quasar Absorption Lines

    E-print Network

    Constraining the Intergalactic Radiation Field with Quasar Absorption Lines Diplomarbeit von Mirko and the intergalactic medium . . . . . . . . . . . . . . . . . 5 1.2.1 The Gunn.3.3 The intergalactic radiation field . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Aims of this work

  16. Optimizing Digital Mammographic Image Quality for Full-Field Digital Detectors: Artifacts Encountered during the QC Process.

    PubMed

    Jayadevan, Rashmi; Armada, M Julie; Shaheen, Rola; Mulcahy, Constance; Slanetz, Priscilla J

    2015-01-01

    Early detection of breast cancer through routine mammographic screening has been shown to reduce mortality from breast cancer by up to 30% in multiple studies. However, this reduction of mortality is possible only with careful attention to image quality by the medical physicist, radiologic technologist, and interpreting radiologist. The accepted quality control (QC) processes for analog mammography are well established. However, now that use of digital units is widespread in both the United States and internationally, information regarding the necessary steps and the inherent challenges that might be encountered at each step needs to be elucidated. In this review, the essential steps of the QC process for digital mammography are reviewed, with special attention to the possible problems that can occur during the QC process, many of which can lead to image artifacts. For each of the daily, weekly, monthly, and semiannual QC tests, we review the steps and expected performance and provide examples of some of the common artifacts that may be encountered. Understanding the components of the QC process and recognizing problems that may result in a suboptimal image is critical to ensure optimal image quality in an effort to maximize early detection of breast cancer. (©)RSNA, 2015. PMID:26562238

  17. THE LOCAL INTERSTELLAR ULTRAVIOLET RADIATION FIELD Richard Conn Henry1

    E-print Network

    THE LOCAL INTERSTELLAR ULTRAVIOLET RADIATION FIELD Richard Conn Henry1 Center for Astrophysical interstellar ultraviolet radiation field, under various assumptions concerning the albedo a of the interstellar grains. (This ultraviolet radiation field is of particular interest because of the fact that ultraviolet

  18. Limited-field radiation for bifocal germinoma

    SciTech Connect

    Lafay-Cousin, Lucie . E-mail: lucie.lafay-cousin@sickkids.ca; Millar, Barbara-Ann; Mabbott, Donald; Spiegler, Brenda; Drake, Jim; Bartels, Ute; Huang, Annie; Bouffet, Eric

    2006-06-01

    Purpose: To report the incidence, characteristics, treatment, and outcomes of bifocal germinomas treated with chemotherapy followed by focal radiation. Methods and Materials: This was a retrospective review. Inclusion criteria included radiologic diagnosis of bifocal germinoma involving the pineal and neurohypophyseal region, no evidence of dissemination on spinal MRI, negative results from cerebrospinal fluid cytologic evaluation, and negative tumor markers. Results: Between 1995 and 2004, 6 patients (5 male, 1 female; median age, 12.8 years) fulfilled the inclusion criteria. All had symptoms of diabetes insipidus at presentation. On MRI, 4 patients had a pineal and suprasellar mass, and 2 had a pineal mass associated with abnormal neurohypophyseal enhancement. All patients received chemotherapy followed by limited-field radiation and achieved complete remission after chemotherapy. The radiation field involved the whole ventricular system (range, 2,400-4,000 cGy) with or without a boost to the primary lesions. All patients remain in complete remission at a median follow-up of 48.1 months (range, 9-73.4 months). Conclusions: This experience suggests that bifocal germinoma can be considered a locoregional rather than a metastatic disease. Chemotherapy and focal radiotherapy might be sufficient to provide excellent outcomes. Staging refinement with new diagnostic tools will likely increase the incidence of the entity.

  19. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  20. Nature of the background ultraviolet radiation field

    E-print Network

    Archana Samantaray; Pushpa Khare

    2000-03-21

    We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.

  1. Scatter radiation influences in nuclide calibration fields

    NASA Astrophysics Data System (ADS)

    Hranitzky, C.; Stadtmann, H.

    2007-09-01

    The goal of this study is to characterize the 137Cs and 60Co nuclide calibration fields of the reference irradiation facility with collimated beam geometry as part of the Dosimetry Laboratory Seibersdorf. Air kerma along the main beam axis with source-detector distances up to 19 m and additionally lateral field profiles are investigated by comparing mainly ionization chamber measurements with MCNP Monte Carlo computer simulations. The scatter radiation contributions from various facility components including simulations with and without air environment are studied by detailed modeling of the facility. Relative differences between measured and simulated results are currently within about 1-2%, i.e., roughly two to three times of the total measurement uncertainties, but reasons due to scattering influences and further improvements in the model are discussed.

  2. Electromagnetic radiation by quark-gluon plasma in magnetic field

    E-print Network

    Kirill Tuchin

    2012-06-03

    The electromagnetic radiation by quark-gluon plasma in strong magnetic field is calculated. The contributing processes are synchrotron radiation and one--photon annihilation. It is shown that in relativistic heavy--ion collisions at RHIC and LHC synchrotron radiation dominates over the annihilation. Moreover, it constitutes a significant part of all photons produced by the plasma at low transverse momenta; its magnitude depends on the plasma temperature and the magnetic field strength. Electromagnetic radiation in magnetic field is probably the missing piece that resolves a discrepancy between the theoretical models and the experimental data. It is argued that electromagnetic radiation increases with the magnetic field strength and plasma temperature.

  3. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core students are the geophysics Honours students (~4th year undergraduates). In addition, up to 8 students from all over Africa are included in the program to help address practical training in Africa. The final cohort are minority students from the USA. Participants spend a week planning and costing out surveys, a week in the field collecting data using different methods including: gravity, DGPS, magnetics, resistivity, refraction seismic, EM methods, core logging and physical property measurements. The final week is spent interpreting and integrating their results. Graduate students are given the opportunity to instruct on the field school and manage the logistics for a particular method. The field school is unique in Africa and satisfies a need for practical training with limited resources, with a rare blend of cultural interactions!

  4. The separation of radiating and non-radiating near-field pressure fluctuations in supersonic jets

    NASA Astrophysics Data System (ADS)

    Du, Yongle; Morris, Philip J.

    2015-10-01

    Conventional analysis infers the jet noise source characteristics from either the turbulent fluctuations in the mixing layer, the near-field pressure fluctuations, or the far-field radiated sound. It is generally accepted that the first two techniques include both the radiating and non-radiating noise sources while the last senses only the radiated sound. Understanding of the characteristics of the non-radiating and radiating fluctuations helps to shed light on the noise source mechanisms. For this purpose, a quantitative analysis is introduced in this study to separate the radiating from the non-radiating near-field fluctuations. The analysis uses a high-fidelity unsteady jet flow and noise simulation for an internally mixed dual-stream nozzle. Based on the predicted far-field acoustic pressure on a virtual microphone array, a simple beamforming method is used to derive the equivalent wavepacket-like noise sources on a conical surface outside the jet mixing layer. These radiating noise sources are compared with the total near-field pressure fluctuations to examine their different characteristics. Wavepacket-like noise sources are filtered with the POD (Proper Orthogonal Decomposition) at discrete frequencies. Although the two equivalent noise sources show different amplitude distributions and phase velocities, they agree favorably with the Mach wave radiation theory as well as with the near-field turbulence. Both reproduce well the noise radiation pattern in terms of the phase, wavelength, radiation direction and noise levels when inserted into the wave equation.

  5. RADIATION FIELDS, SCATTERING AND INVERSE SCATTERING ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

    E-print Network

    Sá Barreto, Antônio

    RADIATION FIELDS, SCATTERING AND INVERSE SCATTERING ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS ANT manifolds and to use them to study scattering and inverse scattering theories. The radiation fields on Rn, and as such can be used to define a scattering matrix. We show that this scattering matrix is equivalent

  6. Influence of Hydroponically Grown Hoyt Soybeans and Radiation Encountered on Mars Missions on the Yield and Quality of Soymilk and Tofu

    NASA Technical Reports Server (NTRS)

    Wilson, Lester A.

    2005-01-01

    Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese method. The soymilk was coagulated with calcium sulfate dihydrate. Soybeans and tofu were evaluated using chemical, microbial, and instrumental sensory methods. The surface radiation of whole dry soybeans using electron beam or gamma rays at 10 or 30 kGy did provide microbial safety for the astronauts. However, these doses caused oxidative changes that resulted in tofu with rancid aroma, darkening of the tofu, lower tofu yields, more solid waste, and loss of the ability of the seeds to germinate. While lower doses may reduce these problems, we lose the ability to insure microbial safety (cross-contamination) of bulk soybeans for the astronauts. Counter measures could include vacuum packaging, radiating under freezing conditions. A No Effect Dose for food quality, below 10 kGy needs to be determined. Better estimates of the radiation that the food will be exposed to need to determined and shared. Appropriate shielding for the food as well as the astronauts needs to be developed. The Hoyt soybean did not provide a high yielding, high quality tofu. A new small scale system for evaluating soybeans was developed using 50 g quantities of soybeans.

  7. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  8. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H. (Albuquerque, NM); Reese, Robert P. (Edgewood, NM)

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  9. VOYAGER OBSERVATIONS OF THE DIFFUSE FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn; Holberg, Jay B.

    2012-03-01

    The two Voyager spacecraft have completed their planetary exploration mission and are now probing the outer realms of the heliosphere. The Voyager ultraviolet spectrometers continued to operate well after the Voyager 2 Neptune encounter in 1989. We present a complete database of diffuse radiation observations made by both Voyagers: a total of 1943 spectra (500-1600 A) scattered throughout the sky. These include observations of dust-scattered starlight, emission lines from the hot interstellar medium, and a number of locations where no diffuse radiation was detected, with the very low upper limit of about 25 photons cm{sup -2} s{sup -1} sr{sup -1} A{sup -1}. Many of these observations were from late in the mission when there was significantly less contribution from interplanetary emission lines and thus less contamination of the interstellar signal.

  10. Near-field radiative thermal transport: From theory to experiment

    NASA Astrophysics Data System (ADS)

    Song, Bai; Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod

    2015-05-01

    Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

  11. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30?nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10?nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312

  12. Radiation tolerant silicon nitride insulated gate field effect transistors

    NASA Technical Reports Server (NTRS)

    Newman, P. A.

    1969-01-01

    Metal-Insulated-Semiconductor Field Effect Transistor /MISFET/ device uses a silicon nitride passivation layer over a thin silicon oxide layer to enhance the radiation tolerance. It is useful in electronic systems exposed to space radiation environment or the effects of nuclear weapons.

  13. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  14. Reconstruction of radiating sound fields using minimum energy method.

    PubMed

    Bader, Rolf

    2010-01-01

    A method for reconstructing a pressure field at the surface of a radiating body or source is presented using recording data of a microphone array. The radiation is assumed to consist of many spherical radiators, as microphone positions are present in the array. These monopoles are weighted using a parameter alpha, which broadens or narrows the overall radiation directivity as an effective and highly intuitive parameter of the radiation characteristics. A radiation matrix is built out of these weighted monopole radiators, and for different assumed values of alpha, a linear equation solver reconstructs the pressure field at the body's surface. It appears that from these many arbitrary reconstructions, the correct one minimizes the reconstruction energy. The method is tested, localizing the radiation points of a Balinese suling flute, reconstructing complex radiation from a duff frame drum, and determining the radiation directivity for the first seven modes of an Usbek tambourine. Stability in terms of measurement noise is demonstrated for the plain method, and additional highly effective algorithm is added for a noise level up to 0 dB. The stability of alpha in terms of minimal reconstruction energy is shown over the whole range of possible values for alpha. Additionally, the treatment of unwanted room reflections is discussed, still leading to satisfactory results in many cases. PMID:20058977

  15. Monitoring of radiation fields in a waste tank model: Virtual radiation dosimetry

    SciTech Connect

    Tulenko, J.S.

    1995-12-31

    The University of Florida (UF) has developed a coupled radiation computation and three-dimensional modeling simulation code package. This package combines the Deneb Robotics` IGRIP three-dimensional solid modeling robotic simulation code with the UF developed VRF (Virtual Radiation Field) Monte Carlo based radiation computation code. The code package allows simulated radiation dose monitors to be placed anywhere on simulated robotic equipment to record the radiation doses which would be sustained when carrying out tasks in radiation environments. Comparison with measured values in the Hanford Waste Tank C-106 shows excellent results. The code shows promise of serving as a major tool in the design and operation of robotic equipment in radiation environments to ensure freedom from radiation caused failure.

  16. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  17. Voyager 1: Encounter with Saturn

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1980-01-01

    The history of the Voyager Project is reviewed as well as known facts about Saturn and its satellites. Important results of encounters with Jupiter are summarized. Scientific objectives of the flyby of Saturn involve the planet's atmosphere, rings, and magnetic field interactions with the solar wind and satellites. The search for additional satellites, and various aspects of Titan, Rhea, Dione, Mimas, Iapetus, Hyperion, and Enceladas are also of interest. The instruments developed to obtain these goals are described.

  18. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  19. Gravitational radiation from preheating with many fields

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier E-mail: larry@gravity.phys.uwm.edu

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  20. Understanding metropolitan patterns of daily encounters.

    PubMed

    Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng

    2013-08-20

    Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373

  1. Electron trajectories in pulsed radiation fields

    SciTech Connect

    Einwohner, T.; Lippmann, B.A.

    1987-05-01

    The work reported here analyzes the dynamical behavior of an electron, initially at rest, when subjected to a radiation pulse of arbitrary, but integrable, shape. This is done by a general integration procedure that has been programmed in VAXIMA. Upon choosing a specific shape for the pulse, VAXIMA finds both the space-time trajectory and the four-momentum of the electron. These are obtained in analytic or numerical form - or both - at the choice of the user. Several examples of analytical and numerical solutions, for different pulse shapes, are given.

  2. Visual verification of linac light and radiation fields coincidence

    SciTech Connect

    Monti, Angelo F.; Frigerio, Milena; Frigerio, Giovanna

    2003-06-30

    X-ray and light field alignment evaluation is carried out during linac quality assurance programs. In this paper, we compare the size of the light field measured by a photodiode and by a more traditional visual observation with the size of the x-ray field. The comparison between actual light field size, measured with the photodiode, and light field size measured by human eye allow us to verify the reliability of human eye in the evaluation of this parameter. The visual field is always larger than real light field; however, it agrees better with the x-ray field. It matches the light field if we take into account the 25% ({+-} 1%) of the decrement line of the maximum central lightening; however, this method simulates better the actual field employed in radiation treatments.

  3. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (?,xn), (n,?), (?,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  4. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  5. The clinical encounter revisited.

    PubMed

    Schattner, Ami

    2014-04-01

    The patient-physician encounter is the pivotal starting point of any healthcare delivery, but it is subject to multiple process breakdowns and prevalent suboptimal performance. An overview of the techniques and components of a successful encounter valid for every setting and readily applicable is presented, stressing 7 rules: (1) ensuring optimal environment, tools, and teamwork; (2) viewing each encounter not only as a cognitive/biomedical challenge, but also as a personal one, and a learning opportunity; (3) adopting an attitude of curiosity, concentration, compassion, and commitment, and maintaining a systematic, orderly approach; (4) "simple is beautiful"-making the most of the basic clinical data and their many unique advantages; (5) minding "the silent dimension"-being attentive to the patient's identity and emotions; (6) following the "Holy Trinity" of gathering all information, consulting databases/colleagues, and tailoring gained knowledge to the individual patient; and (7) using the encounter as a "window of opportunity" to further the patient's health-not just the major problem, by addressing screening and prevention; promoting health literacy and shared decision-making; and establishing proper follow-up. Barriers to implementation identified can be overcome by continuous educational interventions. A high-quality encounter sets a virtuous cycle of patient-provider interaction and results in increasing satisfaction, adherence, and improved health outcomes. PMID:24333201

  6. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  7. An evaluation of RAMS radiation schemes by field measurements

    SciTech Connect

    Zhong, S; Doran, J C

    1994-02-01

    At present, two radiation schemes are used in RAMS: the Mahrer and Pielke (M-P) scheme and the Chen and Cotton (C-C) scheme. The M-P scheme requires little computational expense, but does not include the radiative effects of liquid water or ice; the C-C scheme accounts for the radiative effects of liquid water and ice but is fairly expensive computationally. For simulations with clouds, the C-C scheme is obviously a better choice, but for clear sky conditions, RAMS users face a decision regarding which radiation scheme to use. It has been noted that the choice of radiation scheme may result in significantly different results for the same case. To examine the differences in the radiative fluxes and the boundary-layer structure corresponding to the two radiation schemes in RAMS we have carried out a study where Rams was used to simulate the same case with two different radiation schemes. The modeled radiative fluxes by the two schemes were then compared with the field measurements. A description of the observations and the case study, a comparison and discussion of the results, and a summary and conclusions follow.

  8. Synchrotron radiation in strongly coupled conformal field theories

    SciTech Connect

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Rajagopal, Krishna; Nickel, Dominik

    2010-06-15

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle {alpha}{approx}1/{gamma}. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  9. Cosmological fluctuations of a random field and radiation fluid

    SciTech Connect

    Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk E-mail: rudnei@uerj.br

    2014-05-01

    A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.

  10. Radiation of Electron in the Field of Plane Light Wave

    SciTech Connect

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.; /SLAC

    2006-02-24

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

  11. Galileo's Encounter with Amalthea

    NASA Astrophysics Data System (ADS)

    Johnson, T. V.; Anderson, J. D.

    2003-04-01

    Galileo's last science periapsis encounter with Jupiter before impact was on orbit 34. One of the main scientific goals of this encounter was a close, targeted flyby of the satellite Amalthea. Although two-way Doppler tracking was lost near closest approach, one-way data were obtained throughout the encounter. Together with solid two-way data before and after the encounter period, there is enough information to constrain the mass of the satellite. Together with previously determined shape and volume information these data yield a useful value for the density of this highly non-spherical moon. Preliminary analyses have been presented indicating a bulk density near 1 gm/cc, considerably lower than was expected from the satellite's dark albedo and anticipated rocky composition. Low-density rock or rock/ice mixtures combined with a high porosity, similar to that inferred from recent small asteroid data, are suggested as the most likely explanation. Refined estimates of mass and density as well as uncertainties will be presented and the implications for Amalthea's composition and porosity discussed.

  12. BPS Dyon in a Weak Electromagnetic Field: Equations of Motion and Radiation Fields

    E-print Network

    Dongsu Bak; Choonkyu Lee

    1994-02-09

    Dynamics of a BPS dyon in a weak, constant, electromagnetic field is studied through a perturbative analysis of appropriate non-linear field equations. The full Lorentz force law for a BPS dyon is established. Also derived are the radiation fields accompanying the motion.

  13. Axionic Dark Radiation and the Milky Way's Magnetic Field

    E-print Network

    Malcolm Fairbairn

    2013-10-16

    Recently it has been suggested that dark radiation in the form of axions produced during the decay of string theory moduli fields could be responsible for the soft x-ray excess in galaxy clusters. These soft X-ray photons come about due to the conversion of these axions into photons in the magnetic fields of the clusters. In this work we calculate the conversion of axionic dark radiation into X-ray photons in the magnetic field of our own Galaxy. We consider Delta N ~ 0.5 worth of dark radiation made up of axions with energy of order 0.1-1 keV. We show that it is possible, if a little optimistic, to explain the large regions of X-ray emission located above and below the centre of the Galactic plane detected in the 3/4 keV ROSAT all sky map completely due to the conversion of dark radiation into photons with an inverse axion-photon coupling of M ~ 3e13 GeV and an axion mass of m way to constrain such models of axionic dark radiation.

  14. Topological magnetoelectric effects in microwave far-field radiation

    E-print Network

    Berezin, M; Shavit, R

    2015-01-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently it was shown that the near fields in the proximity of a small ferrite particle with magnetic dipolar mode (MDM) oscillations have the space and time symmetry breakings and topological properties of these fields are different from topological properties of the free space electromagnetic (EM) fields. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. They are characterized by power flow vortices and non zero helicity. In this paper, we report on observation of the topological ME effects in far field microwave radiation based ...

  15. Radiative neutrino decay in a strong magnetic field

    SciTech Connect

    Anikin, R. A. Mikheev, N. V.

    2013-12-15

    The radiative decay of neutrinos in a strong magnetic field that have relatively high energies, E ? m{sub e}, is studied with allowance for positronium contribution to the photon polarization operator in the vicinity of the cyclotron resonance. It is shown that the probability for the process ? ? ?? increases substantially upon taking into account the positronium contribution.

  16. Radiation of the blackbody in the external field

    E-print Network

    Miroslav Pardy

    2006-03-06

    The blackbody is considered in the external general field. The additional coefficients of stimulated emission and absorption are introduced into the Einstein mechanism. Then, the generalized Planck formula is derived. The Einstein and Debye formula for the specific heat is possible to generalize. The application of the theory to the sonoluminescence, the relic radiation and solar spectrum is discussed.

  17. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (inventors)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  18. Genesis of quantization of matter and radiation field

    NASA Astrophysics Data System (ADS)

    de la Peña, Luis; Cetto, Ana María.

    2015-09-01

    Are we to accept quantization as a fundamental property of nature, the origin of which does not require or admit further investigation? To get an insight into this question we consider atomic systems as open systems, since they are by necessity in contact with the electromagnetic radiation field. This includes not only photonic radiation, but, more importantly for our purposes, the random zero-point or nonthermal radiation that pervades the Universe. The Heisenberg inequalities, atomic stability and the existence of discrete solutions are explained as a result of the permanent action of this field upon matter and the balance between mean absorbed and emitted powers in the equilibrium regime. A detailed study carried out along the years has led to the usual quantum-mechanical formalism as a powerful and revealing statistical description of the behavior of matter in the radiationless approximation, as well as to the radiative corrections of nonrelativistic QED. The theory presented gives thus a response to the question posed above, within a local, realist and objective framework: quantization appears as an emergent phenomenon due to the matter-field interaction.

  19. Quantum driven dissipative parametric oscillator in a blackbody radiation field

    SciTech Connect

    Pachón, Leonardo A.; Department of Chemistry and Center for Quantum Information and Quantum Control, Chemical Physics Theory Group, University of Toronto, Toronto, Ontario M5S 3H6 ; Brumer, Paul

    2014-01-15

    We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in analytic closed formulae, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.

  20. Anomalous Radiative Trapping in Laser Fields of Extreme Intensity

    NASA Astrophysics Data System (ADS)

    Gonoskov, A.; Bashinov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A.

    2014-07-01

    We demonstrate that charged particles in a sufficiently intense standing wave are compressed toward, and oscillate synchronously at, the antinodes of the electric field. We call this unusual behavior anomalous radiative trapping (ART). We show using dipole pulses, which offer a path to increased laser intensity, that ART opens up new possibilities for the generation of radiation and particle beams, both of which are high energy, directed, and collimated. ART also provides a mechanism for particle control in high-intensity quantum-electrodynamics experiments.

  1. Anomalous radiative trapping in laser fields of extreme intensity.

    PubMed

    Gonoskov, A; Bashinov, A; Gonoskov, I; Harvey, C; Ilderton, A; Kim, A; Marklund, M; Mourou, G; Sergeev, A

    2014-07-01

    We demonstrate that charged particles in a sufficiently intense standing wave are compressed toward, and oscillate synchronously at, the antinodes of the electric field. We call this unusual behavior anomalous radiative trapping (ART). We show using dipole pulses, which offer a path to increased laser intensity, that ART opens up new possibilities for the generation of radiation and particle beams, both of which are high energy, directed, and collimated. ART also provides a mechanism for particle control in high-intensity quantum-electrodynamics experiments. PMID:25032929

  2. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  3. Performance of radiation survey meters in X- and gamma-radiation fields.

    PubMed

    Ceklic, Sandra; Arandjic, Danijela; Zivanovic, Milos; Ciraj-Bjelac, Olivera; Lazarevic, Djordje

    2014-11-01

    The aim of this work was to investigate the different types of radiation detectors commonly used for radiation protection purposes as survey meters. The study was performed on survey meters that use different detectors as ionisation chamber, Geiger Mueller (GM) counter and scintillation detector. For each survey meter, energy dependence and angular response in X- and gamma-radiation fields was tested. The following commercially available survey meters were investigated: ionisation chambers Victoreen 451P, Babyline 31 and VA-J-15A, Geiger counter MRK-M87, 6150 AD6 and FAG FH 40F2 and scintillation counter 6150 ADB. As a source of gamma radiation, (137)Cs and (60)Co were used whereas X-ray radiation fields were generated using an X-ray unit. The radiation characteristics of the survey meters were mostly in compliance with references estimated by standard IEC 1017-2. However, some of them showed larger deviation at lower energies. GM counters exhibit strong energy dependence for low-energy photons. PMID:25063785

  4. Mesoscopic near-field radiative heat transfer at low temperatures

    NASA Astrophysics Data System (ADS)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 ?m currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  5. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  6. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    E-print Network

    N. N. Bogolubov; A. K. Prykarpatsky

    2013-02-16

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means of the geometric considerations and its deep relation with the vacuum field theory approach devised before in \\cite{BPT0,BPT1}. \\ Being completely classical, we reanalyze the Feynman's derivation from the classical Lagrangian and Hamiltonian points of view \\ and construct its nontrivial \\ relativistic generalization compatible with the mentioned above vacuum field theory approach.

  7. High field magnetic resonance imaging-based gel dosimetry for small radiation fields

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng

    Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

  8. Encounter with Economics

    E-print Network

    Macfarlane, Alan

    2014-12-12

    home that I'd been made a lecturer; next six years were wonderful; colleagues included Eric Russell, my mentor, who published very little but what he did publish was like gold; extraordinarily young department and with my friend Bob Wallace we... of economics. From the time of T.R. Malthus, through Alfred Marshall in the nineteenth century, and John Maynard Keynes and James Meade in the twentieth, it has been a strong discipline. It was therefore inevitable that I should encounter economists...

  9. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-print Network

    Svend-Age Biehs

    2011-03-15

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  10. Study on neutron radiation field of carbon ions therapy

    E-print Network

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  11. Study on neutron radiation field of carbon ions therapy

    E-print Network

    Jun-Kui Xu; You-Wu Su; Wu-Yuan Li; Wei-Wei Yan; Xi-Meng Chen; Wang Mao; Cheng-Guo Pang

    2015-03-18

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  12. A Computational Model of Cellular Response to Modulated Radiation Fields

    SciTech Connect

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland ; Trainor, Colman; O'Sullivan, Joe M.; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland ; Hounsell, Alan R.; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland ; Prise, Kevin M.

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  13. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  14. Electrically-gated near-field radiative thermal transistor

    E-print Network

    Yang, Yue

    2015-01-01

    In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

  15. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    E-print Network

    Gautam Rupak; Lakma Fernando; Akshay Vaghani

    2012-04-19

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.

  16. Cosmological perturbations for an inflaton field coupled to radiation

    SciTech Connect

    Visinelli, Luca

    2015-01-01

    Within the framework of the interacting fluid formalism, we provide the numerical solution to the Boltzmann equation describing the evolution of an inflaton field coupled to radiation. We study the behavior of the system during the slow-roll regime, in the case in which an additional stochastic source term is included in the set of equations, and we recover the expression for the cosmological perturbations previously obtained in the Warm inflation scenarios.

  17. Intermediate Number-Squeezed State of the Quantized Radiation Field

    NASA Astrophysics Data System (ADS)

    Baseia, B.; de Lima, A. F.; da Silva, A. J.

    Following previous strategies by Stoler et al. which introduced the binomial state and Baseia et al. which introduced the intermediate number phase state, we introduce a new intermediate state of the quantized radiation field, which reduces to the number state and squeezed state in two different limits. This interpolating state exhibits nonclassical effects as sub-Poissonian, antibunching and squeezing, obtained from the corresponding expressions as function of the interpolating parameters.

  18. Near-field radiative heat transfer for structured surfaces

    E-print Network

    Svend-Age Biehs; Oliver Huth; Felix Rüting

    2011-03-15

    We apply an analytical approach for determining the near-field radiative heat transfer between a metallic nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results obtained for some simple model geometries we discuss typical signatures that should be obtainable with a near-field scanning thermal microscope operated in either constant-height or constant-distance mode.

  19. Radiation from electrons in graphene in strong electric field

    SciTech Connect

    Yokomizo, N.

    2014-12-15

    We study the interaction of electrons in graphene with the quantized electromagnetic field in the presence of an applied uniform electric field using the Dirac model of graphene. Electronic states are represented by exact solutions of the Dirac equation in the electric background, and amplitudes of first-order Feynman diagrams describing the interaction with the photon field are calculated for massive Dirac particles in both valleys. Photon emission probabilities from a single electron and from a many-electron system at the charge neutrality point are derived, including the angular and frequency dependence, and several limiting cases are analyzed. The pattern of photon emission at the Dirac point in a strong field is determined by an interplay between the nonperturbative creation of electron–hole pairs and spontaneous emission, allowing for the possibility of observing the Schwinger effect in measurements of the radiation emitted by pristine graphene under DC voltage.

  20. Teacher Educators Using Encounter Stories

    ERIC Educational Resources Information Center

    Davis, Danné E.; Kellinger, Janna Jackson

    2014-01-01

    Many prospective teachers are unaware of the encounters that Black, heterosexual women or White lesbians face. Here, we present encounter stories--individual narratives of poignant encounters and interactions that we have experienced with people unlike us--to identify with and ultimately draw on their experiences. Subsequently, the narratives…

  1. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL...1053 Measurements required: Field strength of spurious radiation. (a) Measurements shall be made to...

  2. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL...1053 Measurements required: Field strength of spurious radiation. (a) Measurements shall be made to...

  3. RADIATION FIELDS FOR SEMILINEAR WAVE EQUATIONS DEAN BASKIN AND ANT^ONIO SA BARRETO

    E-print Network

    Sá Barreto, Antônio

    RADIATION FIELDS FOR SEMILINEAR WAVE EQUATIONS DEAN BASKIN AND ANT^ONIO S´A BARRETO Abstract. We define the radiation fields of solutions to critical semilinear wave equations in R3 and use them to define the scattering operator. We also prove a support theorem for the radiation fields with radial

  4. Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field

    E-print Network

    J. Froehlich; M. Griesemer; B. Schlein

    2000-09-27

    In models of (non-relativistic and pseudo-relativistic) electrons interacting with static nuclei and with the (ultraviolet-cutoff) quantized radiation field, the existence of asymptotic electromagnetic fields is established. Our results yield some mathematically rigorous understanding of Rayleigh scattering and of the phenomenon of relaxation of isolated atoms to their ground states. Our proofs are based on propagation estimates for electrons inspired by similar estimates known from $N$-body scattering theory.

  5. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    E-print Network

    Rajeev Kumar Jain; McCullen Sandora; Martin S. Sloth

    2015-06-15

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.

  6. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  7. Radiation-hardened field coils for FMIT quadrupoles

    SciTech Connect

    Grieggs, R.J.; Liska, D.J.; Harvey, A.

    1983-01-01

    Modern accelerators of the Fusion Materials Irradiation Test (FMIT) class deliver enormous power onto their targets. The high beam currents of such machines produce highly activating radiation fields from beam/target interaction and normal beam losses. The 100-mA deuteron beam from the FMIT accelerator produces a backstreaming fast-neutron flux of 10/sup 11/ n/s-cm/sup 2/ near the target. In addition, the neutron contribution from distributed beam spill of 3 ..mu..A/m along the rest of the machine prevents the use of epoxy resin potting materials in all magnet field coils above 10-MeV beam energies. Two special techniques for radiation-hardened field coils have been developed at Los Alamos for use on the FMIT accelerator. One technique uses vitreous enamel coatings on the conductors and appears attractive for the drift-tube quadrupoles. Another method uses a thermally efficient two-layer coil design that has solid mineral-insulated (MI) conductors with indirect cooling coils, all bonded together in a lead matrix. Test results are discussed, along with applications of the quadrupoles in the FMIT facility that reduce gamma exposures during maintenance periods.

  8. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.

  9. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system auto triggers saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.

  10. Generation of electromagnetic radiation based on nanotubes under a constant electric field and an electromagnetic wave field

    SciTech Connect

    Sadykov, N. R. Scorkin, N. A.

    2012-02-15

    The possible generation of radiation in the millimeter range based on nanotubes by an alternating (rapidly oscillating) electric field under a constant (or nonstationary) electric field is studied. Radiation enhancement is based on a periodic dependence of the current in nanotubes in such electric fields. The results of a mathematical simulation are presented.

  11. Near-field thermal radiation transfer by mesoporous metamaterials.

    PubMed

    Didari, Azadeh; Mengüç, M Pinar

    2015-09-21

    In this work, we investigate the impact of nano-scale pores within structured metamaterials on spectral near-field radiative transfer. We use Finite Difference Time Domain Method (FDTD) and consider uniform and corrugated SiC substrates filled with rectangular nano-scale vacuum inclusions having equivalent diameters of 10, 37 and 57 nm. We report the appearance of the secondary and tertiary resonance peaks at different frequencies as a function of changing pore diameter, which cannot be predicted if an effective medium theory approximation is used. PMID:26406754

  12. Nonresonant radiative exciton transfer by near field between quantum wells

    SciTech Connect

    Aleshkin, V. Ya.; Gavrilenko, L. V. Gaponova, D. M.; Kadykov, A. M.; Lysenko, V. G.; Krasil’nik, Z. F.

    2013-11-15

    We experimentally observed an increase in the intensity of photoluminescence from a wider quantum well (QW) when an exciton transition was induced in the neighboring narrower QW separated from the former one by a tunneling-nontransparent AlGaAs barrier. The dependence of the efficiency of the near-field radiative transfer of excitons on the distance between QWs was studied in heterostructures without coincidence of exciton resonances in the adjacent QWs. Theoretical results were qualitatively consistent with the available experimental data.

  13. Localisation of atomic populations in the optical radiation field

    SciTech Connect

    Efremova, E A; Gordeev, M Yu; Rozhdestvensky, Yu V

    2014-10-31

    The possibility of two-dimensional spatial localisation of atomic populations under the influence of the travelling wave fields in the tripod-configuration of quantum states is studied for the first time. Three travelling waves propagating in the same plane at an angle of 120° to each other form a system of standing waves under the influence of which atomic populations are localised. The size of the region of spatial localisation of the populations, in principle, can be hundredths of a wavelength of optical radiation. (quantum optics)

  14. Tail terms in gravitational radiation reaction via effective field theory

    E-print Network

    S. Foffa; R. Sturani

    2012-12-24

    Gravitational radiation reaction affects the dynamics of gravitationally bound binary systems. Here we focus on the leading "tail" term which modifies binary dynamics at fourth post-Newtonian order, as first computed by Blanchet and Damour. We re-produce this result using effective field theory techniques in the framework of the Lagrangian formalism suitably extended to include dissipation effects. We recover the known logarithmic tail term, consistently with the recent interpretation of the logarithmic tail term in the mass parameter as a renormalization group effect of the Bondi mass of the system.

  15. Universalist ethics in extraterrestrial encounter

    NASA Astrophysics Data System (ADS)

    Baum, Seth D.

    2010-02-01

    If humanity encounters an extraterrestrial civilization, or if two extraterrestrial civilizations encounter each other, then the outcome may depend not only on the civilizations' relative strength to destroy each other but also on what ethics are held by one or both civilizations. This paper explores outcomes of encounter scenarios in which one or both civilizations hold a universalist ethical framework. Several outcomes are possible in such scenarios, ranging from one civilization destroying the other to both civilizations racing to be the first to commit suicide. Thus, attention to the ethics of both humanity and extraterrestrials is warranted in human planning for such an encounter. Additionally, the possibility of such an encounter raises profound questions for contemporary human ethics, even if such an encounter never occurs.

  16. Interaction of Electromagnetic Radiation with Supercritical Magnetic Field

    E-print Network

    A. E. Shabad

    2004-01-12

    It is pointed, that effects of refraction of electromagnetic radiation in the medium, formed by the magnetized vacuum, become essential already for relatively soft photons, not hard enough to create an electron-positron pair, including those belonging to soft gamma-, X-ray, optic and radio- range, if the magnetic field B exceeds the critical value of Bcr=m^2/e=4.4 10^13 Gauss. Three leading terms in the asymptotic expansion of the one-loop polarization operator in a constant magnetic field are found for B>>Bcr, and the corresponding refraction index is shown to depend only on the propagation direction of the photon relative to the external field. It is established, that the refraction index for one of polarization modes unlimitedly grows with the field, while the other is saturated at a moderate level. The photon capture effect is extended to soft photons. The results may be essential in studying reflection, refraction and splitting of X-rays, light and radio waves by magnetic fields of magnetars, as well as in considering emission of such waves by charged particles .

  17. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    E-print Network

    Jain, Rajeev Kumar; Sloth, Martin S

    2015-01-01

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, sur...

  18. Thermoacoustic Monitoring of Radiation Field of Scanning Electron Beam

    NASA Astrophysics Data System (ADS)

    Popov, G. F.; Kalinichenko, A. I.; Kresnin, Yu. A.; Stervoedov, N. G.

    1997-05-01

    Thermoacoustic dosimeters on the base of thin rods and plates were used in control system of scanning electron beam in technological process of radiation--chemical modification of polymeric composites. They are characterized by low price, simplicity and reliability of construction. A system, incorporated the wire dosimeter with piezoelectric detector on its butt-end, electronic preamplifier, CAMAC crate and computer with corresponding software carried out continuous, nondistorting, and high-informative monitoring of extensive area under pulsed radiation. Dosimeter with ramifying body was displaced normally to initial direction of electron beam axis. Its body consisted of a few parallel titanic wire 140 cm long. Each of acoustic pulses, generated in dosimeter body by accelerator pulse sequence, carries the information about location and transverse distribution of corresponding electron pulse. A spatial profile of a radiation field, caused by any periodic shape of current in scanning magnet, was displayed immediately. It permitted fitting the profile to desirable that by varying the shape of magnet current.

  19. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68?°C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  20. Development of a Characterized Radiation Field for Evaluating Sensor Performance

    SciTech Connect

    Rogers, D.M.; Coggins, T.L.; Marsh, J.; Mann, St.D.; Waggoner, Ch.A.

    2008-07-01

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shielding can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)

  1. Convection electric field effects on outer radiation belt electron precipitation

    NASA Technical Reports Server (NTRS)

    Gelpi, C.; Benbrook, J. R.; Sheldon, W. R.

    1986-01-01

    A model is presented for the possible diurnal modulation of outer radiation belt electron precipitation by considering the effect of the convection electric field on geomagnetically trapped electrons. The modulation flux is the flux due to electrons in the drift loss cone, i.e., those which drift into the bounce loss cone. The electron flux in the drift loss cone is related to the time allowable for diffusion from the stably trapped population to the drift loss cone for precipitation at a specific geographic location. This time, which is termed the maximum L-shell lifetime, is obtained by computing electron trajectories, using a realistic magnetic field model and a simple model for the electric field. The maximum L-shell lifetimes are taken to be the times between successive entries into the bounce loss cone. Conservation of the first two adiabatic invariants, as electrons are slowly energized by the convection electric field, leads to variations in pitch angle, maximum L-shell lifetimes, and, consequently, to changes in the electron flux in the drift loss cone. These results are compared with observations of precipitating electrons made with sounding rocket payloads.

  2. Solar Radiative Fluxes for Realistic Extended Broken Cloud Fields above Reflecting Surfaces

    NASA Astrophysics Data System (ADS)

    Barker, Howard W.

    Structural properties and solar radiative fluxes for broken, inhomogeneous cloud fields (primarily fairweather cumulus) are examined from the point of view of sub-grid parameterization for global climate models (GCMs). AVHRR satellite visible and infrared radiances (256 x 256 km images) display almost identical one and two-dimensional wavenumber spectra. For scales greater than ~ 4 km, radiance spectra follow k^ {-1} to k^{-5/3} where k is wavenumber (at scales greater than ~40 km, radiance spectra for stratocumulus and stratocumulus of open polygonal cells behave as white noise). At scales between ~4 km and ~2 km, spectra follow ~k^{-4}. Aircraft observations of cloud microphysics and temperature, however, suggest that these fields follow closely Kolmogorov's classic k^{-5/3} law down to at least ~120 m. The dramatic scaling change in radiance fields may, therefore, be due to horizontal variation in the vertical integral of liquid water content. Based on the empirical data, a phenomonological scaling cloud field model which produces three different forms of a cloud field is developed and demonstrated. The cloud fields produced by this model are used ultimately in a three-dimensional atmospheric Monte Carlo photon transport model which is developed and validated. Also, two methods of including an underlying reflecting surface are developed and validated. Using the models mentioned above, fluxes for various scaling, random, regular, and plane-parallel broken cloud fields are compared. Scaling cloud fields span a spectrum from white noise fields to plane-parallel. If most cloud fields scale between k^{-0.5} and k^{-5/3} over regions the size of GCM grids, as they probably do, neither the plane-parallel nor the random array models yield adequate flux estimates. If a scaling cloud field with horizontally variable optical depth is transformed so that all cells with optical depth greater than zero are replaced by cells with optical depth equal to grid-averaged optical depth, reflectance is increased by 10 to 20%. This is due to the non-linearity of radiative transfer and the fact that photons are more likely to encounter liquid water in the homogenized case. Accounting for variable geometric depth of cloud may be important in warm regions where substantial towering clouds occur regularly. Also, at GCM gridbox scales it is probably just as important to account for low frequency whitish noise in cloud fields as it is to account for high frequency smoothing at scales below typical cloud cell diameter. The convenient Lambertian surface approximation is probably adequate for most broken cloud scenarios. Expected errors in fluxes probably will not exceed a few percent. A method is developed for calculating cloudbase reflectance in a Monte Carlo simulation. For the widely used geometric sum formulae for flux calculation to be applicable, cloudbase reflectance must be independent of the number of internal reflections. For broken scaling clouds, however, this is violated. Fortuitously and fortunately, if cloudbase reflectance in the geometric sum formulae is set to the spherical albedo of the cloud field, errors in flux estimates should be small (_sp{~} {<}5%) in most cases. Finally, it is shown analytically that reduction in system albedo due to the introduction of broken, non-absorbing clouds is possible but highly unlikely to occur with any importance on Earth.

  3. Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field

    SciTech Connect

    Horbatsch, M.W.; Hessels, E.A.; Horbatsch, M.

    2005-09-15

    Radiative lifetimes of hydrogenic atoms in a homogeneous magnetic field of moderate strength are calculated on the basis of classical radiation. The modifications of the Keplerian orbits due to the magnetic field are incorporated by classical perturbation theory. The model is complemented by a classical radiative decay calculation using the radiated Larmor power. A recently derived highly accurate formula for the transition rate of a field-free hydrogenic state is averaged over the angular momentum oscillations caused by the magnetic field. The resulting radiative lifetimes for diamagnetic eigenstates classified by n,m and the diamagnetic energy shift C compare well with quantum results.

  4. Grain alignment induced by radiative torques: effects of internal relaxation of energy and complex radiation fields

    E-print Network

    Thiem Hoang; Alex Lazarian

    2008-12-24

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns grain axis of maximum moment of inertia with respect to grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of maximum moment of inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of maximum moment of inertia with angular momentum, and both axis of maximum moment of inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For the alignment without high-J attractors, beside the earlier studied attractors with low angular momentum (low-J attractors), there appears new low-J attractors. The former and later cases correspond to the alignment with long axes perpendicular and parallel to the angular momentum, respectively. In addition, we study the alignment of grains in the presence of strong internal relaxation, but induced not by a radiation beam as in earlier studies, instead, induced by a complex radiation field, that can be decomposed into dipole and quadrupole components. We find that in this situation, the parameter space $q^{max}$, for the existence of high-$J$ attractors is more extended, which entails higher degrees of polarization expected. Our obtained results are useful for modeling polarization arising from aligned grains in molecular clouds and accretion disks.

  5. Close encounters with DNA

    PubMed Central

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  6. Pioneer 11 Encounter. [with Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 11's encounter with Jupiter is discussed in detail. The scientific experiments carried out on the probe are described along with the instruments used. Tables are included which provide data on the times of experiments, encounters, and the distances from Jupiter. Educational study projects are also given.

  7. Irradiators for measuring the biological effects of low dose-rate ionizing radiation fields

    E-print Network

    Davidson, Matthew Allen

    2011-01-01

    Biological response to ionizing radiation differs with radiation field. Particle type, energy spectrum, and dose-rate all affect biological response per unit dose. This thesis describes methods of spectral analysis, ...

  8. Laser Plasma Interaction and Non-classical Properties of Radiation Field

    E-print Network

    Aabhaas Vineet Mallik; Pratyay Ghosh; Ananda Dasgupta

    2011-06-14

    We show by explicit calculations that non-classical states of the radiation field can be produced by allowing short term interaction between a coherent state of the radiation field with plasma. Whereas, long term interaction, which thermalizes the radiation field, can produce non-classical states of the radiation field only at sufficiently small temperatures. A measure of k-th order squeezing, stricter than the one proposed by Zhang et al, is used to check the emergence of squeezing. It is also shown that photons in the considered thermalized field would follow super-Poissonian statistics.

  9. Bicircular-laser-field-assisted electron-ion radiative recombination

    NASA Astrophysics Data System (ADS)

    Odžak, S.; Miloševi?, D. B.

    2015-11-01

    Electron-ion radiative recombination assisted by a bicircular laser field that consists of two circularly polarized fields counterrotating in the x y plane and having the frequencies r ? and s ? , which are integer multiples of the fundamental frequency ? , is considered using the S -matrix theory. The energy and polarization of soft x rays generated in this process are analyzed as functions of the incident electron energy and incident electron angle with respect to the x axis. Numerical results for the process of direct recombination of electrons with He+ ionic targets are presented. Abrupt cutoffs of the plateau structures in the emitted x-ray energy spectra are explained by classical analysis. Simpler or more complex oscillatory structures in the spectrum may appear as a result of the interference of a different number of classical orbits. Symmetry analysis and the numerical results show that the x-ray power spectrum and ellipticity are invariant with respect to a rotation of the incident electron momentum by the angle 2 ? /(r +s ) . We have visualized this by presenting the logarithm of the differential power spectrum and polarization of the emitted x rays in false colors as functions of the incident electron angle and the x-ray energy. We have also shown that the change of the relative phase of the bicircular field is equivalent to the change of the incident electron angle. By controlling this relative phase it is possible to control the polarization of the emitted soft x rays.

  10. Near field radiative heat transfer between two nonlocal dielectrics

    E-print Network

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  11. Limits on the Applicability of Classical Electromagnetic Fields as Inferred from the Radiation Reaction

    E-print Network

    McDonald, Kirk

    Limits on the Applicability of Classical Electromagnetic Fields as Inferred from the Radiation, 1998) Can the wavelength of a classical electromagnetic field be arbitrarily small, or its electric field strength be arbitrarily large? If we require that the radiation­reaction force on a charged

  12. Limits on the Applicability of Classical Electromagnetic Fields as Inferred from the Radiation Reaction

    E-print Network

    McDonald, Kirk

    Limits on the Applicability of Classical Electromagnetic Fields as Inferred from the Radiation, 1998) Can the wavelength of a classical electromagnetic field be arbitrarily small, or its electric field strength be arbitrarily large? If we require that the radiation-reaction force on a charged

  13. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    SciTech Connect

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-04-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  14. Galaxy Transformation from Flyby Encounters

    NASA Astrophysics Data System (ADS)

    Davis, Christina E.; Holley-Bockelmann, Kelly

    2016-01-01

    Galaxy flybys are transient encounters where two halos interpenetrate and later detach forever. Although these encounters are surprisingly common—even outnumbering galaxy mergers for massive halos at the present epoch—their dynamical effects have been largely ignored. Using idealized collisionless N-body simulations of flyby encounters, it has been shown that a galaxy flyby can excite a bar and spin up the halo. Here, we compare the structural properties of recent flybys to that of recent mergers and isolated systems within the Illustris Simulation.

  15. BINARY ASTEROID ENCOUNTERS WITH TERRESTRIAL PLANETS: TIMESCALES AND EFFECTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-01-15

    Many asteroids that make close encounters with terrestrial planets are in a binary configuration. Here, we calculate the relevant encounter timescales and investigate the effects of encounters on a binary's mutual orbit. We use a combination of analytical and numerical approaches with a wide range of initial conditions. Our test cases include generic binaries with close, moderate, and wide separations, as well as seven well-characterized near-Earth binaries. We find that close approaches (<10 Earth radii) occur for almost all binaries on 1-10 million year timescales. At such distances, our results suggest substantial modifications to a binary's semimajor axis, eccentricity, and inclination, which we quantify. Encounters within 30 Earth radii typically occur on sub-million year timescales and significantly affect the wider binaries. Important processes in the lives of near-Earth binaries, such as tidal and radiative evolution, can be altered or stopped by planetary encounters.

  16. S-76 high intensity radiated fields, volume 1

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) test on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practicality of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to real world HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should be noted that all the observed disruptions were of a non-critical nature.

  17. S-76 high intensity radiated fields, volume 3

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) tests on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practically of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to 'real world' HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should however be noted that all the observed disruptions were of a non-critical nature.

  18. S-76 high intensity radiated fields, volume 2

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) test on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practically of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to real world HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should be noted that all the observed disruptions were of a non-critical nature.

  19. Extractable proteins from field radiation vulcanized natural rubber latex

    NASA Astrophysics Data System (ADS)

    Parra, Duclerc F.; Pinto Martins, Carlos Felipe; Collantes, Hugo D. C.; Lugao, Ademar B.

    2005-07-01

    The type I allergy associated with the use of natural rubber latex (NRL) products is caused by the NRL proteins leached by the sweat or other body fluids. Makuuchi's group proposed for the first time the proteins removal by the addition of water-soluble polymers (WSP) on radiation vulcanization of natural rubber latex (RVNRL) that is a promising process under development in many countries. In this study, Brazilian field natural rubber was irradiated with a 60Co gamma source to reduce the content of WSP in the final product. WSP was used as additive to improve the extraction of protein. After irradiation the RVNRL was centrifuged to extract the WSP and proteins. The analytical methodology for protein content was based on the modified Lowry method according to ASTM D5712. Protein determination was carried out in serum of latex and in the extracts of the gloves. The concentration of extractable water-soluble proteins in serum of irradiated field NRL (NRL1), not irradiated one (NRL2); of twice centrifuged sample with polymer additive NRL (NRL3) and of the glove manufactured (NRLG) are compared with commercial glove (CG). The irradiation process increases the extractable water-soluble proteins, EP, as reported in the literature. In this study the use of polymeric additive on the bi-centrifugation process to remove protein was successful and the EP of the glove obtained in NRL3 was at around 40% of the commercial glove.

  20. Recommendations for Improving Consistency in the Radiation Fields Used During Testing of Radiation Detection Instruments for Homeland Security Applications.

    PubMed

    Pibida, L; Mille, M; Norman, B

    2013-01-01

    Several measurements and calculations were performed to illustrate the differences that can be observed in the determination of exposure rate or ambient dose equivalent rate used for testing radiation detection systems against consensus standards. The large variations observed support our recommendation that better consistency in the test radiation fields can be achieved by specifying the source activity and testing distance instead of the field strength. PMID:26401434

  1. Voyager Saturn encounter press briefing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The briefing reviewed the mission planning of the Voyager project. The near encounter trajectories of both Voyager spacecraft were examined. The Saturn system is discussed with particular emphasis on Saturn's moons.

  2. On the divergence difficulty of quantized field theories and the rigorous treatment of radiation reaction : with related additional papers 

    E-print Network

    Peng, Hwan-Wu

    By an orthodox application of the perturbation theory to the general case of a quantized field, it is shown that the divergence difficulty hitherto encountered arises from a faulty application of the expansion method. The ...

  3. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  4. Guest-Host Encounters in Diaspora-Heritage Tourism: The Taglit-Birthright Israel Mifgash (Encounter)

    ERIC Educational Resources Information Center

    Sasson, Theodore; Mittelberg, David; Hecht, Shahar; Saxe, Leonard

    2011-01-01

    More than 300,000 diaspora Jewish young adults and tens of thousands of their Israeli peers have participated in structured, cross-cultural encounters--"mifgashim"--in the context of an experiential education program known as Taglit-Birthright Israel. Drawing on field observations, interviews, and surveys, the formal and informal components of the…

  5. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  6. The use of computed radiography plates to determine light and radiation field coincidence

    SciTech Connect

    Kerns, James R.; Anand, Aman

    2013-11-15

    Purpose: Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators.Methods: CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size.Results: Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm.Conclusions: A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed.

  7. The use of computed radiography plates to determine light and radiation field coincidence

    PubMed Central

    Kerns, James R.; Anand, Aman

    2013-01-01

    Purpose: Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators. Methods: CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size. Results: Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm. Conclusions: A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed. PMID:24320415

  8. Characteristic of the radiation field in low Earth orbit and in deep space.

    PubMed

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth orbits and in interplanetary missions. PMID:19205293

  9. Classical and quantum phenomenology in radiation by relativistic electrons in matter or in external fields

    NASA Astrophysics Data System (ADS)

    Artru, Xavier

    2015-07-01

    Phenomenological aspects of radiation by relativistic electrons in external field, in matter or the vicinity of matter are reviewed, among which: infrared divergence, coherence length effects, shadowing, crystal-assisted radiation, quantum recoil and spin effects, electron side-slipping, photon impact parameter and tunneling in the radiation process.

  10. Defect Mass in Gravitational Field and Red Shift of Atomic and Nuclear Radiation Spectra

    E-print Network

    Kh. M. Beshtoev

    2000-04-19

    It is shown, that radiation spectrum of atoms (or nuclei) in the gravitational field has a red shift since the effective mass of radiating electrons (or nucleons) changes in this field. This red shift is equal to the red shift of radiation spectrum in the gravitational field measured in existence experiments. The same shift must arise when the photon (or $ \\gamma $ quantum) is passing through the gravitational field if it participates in gravitational interactions (photon has no rest mass). The absence of the double effect in the experiments, probably, means that photons (or $ \\gamma $ quanta) are passing through the gravitational field without interactions.

  11. Predicting the Earth encounters of (99942) Apophis

    NASA Technical Reports Server (NTRS)

    Giorgini, Jon D.; Benner, Lance A. M.; Ostro, Steven J.; Nolan, Michael C.; Busch, Michael W.

    2007-01-01

    Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses. Planetary ephemeris uncertainties are the next greatest source of systematic error, causing up to 23 Earth-radii of uncertainty. The SDM Earth point-mass assumption introduces an additional 2.9 Earth-radii of prediction error by 2036. Unmodeled asteroid perturbations produce as much as 2.3 Earth-radii of error. We find no future small-body encounters likely to yield an Apophis mass determination prior to 2029. However, asteroid (144898) 2004 VD17, itself having a statistical Earth impact in 2102, will probably encounter Apophis at 6.7 lunar distances in 2034, their uncertainty regions coming as close as 1.6 lunar distances near the center of both SDM probability distributions.

  12. Feasibility of EBT Gafchromic films for comparison exercises among standard beta radiation fields.

    PubMed

    Benavente, J A; Meira-Belo, L C; Reynaldo, S R; da Silva, T A

    2012-12-01

    The feasibility of using radiochromic films to verify the metrological coherence among standard beta radiation fields was evaluated. Exercises were done between two Brazilian metrology laboratories in beta fields from (90)Sr/(90)Y, (85)Kr and (147)Pm radiation sources. Results showed that the radiochromic film was useful for field mapping aiming uniformity and alignment verification and it was not reliable for absorbed dose measurements only for (147)Pm beta field. PMID:22917942

  13. Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    NASA Astrophysics Data System (ADS)

    Moncada-Villa, E.; Fernández-Hurtado, V.; García-Vidal, F. J.; García-Martín, A.; Cuevas, J. C.

    2015-09-01

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n -doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials.

  14. A geometric calculation of square and circular size equivalents for rectangular radiation fields in radiotherapy.

    PubMed

    Mateos, J C; Sánchez, F; Horno, J; Ureña, J; Zaragoza, J R; Madurga, G

    1985-01-01

    In radiotherapy the volume of irradiated tissue is determined by the cross-section of a beam of radiation that strikes the skin of a patient. The radiation dose delivered at a given depth is a function of this cross-section, known as the radiation field. The computing of that dose for rectangular fields can be simplified using a small number of data corresponding to square or circular fields. This procedure is called the equivalent field method. Two fields are said to be equivalent if they give equal doses of radiation at a given depth in tissue. In this work the equivalent circular and square fields are determined by the condition that the solid angle subtended by the field in the skin, as viewed from the exposed point, be the same. PMID:3870980

  15. ESTIMATING SOLAR RADIATION EXPOSURE IN WETLANDS USING RADIATION MODELS, FIELD DATA, AND GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    This seminar will describe development of methods for the estimation of solar radiation doses in wetlands. The methodology presents a novel approach to incorporating aspects of solar radiation dosimetry that have historically received limited attention. These include effects of a...

  16. Aspects of electromagnetic radiation reaction in strong fields

    E-print Network

    Burton, D A

    2014-01-01

    With the recent advances in laser technology, experimental investigation of radiation reaction phenomena is at last becoming a realistic prospect. A pedagogical introduction to electromagnetic radiation reaction is given with the emphasis on matter driven by ultra-intense lasers. Single-particle, multi-particle, classical and quantum aspects are all addressed.

  17. Estimating the Reliability of Electronic Parts in High Radiation Fields

    NASA Technical Reports Server (NTRS)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  18. Dialogic Encounters as Art Education

    ERIC Educational Resources Information Center

    Miles, Adetty Perez

    2010-01-01

    Although educators believe in the importance of dialogue and dialogic encounters, and often propose to engage their students in "discussion," dialogic communication is rarely used in the classroom. Rather than through relational and substantive conversation, most educational dialogue in public schools is limited to telling, asking one-way…

  19. Computation of radiative fields in opposed-flow flame spread in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Villaraza, Jeanie Ray P.

    The purpose of this thesis is to perform radiation computations in opposed-flow flame spread in a microgravity environment. In this work, the flame spread simulations consider a thermally thin, PMMA fuel in a quiescent, microgravity environment or facing low opposed-flow velocities at ambient conditions of 1 atm and 50-50 volumetric mixture of oxygen and nitrogen. The flame spread model, which is a Computational Fluid Dynamics (CFD) model, is used for numerical simulations in combination with a radiation model. The CFD code is written in FORTRAN language, and a Matlab code is developed for plotting results. The temperature and species fields from CFD computations are used as inputs into the radiation model. Radiative quantities are calculated by using a global balance method along with the total transmittance non-homogeneous model. Radiation effect on thermocouple temperature measurement is investigated. Although this topic is well known, performing radiation correction calculations usually considers surface radiation only and not gas radiation. The inclusion of gas radiation is utilized in predicting the gas temperature that a thermocouple would measure. A narrow bed radiation model is used to determine the average incident radiative flux at a specified location from which a thermocouple temperature measurement is predicted. This study focuses on the quiescent microgravity environment only. The effect of parameters such as thermocouple surface emissivity and bead diameter are also studied. For the main part of this thesis, the effect of gas radiation on the mechanism of flame spread over a thermally thin, solid fuel in microgravity is investigated computationally. Generated radiative fields including thermal and species fields are utilized to investigate the nature of the influence of gas radiation on flame structure as well as its role in the mechanism of opposed-flow flame spread. The opposed-flow configuration considers low flow velocities including a quiescent environment where radiation has been shown to be dominant. However, given the fact that gas radiation acts as a loss mechanism, and at the same time, it enhances forward heat transfer through radiation feedback to the fuel surface, there is no definitive work that establishes the role of gas radiation. This thesis explores the role played by gas radiation as a driving versus as a retarding mechanism. In this work, it is found that gas radiation is important in capturing flame images and spread rates. Gas radiation primarily acts as a loss mechanism through its effects on flame temperature which overwhelms the radiation feedback to the surface.

  20. Supervision Challenges Encountered during Kenyan University Students' Practicum Attachment

    ERIC Educational Resources Information Center

    Kathuri-Ogola, Lucy; VanLeeuwen, Charlene; Kabaria-Muriithi, Joan; Weeks, Lori E.; Kieru, Jane; Ndayala, Phoebe

    2015-01-01

    There is little published research that examines the supervision experience of field attachment supervisors in Kenya. In this study, we identify the challenges encountered by field supervisors during student field attachments with community organizations. Fifteen organizations that had hosted third year students from the Department of Community…

  1. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  2. Virtual radiation fields -- A virtual environment tool for radiological analysis and simulation

    SciTech Connect

    Knight, T.W.; Dalton, G.R.; Tulenko, J.S.

    1997-02-01

    A virtual reality system was developed for computational and graphical modeling and simulation of radiation environments. This system, called Virtual Radiation Fields (VRF), demonstrates the usefulness of radiological analysis in simulation-based design for predicting radiation doses for robotic equipment and personnel working in a radiation environment. The system was developed for use in determining the radiation doses for robotic equipment to be used in tank-waste retrieval operations at the Hanford National Laboratory. As a reference case, specific application is made to simulate cleanup operations for Hanford tank C-106. A three-dimensional model representation of the tank and its predicted radiation levels are presented and analyzed. Tank cleanup operations were simulated to understand how radiation levels change during the cleanup phase and to predict cumulative radiation doses to robotic equipment to aid in the development of maintenance and replacement schedules.

  3. Analysis of the failures and corrective actions for the LHC cryogenics radiation tolerant electronics and its field instruments

    SciTech Connect

    Balle, Christoph; Casas, Juan; Vauthier, Nicolas

    2014-01-29

    The LHC cryogenic system radiation tolerant electronics and their associated field instruments have been in nominal conditions since before the commissioning of the first LHC beams in September 2008. This system is made of about 15’000 field instruments (thermometers, pressure sensors, liquid helium level gauges, electrical heaters and position switches), 7’500 electronic cards and 853 electronic crates. Since mid-2008 a software tool has been deployed, this allows an operator to report a problem and then lists the corrective actions. The tool is a great help in detecting recurrent problems that may be tackled by a hardware or software consolidation. The corrective actions range from simple resets, exchange of defective equipment, repair of electrical connectors, etc. However a recurrent problem that heals by itself is present on some channels. This type of fault is extremely difficult to diagnose and it appears as a temporary opening of an electrical circuit; its duration can range from a few minutes to several months. This paper presents the main type of problems encountered during the last four years, their evolution over time, the various hardware or software consolidations that have resulted and whether they have had an impact in the availability of the LHC beam.

  4. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  5. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  6. Stability of a liquid-film space radiator with internal electrostatic fields

    SciTech Connect

    Bankoff, S.G.; Miksis, M.J.

    1992-04-01

    A new concept in light-weight space radiators has been introduced by Kim, Miksis and Bankoff, consisting of a pumped-loop membrane radiator in which leakage of coolant from a puncture, due to micrometeorite or space debris impact, is prevented by the application of an internal electrostatic field. For nuclear space power, the coolant is generally a liquid metal, such as lithium, flowing as a thin film along the interior walls of the hollow radiator. A lightweight fully-modular radiator design is proposed, which is calculated to weight less than 1 kg/m{sup 2}. The feature which makes this thin-membrane radiator practical is the internal electrostatic field system, which can stop radiator leaks from punctures, sudden accelerations or accidental tears.

  7. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    E-print Network

    Markus Lazar

    2013-04-12

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  8. Evaluation of the impact of non-uniform neutron radiation fields on the dose received by glove box radiation workers

    NASA Astrophysics Data System (ADS)

    Crawford, Arthur Bryan

    The effort to estimate the radiation dose received by an occupationally exposed worker is a complex task. Regulatory guidance assumes that the stochastic risks from uniform and non-uniform whole-body irradiations are equal. An ideal uniform irradiation of the whole body would require a broad parallel radiation field of relatively high-energy radiation, which many occupationally exposed workers do not experience. In reality, workers are exposed to a non-uniform irradiation of the whole body such as a radiation field with one or more types of radiation, each with varying energies and/or fluence rates, incident on the worker. Most occupational radiation exposure at LANL is due to neutron radiation. Many of these exposures originate from activities performed in glove boxes with nuclear materials. A standard Los Alamos 2 x 2 x 2 glove box is modeled with the source material being clean weapons grade plutonium. Dosimeter tally planes were modeled to stimulate the various positions that a dosimeter can be worn. An anthropomorphic phantom was used to determine whole body dose. Various geometries of source position and phantom location were used to determine the effects of streaming on the radiation dose a worker may receive. Based on computational and experimental results, the effects of a non-uniform radiation field have on radiation dose received by a worker in a glove box environment are: (1) Dosimeter worn at chest level can overestimate the whole body dose between a factor of two to six depending on location of the phantom with the source material close to the front of the glove box, (2) Dosimeter should be worn at waist level instead of chest level to more accurately reflect the whole body dose received, (3) Dose can be significantly higher for specific locations of the worker relative to the position of the source, (4) On the average the testes contribute almost 44% of the whole body dose for a male, and (5) Appropriate design considerations such as more shielding on the bottom of the glove box and controls such as the use of internal or external shielding can reduce the effects on dose from these non-uniform fields.

  9. Time-dependent and radiation field effects on collisional-radiative simulations of radiative properties of blast waves launched in clusters of xenon

    NASA Astrophysics Data System (ADS)

    Rodriguez, R.; Espinosa, G.; Gil, J. M.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Symes, D. R.; Hohenberger, M.; Smith, R. A.

    2015-12-01

    Radiative shock waves are ubiquitous throughout the universe and play a crucial role in the transport of energy into the interstellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible conditions. In some laboratory experiments radiative blast waves are launched in clusters of gases by means of the direct deposition of the laser energy. In this work, by using a collisional-radiative model, we perform an analysis of the plasma level populations and radiative properties of a blast wave launched in a xenon cluster. In particular, for both the shocked and unshocked material, we study the influence of different effects such as LTE, steady-state or time-dependent NLTE simulations, plasma self-absorption or external radiation field in the determination of those properties and also in the diagnosis of the electron temperature of the blast wave.

  10. A simple ionizing radiation spectrometer/dosimeter based on radiation sensing field effect transistors (RadFETs)

    SciTech Connect

    Moreno, D.J.; Hughes, R.C.; Jenkins, M.W.; Drumm, C.R.

    1997-05-01

    This paper reports on the processing steps in a silicon foundry leading to improved performance of the Radiation Sensing Field Effect Transistor (RadFET) and the use of multiple RadFETs in a handheld, battery operated, combination spectrometer/dosimeter.

  11. RHrFPGA Radiation-Hardened Re-programmable Field-Programmable Gate Array

    NASA Technical Reports Server (NTRS)

    Sanders, A. B.; LaBel, K. A.; McCabe, J. F.; Gardner, G. A.; Lintz, J.; Ross, C.; Golke, K.; Burns, B.; Carts, M. A.; Kim, H. S.

    2004-01-01

    Viewgraphs on the development of the Radiation-Hardened Re-programmable Field-Programmable Gate Array (RHrFPGA) are presented. The topics include: 1) Radiation Test Suite; 2) Testing Interface; 3) Test Configuration; 4) Facilities; 5) Test Programs; 6) Test Procedure; and 7) Test Results. A summary of heavy ion and proton testing is also included.

  12. LETTER TO THE EDITOR: Comments on 'Cellular response to modulated radiation fields'

    NASA Astrophysics Data System (ADS)

    Ross, C. K.; Klassen, N. V.

    2009-03-01

    The authors of a recent paper (Claridge Mackonis et al 2007 Phys. Med. Biol. 52 5469-82) measured cell survival in spatially modulated radiation fields. They claim to have identified two new types of radiation-induced bystander effect. We conclude that their claims are not supported by their data.

  13. Low-Cost Shielding to Minimize Radiation Errors of Temperature Sensors in the Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of shielding temperature sensors from solar radiation is understood, but there is a lack of prescriptive advice for plant scientists to build inexpensive, effective shields for replicated field experiments. Using general physical principles that govern radiation shielding, a number of...

  14. Acoustic radiation force in tissue-like solids due to modulated sound field

    E-print Network

    Guzina, Bojan

    Acoustic radiation force in tissue-like solids due to modulated sound field Egor V. Dontsov, Bojan B. Guzina n Department of Civil Engineering, University of Minnesota, United States a r t i c l e i-called acoustic radiation force) in homogeneous tissue-like solids generated by an elevated-intensity, focused

  15. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power...

  16. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power...

  17. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power...

  18. Shape-Independent Limits to Near-Field Radiative Heat Transfer

    E-print Network

    Miller, Owen D.

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of ...

  19. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    E-print Network

    Wygant, J. R.

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency ...

  20. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    E-print Network

    Huang, Yi

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical ...

  1. Strong-field perspective on high-harmonic radiation from bulk solids.

    PubMed

    Higuchi, Takuya; Stockman, Mark I; Hommelhoff, Peter

    2014-11-21

    Mechanisms of high-harmonic generation from crystals are described by treating the electric field of a laser as a quasistatic strong field. Under the quasistatic electric field, electrons in periodic potentials form dressed states, known as Wannier-Stark states. The energy differences between the dressed states determine the frequencies of the radiation. The radiation yield is determined by the magnitudes of the interband and intraband current matrix elements between the dressed states. The generation of attosecond pulses from solids is predicted. Ramifications for strong-field physics are discussed. PMID:25479494

  2. INSREC: Computational System for Quantitative Analysis of Radiation Effects Covering All Radiation Field

    SciTech Connect

    Dong Hoon Shin; Young Wook Lee; Young Ho Cho; Hyun Seok Ko; SukHoon Kim; YoungMin Kim; Chang Sun Kang

    2006-07-01

    In the nuclear energy field, there are so many difficult things that even people who are working in this field are not much familiar with, such as, Dose evaluation, Dose management, etc. Thus, so many efforts have been done to achieve the knowledge and data for understanding. Although some data had been achieved, the applications of these data to necessary cases were more difficult job. Moreover, the type of Dose evaluation program until now was 'Console type' which is not easy enough to use for the beginners. To overcome the above causes of difficulties, the window-based integrated program and database management were developed in our research lab. The program, called as INSREC, consists of four sub-programs as follow; INSREC-NOM, INSREC-ACT, INSREC-MED, and INSREC-EXI. In ICONE 11 conference, INSREC-program(ICONE-36203) which can evaluates on/off-site dose of nuclear power plant in normal operation was introduced. Upgraded INSREC-program which will be presented in ICONE 14 conference has three additional codes comparing with pre-presented INSREC-program. Those subprograms can evaluate on/off-site Dose of nuclear power plant in accident cases. And they also have the functions of 'Dose evaluation and management' in the hospital and provide the 'Expert system' based on knowledge related to nuclear energy/radiation field. The INSREC-NOM, one of subprograms, is composed of 'Source term evaluation program', 'Atmospheric diffusion factor evaluation program', 'Off-site dose evaluation program', and 'On-site database program'. The INSREC-ACT is composed of 'On/Off-site dose evaluation program' and 'Result analysis program' and the INSREC-MED is composed of 'Workers/patients dose database program' and 'Dose evaluation program for treatment room'. The final one, INSREC-EXI, is composed of 'Database searching program based on artificial intelligence', 'Instruction program,' and 'FAQ/Q and A boards'. Each program was developed by using of Visual C++, Microsoft Access mainly. To verify the reliability, some suitable programs were selected such as AZAP and Stardose programs for the comparison. The AZAP program was selected for the on/off-site dose evaluation during the normal operation of nuclear reactor and Stardose program was used for the on/off-site dose evaluation in accident. The MCNP code was used for the dose evaluation and management in the hospital. Each comparison result was acceptable in errors analysis. According to the reliable verification results, it was concluded that INSREC program had an acceptable reliability for dose calculation and could give many proper dada for the sites. To serve the INSREC to people, the proper server system was constructed. We gave chances for the people (user) to utilize the INSREC through network connected to server system. The reactions were pretty much good enough to be satisfied. For the future work, many efforts will be given to improve the better user-interface and more necessary data will be provided to more people through database supplement and management. (authors)

  3. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: Theory versus experiment in water

    SciTech Connect

    Underwood, H.R. ); Peterson, A.F. ); Magin, R.L. )

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low ([epsilon][sub r] = 10) and high ([epsilon][sub r] = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios ar 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  4. Effects of External Radiation Fields on Line Emission—Application to Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; van Hoof, P. A. M.

    2013-12-01

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  5. Effects of external radiation fields on line emission—application to star-forming regions

    SciTech Connect

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; Van Hoof, P. A. M.

    2013-12-20

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  6. Radiative zone solar magnetic fields and g-modes

    E-print Network

    T. I. Rashba; V. B. Semikoz; J. W. F. Valle

    2006-07-04

    We consider a generalized model of seismic-wave propagation that takes into account the effect of a central magnetic field in the Sun. We determine the g-mode spectrum in the perturbative magnetic field limit using a one-dimensional Magneto-Hydrodynamics (MHD) picture. We show that central magnetic fields of about 600-800 kG can displace the pure g-mode frequencies by about 1%, as hinted by the helioseismic interpretation of GOLF observations.

  7. Double Gas Puff Z-Pinch with Axial Magnetic Field for K-Shell Radiation Production

    NASA Astrophysics Data System (ADS)

    Shishlov, Alexander V.; Baksht, Rina B.; Chaikovsky, Stanislav A.; Labetsky, Aleksey Yu.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.; Fedunin, Anatoly V.

    2002-12-01

    A double gas puff with a solid fill inner shell and an annular outer shell with axial magnetic field is proposed as a possible load configuration for a plasma radiation source for K-shell radiation production of high-Z materials. This load configuration is investigated in the experiments with neon gas puffs on the IMRI-5 generator (400 kA, 430 ns) and with argon gas puffs on the GIT-12 generator (2.5 MA, 300 ns). Influence of the axial magnetic field on z-pinch stabilization and K-shell radiation yield is studied.

  8. Radiation field quantization in a nonlinear dielectric with dispersion and absorption

    E-print Network

    Eduard Schmidt; Ludwig Knoell; Dirk-Gunnar Welsch

    1996-07-31

    The problem of quantizing the radiation field inside a nonlinear dielectric is studied. Based on the quantization of radiation in a linear dielectric which includes absorption and dispersion, we extend the theory in order to treat also nonlinear optical processes. We derive propagation equations in space and time for the quantized radiation field including the effects of linear absorption and dispersion as well as nonlinear optical effects. As a special case we derive the propagation equation of a narrow-frequency band light pulse in a Kerr medium.

  9. Absorption cross section and Hawking radiation of the electromagnetic field with Weyl corrections

    E-print Network

    Hao Liao; Songbai Chen; Jiliang Jing

    2013-12-19

    We have investigated the absorption cross section and the Hawking radiation of electromagnetic field with Weyl correction in the background of a four-dimensional Schwarzschild black hole spacetime. Our results show that the properties of the absorption cross section and the Hawking radiation depend not only on the Weyl correction parameter, but also on the parity of the electromagnetic field, which is quite different from those of the usual electromagnetic field without Weyl correction in the four-dimensional spacetime. With increase of Weyl correction parameter, the absorption probability, the absorption cross section, the power emission spectra and the luminosity of Hawking radiation decreases with Weyl correction parameter for the odd-parity electromagnetic field and increases with the event-parity electromagnetic field.

  10. Numerical Simulation of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.

  11. Preliminary science results of Voyager 1 Saturn encounter

    NASA Technical Reports Server (NTRS)

    Bane, D.

    1981-01-01

    Preliminary science results of the Voyager 1 encounter of the planet Saturn are reported. On August 22, 1980, the spacecraft was 109 million km (68 million mi) from Saturn. Closest approach to Saturn took place on November 12, at 3:46 p.m. (PDT), when the spacecraft passed 126,000 km (78,000 mi) from the cloud tops. Measurements of the atmosphere, wind speed, radiation, six surrounding rings, and the planet's old and newly found satellites were recorded. The encounter ended December 15, 1980. The spacecraft took more than 17,500 photographs of Saturn and its satellites.

  12. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect

    Vavrik, D.; Jakubek, J.; Pospisil, S.; Vacik, J.

    2014-01-15

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high ? and e{sup ?} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 ?m{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup ?4}.

  13. Polarization of atomic radiation in stochastic plasma fields

    SciTech Connect

    Savchenko, V.I.; Fisch, N.J.

    1997-05-12

    When a laser pulse of certain polarization or an electron beam excites atoms in a plasma, the atomic spectrum of the radiation emitted by the atoms exhibits differently polarized line core and line wings. This unusual effect, which is predicted to occur under a variety of conditions, can be accompanied by the appearance of the forbidden component in the spectrum, with polarization opposite to that of the exciting laser pulse.

  14. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    SciTech Connect

    Christopher Hodge, Raymond Keegan

    2007-08-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  15. Optimal Background Attenuation for Fielded Radiation Detection Systems

    SciTech Connect

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-10-29

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  16. Synchro-curvature radiation of charged particles in the strong curved magnetic fields

    SciTech Connect

    Kelner, S. R.; Prosekin, A. Yu.; Aharonian, F. A. E-mail: Anton.Prosekin@mpi-hd.mpg.de

    2015-01-01

    It is generally believed that the radiation of relativistic particles in a curved magnetic field proceeds in either the synchrotron or the curvature radiation modes. In this paper we show that in strong curved magnetic fields a significant fraction of the energy of relativistic electrons can be radiated away in the intermediate, the so-called synchro-curvature regime. Because of the persistent change of the trajectory curvature, the radiation varies with the frequency of particle gyration. While this effect can be ignored in the synchrotron and curvature regimes, the variability plays a key role in the formation of the synchro-curvature radiation. Using the Hamiltonian formalism, we find that the particle trajectory has the form of a helix wound around the drift trajectory. This allows us to calculate analytically the intensity and energy distribution of prompt radiation in the general case of magnetic bremsstrahlung in the curved magnetic field. We show that the transition to the limit of the synchrotron and curvature radiation regimes is determined by the relation between the drift velocity and the component of the particle velocity perpendicular to the drift trajectory. The detailed numerical calculations, which take into account the energy losses of particles, confirm the principal conclusions based on the simplified analytical treatment of the problem, and allow us to analyze quantitatively the transition between different radiation regimes for a broad range of initial pitch angles. These calculations demonstrate that even very small pitch angles may lead to significant deviations from the spectrum of the standard curvature radiation when it is formally assumed that a charged particle moves strictly along the magnetic line. We argue that in the case of realization of specific configurations of the electric and magnetic fields, the gamma-ray emission of the pulsar magnetospheres can be dominated by the component radiated in the synchro-curvature regime.

  17. The perturbation correction factor of ionisation chambers in beta-radiation fields.

    PubMed

    Böhm, J

    1980-01-01

    In determining the absorbed dose in a solid medium by means of gas-filled ionisation chambers, the perturbation of the radiation field by the chamber needs to be taken into account. So far, an appropriate correction factor has neither been calculated nor measured for beta-radiation. This work describes its experimental determination for an extrapolation chamber and beta-radiation fields of 147Pm, 204Tl, and 90Sr + 90Y. The results show that the correction factor may be assumed to be the product of a shield factor and a scatter factor the magnitudes of which depend on the chamber geometry and the radiation field. The change of the perturbation correction factor with phantom depth is important for the measurement of depth dose curves. This is demonstrated by an example. PMID:7360793

  18. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  19. An Interview About Encountering a Ghost

    E-print Network

    G.yu lha

    2009-08-30

    description/relationship if appropriate) Title of track An Interview About Encountering a Ghost Translation of title Description (to be used in archive entry) Cangs go lo provides a personal account of an encounter with a ghost. Genre...

  20. Utilizing an electronic portal imaging device to monitor light and radiation field congruence.

    PubMed

    Prisciandaro, J I; Herman, M G; Kruse, J J

    2003-01-01

    A method to investigate light and radiation field congruence utilizing a commercially available amorphous silicon electronic portal imaging device (EPID) was developed. This method employed an EPID, the associated EPI software, and a diamond-shaped template. The template was constructed from a block tray in which Sn/Pb wires, 1 mm in diameter, were embedded into a diamond shaped groove milled into the tray. The collimator jaws of the linac were aligned such that the light field fell directly on the corners of the diamond. A radiation detection algorithm within the EPI software determined the extent of the radiation field. The light and radiation field congruence was evaluated by comparing the vertexes of the diamond reference structure to the detected radiation field. In addition, the digital jaw settings were recorded and later compared to the light field detected on the films and EPIs. Three linear accelerators were tracked for a period ranging from 2-8 months. Light radiation field congruence tests with films and EPIs were comparable, yielding a difference of less than 0.6 mm, well within the allowed 2-mm tolerance. A disparity was observed in the magnitude of the detected light field. The X and Y dimensions of the light field measured with film differed by less than or equal to 1.4 mm from the digital collimator settings, whereas the values extracted from the EPIs differed by up to 2.5 mm. Based on these findings, EPIs were found to be a quick and reliable alternative to film for qualitative and relative analyses. PMID:14604421

  1. Escape of gravitational radiation from the field of massive bodies

    NASA Technical Reports Server (NTRS)

    Price, Richard H.; Pullin, Jorge; Kundu, Prasun K.

    1993-01-01

    We consider a compact source of gravitational waves of frequency omega in or near a massive spherically symmetric distribution of matter or a black hole. Recent calculations have led to apparently contradictory results for the influence of the massive body on the propagation of the waves. We show here that the results are in fact consistent and in agreement with the 'standard' viewpoint in which the high-frequency compact source produces the radiation as if in a flat background, and the background curvature affects the propagation of these waves.

  2. Analysis of Transient Acoustic Radiation Field from Pulse-driven Finite Aperture Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Udagawa, Yoshio

    A method is presented for the precise analysis of the discontinuous transient radiation field from a circular piezoelectric transducer in the liquid medium. The transducer is excited by the step pulse voltage signal, on the contrary to the conventional burst sine pulse signals. Specifically, time domain Rayleigh integral formula is extended to include the medium attenuation to meet the actual phenomena in the far field region. As a results, some peculiar characteristics intrinsic to the transient pulse radiation fields are elucidated. Simulation results are also compared with experiments to verify the validity of the proposed methods.

  3. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  4. Metamaterial-based perfect absorbers for efficiently enhancing near field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Xu, Xianfan

    2015-12-01

    The fascinating capability of manipulating light using metamaterials (MMs) has inspired a significant amount of studies of using MMs for energy related applications. In this work we investigate MM-based perfect absorbers for enhancing near field radiative heat transfer, which is described by the fluctuation dissipation theorem. MM structures designed at two wavelengths are analyzed, corresponding to two working temperatures. Both electric and magnetic surface polaritons are found to contribute to heat transfer, while natural materials support only electric polaritons. The near-perfect absorption is demonstrated to be related to the modification of effective optical properties, which is important for enhancing radiative heat transfer efficiently. By comparing different designs, the bandwidth of the heat flux spectrum is found to increase with the absorption bandwidth, which is originated from the spatial field distributions. This study will contribute to the understanding of surface polaritons in near field radiative heat transfer and facilitate the optimization of MMs for near field heat transfer applications.

  5. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  6. Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.

    2007-01-01

    The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.

  7. Development and applications of near-field antenna measurement system. V - Accurate measurement of radiation pattern by planar near field measurement

    NASA Astrophysics Data System (ADS)

    Okubo, Shigeru; Hori, Yoshiaki; Ito, Takeo; Teshirogi, Tasuku

    1988-09-01

    This paper describes the same results obtained from the developed planar near-field measurement system. The radiation patterns of a pyramidal horn antenna were measured and compared with patterns obtained from conventional far-field measurement. The planar near-field measurement system is verified by theoretical probe correction to be capable of measuring the radiation patterns over a wide angular region.

  8. A MEMS device capable of measuring near-field thermal radiation between membranes.

    PubMed

    Feng, Chong; Tang, Zhenan; Yu, Jun; Sun, Changyu

    2013-01-01

    For sensors constructed by freestanding membranes, when the gap between a freestanding membrane and the substrate or between membranes is at micron scale, the effects of near-field radiative heat transfer on the sensors' thermal performance should be considered during sensor design. The radiative heat flux is transferred from a membrane to a plane or from a membrane to a membrane. In the current study of the near-field thermal radiation, the scanning probe technology has difficulty in making a membrane separated at micron scale parallel to a plane or another membrane. A novel MEMS (micro electromechanical system) device was developed by sacrificial layer technique in this work to realize a double parallel freestanding membrane structure. Each freestanding membrane has a platinum thin-film resistor and the distance between the two membranes is 1 m. After evaluating the electrical and thermal characteristics of the lower freestanding membrane, experimental measurements of near-field radiative heat transfer between the lower membrane and the upper membrane were carried out by setting the lower membrane as a heat emitter and the upper membrane as a heat receiver. The near-field radiative heat transfer between the two membranes was validated by finding a larger-than-blackbody radiative heat transfer based on the experimental data. PMID:23385413

  9. A MEMS Device Capable of Measuring Near-Field Thermal Radiation between Membranes

    PubMed Central

    Feng, Chong; Tang, Zhenan; Yu, Jun; Sun, Changyu

    2013-01-01

    For sensors constructed by freestanding membranes, when the gap between a freestanding membrane and the substrate or between membranes is at micron scale, the effects of near-field radiative heat transfer on the sensors' thermal performance should be considered during sensor design. The radiative heat flux is transferred from a membrane to a plane or from a membrane to a membrane. In the current study of the near-field thermal radiation, the scanning probe technology has difficulty in making a membrane separated at micron scale parallel to a plane or another membrane. A novel MEMS (micro electromechanical system) device was developed by sacrificial layer technique in this work to realize a double parallel freestanding membrane structure. Each freestanding membrane has a platinum thin-film resistor and the distance between the two membranes is 1 ?m. After evaluating the electrical and thermal characteristics of the lower freestanding membrane,experimental measurements of near-field radiative heat transfer between the lower membrane and the upper membrane were carried out by setting the lower membrane as a heat emitter and the upper membrane as a heat receiver. The near-field radiative heat transfer between the two membranes was validated by finding a larger-than-blackbody radiative heat transfer based on the experimental data. PMID:23385413

  10. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  11. The Gravitational Field of a Radiating Electromagnetic Dipole

    E-print Network

    Tim Adamo; Ezra T Newman

    2008-07-22

    We begin with the time-dependent electric and magnetic dipole solution of Maxwell's equations in Minkowski space. This Maxwell field is then used to determine the behavior of the gravitational field (the Weyl tensor) as a second-order perturbation off of the Minkowski background. From the Weyl tensor we go on and find the spin-coefficients and the full metric in this approximation. The physical meaning of many of the relations is discussed. In particular we can identify the conservation law of angular momentum that contains an angular momentum flux term.

  12. COMET ENCOUNTERS AND CARBON 14

    SciTech Connect

    Eichler, David; Mordecai, David

    2012-12-20

    The {sup 14}C production of shock-accelerated particles is calculated in terms of the total energy released in energetic particles. The recently reported 1.2% jump in the {sup 14}C content of the atmosphere in the year C.E. 775, it is found, would require {approx}> 10{sup 34} erg in energetic particles, less than first estimates but far more than any known solar flare on record. It is noted that the superflare from a large comet (comparable to C/Hale-Bopp) colliding with the sun could produce shock-accelerated GeV cosmic rays in the solar corona and/or solar wind, and possibly account for the C.E. 775 event. Several additional predictions of cometary encounters with the sun and other stars may be observable in the future.

  13. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    NASA Astrophysics Data System (ADS)

    Shehzad, S. A.; Abdullah, Z.; Alsaedi, A.; Abbasi, F. M.; Hayat, T.

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed.

  14. Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium

    E-print Network

    Antonio Parravano; David J. Hollenbach; Christopher F. McKee

    2002-02-10

    Far Ultraviolet radiation has been recognized as the main source of heating of the neutral interstellar gas, and, as a consequence, it determines whether the thermal balance of the neutral gas results in cold ($T\\sim 50 - 100 K$) clouds (CNM), warm ($T \\sim 10^4 K$) clouds (WNM), or a combination of the two. High FUV fields convert the neutral gas to WNM, while low fields result in CNM. The sources of FUV radiation are the short-lived massive stars that generally originate in associations that form in Giant Molecular Clouds present in the galactic disk. Using McKee & Williams' (1997) distribution of birthrates for OB associations in the Galaxy, we determine the expected behavior of the time-dependent FUV field for random positions in the local ISM. The FUV field is calculated in two bands (912-1100 \\AA and 912-2070 \\AA) and at the wavelength 1400 \\AA. Our median value for the [912-2070 \\AA] band is $G_0=1.6$ times Habing's (1968) value for the radiation field at the solar circle in this band, and quite close to Draine's (1976) value, $G_0=1.7$. Due to attenuation by dust, only associations within about 500 pc contribute significantly to the energy density at a given point. The FUV field is asymmetric at a given point, and the asymmetry grows for higher fields. The FUV field fluctuates with a variety of amplitudes, the larger ones being less frequent. The mean field is about twice the median field because of these fluctuations, or spikes, in the radiation field. These spikes, which last $\\sim 30$ Myr, are caused by the infrequent birth of nearby associations. We also model shorter duration spikes caused by runaway OB stars. The presence of a fluctuating heating rate created by the fluctuating FUV field converts CNM to WNM and vice versa.

  15. BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris Hodge

    2008-03-01

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as “Pagers.” This test, “Bobcat,” was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  16. Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-07-09

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  17. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  18. Mechanism of Radiation Coupling to Plasma Wave Field Effect Transistor Sub-THz Detectors

    NASA Astrophysics Data System (ADS)

    Sakowicz, M.; ?usakowski, J.; Karpierz, K.; Grynberg, M.; Gwarek, W.; Knap, W.; Boubanga, S.

    2008-11-01

    Detection of 100 GHz and 285 GHz electromagnetic radiation by GaAs/AlGaAs field effect transistors with the gate length of 150 nm was investigated at 300 K as a function of the angle ? between the direction of linear polarization of the radiation and the symmetry axis of the field effect transistors. The angular dependence of the detected signal was found to be Acos2(?-?0)+C. A response of the transistor chip (including bonding wires and the substrate) to the radiation was numerically simulated. Calculations confirmed experimentally observed dependences and allowed to investigate the role of bonding wires and contact pads in coupling of the radiation to the transistor channel.

  19. Development of a Field Well Head Safety System For Use With Radiation Generating Devices

    SciTech Connect

    Keegan, R.P.; Lopez, J.C.; McGrath, C.A.

    2002-03-29

    This paper discusses the design, testing and application of a new interlock system for field use with neutron generating bore-hole probes at the Idaho National Engineering and Environmental Laboratory. Such probes produce 14MeV neutrons at a yield up to 3x10E8 neutrons/second, and present an ionizing radiation hazard to personnel particularly when operated in an unshielded configuration. This interlock system prevents personnel from being exposed to high radiation fields caused by an unsafe condition when a neutron generator probe is withdrawn from a well in the ground. An electromechanical interlock prototype system has been designed, built and tested, and has been found to be effective at preventing high radiation exposure to personnel. The design is simple, is effective in mitigating the hazard, and can be installed in minutes. The system could be modified to interlock radiation-generating devices other than the neutron generators that are used in similar environments.

  20. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  1. Radiative properties of a plasma moving across a magnetic field. I - Theoretical analysis. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, Robert; Miller, Ronald H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a 2D model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. Radiation damping is shown to play an important role in defining the plasma cloud evolution, causing a rapid decay of the polarizaiton field and a loss of plasma kinetic energy and momentum on time scales comprable to several ion gyroperiods. Scaling laws are derived for the plasma momentum and energy loss rates, and predictions for the braking time, the amplitude and spectrum of the radiation field, and the total radiated power are presented for conditions relevant to the recent Combined Release and Radiation Effects Satellite experiments.

  2. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.

    PubMed

    Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics. PMID:18517530

  3. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  4. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X.

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  5. Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation

    E-print Network

    Epstein, Ariel

    2014-01-01

    We present a semi-analytical formulation of the interaction between a given source field and a scalar Huygens metasurface (HMS), a recently introduced promising concept for wavefront manipulation based on a sheet of orthogonal electric and magnetic dipoles. Utilizing the equivalent surface impedance representation of these metasurfaces, we establish that an arbitrary source field can be converted into directive radiation via a passive lossless HMS if two physical conditions are met: local power conservation and local impedance equalization. Expressing the fields via their plane-wave spectrum and harnessing the slowly-varying envelope approximation we obtain semi-analytical formulae for the scattered fields, and prescribe the surface reactance required for the metasurface implementation. The resultant design procedure indicates that the local impedance equalization induces a Fresnel-like reflection, while local power conservation forms a radiating virtual aperture which follows the total excitation field magni...

  6. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    V? Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100?cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  7. On the polarization of resonantly scattered emission lines - 1. Emission and absorption coefficients in an anisotropic radiation field

    NASA Technical Reports Server (NTRS)

    Lee, H. -W.; Blandford, R. D.; Western, L.

    1994-01-01

    Source functions and absorptions coefficients for polarized radiation in a given ansiotropic radiation field are calculated for a variety of permitted electric dipole transitions in the L-S coupling limit. Collisional, radiative and magnetic mixing of the ground sublevels are all considered. The polarization of the self-consistent, emergent radiation field is computed, using an anisotropic escape probability formalism to treat the radiative transfer. It is found that the radiative mixing can enhance the polarization for transitions with large angular momentum, and degrees of polarization less than or approximately 10 per cent are obtained for transitions with small angular momentum.

  8. Dispersion of rotation of polarization plane and circular dichroism for alkaline atoms in intense radiation fields

    NASA Astrophysics Data System (ADS)

    Karagodova, Tamara Y.; Kuptsova, Anna V.

    1998-10-01

    The method of computer simulations on nonlinear resonant magneto-optical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarizations and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasienergies on parameters (detunings and intensities of radiation fields, magnetic field strength), which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magneto-optical effects. One-photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dicohroizm of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magneto-optical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.

  9. Radiation drag in the field of a non-spherical source

    E-print Network

    Donato Bini; Andrea Geralico; Andrea Passamonti

    2014-10-12

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static spacetime belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e., the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  10. Radiation drag in the field of a non-spherical source

    NASA Astrophysics Data System (ADS)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  11. Intermediate number coherent state of the quantized radiation field

    NASA Astrophysics Data System (ADS)

    Baseia, B.; Granja, S. C. G.; Marques, G. C.

    1997-06-01

    We introduce an intermediate state of the light field which is alternative to the binomial state introduced by Stoler et al, thus interpolating between the number state | n rang and the coherent state | ? rang. A comparison between their properties shows that the amount of nonclassical effects obtained in the present state can be greater than that obtained in the binomial state, depending on the values of the interpolating parameters and the excitations n and bar n?. Quantum coherence effect exhibited by the present state is also discussed.

  12. The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field

    SciTech Connect

    Wang, Chunsheng Liu, Hui; Jiang, Binhao; Li, Xueai

    2015-06-15

    A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.

  13. The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field

    NASA Astrophysics Data System (ADS)

    Wang, Chunsheng; Liu, Hui; Li, Xueai; Jiang, Binhao

    2015-06-01

    A model of a plasma-antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.

  14. Radiation therapy for early glottic cancer (T1N0M0): II. Prospective randomized study concerning radiation field

    SciTech Connect

    Teshima, T.; Chatani, M.; Inoue, T. )

    1990-01-01

    A prospective randomized study to determine the effect of radiation field on the local control of early glottic cancer was performed. From May 1982 through December 1985, a total of 87 patients with early glottic cancer (T1N0M0) were treated at our department with an individualized wedge filter technique using a shell to improve the dose distribution and immobilization during radiotherapy with 4 MV X ray. Patients were randomly allocated to either treatment group A (radiation field size: 5 x 5 cm2) or B (6 x 6 cm2) using bilateral parallel opposed portals. Total radiation dose administered was 60 Gy in 30 fractions over a 6-week period. The 3-year recurrence-free survival rates were 93% in group A and 96% in group B (no significant difference). Comparison with historical control showed that both arms achieved better results. These results were mainly due to the improved local control of whole-length lesions of single vocal cords. Acute mucosal reaction (p less than 0.05) and persistent arytenoid edema lasting more than 6 months (p less than 0.02) were more frequently observed in group B than in group A. It is concluded that the critical factor in getting optimal results in the treatment of early glottic cancer is careful attention to the technique of treatment.

  15. Pioneer Saturn Encounter. [Pioneer 11 space probe

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Pioneer Saturn Spacecraft, which began its journey as Pioneer 11, provided the first close view of the rings of Saturn as well as its system of moons. Its payload of 11 operating instruments obtained or confirmed data about the mass, temperature, composition, radiation belts, and atmosphere of the planet and its larger satellite, Titan. It made photometric and polarization measurements of lapetus, Rhea, Dione, and Tethys, as well as discovered additional rings. Scientific highlights of the mission are summarized. Color imagery provided by the photopolarimeter is included along with illustrations of the planet's magnetic field and radiation belts.

  16. Deconvolution of wide-field-of-view measurements of reflected solar radiation

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David

    1990-01-01

    Wide-field-of-view (WFOV) radiometers have been flown as part of the Earth Radiation Budget instrument on the Nimbus 6 and 7 spacecraft and as part of the Earth Radiation Budget Experiment (ERBE) instruments aboard the ERBE spacecraft and also the NOAA 9 and 10 operational spacecraft. The measurement is the integral of the reflected solar flux distribution at the top of the earth-atmosphere system over the field-of-view of the radiometer. This paper develops the solution to this two-dimensional integral equation for the albedo distribution in terms of the measurements.

  17. Interrupted Stellar Encounters in Star Clusters

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Leigh, Nathan W. C.

    2015-07-01

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single-binary and binary-binary scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%-40% (or higher) in the core, though for typical globular clusters we expect ?1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.

  18. Collaborative Partnering with Districts: Problems Encountered, Lessons Learned.

    ERIC Educational Resources Information Center

    Goodwin, Bryan R.; Gaddy, Barbara B.; Cicchinelli, Louis F.

    This paper examines the accomplishments of the Mid-Continent Research for Education and Learning (McREL) district research partners. Informed by 2 years of collaborative experience, the report documents the process McREL used in selecting partner sites and guides future field-based research partnerships by discussing problems encountered and…

  19. Tips for Novice Researchers: Operational Difficulties Encountered in Underdeveloped Countries.

    ERIC Educational Resources Information Center

    Belcher El-Nahhas, Susan M.

    This paper provides a general overview of the type of problems encountered in the field of research so that individuals who are contemplating conducting research in an underdeveloped country for the first time are better prepared, and hence, better able to complete their research. The paper recounts a female researcher's personal experiences in…

  20. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation.

    PubMed

    Stewart, James M P; Ansell, Steve; Lindsay, Patricia E; Jaffray, David A

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16?mm at isocenter, with simulations suggesting this error could be reduced to 0.20?mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from [Formula: see text] mm (mean??±??SD) to [Formula: see text] mm for an isotropic imaging voxel size of 0.1?mm. PMID:26540304

  1. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16?mm at isocenter, with simulations suggesting this error could be reduced to 0.20?mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean??±??SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1?mm.

  2. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    NASA Astrophysics Data System (ADS)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  3. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques. PMID:15353687

  4. Quantum synchrotron radiation in the case of a field with finite extension

    NASA Astrophysics Data System (ADS)

    Wistisen, Tobias N.

    2015-08-01

    The semiclassical operator method of Baier and Katkov allows one to obtain the spectrum of synchrotron radiation in a way similar to the classical derivation but which is fully valid also in the quantum case of very strong electromagnetic fields. In the usual calculation the extension of the field is taken to be infinite. In this paper we apply a numerical routine based on the semiclassical operator method to the case of a constant field but with a finite extension. For large extensions of the field one obtains the usual result of quantum synchrotron radiation, while in the limit of small extension of the field one obtains a spectrum resembling that of bremsstrahlung. We derive a formula for the radiation spectrum in this limit. In the transition toward shorter field extensions one finds that the power-spectrum increases for soft photons and slightly diminishes for harder photons. It is found that in the classical case the total power emitted decreases as the field extension decreases while in the quantum case the total power emitted is first increased and then decreases. Such an effect could be important for future e+e- colliders such as the ILC or CLIC where the dominant energy and luminosity loss is due to synchrotron radiation by an e-/e+ in the field of the opposing bunch, often termed "beamstrahlung." In this paper we also discuss how these effects, in the quantum case could be measured in an experiment using thin aligned single crystals and high energy electrons available at e.g. the CERN SPS North Area, and in the classical case could already be relevant at existing accelerators with conventional magnets providing the electromagnetic field.

  5. Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions.

    PubMed

    Horikoshi, Satoshi; Sumi, Takuya; Serpone, Nick

    2012-01-01

    The heating characteristics of aqueous electrolyte solutions (NaCl, KCl, CaCl2, NaBF4, and NaBr) of varying concentrations in ultrapure water by 2.45 GHz microwave radiation from a single-mode resonance microwave device and a semiconductor microwave generator were examined under conditions where the electric field (E-field) was dominant and where the magnetic field (H-field) dominated. Although magnetic field heating is not generally used in microwave chemistry, the electrolyte solutions were heated almost entirely by the microwaves' H-field. The heating rates under H-field irradiation at the higher concentrations of electrolytes (0.125 M to 0.50 M) exceeded the rates under E-field irradiation. This inversion phenomenon in heating is described in terms of the penetration depth of the microwaves. On the other hand, the action of the microwave radiation on ethylene glycol containing an electrolyte differed from that observed for water under E-field and H-field conditions. PMID:24432589

  6. On Whether Angular Momentum in Electric and Magnetic Fields Radiates to Infinity

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Knudsen, Steven

    2006-01-01

    The Feynman Disk experiment and a related thought experiment with a static magnetic field and capacitor are studied. The mechanical torque integrated over time (angular impulse) is related to the angular momentum in the electric/magnetic field. This is not called an electromagnetic field since quasi-static as well as electromagnetic effects are included. The angular momentum in the electric/magnetic field is examined to determine its static and radiative components. This comparison was then examined to see if it clarified the Abraham-Minkowski paradox.

  7. Subdiffraction field localisation in the scattering of femtosecond laser radiation by a dielectric microsphere

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Panina, E K

    2014-01-31

    The time dynamics of the optical field was theoretically considered in the near-field diffraction zone in the scattering of a femtosecond laser pulse by a transparent spherical microparticle. The spatial region of field focusing by the particle (the 'photonic jet' zone) was investigated; the evolution of the jet shape and the peak intensity in this region were analysed. For the first time it was determined that an extremely tight optical field localisation to a subdiffraction size is possible at a certain (resonance) temporal stage of photonic jet development. (radiation scattering)

  8. Polar twilight UV-visible radiation field: Perturbations due to multiple scattering, ozone depletion, stratospheric clouds, and surface albedo

    SciTech Connect

    Anderson, D.E., Jr. ); Lloyd, S.A. )

    1990-05-20

    The polar twilight atmosphere is different from that at mid-latitude in several ways which lead to significant changes in the wavelength-dependent radiation field. Ozone depletion in the stratosphere leads to increased scattering below 340 nm. Polar stratospheric clouds produce changes in the radiation field which depend on cloud height and thickness. A surface albedo near unity produces a large increase in scattering. Multiple scattering becomes a larger percentage of the radiation field as solar zenith angle increases. These perturbations on the radiation field lead to enhanced ozone destruction in the stratosphere, increased surface irradiance, and a significant wavelength-dependent increase in nadir radiance.

  9. Gravitational waves from stellar encounters

    E-print Network

    Salvatore Capozziello; Mariafelicia De Laurentis

    2008-07-25

    The emission of gravitational waves from a system of massive objects interacting on elliptical, hyperbolic and parabolic orbits is studied in the quadrupole approximation. Analytical expressions are then derived for the gravitational wave luminosity, the total energy output and gravitational radiation amplitude. A crude estimate of the expected number of events towards peculiar targets (i.e. globular clusters) is also given. In particular, the rate of events per year is obtained for the dense stellar cluster at the Galactic Center.

  10. The Outflows Accelerated by the Magnetic Fields and Radiation Force of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, \\Theta =c_s^2/r^2\\Omega _K^2\\ll (H/r)^2, which is significantly lower than that of a gas-pressure-dominated disk, ? ~ (H/r)2. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  11. Radiative transfer modeling of upwelling light field in coastal waters

    NASA Astrophysics Data System (ADS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-05-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters.

  12. A field study of pollutant deposition in radiation fog

    SciTech Connect

    Waldman, J.M.; Jacob, D.J.; Munger, J.W.; Hoffman, M.R.

    1986-04-01

    Deposition during fog episodes can make a significant contribution to the overall flux of pollutants in certain ecosystems. Furthermore, when atmospheric stagnation prevents normal ventilation in a region, fog deposition may become the main route of pollutant removal. Fogs can consequently exert dominant control over pollutant levels in certain atmospheres. The southern San Joaquin Valley (SJV) of California is a region prone to wintertime episodes of atmospheric stagnation. These lead to elevated pollutant concentrations and/or dense, widespread fogs. Major oil-recovery operations plus widespread agricultural and livestock feeding activities are important sources of SO/sub 2/, NO/sub X/ and NH/sub 3/ in the valley. A multifaceted program of field monitoring was conducted in the SJV during the winter 1984-1985, focusing on aspects of pollutant scavenging and removal in the fog-laden atmosphere. Concentrations of major species were measured in gas, dry aerosol and fogwater phases. In addition, depositional fluxes were monitored by surrogate-surface methods. These measurements were employed to directly assess the magnitude of removal enhancement by fog.

  13. Transient quantum coherent response to a partially coherent radiation field

    SciTech Connect

    Sadeq, Zaheen S.; Brumer, Paul

    2014-02-21

    The response of an arbitrary closed quantum system to a partially coherent electric field is investigated, with a focus on the transient coherences in the system. As a model we examine, both perturbatively and numerically, the coherences induced in a three level V system. Both rapid turn-on and pulsed turn-on effects are investigated. The effect of a long and incoherent pulse is also considered, demonstrating that during the pulse the system shows a coherent response which reduces after the pulse is over. Both the pulsed scenario and the thermally broadened CW case approach a mixed state in the long time limit, with rates dictated by the adjacent level spacings and the coherence time of the light, and via a mechanism that is distinctly different from traditional decoherence. These two excitation scenarios are also explored for a minimal “toy” model of the electronic levels in pigment protein complex PC645 by both a collisionally broadened CW laser and by a noisy pulse, where unexpectedly long transient coherence times are observed and explained. The significance of environmentally induced decoherence is noted.

  14. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  15. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    SciTech Connect

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  16. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    SciTech Connect

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersed in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.

  17. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  18. Deconvolution results for wide field-of-view radiometer measurements of reflected solar radiation

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David

    1988-01-01

    The measurement of reflected solar radiation by spacecraft wide-field-of-view radiometers is considered analytically, and the method proposed by Smith (1987) for the solution of the discretized governing equations is described and demonstrated. The theoretical basis of the singular-value decomposition method (partitioning the albedo field into observable and unobservable components) is outlined; its application to Nimbus 7 ERB data is explained in detail; and numerical results are presented in graphs and maps and briefly characterized.

  19. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole

    NASA Astrophysics Data System (ADS)

    Li, Ran

    2014-06-01

    By studying the perturbation of massless Dirac field in the background of linear dilaton black hole we show that the covariant Dirac equation can be separated into radial and angular equations. The Damour—Ruffini method is applied to derive the spectrum of Hawking radiation for the Dirac field, from which the Hawking temperature can be read off. It is shown that the Hawking temperature is consistent with the result calculated from the surface gravity.

  20. Breast Cancer Regional Radiation Fields for Supraclavicular and Axillary Lymph Node Treatment: Is a Posterior Axillary Boost Field Technique Optimal?

    SciTech Connect

    Wang Xiaochun Yu, T.K.; Salehpour, Mohammad; Zhang, Sean X.; Sun, T.L.; Buchholz, Thomas A.

    2009-05-01

    Purpose: To assess whether using an anterior oblique supraclavicular (SCV) field with a posterior axillary boost (PAB) field is an optimal technique for targeting axillary (AX) lymph nodes compared with two computed tomography (CT)-based techniques: (1) an SCV field with an anterior boost field and (2) intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten patients with CT simulation data treated with postmastectomy radiation that included an SCV field were selected for the study. Supraclavicular nodes and AX Level I-III nodes within the SCV field were contoured and defined as the treatment target. Plans using the three techniques were generated and evaluated for each patient. Results: The anterior axillary boost field and IMRT resulted in superior dose coverage compared with PAB. Namely, treatment volumes that received 105%, 80%, and 30% of prescribed dose for IMRT plans were significantly less than those for the anterior axillary boost plans, which were significantly less than PAB. For PAB and anterior axillary boost plans, there was a linear correlation between treatment volume receiving 105% of prescribed dose and maximum target depth. Furthermore, the IMRT technique resulted in better lung sparing and dose conformity to the target than anterior axillary boost, which again was significantly better than PAB. The maximum cord dose for IMRT was small, but higher than for the other two techniques. More monitor units were required to deliver the IMRT plan than the PAB plan, which was more than the anterior axillary boost plan. Conclusions: The PAB technique is not optimal for treatment of AX lymph nodes in an SCV field. We conclude that CT treatment planning with dose optimization around delineated target volumes should become standard for radiation treatments of supraclavicular and AX lymph nodes.

  1. Development of a Field Well-Head Safety System for Use with Radiation-Generating Devices

    SciTech Connect

    Keegan, Raymond Patrick; Lopez, Juan Carlos; McGrath, Christopher Andrew

    2003-12-01

    This paper discusses the design, testing and application of a new interlock system for field use with neutron generating bore hole probes at the Idaho National Engineering and Environmental Laboratory. Such probes produce 14 MeV neutrons at a yield up to 3×108 neutrons/s, and present an ionizing radiation hazard to personnel particularly when operated in an unshielded configuration. This interlock system prevents personnel from being exposed to the relatively high radiation fields caused by an unsafe condition when an operating neutron generator probe is withdrawn from a well in the ground. An electromechanical interlock prototype system has been designed, built and tested, and has been found to be effective at preventing this event. The design is simple, is effective in mitigating the hazard, and can be installed in minutes. The system could be modified to interlock radiation-generating devices other than neutron generators that are used in similar environments.

  2. Hydrogen in intense laser fields: Radiative close-coupling equations and quantum-defect parametrization

    SciTech Connect

    Marte, P.; Zoller, P. )

    1991-02-01

    A system of radiative close-coupling equations for a hydrogen atom in a circularly polarized intense laser field is derived. The radiative scattering matrix is parametrized within a multichannel quantum-defect formalism. The quasienergy spectrum corresponding to nonperturbative shifts and ionization widths of the bound atomic states is computed from the poles of the radiative scattering matrix. For an intensity range up to {alpha}{sub 0}{approx}1.5{ital a}{sub 0} (with {alpha}{sub 0} the oscillation amplitude of the free electron in the laser and {ital a}{sub 0} the Bohr radius), numerical results are presented in the frequency regime where two-photon ionization and above-threshold ionization of the ground state is possible. For one-photon transitions a stabilization of the atomic states for strong fields is predicted.

  3. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  4. Hawking radiation for a scalar field conformally coupled to an AdS black hole

    NASA Astrophysics Data System (ADS)

    Valtancoli, P.

    2015-11-01

    The decomposition in normal modes of a scalar field conformally coupled to an AdS black hole leads to a Heun equation with simple coefficients thanks to conformal invariance. By applying the Damour-Ruffini method we can relate the critical exponent of the radial part at the horizon surface to the Hawking radiation of scalar particles.

  5. Magnitude dependence of radiated energy spectra: Far-field expressions of slip pulses in earthquake models

    E-print Network

    Shaw, Bruce E.

    Magnitude dependence of radiated energy spectra: Far-field expressions of slip pulses in earthquake density and then averaging over events of a similar size to examine the magnitude dependence. Assuming dependence on event magnitude for the different frictional instabilities that we have examined, suggesting

  6. Preprint typeset in JINST style -HYPER VERSION Neutron assay in mixed radiation fields with a

    E-print Network

    MacDonald, Mark

    Preprint typeset in JINST style - HYPER VERSION Neutron assay in mixed radiation fields with a 6 Li recoil distributions 3 3. Methodology 5 3.1 Experimental details 5 3.2 Charge comparison method (CCM) 5 3Lethargy(arb.units) Glove box containing 241 AmBe Glove box containing 244 Cm Fuel Transport Container Figure 1. Three

  7. Radiation Damage of Myoglobin Crystals in Weak Stationary Electric and Magnetic Fields

    PubMed Central

    Trame, C B; Dragovic, M; Chiu, H-J

    2014-01-01

    Radiation damage is one of the bottlenecks in the field of structural biology. Cryo-cooling of protein crystals provided a breakthrough in the 1980s and resulted in significant reductions in radiation damage. Other factors positively influencing the progression of damage include the application of radical scavengers and reductions in the experimental beam size. Here we study the impact on radiation damage of applying static magnetic and electric fields during protein diffraction experiments, ultimately probing the Lorenz force effect on primary photoelectrons and secondary Auger electrons, which both contribute to the damage process. The design of a special mounting pin using graphene for applying electric fields on a crystalline sample is described. Analyses of myoglobin protein crystals exposed to the fields of ~40 mT and ?300 V show a slower global radiation damage rate and also changes in the progression of specific damage process on the molecular level, in particular at doses extending beyond the Garman limit of 30 MGy. PMID:25089148

  8. On the sound field radiated by a tuning fork Daniel A. Russell

    E-print Network

    Russell, Daniel A.

    On the sound field radiated by a tuning fork Daniel A. Russell Science and Mathematics Department, Kettering University, Flint, Michigan 48504 Received 14 June 1999; accepted 25 April 2000 When a sounding. © 2000 American Association of Physics Teachers. I. INTRODUCTION If one rotates a sounding tuning fork

  9. Would be the photon a composed particle? quantization of field fluxes in electromagnetic radiation

    E-print Network

    Celso de Araujo Duarte

    2013-12-02

    [En] Here it is made a comparative analysis between the classical and the quantum expressions for the energy of electromagnetic radiation (ER). The comparison points to the possibility of the quantization of the magnetic and the electric field fluxes in the ER.

  10. Hawking radiation for a scalar field conformally coupled to an AdS black hole

    E-print Network

    P. Valtancoli

    2015-02-05

    The decomposition in normal modes of a scalar field conformally coupled to an AdS black hole leads to a Heun equation with simple coefficients thanks to conformal invariance. By applying the Damour-Ruffini method we can relate the critical exponent of the radial part at the horizon surface to the Hawking radiation of scalar particles.

  11. Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space

    E-print Network

    Anderson, Paul R.

    Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved processes foreseen in theoretical physics, namely BH quantum evaporation as predicted by Hawking in 1974 [3 has a BH form [1,2]. Hawking evaporation is a general pair creation process in which quantum vacuum

  12. EFFECTS OF UV-B RADIATION ON SOYBEAN YIELD AND SEED QUALITY: A 6-YEAR FIELD

    EPA Science Inventory

    Two soybean, [Glycine max (L.) Merr.] cultivars, Essex and Williams, were grown in the field for 6 consecutive seasons under ambient and supplemental levels of ultraviolet B radiation to determine the potential for alterations in yield or seed quality with a reduction in the stra...

  13. Mapping the Radiative and the Apparent Nonradiative Local Density of States in the Near Field of a Metallic Nanoantenna

    E-print Network

    Godoy-Diana, Ramiro

    Mapping the Radiative and the Apparent Nonradiative Local Density of States in the Near Field to separate the contributions of the radiative and the apparent nonradiative local density of states to the change in the decay rate. The apparent nonradiative contribution accounts for losses due to radiation out

  14. Rounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study

    PubMed Central

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2015-01-01

    Background Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing. Methods In this study, we present an analytical and numerical approach for evaluation of the rounded leaf end effect on penumbra characteristics. Based on the rule of half-value layer, algorithms for leaf position calculation and radiation field offset correction were developed, which were advantageous particularly in dealing with large radius leaf end. Computer simulation was performed based on the Monte Carlo codes of EGSnrc/BEAMnrc, with groups of leaf end radii and source sizes. Data processing technique of curve fitting was employed for deriving penumbra width and radiation field offset. Results Results showed that penumbra width increased with source size. Penumbra width curves for large radius leaf end were U-shaped. This observation was probably related to the fact that radiation beams penetrated through the proximal and distal leaf sides. In contrast, source size had negligible impact on radiation field offset. Radiation field offsets were found to be constant both for analytical method and numerical simulation. However, the overall resulting values of radiation field offset obtained by analytical method were slightly smaller compared with Monte Carlo simulation. Conclusions The method we proposed could provide insight into the investigation of rounded leaf end effects on penumbra characteristics. Penumbra width and radiation field offset calibration should be carefully performed to commission multileaf collimator for intensity modulated radiotherapy. PMID:26401137

  15. Polarization-dependent heating of the cosmic microwave background radiation by a magnetic field

    E-print Network

    Bialynicka-Birula, Zofia

    2014-01-01

    The changes in the cosmic microwave background (CMB) spectrum seen as an increase of temperature due to a strong magnetic field are determined and their influence on the polarization of the radiation is exhibited. The effect is due to the coupling of the CMB photons to the magnetic field in the QED vacuum via the interaction with virtual pairs. In spite of the fact that the distortion of the CMB spectrum for magnetic fields that exist in the vicinity of magnetars is quite large, this effect is very difficult to detect at present because the required angular resolutions is not yet available.

  16. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    SciTech Connect

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-03-12

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  17. Generation of Magnetic Fields and Jitter Radiation in GRBs. I. Kinetic Theory

    E-print Network

    Mikhail V. Medvedev

    2001-02-23

    We present a theory of generation of strong (sub-equipartition) magnetic fields in relativistic collisionless GRB shocks. These fields produced by the kinetic two-stream instability are tangled on very small spatial scales. This has a clear signature in the otherwise synchrotron(-self-Compton) $\\gamma$-ray spectrum. Second, we present an analytical theory of jitter radiation, which is emitted when the correlation length of the magnetic field is smaller then the gyration (Larmor) radius of the accelerated electrons. We demonstrate that the spectral power $P(\

  18. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    SciTech Connect

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  19. Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Green, R. N.

    1981-01-01

    The theory of deconvolution of wide field-of-view (WFOV) radiometer measurements of earth-emitted radiation provides a technique by which the resolution of such measurements can be enhanced to provide radiant exitance at the top of the atmosphere with a finer resolution than the field of view. An analytical solution for the earth-emitted radiant exitance in terms of WFOV radiometer measurements is derived for the nonaxisymmetric (or regional) case, in which the measurements and radiant exitance are considered to be functions of both latitude and longitude. This solution makes it possible to deconvolve a set of WFOV radiometer measurements of earth-emitted radiation and obtain information with a finer resolution than the instantaneous field of view of the instrument. It is shown that there are tradeoffs involved in the selection between WFOV and scanning radiometers.

  20. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    SciTech Connect

    Wang, C. Wang, F.; Cao, J. C.

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  1. Electromagnetic field radiated from broadband signal transmission on power line carrier channels

    SciTech Connect

    D`Amore, M.; Sarto, M.S.

    1997-04-01

    A rigorous procedure is presented for the evaluation of the rectangular components of the electromagnetic field radiated by excited carrier channels on multiconductor overhead power lines above a lossy ground. The proposed full wave approach, based on the use of Hertz potentials, allows to carry out the high-frequency analysis of a spread spectrum transmission system. Field sources are the current traveling along the line, which are evaluated by means of an accurate line simulation model including the ground return parameters, obtained by removing the Carson quasi-static hypotheses. The frequency-spectra and the lateral profiles of the field components radiated from wire-to-ground and wire-to-wire channels on a three-conductor distribution line are computed in a frequency-range up to 20 MHz.

  2. Encounter with Jupiter. [Pioneer 10 space probe

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 10 space probe's encounter with the Jupiter is discussed in detail. Tables are presented which include data on the distances during the encounter, times of crossing satellite orbits, important events in the flight near Jupiter, and time of experiments. Educational study projects are also included.

  3. Encounters with Spectral Theory Copenhagen University

    E-print Network

    Grubb, Gerd

    Encounters with Spectral Theory Gerd Grubb Copenhagen University November 2, 2012 Gerd Grubb ray is resolved in many different-colour components A specter can also mean a ghostly apparition! Gerd decomposition of A. Gerd Grubb Copenhagen University Encounters with Spectral Theory #12;Example: The vibrating

  4. Using encounters versus episodes in syndromic surveillance

    PubMed Central

    Jung, I.; Kulldorff, M.; Kleinman, K. P.; Yih, W. K.; Platt, R.

    2009-01-01

    Background Automated electronic medical records may be useful for syndromic surveillance to quickly detect infectious disease outbreaks. Some syndromic surveillance systems include every encounter in the analysis, whereas others exclude individuals' repeat encounters within the same syndrome occurring within a short period of time, with the rationale that these represent follow-up visits rather than new episodes of illness. Methods We evaluate the effect of keeping all encounters as compared with removing repeat encounters. Using the prospective space–time permutation scan statistic, we performed daily analyses on all encounters versus on episodes defined as encounters new within 2, 6 or 12 weeks. Data were taken from a Massachusetts Health Maintenance Organization (HMO) for the calendar year 1999 for four different syndromes. Results We found extensive disagreement in the number of signals detected: 70, 68, 21 and 15 signals when using all encounters versus 15–20, 3, 4–5 and 0 signals when using only new episodes for lower respiratory, lower gastrointestinal, upper gastrointestinal and neurologic syndromes, respectively. Conclusion Using all encounters in syndromic surveillance may not only create too many signals but may also miss some signals by masking the anomalies generated by actual episodes. However, it is also possible to miss signals when using episodes. PMID:19443438

  5. An experimental investigation into the radiation field offset of a dynamic multileaf collimator

    NASA Astrophysics Data System (ADS)

    Vial, Philip; Oliver, Lyn; Greer, Peter B.; Baldock, Clive

    2006-11-01

    In this study we investigate the characteristics of a rounded leaf end multileaf collimator (MLC) that is used for delivering intensity-modulated radiotherapy (IMRT) with a Varian linear accelerator. The rounded leaf end MLC design results in an offset between the radiation field edge (the physical leaf position) and the light field (the geometric leaf position). We call this the radiation field offset (RFO). The leaf position is calibrated to the leaf tip at the mid-leaf plane. There is an additional offset between the geometric leaf position and the projected leaf tip position that varies as a function of distance from the collimator central axis due to the MLC geometry. We call this the leaf position offset (LPO). There is a lack of consistency in the interpretation and implementation of the RFO and the LPO in the literature. We investigated the RFO and the LPO on Varian's 600 C/D and 21 EX linear accelerators. We used a combination of film and ion chamber measurements of static, segmental MLC (SMLC) and dynamic MLC (DMLC) fields to quantify the leaf offsets across the range of leaf positions. We were able to improve the dosimetry at large off-axis positions with minor adjustments to the vendor's LPO file. The RFO was determined to within 0.1 mm accuracy at the collimator central axis. The measured RFO value depends on whether the method is based on the radiation field edge position or on an integral dose measurement. The integral dose method results in an RFO that is approximately 0.2 mm greater than the radiation field edge method. The difference is due to the MLC penumbra shape. We propose a methodology for measuring and implementing MLC leaf offsets that is suitable for both SMLC and DMLC IMRT. In addition, we propose some definitions that more clearly describe the MLC leaf position for accurate IMRT dosimetry.

  6. An experimental investigation into the radiation field offset of a dynamic multileaf collimator.

    PubMed

    Vial, Philip; Oliver, Lyn; Greer, Peter B; Baldock, Clive

    2006-11-01

    In this study we investigate the characteristics of a rounded leaf end multileaf collimator (MLC) that is used for delivering intensity-modulated radiotherapy (IMRT) with a Varian linear accelerator. The rounded leaf end MLC design results in an offset between the radiation field edge (the physical leaf position) and the light field (the geometric leaf position). We call this the radiation field offset (RFO). The leaf position is calibrated to the leaf tip at the mid-leaf plane. There is an additional offset between the geometric leaf position and the projected leaf tip position that varies as a function of distance from the collimator central axis due to the MLC geometry. We call this the leaf position offset (LPO). There is a lack of consistency in the interpretation and implementation of the RFO and the LPO in the literature. We investigated the RFO and the LPO on Varian's 600 C/D and 21 EX linear accelerators. We used a combination of film and ion chamber measurements of static, segmental MLC (SMLC) and dynamic MLC (DMLC) fields to quantify the leaf offsets across the range of leaf positions. We were able to improve the dosimetry at large off-axis positions with minor adjustments to the vendor's LPO file. The RFO was determined to within 0.1 mm accuracy at the collimator central axis. The measured RFO value depends on whether the method is based on the radiation field edge position or on an integral dose measurement. The integral dose method results in an RFO that is approximately 0.2 mm greater than the radiation field edge method. The difference is due to the MLC penumbra shape. We propose a methodology for measuring and implementing MLC leaf offsets that is suitable for both SMLC and DMLC IMRT. In addition, we propose some definitions that more clearly describe the MLC leaf position for accurate IMRT dosimetry. PMID:17047267

  7. EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Miller, Jon; Bergin, Edwin; Hartmann, Lee; Hernandez, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu E-mail: ebergin@umich.edu E-mail: jesush@cida.ve E-mail: cespaillat@cfa.harvard.edu

    2011-04-15

    We present new X-ray and far-ultraviolet (FUV) observations of T Tauri stars covering the age range 1-10 Myr. Our goals are to observationally constrain the intensity of radiation fields responsible for evaporating gas from the circumstellar disk and to assess the feasibility of current photoevaporation models, focusing on X-ray and UV radiation. We greatly increase the number of 7-10 Myr old T Tauri stars observed in X-rays by including observations of the well-populated 25 Ori aggregate in the Orion OB1a subassociation. With these new 7-10 Myr objects, we confirm that X-ray emission remains constant from 1 to 10 Myr. We also show, for the first time, observational evidence for the evolution of FUV radiation fields with a sample of 56 accreting and non-accreting young stars spanning 1 Myr to 1 Gyr. We find that the FUV emission decreases on timescales consistent with the decline of accretion in classical T Tauri stars until reaching the chromospheric level in weak T Tauri stars and debris disks. Overall, we find that the observed strength of high-energy radiation is consistent with that required by photoevaporation models to dissipate the disks in timescales of approximately 10 Myr. Finally, we find that the high-energy fields that affect gas evolution are not similarly affecting dust evolution; in particular, we find that disks with inner clearings, transitional disks, have similar levels of FUV emission as full disks.

  8. A parametric study of the effect of inlet lip shape upon the radiated sound field

    NASA Technical Reports Server (NTRS)

    Meyer, W. L.; Zinn, B. T.

    1984-01-01

    Far field sound radiation predictions for four different axisymmetric inlet lips excited by different tangential acoustic modes at several cut-off ratios are presented. These results were obtained by numerical integration of a special cylindrically symmetric integral representation of the external solutions of the Helmholtz equation which yields unique solutions at all wave numbers. The paper presents plots which detail the dependence of the relative SPL (dB) in the field upon the engine inlet lip shape, the modal input, and the cut-off ratio. Examination of these data indicate that: (1) as the inlet lip becomes larger the predominant acoustic radiation peak in the field becomes narrower and moves towards the centerline of the inlet; (2) as the order of the tangential acoustic mode of the driver increases the radiated sound peak again becomes narrower but moves away from the inlet centerline; and (3) as the cut-off ratio is increased for a specific tangential acoustic mode the predominant radiation peak becomes narrower and moves towards the centerline of the inlet.

  9. Response of dosemeters in the radiation field generated by a TW-class laser system.

    PubMed

    Olšovcová, V; Klír, D; Krása, J; Kr?s, M; Velyhan, A; Zelenka, Z; Rus, B

    2014-10-01

    State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems. PMID:24563524

  10. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryzi?ski, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. PMID:24366246

  11. Would Larger Radiation Fields Lead to a Faster Onset of Pain Relief in the Palliation of Bone Metastases?

    SciTech Connect

    Chow, Edward Makhani, Leila; Culleton, Shaelyn; Makhani, Nadiya; Davis, Lori; Campos, Sarah; Sinclair, Emily

    2009-08-01

    Purpose: Hemibody irradiation has been shown to relieve bony metastatic pain within 24-48 hours of treatment, whereas for local external beam radiation, onset of pain relief is 1-4 weeks after radiation. The primary objective of this study is to examine whether there is a relationship between the areas of radiation treatment and onset of pain relief. Methods and Materials: From Jan 1999 to Jan 2002, a total of 653 patients with symptomatic bone metastases were treated with external beam radiation. Pain scores and analgesic consumption were recorded at baseline and Weeks 1, 2, 4, 8, and 12. The areas of radiation treatment for all patients were calculated, then correlated with the response and analyzed in various ways. We first compared pain score alone with mean radiation field size. Second, we combined pain score and analgesic consumption. Last, we implemented the International Consensus end points for pain score and analgesic intake. Results: Assessment of 653 patients showed no significant correlation comparing pain scores alone with radiation field area, with the exception of Week 4 for partial responders. Again, no significant correlation was found when combining both analgesic intake and pain score against radiation field size. Even when implementing the International Consensus end point definitions for radiation response, the only significant correlation between radiation field size and response was observed in Week 2 for partial response. Conclusion: There was no statistical significance between mean areas of radiation treatment with the onset of pain relief.

  12. High-field half-cycle terahertz radiation from relativistic laser interaction with thin solid targets

    SciTech Connect

    Ding, W. J.; Koh, W. S.; Sheng, Z. M.; SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG

    2013-11-11

    It is found that half-cycle terahertz (THz) pulses with the peak field over 100 MV/cm can be produced in ultrashort intense laser interactions with thin solid targets. These THz pulses are shown to emit from both the front and rear sides of the solid target and are attributed to the coherent transition radiation by laser-produced ultrashort fast electron bunches. After the primary THz pulses, subsequent secondary half-cycle pulses are generated while some refluxing electrons cross the vacuum-target interfaces. Since such strong THz radiation is well synchronized with the driving lasers, it is particularly suitable for applications in various pump-probe experiments.

  13. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    PubMed Central

    Ganeev, R. A.

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications. PMID:23864818

  14. Development of a proposed international standard for certification of aircraft to High Intensity Radiated Fields (HIRF)

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    1993-01-01

    Avionic systems performing critical functions in modern aircraft are potentially susceptible to the hazards of electromagnetic radiation from ground and airborne transmitters. The Federal Aviation Administration (FAA) requested that the Society of Automotive Engineers (SAE) coordinate the development of procedures and guidance material which can be used during the aircraft certification process to ensure adequate protection against high intensity radiated fields (HIRF). This paper addresses both the technical challenge of drafting a certification procedure and guidance standard as well as the management process used by the SAE subcommittee AE4R to converge a diverse range of opinions by its international membership in the shortest possible time.

  15. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-print Network

    Singer, F; Joulain, Karl

    2015-01-01

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  16. 11/5/2007 M. Holdridge 1 New Horizons Pluto EncounterNew Horizons Pluto Encounter

    E-print Network

    Young, Leslie A.

    11/5/2007 M. Holdridge 1 New Horizons Pluto EncounterNew Horizons Pluto Encounter Baseline Review not conclude the concept development phase of planning the Pluto encounter. Continued analysis and trades, we are finding the Pluto flyby is a very unique flyby in terms of geometry and goals

  17. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  18. The electric field changes and UHF radiations caused by the triggered lightning in Japan

    NASA Technical Reports Server (NTRS)

    Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi

    1991-01-01

    In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.

  19. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.

  20. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    E-print Network

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2003-12-03

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field

    NASA Astrophysics Data System (ADS)

    Paganetti, Harald; Athar, Basit S.; Moteabbed, Maryam; Adams, Judith A.; Schneider, Uwe; Yock, Torunn I.

    2012-10-01

    There is clinical evidence that second malignancies in radiation therapy occur mainly within the beam path, i.e. in the medium or high-dose region. The purpose of this study was to assess the risk for developing a radiation-induced tumor within the treated volume and to compare this risk for proton therapy and intensity-modulated photon therapy (IMRT). Instead of using data for specific patients we have created a representative scenario. Fully contoured age- and gender-specific whole body phantoms (4 year and 14 year old) were uploaded into a treatment planning system and tumor volumes were contoured based on patients treated for optic glioma and vertebral body Ewing's sarcoma. Treatment plans for IMRT and proton therapy treatments were generated. Lifetime attributable risks (LARs) for developing a second malignancy were calculated using a risk model considering cell kill, mutation, repopulation, as well as inhomogeneous organ doses. For standard fractionation schemes, the LAR for developing a second malignancy from radiation therapy alone was found to be up to 2.7% for a 4 year old optic glioma patient treated with IMRT considering a soft-tissue carcinoma risk model only. Sarcoma risks were found to be below 1% in all cases. For a 14 year old, risks were found to be about a factor of 2 lower. For Ewing's sarcoma cases the risks based on a sarcoma model were typically higher than the carcinoma risks, i.e. LAR up to 1.3% for soft-tissue sarcoma. In all cases, the risk from proton therapy turned out to be lower by at least a factor of 2 and up to a factor of 10. This is mainly due to lower total energy deposited in the patient when using proton beams. However, the comparison of a three-field and four-field proton plan also shows that the distribution of the dose, i.e. the particular treatment plan, plays a role. When using different fractionation schemes, the estimated risks roughly scale with the total dose difference in%. In conclusion, proton therapy can significantly reduce the risk for developing an in-field second malignancy. The risk depends on treatment planning parameters, i.e. an analysis based on our formalism could be applied within treatment planning programs to guide treatment plans for pediatric patients.

  3. Radiation hardening of MOS devices by boron. [for stabilizing gate threshold potential of field effect device

    NASA Technical Reports Server (NTRS)

    Danchenko, V. (inventor)

    1974-01-01

    A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.

  4. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    NASA Astrophysics Data System (ADS)

    Sakowicz, M.; ?usakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-07-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle ? between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A0 cos2(? -?0)+C with A0, ?0, and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes.

  5. Radiation pressure in strong-field-approximation theory: Retardation and recoil corrections

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Kami?ski, J. Z.

    2015-10-01

    Radiation pressure effects in ionization by short linearly polarized laser pulses are investigated in the framework of strong-field approximation, in both nonrelativistic and relativistic formulations. Differences between both approaches are discussed, and retardation and recoil corrections are defined. It is demonstrated how these corrections can be incorporated into the nonrelativistic approach, leading to the so-called quasirelativistic formulation. These three approaches are further applied to the analysis of signatures of radiation pressure in energy-angular distributions of photoelectrons. It is demonstrated that, for Ti:sapphire laser pulses of intensities up to 1016W /cm2 , predictions of the quasirelativistic formulation agree well with those of the full relativistic one, and that the recoil corrections contribute predominantly to radiation pressure effects.

  6. Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications

    SciTech Connect

    Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.; Engelstad, Gary; Carney, Kevin P.; Chamberlain, David B.

    2015-03-28

    X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a 60Co radiography camera to observe effects from high-energy gamma emissions and an 192Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the 192Ir and 60Co sources.

  7. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.

  8. Teacher Encounters: A Typology for Ethnographic Research on the Teaching Experience.

    ERIC Educational Resources Information Center

    Warren, Richard L.

    A typology of teacher encounters was derived from observations of elementary school teachers for the purposes of ordering field data and indicating teaching experiences outside the classroom which affect, through sociocultural forces, classroom teaching behavior. From observations of teacher encounters in the auditorium, faculty room, school…

  9. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile phone and wireless DECT phone radiation and especially on the brain tissues. The brain is the major organ of the body that if affected by environmentally derived radiation, several cognitive - related functions shall be altered, such as memory and learning. We have approached this issue by means of behavioural tests (i.e. Morris water maze) and also by proteomics analysis (very precise separation and identification of the brain proteins by sophisticated techniques). Both ways of approaches have shown important deficits, suggesting that the normal use of the mobile and wireless phone next to the brain should be avoided and that new safety guidelines must be established.

  10. Unified Classical and Quantum Radiation Mechanism for Ultra-Relativistic Electrons in Curved and Inhomogeneous Magnetic Fields

    E-print Network

    T. Harko; K. S. Cheng

    2002-04-10

    We analyze the general radiation emission mechanism from a charged particle moving in a curved inhomogeneous magnetic field. The consideration of the gradient makes the curved vacuum magnetic field compatible with the Maxwell equations and adds a non-trivial term to the transverse drift velocity and, consequently, to the general radiation spectrum. To obtain the radiation spectrum in the classical domain a general expression for the spectral distribution and characteristic frequency of an electron in arbitrary motion is derived by using Schwinger's method. The radiation patterns of the ultrarelativistic electron are represented in terms of the acceleration of the particle. The same results can be obtained by considering that the motion of the electron can be formally described as an evolution due to magnetic and electric forces. By defining an effective electromagnetic field, which combines the magnetic field with the fictitious electric field associated to the curvature and drift motion, one can obtain all the physical characteristics of the radiation by replacing the constant magnetic field with the effective field. The power, angular distribution and spectral distribution of all three components (synchrotron, curvature and gradient) of the radiation are considered in both classical and quantum domain in the framework of this unified formalism. In the quantum domain the proposed approach allows the study of the effects of the inhomogeneities and curvature of the magnetic field on the radiative transitions rates of electrons between low-lying Landau levels and the ground state.

  11. [An encounter with extraterrestrial intelligence].

    PubMed

    Hisabayashi, Hisashi

    2003-12-01

    It is much easier to find extraterrestrial intelligence than to detect simple organisms living on other planets. However, it is hard to communicate with such intelligence without the mutual understanding of inter-stellar communication protocol. The radio SETI (The Search for Extra-Terrestrial Intelligence) was initiated with the pioneering work of F. Drake in 1960, one year after the historical SETI paper by Cocconi and Morrison. This talk explains that SETI evolves with two bases of science; the understanding of our universe and the development of technology. Since SETI has had strong connection with radio astronomy from its early beginning, the impacts of radio astronomical findings and technological breakthrough can be seen in many aspects of the SETI history. Topics of this talk include the detection of microwave 3 K background radiation in the universe. Interstellar atomic and molecular lines found in radio-wave spectra provide the evidence of pre-biotic chemical evolution in such region. Radio telescope imaging and spectral technique are closely associated with methodology of SETI. Topics of the talk extend to new Allen Telescope Array and projected Square Kilometer Array. Recent optical SETI and the discoveries of extra solar planets are also explained. In the end, the recent understanding of our universe is briefly introduced in terms of matter, dark matter and dark energy. Even our understanding of the universe has been evolutionarily revolved and accumulated after 1960, we must recognize that our universe is still poorly understood and that astronomy and SETI are required to proceed hand in hand. PMID:15136757

  12. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  13. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  14. Occupational radiation exposure history of Idaho Field Office Operations at the INEL

    SciTech Connect

    Horan, J.R.; Braun, J.B.

    1993-10-01

    An extensive review has been made of the occupational radiation exposure records of workers at the Idaho National Engineering Laboratory (INEL) over the period of 1951 through 1990. The focus has been on workers employed by contractors and employees of the Idaho Field Operations Office (ID) of the United States Department of Energy (USDOE) and does not include the Naval Reactors Facility (NRF), the Argonne National Laboratory (ANL), or other operations field offices at the INEL. The radiation protection guides have decreased from 15 rem/year to 5 rem/year in 1990 for whole body penetrating radiation exposure. During these 40 years of nuclear operations (in excess of 200,000 man-years of work), a total of twelve individuals involved in four accidents exceeded the annual guidelines for exposure; nine of these exposures were received during life saving efforts on January 3, 1961 following the SL-1 reactor accident which killed three military personnel. These exposures ranged from 8 to 27 rem. Only one individual has exceeded the annual whole body penetrating radiation protection guidelines in the last 29 years.

  15. A comparison of collimator geometries for imaging mixed radiation fields with fast liquid organic scintillators

    SciTech Connect

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2011-07-01

    As a result of recent advances in digital pulse-shape discrimination methods it has become possible to image mixed fields (radiation environments compromising both neutrons and gamma rays) relatively quickly with a single, organic liquid 'fast' scintillator within a heavy metal collimator. The use of a liquid scintillator has significant benefits over other techniques for imaging radiation environments as the acquired data can be analysed to provide separate information about the gamma and neutron emissions from a source (or sources) in a single scan. The imaging resolution achieved is fundamentally related to the detector efficiency and to the collimator geometry. In this paper the impact of using two different geometries of tungsten collimator are compared experimentally and three different materials considered in the Monte Carlo simulation, in order to determine the optimum set-up for mixed-field imaging. The measurements were performed in the low-scatter facility of the National Physical Laboratory, Teddington. (authors)

  16. Near-field radiative transfer between magneto-dielectric uniaxial anisotropic media.

    PubMed

    Wu, Huihai; Huang, Yong; Zhu, Keyong

    2015-10-01

    We investigate the near-field radiative heat transfer between two semi-infinite magneto-dielectric uniaxial anisotropic media (MDUAM). SiC nanowires embedded in metamaterials are used to implement electric and magnetic anisotropy, which leads to the hyperbolic dispersion relation for both TE and TM waves. The results show that the TM and TE waves can support both hyperbolic modes and surface modes and that there exist additional modes contributing to the heat transfer for TE waves. Moreover, the MDUAM exhibit super-Planckian thermal emission at ultra-broad bandwidths. This work paves the way for applying the near-field radiative heat transfer in the area of thermal management and energy harvesting. PMID:26421574

  17. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  18. EM modeling of far-field radiation patterns for antennas on the GMA-TT UAV

    NASA Astrophysics Data System (ADS)

    Mackenzie, Anne I.

    2015-05-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  19. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    PubMed

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-01-01

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, ?-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation. PMID:26393544

  20. A space weather index for the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Matthiä, Daniel

    2014-04-01

    The additional dose contribution to the radiation exposure at aviation altitudes during Solar Particle Events (SPEs) has been a matter of concern for many years. After the Halloween storms in 2003 several airlines began to implement mitigation measures such as rerouting and lowering flight altitudes in response to alerts on the NOAA S-scale regarding solar radiation storms. These alerts are based on the integral proton flux above 10 MeV measured aboard the corresponding GOES-satellite which is operated outside the Earth's atmosphere in a geosynchronous orbit. This integral proton flux has, however, been proved to be an insufficient parameter to apply to the radiation field at aviation altitudes without an accompanying analysis of the shape of the energy spectrum. Consequently, false alarms and corresponding disproportionate reactions ensued. Since mitigating measures can be quite cost-intensive, there has been a demand for appropriate space weather information among responsible airline managers for about a decade. Against this background, we propose the introduction of a new Space Weather index D, based on dose rates at aviation altitudes produced by solar protons during solar radiation storms, as the relevant parameter for the assessment of corresponding radiation exposure. The Space Weather index D is a natural number given by a graduated table of ranges of dose rates in ascending order which is derived by an equation depending on the dose rate of solar protons.

  1. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  2. Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings

    E-print Network

    Yang, Yue

    2015-01-01

    In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

  3. Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps

    E-print Network

    Yang, Yue

    2015-01-01

    In the present work, we theoretically demonstrate that near field radiative transport between one dimensional periodic grating microstructures separated by nanometer vacuum gaps can be spectrally enhanced by exciting magnetic polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative flux between two gold gratings. Besides the well known coupled surface plasmon polaritons, the radiative flux can be also spectrally enhanced due to magnetic polariton, which is excited in the gap between gold ridges. The mechanisms of magnetic polariton in the near field radiative transport are elucidated in detail, while the unusual enhancement cannot be predicted by either the Derjaguin or effective medium approximations. The effects of vacuum gap distance and grating geometry parameters between the two gratings are investigated. The findings will open up a new way to control near field radiative transfer by m...

  4. Influence of UV radiation fields on density diagnostics with He-like triplets

    E-print Network

    Ness, Jan-Uwe

    Influence of UV radiation fields on density diagnostics with He-like triplets Jan-Uwe Ness1, Rolf Mewe2, J¨urgen H.M.M. Schmitt1, Anton J.J. Raassen2,3 Abstract. Spectroscopic density diagnostics based-dominated plasmas the forbidden line f (1s2s 3S1 1s2 1S0), disappears at high densities, and the intercombination

  5. In uence of UV Radiation Fields on Density Diagnostics with He-like Triplets

    E-print Network

    Ness, Jan-Uwe

    In uence of UV Radiation Fields on Density Diagnostics with He-like Triplets Jan-Uwe Ness 1 , Rolf Mewe 2 , Jurgen H.M.M. Schmitt 1 , Anton J.J. Raassen 2;3 Abstract. Spectroscopic density diagnostics. In collision-dominated plasmas the forbidden line f (1s2s 3 S 1 ! 1s 2 1 S 0 ), disappears at high densities

  6. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    E-print Network

    Kolosnitsyn, N I

    2015-01-01

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  7. Far-ultraviolet studies. VII - The spectrum and latitude dependence of the local interstellar radiation field

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Anderson, R. C.; Fastie, W. G.

    1980-01-01

    A direct measurement has been made of the spectrum (1180-1680 A) and Gould-latitude dependence of the local interstellar radiation field, over about one-third of the sky. The result is corrected to give expected values for the entire sky. The average local 1180-1680 A energy density is 5.8 x 10 to the -17th ergs/cu cm A. The surface brightness falls off toward high latitudes much more steeply than published models predict.

  8. Intelligent monitor functional model with ionization chamber for mixed nuclear radiation field measurements

    SciTech Connect

    Valcov, N.; Purghel, L.; Celarel, A.

    1998-12-31

    By using the statistical discrimination technique, the components of an ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a series manufactured gamma-ray ratemeter was done, as an intermediate step in the design of specialized nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method.

  9. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    E-print Network

    N. I. Kolosnitsyn; V. N. Rudenko

    2015-04-24

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  10. Initial Field Measurements with the Multisensor Airborne Radiation Survey (MARS) High Purity Germanium (HPGe) Detector Array

    SciTech Connect

    Fast, James E.; Bonebrake, Christopher A.; Dorow, Kevin E.; Glasgow, Brian D.; Jensen, Jeffrey L.; Morris, Scott J.; Orrell, John L.; Pitts, W. Karl; Rohrer, John S.; Todd, Lindsay C.

    2010-06-29

    Abstract: The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gamma ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. The system is ruggedized and shock mounted for use in a variety of field applications. This paper reports on results from initial field measurements conducted in a truck and on two different boats.

  11. Scalar fields in the Lense-Thirring background with a cosmic string and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Vieira, H. S.; Bezerra, V. B.; Costa, André A.

    2015-03-01

    We analyze the influence of the gravitational field produced by a slowly rotating black hole with a cosmic string along the axis of symmetry on a massive scalar field. Exact solutions of both angular and radial parts of the Klein-Gordon equation in this spacetime are obtained, and are given in terms of the confluent Heun functions. We emphasize the role of the presence of the cosmic string in these solutions. We also investigate the solutions in regions near and far from the event horizon. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of massive scalar particles.

  12. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    SciTech Connect

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M.

    2013-11-18

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

  13. High-resolution ultraviolet radiation fields of classical T Tauri stars

    SciTech Connect

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.; Roueff, Evelyne; Abgrall, Hervé

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not include the contribution from the bright Ly? emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Ly? line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Ly?, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ?10{sup 7} times the average interstellar radiation field. The Ly? emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Ly? flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ?0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.

  14. Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    E-print Network

    A. S. Kotanjyan; A. A. Saharian

    2007-08-27

    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.

  15. An analysis of the radiation field characteristics for extremity dose assessment during maintenance periods at nuclear power plants in Korea.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2012-12-01

    Workers who maintain the water chambers of steam generators during maintenance periods in nuclear power plants (NPPs) have a higher likelihood of high radiation exposure, even if they are exposed for a short period of time. In particular, it is expected that the hands of workers would receive the highest radiation exposure as a consequence of hand contact with radioactive materials. In this study, a characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosemeters for the whole body and extremities during maintenance periods at Korean NPPs. It was observed that inhomogeneous radiation fields for contact operations at NPPs were dominated by high-energy photons. PMID:22628525

  16. Thermal management in MoS2 based integrated device using near-field radiation

    NASA Astrophysics Data System (ADS)

    Peng, Jiebin; Zhang, Gang; Li, Baowen

    2015-09-01

    Recently, wafer-scale growth of monolayer MoS2 films with spatial homogeneity is realized on SiO2 substrate. Together with the latest reported high mobility, MoS2 based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS2, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS2 to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS2 and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS2 sheet. Therefore, an efficient thermal management strategy for MoS2 integrated device is proposed: Graphene sheet is brought into close proximity, 10-20 nm from MoS2 device; heat energy transfer from MoS2 to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  17. Control of whistler radiation efficiency of a loop antenna by generation of ambient magnetic field irregularities

    SciTech Connect

    Gushchin, M. E.; Korobkov, S. V.; Kostrov, A. V.; Strikovsky, A. V.; Koldanov, V. A.; Zaboronkova, T. M.; Krafft, C.

    2008-05-15

    Electrodynamic means for the control of loop antenna radiation efficiency in plasma is proposed, which can be used in the whistler frequency band. The method is based on the generation, without perturbing the plasma density, of localized ambient magnetic field irregularities in the vicinity of the antenna. In order to produce such irregularities, it is suggested to feed the antenna with additional dc current along with the rf current. Experiments performed in a large laboratory magnetoplasma showed that the generation of localized magnetic field enhancements provides the possibility of increasing the amplitude of the whistlers emitted by the loop antenna. Moreover, experiments have shown that the amplification of the whistlers' signals from the receiving loop antenna fed with additional dc current is observed when a static magnetic field enhancement is generated in the vicinity of the receiver. The experimental data are in good agreement with the theoretical results obtained for comparatively weak ambient magnetic field perturbations.

  18. Lyman-{alpha} radiation of a metastable hydrogen beam to measure electric fields

    SciTech Connect

    Lejeune, A.; Cherigier-Kovacic, L.; Doveil, F.

    2011-10-31

    The interaction between a metastable H(2s) atomic hydrogen beam and an external electric field leads to the emission of the Lyman-{alpha} line. It originates in the Stark mixing of the near-degenerate 2s{sub 1/2} and 2p{sub 1/2} levels separated by the Lamb shift. The quenched radiation proportional to the square of the electric field amplitude is recovered in vacuum by using such an atomic probe beam. We observe the strong enhancement of the signal when the field is oscillating at the Lamb shift frequency. This technique is applied in a plasma, offering an alternative way to measure weak electric fields by direct and non-intrusive means.

  19. GENERATION OF SEED MAGNETIC FIELD AROUND FIRST STARS: EFFECTS OF RADIATION FORCE

    SciTech Connect

    Ando, Masashi; Doi, Kentaro; Susa, Hajime E-mail: mn921009@center.konan-u.ac.j

    2010-06-20

    We investigate seed magnetic field generation in the early universe by the radiation force of first stars. In a previous study with the steady assumption, large amplitudes ({approx}10{sup -15} G for first stars, {approx}10{sup -11} G for QSOs) are predicted. In this study, we formulate this issue in an unsteady framework. Then, we consider a specific model of magnetic field generation around a very massive first star. Consequently, we (1) find that the steady assumption is not valid in realistic situations and (2) obtain a much smaller magnetic field strength than that predicted by Langer et al. In addition, we find that the momentum transfer process during photoionization is more important than Thomson scattering. The resultant magnetic flux density around the first star is {approx_lt}10{sup -19} G. This seed magnetic field will not affect subsequent star formation in the neighborhood of first stars.

  20. Optic radiation mapping reduces the risk of visual field deficits in anterior temporal lobe resection

    PubMed Central

    Cui, Zhiqiang; Ling, Zhipei; Pan, Longsheng; Song, Huifang; Chen, Xiaolei; Shi, Wenjian; Liu, Zhiqiang; Wang, Qun; Zhang, Zhizhong; Li, Ye; Wang, Xuejie; Qing, Yeqing; Xu, Xin; Mao, Zhiqi; Xu, Bainan; Yu, Xinguang; Luan, Guoming

    2015-01-01

    Anterior temporal lobe resection (ATLR) is often complicated by superior quadrant visual field deficits (VFDs) because of damage to the anterior portion of the optic radiation (Meyer’s loop). This study reports the evaluation of optic radiation mapping in protecting against VFDs in the ATLR. We retrospectively analyzed 52 patients with medically refractory temporal lobe epilepsy undergoing ATLR between January 2012 and December 2013. The surgical operations in Group I (n=32) were performed with the modified ATLR, and the operations in Group II (n=20) were aided by combining optic radiation mapping by diffusion tensor imaging, microscopic-based neuronavigation and the intraoperative magnetic resonance imaging (iMRI) technique. A t-test was used to compare the size of ATLR, and a chi square test was applied for the postoperative VFD and seizure outcomes. The optic radiation was reconstructed in all patients in Group II. The size of ATLR was 5.11±1.34 cm (3.3-8 cm), and 3.24±0.75 cm (2.2-4.8 cm) in Groups I and II, respectively; the size of ATLR was significantly smaller in Group II (F=9.803; P=0.00). The visual fields assessment by the Humphrey Field Analyser 30-2 test showed 27 patients (84.4%) in Group I suffered VFDs at 3 months post-operation, whereas only eight patients (40.0%) in Group II showed VFDs (Pearson chi square =11.01; P=0.001). The 6-month follow-up survey showed that 90.6% of patients in Group I achieved a good outcome (Engel class I-II), outperforming 85.0% in Group II, however, there was no statistically significant difference (chi square =0.382, P=0.581). This techniques of combining optic radiation mapping, microscopic-based neuronavigation and iMRI aided in precise mapping and hence reduction of the risk of visual field deficits in ATLR. The size of ATLR guided by optic radiation mapping was significantly smaller but the seizure outcome was not significantly affected. PMID:26550412

  1. Optic radiation mapping reduces the risk of visual field deficits in anterior temporal lobe resection.

    PubMed

    Cui, Zhiqiang; Ling, Zhipei; Pan, Longsheng; Song, Huifang; Chen, Xiaolei; Shi, Wenjian; Liu, Zhiqiang; Wang, Qun; Zhang, Zhizhong; Li, Ye; Wang, Xuejie; Qing, Yeqing; Xu, Xin; Mao, Zhiqi; Xu, Bainan; Yu, Xinguang; Luan, Guoming

    2015-01-01

    Anterior temporal lobe resection (ATLR) is often complicated by superior quadrant visual field deficits (VFDs) because of damage to the anterior portion of the optic radiation (Meyer's loop). This study reports the evaluation of optic radiation mapping in protecting against VFDs in the ATLR. We retrospectively analyzed 52 patients with medically refractory temporal lobe epilepsy undergoing ATLR between January 2012 and December 2013. The surgical operations in Group I (n=32) were performed with the modified ATLR, and the operations in Group II (n=20) were aided by combining optic radiation mapping by diffusion tensor imaging, microscopic-based neuronavigation and the intraoperative magnetic resonance imaging (iMRI) technique. A t-test was used to compare the size of ATLR, and a chi square test was applied for the postoperative VFD and seizure outcomes. The optic radiation was reconstructed in all patients in Group II. The size of ATLR was 5.11±1.34 cm (3.3-8 cm), and 3.24±0.75 cm (2.2-4.8 cm) in Groups I and II, respectively; the size of ATLR was significantly smaller in Group II (F=9.803; P=0.00). The visual fields assessment by the Humphrey Field Analyser 30-2 test showed 27 patients (84.4%) in Group I suffered VFDs at 3 months post-operation, whereas only eight patients (40.0%) in Group II showed VFDs (Pearson chi square =11.01; P=0.001). The 6-month follow-up survey showed that 90.6% of patients in Group I achieved a good outcome (Engel class I-II), outperforming 85.0% in Group II, however, there was no statistically significant difference (chi square =0.382, P=0.581). This techniques of combining optic radiation mapping, microscopic-based neuronavigation and iMRI aided in precise mapping and hence reduction of the risk of visual field deficits in ATLR. The size of ATLR guided by optic radiation mapping was significantly smaller but the seizure outcome was not significantly affected. PMID:26550412

  2. Pioneer to encounter Saturn on September 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The encounter of the Pioneer 11 Spacecraft with Saturn, designed to provide information on the evolution of the Sun and its planets, is described. Photographs and measurements of Saturn, its rings, and several of its 10 satellites, including Titan, to be taken by Pioneer instruments, are emphasized. The encounter sequence and spacecraft trajectory are discussed. A description of Saturn and its atmosphere is included. Onboard instruments and experiments are also described.

  3. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  4. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  5. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    NASA Astrophysics Data System (ADS)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  6. Lightning-channel morphology by return-stroke radiation field waveforms

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Le Vine, D. M.; Idone, V. P.

    1995-01-01

    Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.

  7. Radiation

    Cancer.gov

    DCEG researchers carry out a broad-based research program designed to identify, understand, and quantify the risk of cancer in populations exposed to medical, occupational, or environmental radiation. They study ionizing radiation exposures (e.g., x-rays,

  8. Complex Scattered Radiation Fields and Multiple Magnetic Fields in the Protostellar Cluster in NGC 2264

    NASA Astrophysics Data System (ADS)

    Kwon, Jungmi; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hashimoto, Jun; Nakajima, Yasushi; Nakamura, Fumitaka; Nagayama, Takahiro; Nagata, Tetsuya; Hough, James H.; Werner, Michael W.; Teixeira, Paula S.

    2011-11-01

    Near-infrared imaging polarimetry in the J, H, and Ks bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebula clusters (IRNCs) associated with NGC 2264 IRS 2 and the IRAS 12 S1 core, as well as local infrared reflection nebulae (IRNe), were detected. The illuminating sources of the IRNe were identified with known or new near- and mid-infrared sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main-sequence stars were selected to trace the magnetic field (MF) structure of the molecular cloud. The mean polarization position angle of the point-like sources is 81° ± 29° in the cluster core, and 58° ± 24° in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the MF in the observed region of the cloud. The Chandrasekhar-Fermi method gives a rough estimate of the MF strength to be about 100 ?G. A comparison with recent numerical simulations of the cluster formation implies that the cloud dynamics is controlled by the relatively strong MF. The local MF direction is well associated with that of CO outflow for IRAS 12 S1 and consistent with that inferred from submillimeter polarimetry. In contrast, the local MF direction runs roughly perpendicular to the Galactic MF direction.

  9. Intercomparison of Radiation Transfer Models in Cloud Fields and Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Pinty, B.; Cahalan, R. F.; I3RC; Rami Participants, .

    2004-05-01

    The communities involved in modeling radiation transfer (RT) in cloud fields and vegetation canopies have implemented, in parallel, RT model intercomparison exercises, namely the Intercomparison of 3D Radiation Codes (I3RC) and the RAdiation transfer Model Intercomparison (RAMI). These 2 projects are now being coordinated as part of the 3DRT Working Group of the International Radiation Commission. The purpose of such intercomparison is to provide benchmark cases and solutions which will be used in the development and testing of RT models. The intercomparison exercises also help to identify existing models and their ranges of applicability. Both I3RC and RAMI protocols have been designed as a series of conditions under which the various RT models should be executed. They have been selected to represent a broad set of well-defined problems for which the solutions can be easily compared. The selection of these problems are driven by the main issues faced by these two communities and, as a consequence, the proposed experiments reflect the specificity of RT problems in both cloud fields and vegetation canopy. The main goal of the first phases of the I3RC is to evaluate the performance of a wide variety of 3D RT codes on radiative experiments of varying complexity beginning with an academic "step cloud" and proceeding to more realistic cases obtained from Large Eddy Simulation models, Millimeter Cloud Radar and inferred from Landsat. In the RAMI exercise, two major series of experiments are currently scheduled: one for so-called structurally homogeneous canopies, and the other for the structurally heterogeneous ones. The main difference between these two series lies in the hierarchy of scales that may exist depending on the degree of vegetation clumpiness. This presentation will provide a general overview of the I3RC and RAMI exercises and discuss future plans of integrating clouds, vegetation, and other inhomogeneous media.

  10. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  11. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  12. COMPLEX SCATTERED RADIATION FIELDS AND MULTIPLE MAGNETIC FIELDS IN THE PROTOSTELLAR CLUSTER IN NGC 2264

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hashimoto, Jun; Nakajima, Yasushi; Nakamura, Fumitaka; Nagayama, Takahiro; Nagata, Tetsuya; Hough, James H.; Werner, Michael W.; Teixeira, Paula S.

    2011-11-01

    Near-infrared imaging polarimetry in the J, H, and K{sub s} bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebula clusters (IRNCs) associated with NGC 2264 IRS 2 and the IRAS 12 S1 core, as well as local infrared reflection nebulae (IRNe), were detected. The illuminating sources of the IRNe were identified with known or new near- and mid-infrared sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main-sequence stars were selected to trace the magnetic field (MF) structure of the molecular cloud. The mean polarization position angle of the point-like sources is 81 Degree-Sign {+-} 29 Degree-Sign in the cluster core, and 58 Degree-Sign {+-} 24 Degree-Sign in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the MF in the observed region of the cloud. The Chandrasekhar-Fermi method gives a rough estimate of the MF strength to be about 100 {mu}G. A comparison with recent numerical simulations of the cluster formation implies that the cloud dynamics is controlled by the relatively strong MF. The local MF direction is well associated with that of CO outflow for IRAS 12 S1 and consistent with that inferred from submillimeter polarimetry. In contrast, the local MF direction runs roughly perpendicular to the Galactic MF direction.

  13. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules

    NASA Astrophysics Data System (ADS)

    Salam, A.

    2006-01-01

    The change in the mutual energy of interaction between a pair of chiral molecules coupled via the exchange of a single virtual photon and in the presence of an electromagnetic field is calculated using nonrelativistic quantum electrodynamics. The particular viewpoint adopted is one that has an intuitive physical appeal and resembles a classical treatment. It involves the coupling of electric and magnetic dipole moments induced at each center by the incident radiation field to the resonant dipole-dipole interaction tensor. The energy shift is evaluated for fixed as well as random orientations of the molecular pair with respect to the direction of propagation of the field. A complete polarization analysis is carried out for the former situation by examining the effect of incident radiation that is linearly or circularly polarized and traveling in a direction that is parallel or perpendicular to the intermolecular distance vector. After tumble averaging, all polarization dependence of the energy shift vanishes. In both cases the interaction energy is directly proportional to the irradiance of the applied field, and is discriminatory, changing sign when one optically active species is replaced by its enantiomer. The asymptotic behavior of the energy shift at the limits of large and small separations is also studied.

  14. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches

    SciTech Connect

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V.; Velikovich, A. L.; Rudakov, L. I.; Williamson, K. M.

    2011-10-15

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

  15. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches.

    PubMed

    Kantsyrev, V L; Esaulov, A A; Safronova, A S; Velikovich, A L; Rudakov, L I; Osborne, G C; Shrestha, I; Weller, M E; Williamson, K M; Stafford, A; Shlyaptseva, V V

    2011-10-01

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires. PMID:22181284

  16. Stability of a liquid-film space radiator with internal electrostatic fields. Progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Bankoff, S.G.; Miksis, M.J.

    1992-04-01

    A new concept in light-weight space radiators has been introduced by Kim, Miksis and Bankoff, consisting of a pumped-loop membrane radiator in which leakage of coolant from a puncture, due to micrometeorite or space debris impact, is prevented by the application of an internal electrostatic field. For nuclear space power, the coolant is generally a liquid metal, such as lithium, flowing as a thin film along the interior walls of the hollow radiator. A lightweight fully-modular radiator design is proposed, which is calculated to weight less than 1 kg/m{sup 2}. The feature which makes this thin-membrane radiator practical is the internal electrostatic field system, which can stop radiator leaks from punctures, sudden accelerations or accidental tears.

  17. Magnetic field effect on tunnel ionization of deep impurities by terahertz radiation S.D. Ganichev1

    E-print Network

    Ganichev, Sergey

    Magnetic field effect on tunnel ionization of deep impurities by terahertz radiation S.D. Ganichev1-Technical Institute, St. Petersburg, Russia Abstract: A suppression of tunnelling ionization of deep impurities in terahertz frequency electric fields by a mag- netic field is observed. It is shown that the ionization

  18. Magnetic Field Effects on the Structure and Evolution of Overdense Radiatively Cooling Jets

    NASA Astrophysics Data System (ADS)

    Cerqueira, Adriano H.; de Gouveia Dal Pino, Elisabete M.

    1999-01-01

    We investigate the effect of magnetic fields on the propagation dynamics and the morphology of overdense, radiatively cooling, supermagnetosonic jets, with the help of fully three-dimensional smoothed particle magnetohydrodynamic simulations. Evaluated for a set of parameters that are mainly suitable for protostellar jets (with density ratios between those of the jet and the ambient medium ?~3-10, and ambient Mach number Ma~24), these simulations are also compared with baseline nonmagnetic and adiabatic calculations. Two initial magnetic field topologies (in approximate equipartition with the gas, ?=pth/pB~=1) are considered: (1) a helical field and (2) a longitudinal field, both of which permeate both the jet and the ambient medium. We find that, after amplification by compression and reorientation in nonparallel shocks at the working surface, the magnetic field that is carried backward with the shocked gas into the cocoon improves the jet collimation relative to the purely hydrodynamic (HD) systems, but this effect is larger in the presence of the helical field. In both magnetic configurations, low-amplitude, approximately equally spaced (?~2-4Rj) internal shocks (which are absent in the HD systems) are produced by magnetohydrodynamic (MHD) Kelvin-Helmholtz reflection pinch modes. The longitudinal field geometry also excites nonaxisymmetric helical modes that cause some beam wiggling. The strength and amount of these modes are, however, reduced (by about 2 times) in the presence of radiative cooling relative to the adiabatic cases. Besides, a large density ratio, ?, between the jet and the ambient medium also reduces, in general, the number of the internal shocks. As a consequence, the weakness of the induced internal shocks makes it doubtful that the magnetic pinches could by themselves produce the bright knots observed in the overdense, radiatively cooling protostellar jets. Magnetic fields may leave also important signatures on the head morphologies of the radiative cooling jets. The amplification of the nonparallel components of the magnetic fields, particularly in the helical field geometry, reduces the postshock compressibility and increases the postshock cooling length. This may lead to stabilization of the cold shell of shocked material that develops at the head against both the Rayleigh-Taylor and global thermal instabilities. As a consequence, the clumps that develop by fragmentation of the shell in the HD jets tend to be depleted in the helical field geometry. The jet immersed in the longitudinal field, on the other hand, still retains the clumps, although they have their densities decreased relative to the HD counterparts. As stressed in our previous work, since the fragmented shell structure resembles the knotty pattern commonly observed in HH objects behind the bow shocks of protostellar jets, this result suggests that, as long as (equipartition) magnetic fields are present, they should probably be predominantly longitudinal at the heads of these jets.

  19. Cosmological consequences of classical flavor-space locked gauge field radiation

    NASA Astrophysics Data System (ADS)

    Bielefeld, Jannis; Caldwell, Robert R.

    2015-06-01

    We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.

  20. Cosmological consequences of classical flavor-space locked gauge field radiation

    E-print Network

    Jannis Bielefeld; Robert R. Caldwell

    2015-05-28

    We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early universe, and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress-energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: non-zero cross correlation of the cosmic microwave background temperature and polarization, $TB$ and $EB$, both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future CMB experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.

  1. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    NASA Technical Reports Server (NTRS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the ordinary photons, under the approximation of large angle and large optical depth. These assumptions allow the equation to be treated using a diffusion-like approximation.

  2. Exploring Near-Field Radiative Heat Transfer for Thermo-photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Ganjeh, Yashar; Song, Bai; Sadat, Seid; Thompson, Dakotah; Fiorino, Anthony; Reddy, Pramod; Meyhofer, Edgar

    2014-03-01

    Understanding near-field radiative heat transfer (NFRHT) is critical for developing efficient thermo-photovoltaic devices. Theoretical predictions suggest that when the spatial separation of two parallel planes at different temperatures is less than their Wien's thermal wavelength, thermal transport via radiation can be greatly enhanced. The radiative heat flow across nanoscale gaps is predicted to be orders-of-magnitude higher than that given by Stefan-Boltzmann law, due to contribution of evanescent waves. In order to test these predictions, a novel experimental platform was designed and built enabling parallelization of two planar surfaces (50 ?m by 50 ?m) with 500 microradian resolution in their relative orientation. This platform was used to probe NFRHT between two planes and also between a plane and a sphere. It was found that, when a 50 ?m diameter silica sphere was approximately 20 nm away from a 50 by 50 ?m2 silica plane, a significant increase in radiative heat transfer coefficient was observed. This increase is 3 orders of magnitude higher than the value predicted by the blackbody limit. Other setups, including Au spheres and planes, and the plane-plane geometries are currently being investigated. 1) Army Research office (W911NF-12-1-0612), 2) NSF Thermal Transport Prcesses (CBET 1235691), 3) Center for Solar and Thermal Energy conversion, funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0000957.

  3. A CLOSER ENCOUNTER WITH MARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Taking advantage of Mars's closest approach to Earth in eight years, astronomers using NASA's Hubble Space Telescope have taken the space-based observatory's sharpest views yet of the Red Planet. NASA is releasing these images to commemorate the second anniversary of the Mars Pathfinder landing. The lander and its rover, Sojourner, touched down on the Red Planet's rolling hills on July 4, 1997, embarking on an historic three-month mission to gather information on the planet's atmosphere, climate, and geology. The telescope's Wide Field and Planetary Camera 2 snapped these images between April 27 and May 6, when Mars was 54 million miles (87 million kilometers) from Earth. From this distance the telescope could see Martian features as small as 12 miles (19 kilometers) wide. The telescope obtained four images, which, together, show the entire planet. Each view depicts the planet as it completes one quarter of its daily rotation. In these views the north polar cap is tilted toward the Earth and is visible prominently at the top of each picture. The images were taken in the middle of the Martian northern summer, when the polar cap had shrunk to its smallest size. During this season the Sun shines continuously on the polar cap. Previous telescopic and spacecraft observations have shown that this summertime 'residual' polar cap is composed of water ice, just like Earth's polar caps. These Hubble telescope snapshots reveal that substantial changes in the bright and dark markings on Mars have occurred in the 20 years since the NASA Viking spacecraft missions first mapped the planet. The Martian surface is dynamic and ever changing. Some regions that were dark 20 years ago are now bright red; some areas that were bright red are now dark. Winds move sand and dust from region to region, often in spectacular dust storms. Over long timescales many of the larger bright and dark markings remain stable, but smaller details come and go as they are covered and then uncovered by sand and dust. The upper-left image is centered near the location of the Pathfinder landing site. Dark sand dunes that surround the polar cap merge into a large, dark region called Acidalia. This area, as shown by images from the Hubble telescope and other spacecraft, is composed of dark, sand-sized grains of pulverized volcanic rock. Below and to the left of Acidalia are the massive Martian canyon systems of Valles Marineris, some of which form long linear markings that were once thought by some to be canals. Early morning clouds can be seen along the left limb of the planet, and a large cyclonic storm composed of water ice is churning near the polar cap. The upper-right image is centered on the region of the planet known as Tharsis, home of the largest volcanoes in the solar system. The bright, ring-like feature just to the left of center is the volcano Olympus Mons, which is more than 340 miles (550 kilometers) across and 17 miles (27 kilometers) high. Thick deposits of fine-grained, windblown dust cover most of this hemisphere. The colors indicate that the dust is heavily oxidized ('rusted'), and millions (or perhaps billions) of years of dust storms have homogenized its composition. Prominent late afternoon clouds along the right limb of the planet can be seen. The lower-left image is centered near another volcanic region known as Elysium. This area shows many small, dark markings that have been observed by the Hubble telescope and other spacecraft to change as a result of the movement of sand and dust across the Martian surface. In the upper left of this image, at high northern latitudes, a large chevron-shaped area of water ice clouds mark a storm front. Along the right limb, a large cloud system has formed around the Olympus Mons volcano. The lower-right image is centered on the dark feature known as Syrtis Major, first seen telescopically by the astronomer Christiaan Huygens in the 17th century. Many small, dark, circular impact craters can be seen in this region, attesting to the Hubble telescope's ability to reveal fine detail on the planet's surface. To

  4. Shape-Independent Limits to Near-Field Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Miller, Owen D.; Johnson, Steven G.; Rodriguez, Alejandro W.

    2015-11-01

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility ? can emit and absorb radiation at enhanced rates bounded by |? |2/Im ? , optimally mediated by near-field photon transfer proportional to 1 /d2 across a separation distance d . Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.

  5. Shape-Independent Limits to Near-Field Radiative Heat Transfer.

    PubMed

    Miller, Owen D; Johnson, Steven G; Rodriguez, Alejandro W

    2015-11-13

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility ? can emit and absorb radiation at enhanced rates bounded by |?|^{2}/Im??, optimally mediated by near-field photon transfer proportional to 1/d^{2} across a separation distance d. Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures. PMID:26613444

  6. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  7. Microdosimetric measurements in the secondary radiation field produced in (12)C-therapy irradiations.

    PubMed

    Wissmann, F; Giesen, U; Klages, T; Schardt, D; Martino, G; Sunil, C

    2010-08-01

    The ambient dose equivalent from the secondary radiation produced during irradiation of a cylindrical water phantom with 200 MeV/u (12)C-ions was investigated at the biophysics cave at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Pencil-like ion beams were delivered by the heavy-ion synchrotron SIS18 using the slow extraction mode. Since the secondary radiation field outside the phantom is complex in its particle composition and particle energy distribution, microdosimetric methods developed for the dosimetry of the cosmic radiation field at flight altitudes, which is similar in terms of complexity, were applied. Lineal energy distributions and the ambient dose equivalent were measured with a tissue-equivalent proportional counter at different particle emission angles. An additional veto counter allowed the identification of the different contributions of charged and neutral particles. A significant increase in the mean quality factor was observed at large emission angles which could be attributed to the decreasing contributions of charged particles compared to the (relative) contributions from neutrons. PMID:20340029

  8. Magneto-photon-phonon interaction in a parabolically confined quantum dot in the presence of high magnetic fields and intense terahertz radiation fields

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Xu, W.

    2012-07-01

    We present a theoretical study on magneto-photon-phonon interaction in a parabolically confined quantum dot subjected simultaneously to static magnetic field and radiation field. A nonperturbative treatment for electron-photon interaction is proposed by solving analytically the time-dependent Schrödinger equation in which the magnetic field and the radiation field are included exactly. We employ the energy-balance equation approach on the basis of the Boltzmann equation to evaluate the energy transfer rate induced by optical transition events. It is found that for relatively low radiation levels, two peaks of the cyclotron resonance (CR) appear at two Kohn's frequencies ?±, and the strength and the width of the CR increase with radiation intensity. The CR at ?+ is more prominent than that at ?-. When the radiation become intense, the splitting of the CR peaks can be observed and the splitting increases with radiation intensity. The physics reasons behind these interesting findings are discussed. This study is pertinent to the application of intense terahertz radiation sources such as free-electron lasers in the investigation into low-dimensional semiconductor systems.

  9. Radiative corrections to the Casimir Pressure under the influence of temperature and external fields

    SciTech Connect

    Robaschik, D.; Scharonhorst, K.; Wieczorek, E.

    1987-03-01

    Generalizing the quantum field theory (QFT) with boundary conditions in covariant gauge to the case of finite temperature, we develop the quantum electrodynamics (QED) with boundary conditions in the Matsubara approach as well as in the thermofield formulation. We rederive the known results of the free-field theory for the pressure and the free energy of the Casimir problem. For infinitely thin plates we calculate the radiative corrections in second-order perturbation theory at finite temperature. Thereby it turns out that the calculation in of the vacuum energy at the vanishing temperature via the Z functional is much simplier than the calculation via the energy momentum tensor. This observation allows determination of the influence of static electromagnetic fields on the Casimir problem. copyright 1987 Academic Press, Inc.

  10. Fractionated Wide-Field Radiation Therapy Followed by Fractionated Local-Field Irradiation for Treating Widespread Painful Bone Metastasis

    SciTech Connect

    Ki, Yongkan; Kim, Wontaek; Nam, Jiho; Kim, Donghyun; Jeon, Hosang; Park, Dahl; Kim, Dongwon

    2011-01-01

    Purpose: Wide-field radiation therapy (WFRT) is an effective treatment for widespread bone metastasis. We evaluated local-field irradiation (LFI) after fractionated WFRT (f-WFRT) for treating the patients with multiple painful bone lesions. Methods and Materials: From 1998 to 2007, 32 patients with multiple bone metastases were treated with fractionated LFI (f-LFI) after f-WFRT. All patients initially received 15 Gy in 5 fractions to a wide field, followed by LFI (9-15 Gy in 3 Gy fractions). Response was assessed by evaluating the degree of pain relief using a visual analog scale before radiotherapy, after f-WFRT, and after f-LFI. Results: Fractionated LFI following f-WFRT yielded an overall relief rate of 93.8% and a complete relief rate of 43.8%. The rate of the appearance of new disease was 6.3% for the patients with complete relief, 20.5% for the patients with a partial relief, and 50% for the patients with no relief. Conclusion: Fractionated LFI after f-WFRT is a well-tolerated and effective treatment for multiple metastatic bone disease.

  11. PLANT PROTECTIVE RESPONSE TO ENHANCED UV-B RADIATION UNDER FIELD CONDITIONS: LEAF OPTICAL PROPERTIES AND PHOTOSYNTHESIS

    EPA Science Inventory

    Plants of Vicia faba were grown in the field during early to midsummer while receiving two levels of supplemental UV-B radiation. Light-saturated photosynthesis and stomatal diffusive conductance of intact leaves did not show any indications of UV-radiation damage. Supplemental U...

  12. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    E-print Network

    Huang, Yi

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength ...

  13. Calculating the temperature fields that appear when laser radiation interacts with multilayer biological material

    NASA Astrophysics Data System (ADS)

    Seteikin, A. Yu.; Krasnikov, I. V.

    2006-03-01

    Green's functions of the response of a medium to a single external stimulus were used to model the propagation of optical radiation in biological tissues and scattering media. The algorithm makes it possible to take into account the multilayer character of the medium, the finite size of the incident beam, and also the interaction of the surface of the tissue with the external medium. A solution of the thermal-conductivity equation using the method of finite elements is presented, the temperature fields are calculated that arise when biological material is irradiated with low-intensity laser radiation at various instants, and graphs are also constructed to show how the temperature depends on the time at which the material is irradiated with constant and pulsed action.

  14. Chiral effective-field theory in the Delta(1232) region : II. radiative pion photoproduction

    SciTech Connect

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2007-10-12

    We present a theoretical study of the radiative pion photoproduction on the nucleon ($\\gamma N \\rightarrow \\pi N \\gamma'$) in the $\\De$-resonance region, with the aim to determine the magnetic dipole moment (MDM) of the $\\Delta^+(1232)$. The study is done within the framework of chiral effective-field theory where the expansion is performed (to next-to-leading order) in the $\\delta$ power-counting scheme which is an extension of chiral perturbation theory to the $\\Delta$-resonance energy region. We present in detail the results for the absorptive part of the $\\Delta$ MDM, as well as a sensitivity study for the radiative pion photoproduction observables on the real part of the $\\Delta$ MDM. We find that an asymmetry for circular polarization of the photon beam may provide a model-independent way to measure the $\\Delta$ MDM.

  15. Upper limits to the interstellar radiation field between 775 and 1050 A

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Bowyer, S.

    1976-01-01

    A 40-A resolution extreme-ultraviolet spectrometer, sensitive to radiation in the 775-1050 A band, was flown on a Black Brant VC rocket to measure the night sky brightness in this region of the electromagnetic spectrum. A weak signal above background was recorded in most channels as the spectrometer's field of view scanned the sky in the vicinity of the galactic plane from Monoceros to Andromeda. Because the earth's upper atmosphere may produce some radiation in this wavelength region, the possibility cannot be excluded that some or all of the observed signal is terrestrial in origin. However, observational upper limits can be established at the 95-per cent confidence level for the intensity of an extraterrestrial extreme ultraviolet background which ranges from 6 millionths erg/sq cm/s/sr/A at 1050 A to 4 ten-millionths erg/sq cm/s/sr/A at 775 A. These results are consistent with existing theoretical predictions.

  16. Near-to-far field transformations for radiative and guided waves

    E-print Network

    Yang, Jianji; Lalanne, Philippe

    2015-01-01

    Light emitters or scatterers embedded in stratified media may couple energy to both free space and guided modes of the stratified structure. For a thorough analysis of such structures, it is important to evaluate the angular intensity distribution of both the free-space-propagative and guided waves. In this work, we propose an original method based on Lorentz-reciprocity theorem and on the computation of the near-field around the emitters or scatterers, to efficiently calculate the free-space and guided radiation diagrams with a high accuracy. We also provide an open-source code that may be used with virtually any Maxwells solver. The numerical tool may help to engineer various devices, such as light-emitting diodes or nanoantennas to achieve directional and efficient radiative spontaneous decays in free space and guided optics.

  17. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  18. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  19. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  20. EXCITATION TEMPERATURE OF THE WARM NEUTRAL MEDIUM AS A NEW PROBE OF THE Ly? RADIATION FIELD

    SciTech Connect

    Murray, Claire E.; Lindner, Robert R.; Stanimirovi?, Snežana; Pingel, Nickolas M.; Lawrence, Allen; Babler, Brian L.; Goss, W. M.; Jencson, Jacob; Heiles, Carl; Dickey, John; Hennebelle, Patrick

    2014-02-01

    We use the Karl G. Jansky Very Large Array to conduct a high-sensitivity survey of neutral hydrogen (H I) absorption in the Milky Way. In combination with corresponding H I emission spectra obtained mostly with the Arecibo Observatory, we detect a widespread warm neutral medium component with excitation temperature ?T{sub s}?=7200{sub ?1200}{sup +1800} K (68% confidence). This temperature lies above theoretical predictions based on collisional excitation alone, implying that Ly? scattering, the most probable additional source of excitation, is more important in the interstellar medium (ISM) than previously assumed. Our results demonstrate that H I absorption can be used to constrain the Ly? radiation field, a critical quantity for studying the energy balance in the ISM and intergalactic medium yet notoriously difficult to model because of its complicated radiative transfer, in and around galaxies nearby and at high redshift.

  1. Encounters, endings and temporality in psychiatric nursing.

    PubMed

    Walsh, K

    1997-03-01

    This paper is derived from data obtained from a study in progress. The study is a phenomenological research project grounded in the work of Martin Heidegger and Hans-George Gadamer. Psychiatric nurses were interviewed about their experience of the nurse-patient encounter. During the course of the study it became apparent that the significance of encounters did not 'end' with the termination of the relationship. 'Endings' went further than notions of relationship 'termination' familiar in the psychiatric nursing literature. The ending of the encounter seemed to encapsulate much of the significance of the encounter for the nurse. It also became apparent that, for these nurses, time was not experienced in a linear way. Viewed in this non-linear way, the past is no less meaningful for being past. The past is with us and influences the present, that is, our actions now. The future is no less meaningful for having not yet been. The future engages us in possibilities. So, unlike the narrow concept of termination, the lived experience of endings captures the totality of the relationship and the encounter and therefore lives on in the present. In the lived experience of endings the past and the future are both significant and have meaning. PMID:9080274

  2. Effects of laser radiation field on energies of hydrogen atom in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.

    2015-09-01

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye and quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.

  3. Near-field sound radiation of fan tones from an installed turbofan aero-engine.

    PubMed

    McAlpine, Alan; Gaffney, James; Kingan, Michael J

    2015-09-01

    The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition. PMID:26428770

  4. Analysis and design of photobioreactors for microalgae production I: method and parameters for radiation field simulation.

    PubMed

    Heinrich, Josué Miguel; Niizawa, Ignacio; Botta, Fausto Adrián; Trombert, Alejandro Raúl; Irazoqui, Horacio Antonio

    2012-01-01

    Having capabilities for the simulation of the radiation field in suspensions of microalgae constitutes a great asset for the analysis, optimization and scaling-up of photobioreactors. In this study, a combined experimental and computational procedure is presented, specifically devised for the assessment of the coefficients of absorption and scattering, needed for the simulation of such fields. The experimental procedure consists in measuring the radiant energy transmitted through samples of suspensions of microalgae of different biomass concentrations, as well as the forward and backward scattered light. At a microscopic level, suspensions of microalgae are complex heterogeneous media and due to this complexity, in this study they are modeled as a pseudocontinuum, with centers of absorption and scattering randomly distributed throughout its volume. This model was tested on suspensions of two algal species of dissimilar cell shapes: Chlorella sp. and Scenedesmus quadricauda. The Monte Carlo simulation algorithm developed in this study, when used as a supporting subroutine of a main optimization program based on a genetic algorithm, permits the assessment of the physical parameters of the radiation field model. The Monte Carlo algorithm simulates the experiments, reproducing the events that photons can undergo while they propagate through culture samples or at its physical boundaries. PMID:22417291

  5. The analysis of complex mixed-radiation fields using near real-time imaging.

    PubMed

    Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J

    2014-10-01

    A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected. PMID:24782559

  6. Radiation Therapy Field Extent for Adjuvant Treatment of Axillary Metastases From Malignant Melanoma

    SciTech Connect

    Beadle, Beth M.; Guadagnolo, B. Ashleigh Ballo, Matthew T.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Cormier, Janice N.; Mansfield, Paul F.; Ross, Merrick I.; Zagars, Gunar K.

    2009-04-01

    Purpose: To compare treatment-related outcomes and toxicity for patients with axillary lymph node metastases from malignant melanoma treated with postoperative radiation therapy (RT) to either the axilla only or both the axilla and supraclavicular fossa (extended field [EF]). Methods and Materials: The medical records of 200 consecutive patients treated with postoperative RT for axillary lymph node metastases from malignant melanoma were retrospectively reviewed. All patients received postoperative hypofractionated RT for high-risk features; 95 patients (48%) received RT to the axilla only and 105 patients (52%) to the EF. Results: At a median follow-up of 59 months, 111 patients (56%) had sustained relapse, and 99 patients (50%) had died. The 5-year overall survival, disease-free survival, and distant metastasis-free survival rates were 51%, 43%, and 46%, respectively. The 5-year axillary control rate was 88%. There was no difference in axillary control rates on the basis of the treated field (89% for axilla only vs. 86% for EF; p = 0.4). Forty-seven patients (24%) developed treatment-related complications. On both univariate and multivariate analyses, only treatment with EF irradiation was significantly associated with increased treatment-related complications. Conclusions: Adjuvant hypofractionated RT to the axilla only for metastatic malignant melanoma with high-risk features is an effective method to control axillary disease. Limiting the radiation field to the axilla only produced equivalent axillary control rates to EF and resulted in lower treatment-related complication rates.

  7. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    SciTech Connect

    Volkova, E. A.; Popov, A. M. Tikhonova, O. V.

    2013-03-15

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schroedinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  8. Pediatric radiation oncology

    SciTech Connect

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  9. Newton’s second law, radiation reaction and type II Einstein-Maxwell fields

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2011-12-01

    Considering perturbations of the Reissner-Nordström metric while keeping the perturbations in the class of type II Einstein-Maxwell metrics, we perform a spherical harmonic expansion of all the variables up to the quadrupole term. This leads to rather surprising results. Referring to the source of the metric as a type II particle (analogous to referring to a Schwarzschild-Reissner-Nordström or Kerr-Newman particle), we see immediately that the Bondi momentum of the particle takes the classical form of mass times velocity plus an electromagnetic radiation reaction term, while the Bondi mass loss equation becomes the classical gravitational and electromagnetic (electric and magnetic) dipole and quadrupole radiation. The Bondi momentum loss equation turns into Newton’s second law of motion containing the Abraham-Lorentz-Dirac radiation reaction force plus a momentum recoil (rocket) force, while the reality condition on the Bondi mass aspect yields the conservation of angular momentum. Two things must be pointed out: (1) these results, (equations of motion, etc) take place, not in the spacetime of the type II metric but in an auxiliary space referred to as {H}-space, whose physical meaning is rather obscure and (2) this analysis of the type II field equations is a very special case of a similar analysis of the general asymptotically flat Einstein-Maxwell equations. Although the final results are similar (though not the same), the analysis uses different equations (specifically, the type II field equations) and is vastly simpler than the general case. Without a great deal of the technical structures needed in the general case, one can see rather easily where the basic results reside in the type II field equations.

  10. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  11. Mixing of terahertz and near-infrared radiation in quantum wells in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Inoshita, Takeshi; Sakaki, Hiroyuki

    1998-06-01

    It was recently discovered that undoped GaAs quantum wells illuminated simultaneously by near-infrared (NIR) and THz radiation in strong magnetic fields emit sharp, strong sidebands [Kono et al., Phys. Rev. Lett. 79 (1997) 1758]. We developed a perturbative theory, based on a magnetoexciton model, for this phenomenon and obtained the optical susceptibility. The theoretical results semiquantitatively explain all the experimental results. Moreover, the theory has revealed how the sideband resonances can be related to intra-exciton transitions, indicating the usefulness of the sideband generation as a new tool of magnetoexciton spectroscopy.

  12. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Afanas'ev, A. A.; Gaida, L. S.; Guzatov, D. V.; Rubinov, A. N.; Svistun, A. Ch

    2015-10-01

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed.

  13. Deconvolution of wide-field-of-view satellite radiometer measurements of reflected solar radiation

    NASA Technical Reports Server (NTRS)

    Smith, G. L.

    1981-01-01

    An approach is presented by which the deconvolution of wide-field-of-view (WFOV) measurements of solar radiation reflected from earth is reduced from the solution of a two-dimensional integral equation to the solution of a set of one-dimensional integral equations. This reduces the storage needed for the required matrices by an order of magnitude and the computations by two orders of magnitude. Also, the theoretical and operational difficulties associated with the solution of ill-posed problems are greatly simplified by working with one-dimensional integral equations rather than with a two-dimensional integral equation.

  14. Photoinduced processes in solid polymer solutions of dyes in an interference field of laser radiation

    SciTech Connect

    Sizykh, A G; Tarakanova, E A

    1998-12-31

    An investigation was made of the relationships governing the photochemical mechanism of formation of light-induced gratings in solid polymer solutions of a dye with a high quantum yield of the triplet states. The combined analysis of the results of real and numerical experiments was made for a solution of eosin K in gelatin. The protonation rate constant of the dye was measured and the dependence of the diffraction efficiency on the duration of irradiation was explained taking diffusion of the dye into account. A method was proposed for determination of the duffusion coefficient in a spatially modified interference field of the laser radiation. The diffusion coefficients were found. (nonlinear optical phenomena)

  15. Cyclotron radiation cooling of a short electron bunch kicked in an undulator with guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Osharin, I. V.; Savilov, A. V.

    2015-11-01

    We propose to use of an undulator with the guiding axial magnetic field as a "kicker" forming a bunch of electron gyro-oscillators with a small spread in the axial velocity. The cyclotron emission from the bunch leads to losing oscillatory velocity of electron gyrorotation, but it does not perturb the axial electron velocity. This effect can be used for transformation of minimization of the spread in electron axial velocity in the undulator section into minimization of the spread in electron energy in the cyclotron radiation section.

  16. Satellite ephemerides for the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Jacobson, Robert A.

    1988-01-01

    This paper presents the results of the latest fits of both analytical theory and numerically integrated Neptunian satellite orbits to Earth-based astrometric observations. Ephemerides based on the integrated orbits will be used by the Voyager project for pre-encounter planning and analysis until late 1988 when the final pre-encounter ephemerides will be produced. As a by-product of the orbit fits, new estimates of the Neptune mass, the second zonal harmonic of Neptune, and the pole orientation of Neptune are obtained. The theory and integrated orbits are compared with each other and with orbits obtained by previous investigators.

  17. ?-ray generation enhancement by the charge separation field in laser-target interaction in the radiation dominated regime

    SciTech Connect

    Capdessus, R.; Lobet, M.; D'Humières, E.; Tikhonchuk, V. T.

    2014-12-15

    A new source of radiation can be created with a laser pulse of intensity ?10{sup 23?}W/cm{sup 2} interacting with a slightly overdense plasma. Collective effects driven by the electrostatic field significantly enhance the synchrotron radiation. They impact on the laser energy repartition leading to a specific emission but also constitute a crucial element for the intense radiation production. They allow electrons to be accelerated over a length up to 10 laser wavelengths favoring emission of an intense radiation. It is shown that charge separation field depends on the ion mass and target thickness but also on laser polarization. These phenomena are studied with an one dimensional relativistic particle-in-cell code accounting for the classical radiation reaction force.

  18. Measurement of Radiated Electromagnetic Field due to Low Voltage ESD with Spherical Electrode in 1-3GHz Frequency Bandwidth

    NASA Astrophysics Data System (ADS)

    Kawamata, Ken; Minegishi, Shigeki; Fujiwara, Osamu

    The micro-gap discharge as the low voltage ESD shows very fast transition-duration of about 32 ps or less. Furthermore, the breakdown field strength in the gap was very high of about 80 MV/m in low voltage discharging of below 400V. The relationship between the breakdown field strength in the gap and the amplitude of radiated electromagnetic field was examined in experimental study. The amplitude of radiated electromagnetic field was proportion to the breakdown field strength at the gap in the resonance experimental system using the discharge electrode with dipole configuration. In this time, we present an improved experimental system to measure the amplitude of radiated electromagnetic filed in more wideband region using spherical electrodes and a horn antenna. As a result, the amplitude of radiated electromagnetic field is proportion to the discharge voltage from 300V to 620V, and the amplitude of radiated electromagnetic field was according to the diameter of spherical electrode in 1-3GHz frequency bandwidth.

  19. Aerosol Spectral Radiative Forcing Efficiency from Airborne Measurements During Multiple Field Missions

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Leblanc, S. E.; Pilewskie, P.; Redemann, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.

    2012-12-01

    Measurements of shortwave spectral irradiance in conjunction with measurements of aerosol optical depth are used to determine the direct aerosol radiative forcing for various different regions and missions. To better compare cases with different air masses and solar geometry, we use the concept of top-of-layer and bottom-of-layer relative forcing efficiency. The aerosol layers were sampled from aircraft during several field campaigns, including the Megacity Initiative: Local and Global Research Observations (MILAGRO, Mexico, 2006); the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, Alaska and Alberta, 2008), Research at the Nexus of Air Quality and Climate Change (CalNex, California, 2010); and the Deep Convective Clouds and Chemistry Experiment (DC3, central US, 2012). We show that the spectral shape of the relative forcing efficiency is similar for these aerosol layers regardless of the aerosol type. The spectral relative forcing efficiency at any one wavelength for the majority of the cases is constrained within a span of 20% per unit of midvisible aerosol optical depth. Single scattering albedo, asymmetry parameter, and surface albedo are secondary products for the various methods used to determine aerosol radiative forcing. Using these, we determine the diurnally averaged spectral and broadband top-of-atmosphere and surface radiative forcing efficiency for the various different aerosol types and surface conditions.

  20. Effective field theory calculation of two-deuteron radiative capture reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Khalili, H.

    2014-08-01

    Two-deuteron radiative capture reaction is one of the deuterium-burning processes that the cross section is not well known at very low-energies. We develop the formalism based on pionless Effective Field Theory (EFT) for deuteron-deuteron ( dd) scattering to derive the cross section of two-deuteron radiative capture. Within this formalism the two- and three-body forces, should also be included in the capture cross section calculations. The aim of the present work is to calculate the observables of the low-energy dd photonuclear reactions. The cross section and the astrophysical S-factor for the 2H( d, ?)4He reaction have been calculated. The 4He is studied as four-body bound states in the pionless EFT. The theoretical uncertainties for observables are estimated based on the variation of the cutoffs. The astrophysical S-factor is accurately determined to be 6.9×10-6 keV b (6.1×10-6 keV b) for two-body (two- and three-body) at zero energy. A satisfactory agreement between theory and experiment for dd radiative capture observables up to order of calculation has been found by insertion of three-body force.

  1. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    SciTech Connect

    Ling, Junpu Zhang, Jiande; He, Juntao; Jiang, Tao

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity by increasing the radial dimension of the Ku-band device. With a 550?keV and 7.5?kA electron beam, a 1.25?GW microwave pulse at 12.08?GHz has been obtained in the simulation. The power conversion efficiency is about 30%.

  2. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  3. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Basu, Soumyadipta; Yang, Yue; Wang, Liping

    2015-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  4. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    E-print Network

    Basu, Soumyadipta; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  5. Radiative Corrections, Divergences, Regularization, Renormalization, Renormalization Group and All That in Examples in Quantum Field Theory

    E-print Network

    D. I. Kazakov

    2009-01-15

    The present lectures are a practical guide to the calculation of radiative corrections to the Green functions in quantum field theory. The appearance of ultraviolet divergences is explained, their classification is given, the renormalization procedure which allows one to get the finite results is described, and the basis of the renormalization group in QFT is presented. Numerous examples of calculations in scalar and gauge theories are given. Quantum anomalies are discussed. In conclusion the procedure which allows one to get rid of infrared divergences in S-matrix elements is described. The lectures are based on the standard quantum field theory textbooks, the list of which is given at the end of the text. These lectures were given to the 4-th year students of the Department of General and Applied Physics of the Moscow Institute of Physics and Technology (Technical University).

  6. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., "sub-Larmor scales." Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  7. Experimental study of the conversion of DC electric fields to microwave radiation by an ionization front created by successive discharges

    SciTech Connect

    Faith, J.; Huang, J.; Kuo, S.P.

    1995-12-31

    Most current high power microwave sources use either free electrons in the form of beams, or photon emission as the radiation source. Recently, however, a new method involving the direct conversion of DC electric fields to radiation fields has come to light. This new method uses an ionization front moving through a gas filled electrode array to produce an approximately sinusoidal static electric field. As the front passes an electrode pair, a burst of current, and thus a half cycle of radiation is produced. All the pulses then add coherently, giving a radiation field whose energy is derived directly from the dc electric field. The experiment consists of an S band rectangular waveguide, in which several ({ge} 5) pairs of oppositely placed holes are drilled. Through these holes are placed pairs of electrodes, between which a Marx capacitor bank is discharged. By adjusting the spacing of the electrodes, the first pair can be made to fire first. The resulting ultraviolet radiation from the spark preionizes the gas between the remaining electrodes, causing them to fire in sequence, and assuring that the microwave radiation pulses add coherently. The experimental results will be presented.

  8. Adjuvant paclitaxel and carboplatin chemotherapy with involved field radiation in advanced endometrial cancer: A sequential approach

    SciTech Connect

    Lupe, Krystine; Kwon, Janice . E-mail: Janice.kwon@lhsc.on.ca; D'Souza, David; Gawlik, Christine; Stitt, Larry; Whiston, Frances; Nascu, Patricia; Wong, Eugene; Carey, Mark S.

    2007-01-01

    Purpose: To determine the feasibility of adjuvant paclitaxel and carboplatin chemotherapy interposed with involved field radiotherapy for women with advanced endometrial cancer. Methods and Materials: This was a prospective cohort study of women with Stage III and IV endometrial cancer. Adjuvant therapy consisted of 4 cycles of paclitaxel (175 mg/m{sup 2}) and carboplatin (350 mg/m{sup 2}) every 3 weeks, followed sequentially by external beam radiotherapy (RT) to the pelvis (45 Gy), followed by an additional two cycles of chemotherapy. Para-aortic RT and/or HDR vault brachytherapy (BT) were added at the discretion of the treating physician. Results: Thirty-three patients (median age, 63 years) received treatment between April 2002 and June 2005. Median follow-up was 21 months. Stage distribution was as follows: IIIA (21%), IIIC (70%), IVB (9%). Combination chemotherapy was successfully administered to 30 patients (91%) and 25 patients (76%), before and after RT respectively. Nine patients (27%) experienced acute Grade 3 or 4 chemotherapy toxicities. All patients completed pelvic RT; 19 (58%) received standard 4-field RT and 14 (42%) received intensity-modulated radiotherapy. Ten (30%) received extended field radiation. Four patients (12%) experienced acute Grade 3 or 4 RT toxicities. Six (18%) patients developed chronic RT toxicity. There were no treatment-related deaths. Two-year disease-free and overall survival rates were both 55%. There was only one pelvic relapse (3%). Conclusions: Adjuvant treatment with combination chemotherapy interposed with involved field radiation in advanced endometrial cancer was well tolerated. This protocol may be suitable for further evaluation in a clinical trial.

  9. Physiologically gated microbeam radiation using a field emission x-ray source array

    PubMed Central

    Chtcheprov, Pavel; Burk, Laurel; Yuan, Hong; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping; Zhang, Lei; Chang, Sha; Zhou, Otto

    2014-01-01

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280??m wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic© films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a portion of the mouse respiratory cycle when there was minimum motion. Parallel planes of microbeams with 12.4 Gy/plane dose and 900??m pitch were delivered. The microbeam profiles with and without gating were analyzed using ?-H2Ax immunofluorescence staining. Results: The phantom study showed that the respiratory motion caused a 50% drop in PVDR from 11.5 when there is no motion to 5.4, whereas there was only a 5.5% decrease in PVDR for gated irradiation compared to the no motion case. In thein vivo study, the histology result showed gating increased PVDR by a factor of 2.4 compared to the nongated case, similar to the result from the phantom study. The full width at tenth maximum of the microbeam decreased by 40% in gating in vivo and close to 38% with phantom studies. Conclusions: The CNT field emission x-ray source array can be synchronized to physiological signals for gated delivery of x-ray radiation to minimize motion-induced beam blurring. Gated MRT reduces valley dose between lines during long-time radiation of a moving object. The technique allows for more precise MRT treatments and makes the CNT MRT device practical for extended treatment. PMID:25086515

  10. Physiologically gated microbeam radiation using a field emission x-ray source array

    SciTech Connect

    Chtcheprov, Pavel E-mail: zhou@email.unc.edu; Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping; Yuan, Hong; Zhang, Lei; Chang, Sha; Zhou, Otto E-mail: zhou@email.unc.edu

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280??m wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a portion of the mouse respiratory cycle when there was minimum motion. Parallel planes of microbeams with 12.4 Gy/plane dose and 900??m pitch were delivered. The microbeam profiles with and without gating were analyzed using ?-H2Ax immunofluorescence staining. Results: The phantom study showed that the respiratory motion caused a 50% drop in PVDR from 11.5 when there is no motion to 5.4, whereas there was only a 5.5% decrease in PVDR for gated irradiation compared to the no motion case. In thein vivo study, the histology result showed gating increased PVDR by a factor of 2.4 compared to the nongated case, similar to the result from the phantom study. The full width at tenth maximum of the microbeam decreased by 40% in gating in vivo and close to 38% with phantom studies. Conclusions: The CNT field emission x-ray source array can be synchronized to physiological signals for gated delivery of x-ray radiation to minimize motion-induced beam blurring. Gated MRT reduces valley dose between lines during long-time radiation of a moving object. The technique allows for more precise MRT treatments and makes the CNT MRT device practical for extended treatment.

  11. Sensitivity Training and Group Encounter, an Introduction.

    ERIC Educational Resources Information Center

    Siroka, Robert W., Ed.; And Others

    "Sensitivity Training and Group Encounter" attempts to explore group interaction on many levels--verbal, sensory, and physical. It can be utilized as a model for dealing with various forms of interpersonal relations, from ongoing social issues to the isolation, alienation, and distrust felt by the members of a group. Presented as a guide to this…

  12. EPOXI COMET ENCOUNTER Nov. 2, 2010

    E-print Network

    1 EPOXI COMET ENCOUNTER FACT SHEET Nov. 2, 2010 Quick Facts Flyby Spacecraft Dimensions: 3.3 meters storage via small, 16-amp- hourrechargeable nickel hydrogen battery Comet Hartley 2 Nucleus shape.m. EDT July 4, 2005) Earth-comet distance at time of impact: 133.6 million kilometers (83 million miles

  13. Entering a Crack: An Encounter with Gossip

    ERIC Educational Resources Information Center

    Henderson, Linda

    2014-01-01

    In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…

  14. Problems Encountered by Novice Pair Programmers

    ERIC Educational Resources Information Center

    Hanks, Brian

    2008-01-01

    In a study of the types of problems encountered by students that led them to seek assistance, Robins et al. [2006] found that the most common problems were related to trivial mechanics. The students in this study worked by themselves on their programming exercises. This article discusses a replication of the Robins et al. study in which the…

  15. Disk Galaxy Warp Formation via Close Encounters

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghwan; Peirani, S.; Kim, S.; Yoon, S.

    2012-01-01

    Warped disks appear to be ubiquitous among spiral galaxies. We present a new scenario for the warp formation, in which galactic fly-by encounters are main drivers of the warp structure. Based on N-body simulation using a publicly available code Gadget2, we investigate morphological and kinematical structures of disk galaxies while the galaxies are undergoing fly-by encounters with adjacent dark matter halos. In this study, we find that warps can be excited by impulsive encounters and sustained for a few billion years. We also find that encounters cause the initially spherical halos to deform into intricate shape halos at the inner regions where warps are generated. Most of the warps from the simulation show inclination angles that are comparable to the observations. The creation of warps, their inclination and their lifetimes are governed primarily by the following three parameters: the impact parameter (the minimum distance between two halos), the mass ratio between two galaxies, and the incoming angle of the intruder. We discuss pros and cons about our alternative scenario in comparison with existing explanations.

  16. VLA feedhorn for Voyager encounter of Neptune

    NASA Technical Reports Server (NTRS)

    Manshadi, F.; Bathker, D. A.; Marlin, H. W.

    1986-01-01

    A high gain, low noise corrugated feedhorn was designed and developed by JPL for use in Very Large Array (VLA) antennas, near Soccoro, New Mexico. The new feedhorn will enable the VLA to support the Voyager encounter of Neptune in August of 1989. This will significantly enhance the receiving capability of the United States for that historic event.

  17. Close encounters of the stellar kind

    NASA Astrophysics Data System (ADS)

    Bailer-Jones, C. A. L.

    2015-03-01

    Stars which pass close to the Sun can perturb the Oort cloud, injecting comets into the inner solar system where they may collide with the Earth. Using van Leeuwen's re-reduction of the Hipparcos data complemented by the original Hipparcos and Tycho-2 catalogues, along with recent radial velocity surveys, I integrate the orbits of over 50 000 stars through the Galaxy to look for close encounters. The search uses a Monte Carlo sampling of the covariance of the data in order to properly characterize the uncertainties in the times, distances, and speeds of the encounters. I show that modelling stellar encounters by assuming instead a linear relative motion produces, for many encounters, inaccurate and biased results. I find 42, 14, and 4 stars which have encounter distances below 2, 1, and 0.5 pc respectively, although some of these stars have questionable data. Of the 14 stars coming within 1 pc, 5 were found by at least one of three previous studies (which found a total of 7 coming within 1 pc). The closest encounter appears to be Hip 85605, a K or M star, which has a 90% probability of coming between 0.04 and 0.20 pc between 240 and 470 kyr from now (90% Bayesian confidence interval). However, its astrometry may be incorrect, in which case the closest encounter found is the K7 dwarf GL 710, which has a 90% probability of coming within 0.10-0.44 pc in about 1.3 Myr. A larger perturbation may have been caused by gamma Microscopii, a G6 giant with a mass of about 2.5 M?, which came within 0.35-1.34 pc (90% confidence interval) around 3.8 Myr ago. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A35

  18. A Systematic Global Mapping of the Radiation Field at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Brucker, G. J.

    2003-01-01

    This paper presents early results from aircraft measurements made by a Low-LET Radiation Spectrometer (LoLRS), as part of a long-range effort to study the complex dynamics of the atmospheric radiation field. For this purpose, a comprehensive data base is being generated to enable a multivariable global mapping (and eventually modeling) of doses and Linear-Energy-Transfer (LET) spectra at aviation altitudes. To accomplish this, a methodical collection of data from the LoLRS (and other instruments), is planned over extended periods of time, in a manner that complements some previous isolated and sporadic measurements by other workers, with the objective to generate a detailed long-range description of the cosmic-ray induced particle environment and to study its variability and dependence on atmospheric thickness, magnetic latitude, L-shell or rigidity, space weather, solar particle events, solar cycle effects, magnetic field variation, diurnal and seasonal effects, and atmospheric weather. Analysis of initial data indicates that the dose is rising with increasing altitude and increasing magnetic latitude. Comparison of total doses with predictions is in good agreement.

  19. Radiation-based near-field thermal rectification with phase transition materials

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Basu, Soumyadipta; Wang, Liping

    2013-10-01

    The capability of manipulating heat flow has promising applications in thermal management and thermal circuits. In this Letter, we report strong thermal rectification effect based on the near-field thermal radiation between silicon dioxide (SiO2) and a phase transition material, vanadium dioxide (VO2), separated by nanometer vacuum gaps under the framework of fluctuational electrodynamics. Strong coupling of surface phonon polaritons between SiO2 and insulating VO2 leads to enhanced near-field radiative transfer, which on the other hand is suppressed when VO2 becomes metallic, resulting in thermal rectification. The rectification factor is close to 1 when vacuum gap is at 1 ?m and it increases to almost 2 at sub-20-nm gaps when emitter and receiver temperatures are set to 400 and 300 K, respectively. Replacing bulk SiO2 with a thin film of several nanometers, rectification factor of 3 can be achieved when the vacuum gap is around 100 nm.

  20. The development of low level coastal flow fields when solar radiation is blocked by smoke

    SciTech Connect

    Molenkamp, C.R.

    1987-08-01

    Thick layers of smoke, injected into the atmosphere by fires ignited by a nuclear exchange, would block the incident solar radiation and allow continental regions to cool while oceanic areas remain at constant temperature. It has been suggested that the resultant horizontal temperature gradient could initiate precipitation along the coastline that would rapidly scavenge the smoke. This hypothesis is being investigated using an enhanced version of the Colorado State University mesoscale model to simulate the flow field in the vicinity of continental coastlines. The model has been modified to include cloud formation and the effects of these clouds on the transfer of infrared radiation as well as improving the basic long wave radiation parameterization. For moderate westerly winds over the east coast (offshore flow), a layer of fog forms just above the ground that, after about 2 days, evolves into a stratus cloud. Over the ocean a similar stratus cloud forms because of upward mixing of water vapor and radiative cooling. Once these similar cloud layers form, the cooling rates over land and sea become nearly the same eliminating the proposed mechanism for development of convective precipitation and scavenging of mid- or high-level smoke. For the same westerly winds on the west coast (onshore flow), the sequence is similar but evolves more quickly because more moisture is present in the upwind maritime air. In both cases, the formation of ground fog prevents the air temperature in the surface layer from falling below the temperature at which saturation occurs. Before the temperature decreases further, moisture must be removed from the layer.

  1. ROLE FOR THE MAGNETIC FIELD IN THE RADIATION-INDUCED EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE 'IN VITRO'

    EPA Science Inventory

    Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...

  2. The effect of cumulus cloud field anisotropy on solar radiative fluxes and atmospheric heating rates

    NASA Astrophysics Data System (ADS)

    Hinkelman, Laura M.

    The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles was studied. Causes of anisotropy were investigated using a large-eddy simulation (LES) model. Cloud formation under a variety of environmental conditions was simulated and the degree of anisotropy in the output fields was calculated. Wind shear was found to be the single greatest factor in the development of both vertically tilted and horizontally stretched cloud structures. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of the LES cloud scenes. Progressively greater degrees of tilt and stretching were imposed on each of these scenes, so that an ensemble of scenes were produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. For nearly all solar geometries, domain-averaged fluxes and atmospheric heating rate profiles calculated using the Independent Pixel Approximation differed substantially from the corresponding three-dimensional Monte Carlo results.

  3. Cosmological Consequences of Classical Flavor-Space Locked Gauge Field Radiation

    E-print Network

    Bielefeld, Jannis

    2015-01-01

    We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early universe, and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress-energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: non-zero cross correlation of the cosmic microwave background temperature and polarization, $TB$ and $EB$, both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future CMB experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and mag...

  4. Investigating Undergraduate Students’ Conceptions of Radiation

    NASA Astrophysics Data System (ADS)

    Romine, James M.; Buxner, Sanlyn; Impey, Chris; Nieberding, Megan; Antonellis, Jessie C.

    2014-11-01

    Radiation is an essential topic to the physical sciences yet is often misunderstood by the general public. The last time most people have formal instruction about radiation is as students in high school and this knowledge will be carried into adulthood. Peoples’ conceptions of radiation influence their attitude towards research regarding radiation, radioactivity, and other work where radiation is prevalent. In order to understand students’ ideas about radiation after having left high school, we collected science surveys from nearly 12,000 undergraduates enrolled in introductory science courses over a span of 25 years. This research investigates the relationship between students’ conceptions of radiation and students’ personal beliefs and academic field of study.Our results show that many students in the sample were unable to adequately describe radiation. Responses were typically vague, brief, and emotionally driven. Students’ field of study was found to significantly correlate with their conceptions. Students pursuing STEM majors were 60% more likely to describe radiation as an emission and/or form of energy and cited atomic or radioactive sources of radiation twice as often as non-STEM students. Additionally, students’ personal beliefs also appear to relate to their conceptions of radiation. The most prominent misconception shown was that radiation is a generically harmful substance, which was found to be consistent throughout the duration of the study. In particular, non-science majors in our sample had higher rates of misconceptions, often generalized the idea of radiation into a broad singular topic, and had difficulty properly identifying sources.Generalized ideas of radiation and the inability to properly recognize sources of radiation may contribute to the prevalent misconception that radiation is an inexplicably dangerous substance. A basic understanding of both electromagnetic and particulate radiation and the existence of radiation at various energy levels may substantially deter fear-based generalizations and increase students’ abilities to make rational decisions when encountering various types of radiation in daily life.

  5. Microwave-dressed electron-impurity interaction in a two-dimensional electron gas system under intense microwave radiation fields and weak magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Wei, X. F.; Lv, K.; Wu, B.; Chang, S.; Mao, J. J.

    2015-10-01

    Within a nonperturbative approach, the electron energy transfer rate induced by microwave-dressed electron-impurity interaction is analyzed theoretically in 2DEGs under weak perpendicular magnetic field. We find that for relatively low radiation levels cyclotron resonance (CR) is observed. However, when the radiation becomes intense, the peak of CR begins to split and the splitting increases with radiation intensity. Furthermore, we also show that multiphoton transition channels cannot be neglected in the vicinity of resonant region. The physical reasons behind these interesting finding are discussed.

  6. Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field

    SciTech Connect

    Sadykov, N. R.; Scorkin, N. A.

    2012-06-15

    The dependence of the current density on the leading edge width of the alternating (high-frequency) field amplitude is studied at various constant (or unsteady) fields. The dependence of amplified microwaves in the two-millimeter range on a longitudinal coordinate is determined. The problem of submillimeter radiation generation in a system of parallel carbon nanotubes exposed to two-frequency carbon dioxide (CO{sub 2} laser) laser radiation in the presence of a constant (or unsteady) field is studied. The possibility of using freely oriented carbon nanotubes parallel to each other is shown.

  7. Distribution of /sup 32/P in laboratory colonies of Solenopsis invicta (Hymenoptera: Formicidae) after feeding on labeled Heliothis zeal (Lepidoptera: Noctuidae) eggs: an explanation of discrepancies encountered in field predation experiments

    SciTech Connect

    Nuessly, G.S.; Sterling, W.L.

    1986-12-01

    Factors responsible for low recovery rates of radioactive Solenopsis invicta Buren following placement of /sup 32/P-labeled Heliothis zea (Boddie) eggs on cotton in field predation tests were investigated using laboratory colonies of the ants. S. invicta workers became radioactive while handling labeled eggs by rupturing the egg chorion or by picking up labeled substances present on the surface of eggs. Foragers that removed the eggs from the plants picked up significantly more of the label than did workers that were sampled from the colonies between 12 and 72 h after egg introduction. Percentage of workers that became labeled over time was much lower with the solid live food than in other studies that used powdered food sources. Problems in finding labeled ants in the field may have been associated with low mean levels of /sup 32/P per ant, together with difficulty in locating and isolating labeled ants from the population. Results indicate that egg predation rates estimated from counts per minute per predator have high variability, and suggest fairly large errors in estimates of eggs consumed per ant. Use of recovery rates of labeled predators to improve estimation of predation rates is discussed.

  8. Exposure of arctic field scientists to ultraviolet radiation evaluated using personal dosimeters.

    PubMed

    Cockell, C S; Scherer, K; Horneck, G; Rettberg, P; Facius, R; Gugg-Helminger, A; Driscoll, C; Lee, P

    2001-10-01

    During July 2000 we used an electronic personal dosimeter (X-2000) and a biological dosimeter (Deutsches Zentrum für Luft- und Raumfahrt: Biofilm) to characterize the UV radiation exposure of arctic field scientists involved in biological and geological fieldwork. These personnel were working at the Haughton impact structure on Devon Island (75 degrees N) in the Canadian High Arctic under a 24 h photoperiod. During a typical day of field activities under a clear sky, the total daily erythemally weighted exposure, as measured by electronic dosimetry, was up to 5.8 standard erythemal dose (SED). Overcast skies (typically 7-8 okta of stratus) reduced exposures by a mean of 54%. We estimate that during a month of field activity in July a typical field scientist at this latitude could potentially receive approximately 80 SED to the face. Because of body movements the upper body was exposed to a UV regimen that often changed on second-to-second time-scales as assessed by electronic dosimetry. Over a typical 10 min period on vehicle traverse, we found that erythemal exposure could vary to up to 87% of the mean exposure. Time-integrated exposures showed that the type of outdoor field activities in the treeless expanse of the polar desert had little effect on the exposure received. Although absolute exposure changed in accordance with the time of day, the exposure ratio (dose received over horizontal dose) did not vary much over the day. Under clear skies the mean exposure ratio was 0.35 +/- 0.12 for individual activities at different times of the day assessed using electronic dosimetry. Biological dosimetry showed that the occupation was important in determining daily exposures. In our study, scientists in the field received an approximately two-fold higher dose than individuals, such as medics and computer scientists, who spent the majority of their time in tents. PMID:11683037

  9. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  10. Oort Cloud Comet Encounters with Mars or Earth Renu Malhotra

    E-print Network

    Malhotra, Renu

    Oort Cloud Comet Encounters with Mars or Earth Renu Malhotra Lunar and Planetary Laboratory an encounter with an Oort Cloud comet? More precisely: what is the mean time between Mars' encounters with parabolic comets at flyby distances less than d = 140, 000 km? (This is the encounter distance of Comet

  11. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.

    2013-11-01

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the "highest quality" events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

  12. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans, yielding almost equal dose distributions for the treatment targets, while the mean doses related to the organs at risk (OARs) deviated by approximately 0.7-1.2%. The use of the measured data sets from different detectors for the beam-modeling process still provided acceptable dose distributions with accuracies within 2%.

  13. Radiation Field of Packages Carrying Spent Co-60 Radioactive Sources - 12437

    SciTech Connect

    Marzo, Giuseppe A.; Giorgiantoni, Giorgio; Sepielli, Massimo

    2012-07-01

    Among the diverse radioactive sources commonly exploited in medical and industrial applications, Co- 60 is increasingly used as strong gamma emitter. Over time, source manufacturers favored Co-60 as opposed to other gamma emitters because its relatively short half-life (5.27 year) that minimizes issues related to the management of disused sources. Disused Co-60 sources can retain a significant amount of radioactivity (from hundreds of MBq to several GBq) that still poses safety concerns on their handling and transportation. In this context a detailed knowledge of their radiation field would provide the necessary information for taking actions in preventing unnecessary doses to the workers and the population by optimizing transportation procedures and handling operations. We modeled the geometry and the materials constituting a transportation packaging of a spent Co-60 source which had an original maximum activity of a few GBq and was enclosed in a small lead irradiator. Then we applied a Monte Carlo transport code (MCNP5) for tracking down the gamma photons emitted by the source, including the secondary photons resulting by the interaction of the source photons with the surrounding materials. This allowed for the evaluation of the radiation field inside and outside the packaging, and the corresponding equivalent dose useful for checking the compliance with the regulations and the health risk of possible radiation exposure. We found that a typical 60-liters drum carrying a spent Co-60 source, enclosed in its original irradiator, with a residual activity of 300 MBq could already overcome an equivalent dose of 0.2 mSv/h on the drum external surface, which is the maximum equivalent dose at any point of the surface for this packaging as prescribed by local regulations. This condition is even more apparent when the source is slightly displaced with respect to the rotation axis of the drum, an easily occurring condition for sources not properly packaged, generating non-compliant hot-spots on the drum surface. As an example, a displacement of 5 cm translates in an increase of 80% in the dose level on the nearest side of the drum. We also found that the equivalent dose is significantly influenced by the scattered source photons and the secondary photons, whose contribution to the radiation field is mainly determined by the package geometry. The developed model resulted in an important tool for exploring the detail of the radiation field of a spent Co-60 source packaged for transportation allowing to check for compliance with the regulations and to evaluate risks to the workers and the population. It is worth to point out that this modeling approach is completely general and can be applied to a variety of different problems not limited to the transportation of radioactive material. In the example illustrated in this work, a small Co-60 source inside its irradiator and properly packaged in a drum for transport, presents a hot-spot on the drum surface if the irradiator is displaced of just few centimeters with respect to the rotation axis of the drum. A Monte Carlo simulation provided a complete description of the radiation field in the volume surrounding the packaging as a function of photon energy showing that a significant contribution comes from source photons scattered by the package itself. As an example, the Transport Index (TI) of this packaging was calculated, resulting in a value of 0.5. This value is low when compared to the regulations, however suggests that an individual just 1 meter afar from the packaging receives, in a few hours, a dose comparable to that received with a radiograph. This might be the case of the driver of a truck transporting the packaging, in particular when a number of packages are transported at the same time. It is important to notice that the results presented in this work are general, and can be appropriately scaled to represent the radiation field of similar geometries with gamma sources of different activity. However, this quick application of a Monte Carlo simulation provides useful insights

  14. On momentum and energy of a non-radiating electromagnetic field

    E-print Network

    Alexander L. Kholmetskii

    2005-01-31

    This paper inspects more closely the problem of the momentum and energy of a bound (non-radiating) electromagnetic (EM) field. It has been shown that for an isolated system of non-relativistic mechanically free charged particles a transformation of mechanical to EM momentum and vice versa occurs in accordance with the requirement PG=const, where PG is the canonical momentum. If such a system contains bound charges, fixed on insulators then, according to the assumption of a number of authors, a so-called "hidden" momentum can contribute into the total momentum of the system. The problem of "hidden momentum" (pro and contra) is also examined in the paper, as well as the law of conservation of total energy for different static configurations of the system "magnetic dipole plus charged particle". Analyzing two expressions for electromagnetic momentum of a bound EM field, qA and the Poynting expression, we emphasize that they coincide with each other for quasi-static configurations, but give a discrepancy for rapid dynamical processes. We conclude that neither the first, nor the second expressions provide a continuous implementation of the momentum conservation law. Finally, we consider the energy flux in a bound EM field, using the Umov vector. It has been shown that Umov vector can be directly derived from Maxwell equations. A new form of the momentum-energy tensor, which explicitly unites the mechanical and EM masses, has been proposed.

  15. A Topological Structure in the Set of Classical Free Radiation Electromagnetic Fields

    E-print Network

    A. F. Ranada; A. Tiemblo

    2014-07-29

    The aim of this work is to proceed with the development of a model of topological electromagnetism in empty space, proposed by one of us some time ago and based on the existence of a topological structure associated with the radiation fields in standard Maxwell's theory. This structure consists in pairs of complex scalar fields, say $\\phi$ and $\\theta$, that can be interpreted as maps $\\phi,\\theta: S^3\\mapsto S^2$, the level lines of which are orthogonal to one another, where $S^3$ is the compactified physical 3-space $R^3$, with only one point at infinity, and $S^2$ is the 2-sphere identified with the complete complex plane. These maps were discovered and studied in 1931 by the German mathematician H. Hopf, who showed that the set of all of them can be ordered in homotopy classes, labeled by the so called Hopf index, equal to $\\gamma=\\pm 1,\\,\\pm 2,\\,\\cdots ,\\, \\pm k,...$ but without $\\gamma=0$. In the model presented here and at the level of the scalars $\\phi$ and $\\theta$, the equations of motion are highly nonlinear; however there is a transformation of variables that converts exactly these equations (not by truncation!) into the linear Maxwell's ones for the magnetic and electric fields $\\B$ and $\\E$.

  16. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Oka, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of <_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.

  17. Winnicott and Lacan: a missed encounter?

    PubMed

    Vanier, Alain

    2012-04-01

    Winnicott was able to say that Lacan's paper on the mirror stage "had certainly influenced" him, while Lacan argued that he found his object a in Winnicott's transitional object. By following the development of their personal relations, as well as of their theoretical discussions, it is possible to argue that this was a missed encounter--yet a happily missed one, since the misunderstandings of their theoretical exchanges allowed each of them to clarify concepts otherwise difficult to discern. PMID:22768481

  18. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  19. Effect of the ionizing radiation on the rain-time atmospheric electric field

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Takeda, Masahiko; Makino, Masahiko; Owada, Takeshi

    2013-04-01

    The atmospheric electric field, or potential gradient (PG) at Kakioka, 150 southwest of the Fukushima Nuclear Power Plant (NPP) shows peculiar behaviors after the accident, March 2012 due to the conductivity enhancement in the air by the ionizing radiation. This means that the PG provides significant information on the dynamics of the radioactive materials. During last EGU assembly 2012, we showed that the fine-weather PG decreased by one-two orders of magnitudes at the arrival of the radioactive plume, and that the PG recovered in various way depending on various types of re-suspension processes in addition to the physical decay of the deposited radioactive materials. We extended this work to the rain-time PG, which is very simple because of high variability of the PG depending on the cloud types and distribution. We yet found a statistical difference between rain-time PGs before and after the Fukushima NPP Accident: one-hour averaged rain-time PG during the first 45 days after the accident is not as much scattered to the negative side as those during the same period of different years or during 40 days before accident. Further examination of one-minute averaged data (1 Hz sampling) during the second half March for 2006-2012 revealed that this difference comes from short time-spans of negative peaks rather than the peak value after the accident compared to those before the accident. On the other hand, characteristics of positive peaks (cloud without rain) are unchanged. The results suggest either (1) the effect on the local charges in the rain cloud is narrowed under high dose of ionized radiation, making positive charges in the cloud less shielded by the negative charges, or (2) negative charge of ionized aerosol decays much faster under higher dose of ionized radiation due to the shortened time constant of the ionized aerosol (? 1-?, where ? is the atmospheric electric conductivity).

  20. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes.

    PubMed

    Singh, Harminder Pal; Sharma, Ved Parkash; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-04-01

    Indiscriminate adoption and use of cell phone technology has tremendously increased the levels of electromagnetic field radiations (EMFr) in the natural environment. It has raised the concerns among the scientists regarding the possible risks of EMFr to living organisms. However, not much has been done to assess the damage caused to plants that are continuously exposed to EMFr present in the environment. The present study investigated the biochemical mechanism of interference of 900 MHz cell phone EMFr with root formation in mung bean (Vigna radiata syn. Phaseolus aureus) hypocotyls, a model system to study rhizogenesis in plants. Cell phone EMFr enhanced the activities of proteases (by 1.52 to 2.33 times), polyphenol oxidases (by 1.5 to 4.3 times), and peroxidases (by 1.5 to 2.0 times) in mung bean hypocotyls over control. Further, EMFr enhanced malondialdehyde (an indicator of lipid peroxidation), hydrogen peroxide, and proline content, indicating a reactive oxygen species-mediated oxidative damage in hypocotyls. It was confirmed by the upregulation in the activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase, and glutathione reductase) suggesting their possible role in providing protection against EMFr-induced oxidative damage. The study concluded that cell phone radiations affect the process of rhizogenesis through biochemical alterations that manifest as oxidative damage resulting in root impairment. PMID:21562792

  1. Analysis of rat testicular proteome following 30-day exposure to 900 MHz electromagnetic field radiation.

    PubMed

    Sepehrimanesh, Masood; Kazemipour, Nasrin; Saeb, Mehdi; Nazifi, Saeed

    2014-12-01

    The use of electromagnetic field (EMF) generating apparatuses such as cell phones is increasing, and has caused an interest in the investigations of its effects on human health. We analyzed proteome in preparations from the whole testis in adult male Sprague-Dawley rats that were exposed to 900 MHz EMF radiation for 1, 2, or 4 h/day for 30 consecutive days, simulating a range of possible human cell phone use. Subjects were sacrificed immediately after the end of the experiment and testes fractions were solubilized and separated via high-resolution 2D electrophoresis, and gel patterns were scanned, digitized, and processed. Thirteen proteins, which were found only in sham or in exposure groups, were identified by MALDI-TOF/TOF-MS. Among them, heat shock proteins, superoxide dismutase, peroxiredoxin-1, and other proteins related to misfolding of proteins and/or stress were identified. These results demonstrate significant effects of radio frequency modulated EMFs exposure on proteome, particularly in protein species in the rodent testis, and suggest that a 30-day exposure to EMF radiation induces nonthermal stress in testicular tissue. The functional implication of the identified proteins was discussed. PMID:25146694

  2. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.

    PubMed

    Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P

    2015-12-01

    Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation - a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. PMID:25794822

  3. A beaming model of the Io-independent Jovian decameter radiation based on multipole models of the Jovian magnetic field

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Eviatar, A.; Thieman, J. R.

    1978-01-01

    A geometrical model is presented in which the apparent source locations of the Io-independent decameter radiation are computed. The calculations assume that the radiation is produced by stably trapped electrons radiating near the electron gyrofrequency and that the emission is then beamed onto a conical surface. The maximum occurrence probability of noise storms is associated with regions in the Jovian magnetosphere where the axis of the emission cone is most inclined toward the Jovian equatorial plane. The calculations utilize and compare two of the octupole spherical harmonic expansions of the Jovian magnetic field constructed from data accumulated by the fluxgate and vector helium magnetometers on board Pioneer 11.

  4. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  5. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps

    NASA Astrophysics Data System (ADS)

    Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang

    2015-04-01

    When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers.

  6. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; Robinson, G. A.; Opiela, J. N.; Gerlach, L.

    2013-01-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  7. Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Clowdsley, Martha S.; Qualls, Garry D.; Nealy, John E.

    2005-01-01

    Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models. The background environment is taken to consist not only of exposure from incident cosmic ray ions and their secondaries, but also include the contribution from secondary neutron fields produced in the tenuous atmosphere and the underlying regolith.

  8. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.

    PubMed

    Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang

    2015-01-01

    When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1?nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305

  9. The attainment of large accelerating gradients using near field synchrotron radiation

    SciTech Connect

    Decker, G.

    1989-01-01

    Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in free space resulting from a point charge moving on a helical trajectory. The total power emitted as synchrotron radiation from a particle on a circular path is calculated. The point charge results are generalized to the case of a line charge, and formulae are presented which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving beams moving on 1 cm radius helical orbits with bunch length 1 mm. 11 refs., 5 figs.

  10. Cytokinesis block micronucleus assay in field plants for monitoring radiation-induced genotoxicity of the environment.

    PubMed

    Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Kouichi, Maruyama; Ichikawa, San'ei; Kubota, Masahide; Yoshida, Satoshi

    2014-11-01

    Effective biomonitoring for detection of radiation-induced genotoxicity of contaminants in natural environments involves testing of field plants for cytogenetic changes. To increase the efficiency and precision of cytogenetic analyses of field plants that have naturally high individual variability, an improved micronucleus assay is proposed that employs a cytokinesis block technique similar to the lymphocyte test system used in mammals. In seed embryonic meristems of the Japanese cedar, application of a methylxanthine derivative, 3-isobutyl-1-methylxanthine (IBMX), was found to be effective in inhibiting cytokinesis to make once-divided cells easily recognizable by their binucleate appearance. In the meristem of IBMX-treated seminal roots from X-ray-irradiated seeds, variation in micronucleus frequency in the binucleate cell population was reduced compared to that in the total cell population. The highest efficiency of measurement of micronucleus frequencies was obtained in the root meristems where 0.2- to 1.5-mm-long seminal roots were incubated with IBMX for 24 h. This result indicated that this root elongation stage corresponded to the first divisions of the root meristematic cells, and was therefore suitable for obtaining reliable estimations of accumulated genetic damage in the seeds. This cytokinesis block assay applied specifically at the root elongation stage was then used to examine dose-response relationships in Japanese cedar seeds irradiated either acutely with X-rays or chronically with ?-rays. The resulting dose-response curve for the acute X-ray irradiation was fitted onto a linear-quadratic regression curve, whereas the dose-response curve for the chronic ?-irradiation matched a linear regression line better. Both dose-response curves were consistent with the target theory of classical radiation biology. The good agreement of the micronucleus data to a simple dose-response model indicates the proposed accuracy of the cytokinesis block micronucleus assay for plant monitoring. PMID:25440909

  11. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field

    SciTech Connect

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2006-08-01

    The evidence for particle acceleration in supernova shells comes from electrons whose synchrotron emission is observed in radio and X-rays. Recent observations by the HESS instrument reveal that supernova remnants also emit TeV {gamma}-rays; long awaited experimental evidence that supernova remnants can accelerate cosmic rays up to the ''knee'' energies. Still, uncertainty exists whether these {gamma}-rays are produced by electrons via inverse Compton scattering or by protons via {pi}{sup 0}-decay. The multi-wavelength spectra of supernova remnants can be fitted with both mechanisms, although a preference is often given to {pi}{sup 0}-decay due to the spectral shape at very high energies. A recent study of the interstellar radiation field indicates that its energy density, especially in the inner Galaxy, is higher than previously thought. In this paper we evaluate the effect of the interstellar radiation field on the inverse Compton emission of electrons accelerated in a supernova remnant located at different distances from the Galactic Centre. We show that contribution of optical and infra-red photons to the inverse Compton emission may exceed the contribution of cosmic microwave background and in some cases broaden the resulted {gamma}-ray spectrum. Additionally, we show that if a supernova remnant is located close to the Galactic Centre its {gamma}-ray spectrum will exhibit a ''universal'' cutoff at very high energies due to the Klein-Nishina effect and not due to the cut-off of the electron spectrum. As an example, we apply our calculations to the supernova remnants RX J1713.7-3946 and G0.9+0.1 recently observed by HESS.

  12. Guiding-centre transformation of the radiation-reaction force in a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hirvijoki, E.; Decker, J.; Brizard, A. J.; Embréus, O.

    2015-10-01

    > In this paper, we present the guiding-centre transformation of the radiation-reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation-reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429-4438), where it was used to eliminate the fast gyromotion from the Fokker-Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation-reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.

  13. Photon-dominated regions around cool stars: The effects of the color temperature of the radiation field

    NASA Technical Reports Server (NTRS)

    Spaans, Marco; Tielens, A. G. G. M.; Dishoeck, Ewine F. Van; Bakes, E. L. O.

    1994-01-01

    We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.

  14. Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Zdziarski, Andrzej A.

    1994-01-01

    We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.

  15. Genotoxicity Induced by Foetal and Infant Exposure to Magnetic Fields and Modulation of Ionising Radiation Effects

    PubMed Central

    Udroiu, Ion; Antoccia, Antonio; Tanzarella, Caterina; Giuliani, Livio; Pacchierotti, Francesca; Cordelli, Eugenia; Eleuteri, Patrizia; Villani, Paola; Sgura, Antonella

    2015-01-01

    Background Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays. Aim and methods Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 ?T magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis. Results ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying ELF-MF biological effects. PMID:26559811

  16. The constrained inversion of Nimbus-7 wide field-of-view radiometer measurements for the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Hucek, Richard R.; Ardanuy, Philip; Kyle, H. Lee

    1990-01-01

    The results of a constrained, wide field-of-view radiometer measurement deconvolution are presented and compared against higher resolution results obtained from the Earth Radiation Budget instrument on the Nimbus-7 satellite and from the Earth Radiation Budget Experiment. The method is applicable to both longwave and shortwave observations and is specifically designed to treat the problem of anisotropic reflection and emission at the top of the atmosphere as well as low signal-to-noise ratios that arise regionally within a field. The procedure is reviewed, and the improvements in resolution obtained are examined. Some minor improvements in the albedo algorithm are also described.

  17. A novel approach for description of nonlinear field radiated from a concave source with wide aperture angle.

    PubMed

    Sun, Min; Zhang, Dong; Gong, Xiufen

    2006-12-22

    A new approach is proposed to study the nonlinear sound field radiated from a concave spherical source with a wide aperture angle. The nonlinear sound field is theoretically described by a set of equations deduced reversely from the second-order Westervelt nonlinear wave equation. To examine the validity of the theoretical model, numerical calculations are performed on a concave spherical radiator with the aperture angle wide up to 40 degrees. Numerical calculation is implemented by the finite difference time domain algorithm in the oblate spheroidal coordinate system. Numerical results are in agreement with those obtained by Kamakura's solutions. PMID:16793098

  18. Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface.

    PubMed

    Li, T Y; Miao, Y Y; Ye, W B; Zhu, X; Zhu, X M

    2014-09-01

    The far-field sound radiation behavior of a circular cylindrical shell submerged at finite depth from the free surface is studied. Based on the Flügge shell theory and the Helmholtz equation, the structure-acoustic coupling equation is established. An image method is applied so that the sound boundary condition of the free surface can be satisfied. Analytical expression of the far-field sound pressure is obtained using the stationary phase method and the Graf's addition theorem. In order to evaluate the effect of the submerged depth on sound radiation, the results of the submerged cylindrical shell at finite depth from the free surface are compared with those of the submerged cylindrical shell in the infinite fluid. The characteristics of the far-field sound pressure with the change of the depth are investigated. It is found that the submerged depth has a significant influence on the far-field sound pressure radiated from the submerged cylindrical shell due to the free surface effects. The work provides more understanding on the sound radiation properties of the submerged circular cylindrical shell without assuming infinite fluid field, which was commonly used in previous studies. PMID:25190381

  19. Azimuthal Patterns of the Radiated Sound Field from a Turbofan Model

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Farassat, F.; Clark, L. R.; Gerhold, C. H.

    1997-01-01

    The azimuthal directivity of a scale fan model was measured extensively. The model is a 12 inch diameter fan with 16 rotors and 40 stator vanes and tests were done at a tip speed of 905 ft/sec. Tests were conducted in an anechoic chamber with an inflow control device installed on the stationary fan model. The acoustic far field of the fan was surveyed with a circular hoop, with a diameter of six fan diameters, centered on the fan axis and was moved along the fan axis at polar angles from 20 to 110 degrees in increments of 10 degrees. The hoop, with 16 microphones evenly spaced at intervals of 22.5 degrees was rotated in 24 increments in the azimuthal direction for a total 384 points. From this extensive mapping of the directivity it is shown that the azimuthal directivity of the fundamental and first two harmonics is significant and can vary up to 15 dB. The broadband can also have an azimuthal directivity with as much as a 4 dB variation. A theory is proposed with relates the radiated modes with the generation of the far field patterns which produce the azimuthal directivity.

  20. Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field

    NASA Technical Reports Server (NTRS)

    Konkov, L. E.; Prants, S. V.

    1996-01-01

    Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.

  1. Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Li, Linhai; Stramski, Dariusz; Reynolds, Rick A.

    2014-05-01

    The solar light field within the ocean from the sea surface to the bottom of the mesopelagic zone was simulated with a radiative transfer model that accounts for the presence of inelastic radiative processes associated with Raman scattering by water molecules, fluorescence of colored dissolved organic matter (CDOM), and fluorescence of chlorophyll-a contained in phytoplankton. The simulation results provide a comprehensive characterization of the ambient light field and apparent optical properties (AOPs) across the entire visible spectral range within the depth range 200-1000 m of the entire mesopelagic zone for varying chlorophyll-a concentration and seawater optical properties in the mixed surface layer of the ocean. With increasing depth in the mesopelagic zone, the solar irradiance is reduced by ~9-10 orders of magnitude and exhibits a major spectral maximum in the blue, typically centered around a light wavelength of 475 nm. In the green and red spectral regions, the light levels are significantly lower but still important owing to local generation of photons via inelastic processes, mostly Raman scattering and to a lesser extent CDOM fluorescence. The Raman scattering produces a distinct secondary maximum in irradiance spectra centered around 565 nm. Comparisons of our results with light produced by the radioactive decay of the unstable potassium isotope contained in sea salt (40K) indicates that the solar irradiance dominates over the 40K-produced irradiance within the majority of the mesopelagic zone for most scenarios considered in our simulations. The angular distribution of radiance indicates the dominance of downward propagation of light in the blue and approach to uniform distribution in the red throughout the mesopelagic zone. Below the approximate depth range 400-500 m, the shape of the angular distribution is nearly invariant with increasing depth in the green and red and varies weakly in the blue. The AOPs at any light wavelength also assume nearly constant values within the deeper portion of the mesopelagic zone. These results indicate that the mesopelagic light field reaches a nearly-asymptotic regime at depths exceeding ~400-500 m.

  2. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning.

    PubMed

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-21

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields. PMID:19336848

  3. First spacecraft encounter with an asteroid approaches

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    During the course of the Galileo spacecraft's journey to Jupiter it will make two excursions through the steroid belt situated between Mars and Jupiter. The first excursion involves an encounter with the asteroid 951 Gaspra, which will take place on October 29, 1991. Gaspra is a small (about 15 km diameter) asteroid near the outer edge of the main asteroid belt. It's spectral classification is S, suggesting a composition similar to those of stony-iron meteorites. A figure is given showing the brightness of this asteroid as a function of time.

  4. Satellite ephemerides for Voyager Saturn encounter

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Campbell, J. K.; Synnott, S. P.

    1982-01-01

    Satellite ephemerides played an important role in the navigation of the Voyager 1 and 2 Saturn encounters. They were used in the models of the gravitational forces acting on the spacecraft and of the onboard optical navigation measurements. They also were used in predicting the pointing directions of the onboard instruments for satellite scientific observations. This paper describes the form of the Voyager Saturn satellite ephemerides and gives the values of the parameters used in the ephemeris generation. The update of those parameters as part of the optical navigation process is also discussed, and the best Voyager ephemerides are presented and compared to those based on earlier Saturn satellite theories.

  5. The intriguing encounters of Pavlov and Cushing.

    PubMed

    Shahlaie, Kiarash; Watson, Joseph C; Benson, Daniel R

    2004-03-01

    Ivan Petrovich Pavlov and Harvey William Cushing were two of the most prominent neuroscientists of the early 20th century. Their contributions helped advance the understanding of the brain and its disorders, and propelled neuroscience into a new era of research and treatment. Although separated geographically and culturally, Pavlov and Cushing exchanged letters and followed one another's careers from afar. They met only a few times, during international scientific gatherings in the US and abroad. These encounters were captured in journal entries, letters, and photographs, and provide a glimpse into the lives of these two great men and the history of neuroscience at the turn of the last century. PMID:15035298

  6. Earth imaging results from Galileo's second encounter

    NASA Technical Reports Server (NTRS)

    Greenberg, R.; Belton, M.; Dejong, E.; Ingersoll, A.; Klaasen, K.; Geissler, P.; Moersch, J.; Thompson, W. R.

    1993-01-01

    The recent flyby of the Galileo spacecraft en route to Jupiter contributes a unique perspective to our view of our home planet. Imaging activities conducted during the second Earth encounter provide an important opportunity to assess new methods and approaches on familiar territory. These include unique multispectral observations, low light-level imaging (searches for aurorae, lightning and artificial lights on the nightside) and experiments with multiple exposure times to extend the effective radiometric resolution and dynamic range of the camera system. Galileo imaging data has the potential to make important contributions to terrestrial remote sensing. This is because the particular set of filters included in the Solid State Imaging system are not presently incorporated in any currently operating Earth-orbiting sensor system. The visible/near-infrared bandpasses of the SSI filters are well suited to remote sensing of geological, glaciological, botanical, and meteorological phenomena. Data from this and the previous Earth encounter may provide an extremely valuable reference point in time for comparison with similar data expected from EOS or other systems in the future, contributing directly to our knowledge of global change. The highest resolution imaging (0.2 km/pixel) during the December, 1992 encounter occurred over the central Andes; a five filter mosaic of visible and near infrared bands displays the remarkable spectral heterogeneity of this geologically diverse region. As Galileo departed the Earth, cooperative imaging with the Near Infrared Mapping Spectrometer (NIMS) instrument targeted Antarctica, Australia, and Indonesia at 1.0 to 2.5 km/pixel resolutions in the early morning local times near the terminator. The Antarctic data are of particular interest, potentially allowing ice grain size mapping using the 889 and 968 nm filters and providing an important means of calibrating the technique for application to the Galilean satellites. As the spacecraft receded further, regional scale imaging provided data which, along with data from the previous encounter, will enable the production of global multispectral mosaics of Earth in each of the SSI filters.

  7. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU tokamak

    SciTech Connect

    Martin-Solis, Jose Ramon; Sanchez, Raul; Esposito, Basilio

    2010-01-01

    The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, E{sub R} = n{sub e}e{sup 3}ln{Lambda}/4{pi}{var_epsilon}{sub 0}{sup 2}m{sub e}c{sup 2}. These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER.

  8. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE

    SciTech Connect

    Kang, Hyesung; Jones, T. W.; Edmon, Paul P. E-mail: twj@msi.umn.edu

    2013-11-01

    We explore nonlinear effects of wave-particle interactions on the diffusive shock acceleration (DSA) process in Type Ia-like supernova remnant (SNR) blast waves by implementing phenomenological models for magnetic field amplification (MFA), Alfvénic drift, and particle escape in time-dependent numerical simulations of nonlinear DSA. For typical SNR parameters, the cosmic-ray (CR) protons can be accelerated to PeV energies only if the region of amplified field ahead of the shock is extensive enough to contain the diffusion lengths of the particles of interest. Even with the help of Alfvénic drift, it remains somewhat challenging to construct a nonlinear DSA model for SNRs in which of the order of 10% of the supernova explosion energy is converted into CR energy and the magnetic field is amplified by a factor of 10 or so in the shock precursor, while, at the same time, the energy spectrum of PeV protons is steeper than E {sup –2}. To explore the influence of these physical effects on observed SNR emission, we also compute the resulting radio-to-gamma-ray spectra. Nonthermal emission spectra, especially in X-ray and gamma-ray bands, depend on the time-dependent evolution of the CR injection process, MFA, and particle escape, as well as the shock dynamic evolution. This result comes from the fact that the high-energy end of the CR spectrum is composed of particles that are injected in the very early stages of the blast wave evolution. Thus, it is crucial to better understand the plasma wave-particle interactions associated with collisionless shocks in detailed modeling of nonthermal radiation from SNRs.

  9. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    SciTech Connect

    Bauer, Bruno, S.; Siemon, Richard, E.

    2008-10-22

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: • 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; • An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; • Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables. • Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  10. Preliminary results on soil-emitted gamma radiation and its relation with the local atmospheric electric field at Amieira (Portugal)

    NASA Astrophysics Data System (ADS)

    Lopes, F.; Silva, H. G.; Bárias, S.; Barbosa, S. M.

    2015-10-01

    The atmospheric electric field near the Earth's surface is dominated by atmospheric pollutants and natural radioactivity, with the latter directly linked to radon (222Rn) gas. For a better comprehension on the temporal variability of both the atmospheric electric field and the radon concentration and its relation with local atmospheric variables, simultaneous measurements of soil-emitted gamma radiation and potential gradient (defined from the vertical component of the atmospheric electric field) were taken every minute, along with local meteorological parameters (e.g., temperature, atmospheric pressure, relative humidity and daily solar radiation). The study region is Amieira, part of the Alqueva lake in Alentejo Portugal, where an interdisciplinary meteorological campaign, ALEX2014, took place from June to August 2014. Soil gamma radiation is more sensitive to small concentrations of radon as compared with alpha particles measurements, for that reason it is more suited for sites with low radon levels, as expected in this case. Preliminary results are presented here: statistical and spectral analysis show that i) the potential gradient has a stronger daily cycle as compared with the gamma radiation, ii) most of the energy of the gamma signal is concentrated in the low frequencies (close to 0), contrary to the potential gradient that has most of the energy in frequency 1 (daily cycle) and iii) a short-term relation between gamma radiation and the potential gradient has not been found. Future work and plans are also discussed.

  11. Field-aligned chorus wave spectral power in Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E. A.; Haaland, S. E.; Daly, P. W.; Krasnoselskikh, V. V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.

    2015-05-01

    Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave-particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1-100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 ? L ? 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

  12. Africa on My Mind: Encounters in the Field

    E-print Network

    Burgess, Elaine

    1990-01-01

    were left homeless 40 more were killed. Four white journalists were shot, and a fifth hacked to death as police stood by. The meaning was clear! The Minister of Law and Order congratulated white troops for their restraint in h~dling the ''black unrest... was to be called the "National Forum," a name stolen directly from one of the current legitimate liberation (pro-PAC) coordinating bodies. 108 Africa On My Mind 23. Its continued ability to manipulate the Western Powers is also impressive. President Bush...

  13. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    SciTech Connect

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-04-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal.

  14. Near-Field Radiative Heat Transfer Between Two SiC Plates With/Without Coated Metal Films.

    PubMed

    Wu, Ya; Zhou, Leping; Du, Xiaoze; Yang, Yongping

    2015-04-01

    Near-field radiation is important in many nanotechnological applications, such as thermophotovoltaic system. In this paper, we employ the Rytov theory to calculate the near-field heat transfer between two silicon carbide (SiC) plates at finite vacuum gaps. The result shows that the total energy transfer rate increases with decreasing distance, and a maximum energy transfer rate can be found with respect to frequency. We then analyze the near-field thermal radiation of an aluminum-coated SiC plane in vacuum. The relation among film thickness, gap distance and energy density is given. It shows that the contribution of transverse electric (TE) mode to the energy density vanishes when the film thickness is nearly zero; and the contribution of transverse magnetic (TM) mode increases, but remains finite that can be illustrated by simple Drude model. The spectral density of p state of the thermally stimulated field in the vacuum-Al-SiC structure with fixed film thickness would have more resonance and large value can be obtained when increasing the distance; while the spectral density of p state in the thermally stimulated field in the structure with fixed distance has no apparent difference when varying the film thicknesses. This investigation can be extended for many other basic researches in near-field radiation. PMID:26353529

  15. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  16. EFFECTS OF SUPPLEMENTAL ULTRAVIOLET-B RADIATION ON THE GROWTH AND PHYSIOLOGY OF FIELD-GROWN SOYBEAN

    EPA Science Inventory

    Soybeans were grown outdoors in field plots during 1983 and 1984 under ambient and 2 supplemental levels of biologically effective ultraviolet-B (UV-B) radiation (daily supplemental dose: 3.0 or 5.1 effective. These correspond to a 16 and 25% ozone reduction during clear sky cond...

  17. EFFECTS OF ENHANCED ULTRAVIOLET-B RADIATION ON YIELD, AND DISEASE INCIDENCE AND SEVERITY FOR WHEAT UNDER FIELD CONDITIONS

    EPA Science Inventory

    The influence of enhanced UV-B radiation (280-320 nm) on wheat (Triticum aestivum cv. 'Florida 301') yield, and disease incidence and severity was investigated for two growing seasons under field conditions. Three levels of UV-B enhancement, simulating 8,12 and 16% stratospheric ...

  18. ASA conference on radiation and health: Health effects of electric and magnetic fields: Statistical support for research strategies. Final report

    SciTech Connect

    Not Available

    1990-05-01

    This report is a collection of papers documenting presentations made at the VIII ASA (American Statistical Association) Conference on Radiation and Health entitled Health Effects of Electric and Magnetic Fields: Statistical Support for Research Strategies. Individual papers are abstracted and indexed for the database.

  19. Applications of the electromagnetic field theory for calculations of the radiative thermal transfer in coaxial multi-layer systems

    E-print Network

    C. Stoica

    2009-03-01

    In the present article we intend to accomplish a rigorous analysis which allows to elaborate useful symbolic and numerical codes leading to an accurate evaluation of the thermal radiation. We will consider the case of the electromagnetic field in axially symmetric systems, a case of real interest in cryogenics.

  20. FIELD STUDY OF THE INTERACTION BETWEEN SOLAR ULTRAVIOLET-B RADIATION AND DROUGHT ON PHOTOSYNTHESIS AND GROWTH IN SOYBEAN

    EPA Science Inventory

    Soybean, Glycine max (L.) Merr. cv Essex, plants were grown in the field in a 2x2 factorial design, under ambient and supplemental levels of ultraviolet-B (UV-B) radiation (supplemental daily dose of 5.1 effective kilojoules per square meter) and were either well-watered or subje...

  1. Envisioning invertebrates and other aquatic encounters

    NASA Astrophysics Data System (ADS)

    Hayward, Eva

    2007-12-01

    To "envision" animals is to visualize, to experience, to figure, to image, kinds of species, discourses, representations, institutions, histories, epistemologies; and, to "imagine possible" a set of material and ethical relationships between species. This dissertation explores the "envisioning of animals" that takes place through/across/between the interfaces of seawater/visuality/experience/biology/technology/phyla---as illustrated in the documentary works of Jean Painleve (scientist and filmmaker), Genevieve Hamon (filmmaker and set-designer), Leni Riefenstahl (filmmaker and photographer), and David Powell (scientist and aquarist). In each case, aesthetic conceptions of beauty and/or ambiguity coupled with biological epistemology and phenomenology of the organisms themselves compete over "what gets to count as culture and nature," and in doing so, construct a host of hybridized and enmeshed "encounters." In the process the following questions are raised: What is the role of the ocean---it's ecosystems and semiotics---in the production of "envisioning"? How are animals used---and in turn shape and reshape the users---to construct tropes of encounter? What theories can be used to understand the phenomenological, semiotic, material, and rhetorical use/miss-use of animals in the articulation of history, economy, biology, narrativity, and representation? How does this motley crew of documentarians answer differently "the animal question," and challenge and/or reinforce anthropocentrism? Divided into two parts, the dissertation first develops a set of methodological questions derived from critical appraisal of "envisioning," encountering, and embodying through science studies, as well as an account of the use and misuse of animals as only "stand ins" for human intentionality; secondly, the dissertation analyses the work of the documentarians in question. Jean Painleve and Genevieve Hamon are shown to critique traditions of representation in nature/science films, particularly through challenging anthropocentrism with a "toolkit" of surrealist strategies and a biological knowledge of octopuses. Soft and hard corals (anthrozoans) are shown to enact a "biosemiotics" or "zoosemiotics" that "presses against" Leni Riefenstahl's "fascist (and humanist) aesthetic," which desires to memorialize "beautiful and unpolluted" coral communities. "The Drifter's Gallery," the primary designer being David Powell, at the Monterey Bay Aquarium, is shown to install a promise of immediate and luminous experience of "jellyfish otherness," but delivers an account of jellyfish as historically situated "actors" with in biocapitalism. The work of these documentarians is particularly prescient, considering the growing international concern about coral bleaching, anthropogenic pollution, over-harvesting, and commercialization of the oceans' resources. As a form of "situated knowledge," this dissertation expands the boundaries of "who/what gets to count?" to encompass an ethical concern about systems of power that constitutively produce animal and human actors. If we are to be committed to understanding the encounters and formations of encounters between non-human animals and human animals, then projects that bridge---rather than divide---disciplines are necessary endeavors for more inhabitable futures; this project attempts such a bridge.

  2. TIDAL DISRUPTIONS OF WHITE DWARFS FROM ULTRA-CLOSE ENCOUNTERS WITH INTERMEDIATE-MASS SPINNING BLACK HOLES

    SciTech Connect

    Haas, Roland; Bode, Tanja; Laguna, Pablo; Shcherbakov, Roman V.

    2012-04-20

    We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a spinning, intermediate-mass black hole (IMBH). These encounters require a full general relativistic treatment of gravity. We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole (BH) spin. However, the late-time accretion onto the BH follows the same decay, M-dot {proportional_to} t{sup -5/3}, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and sustains Eddington luminosity for 1-3 yr after the disruption. For arbitrary BH spin orientations, the disrupted material is scattered away from the orbital plane by relativistic frame dragging, which often leads to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of gravitational radiation with characteristic frequencies of {approx}3.2 Hz and strain amplitudes of {approx}10{sup -18} for galactic IMBHs. The optimistic rate of considered ultra-close disruptions is consistent with no sources found in the ROSAT all-sky survey. Future missions like Wide-Field X-ray Telescope could observe dozens of events.

  3. Macroscopic Models of Radiative Transfer as Applied to Computation of the Radiation Field in the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Ripoll, J.-F.; Wray, A. A.

    2003-01-01

    In this paper a new three dimensional half-moment model for radiative transfer is presented for a gray medium. It describes the evolution of the zeroth and first directional half moments of the radiative intensity. The closure is provided, similarly to Dubroca and Klar, by the maximum entropy concept. This work generalizes that model to three dimensions. The model presented here (the derivation being done in Ripoll and Wray, called the M(sup 1/2)(sub 1) model, is a hyperbolic system consisting of a total of eight equations in three dimensions, four equations for each direction. Each half model has the classical form of a macroscopic moment model in which the pressure tensor is constructed from the well-known Eddington tensor with a particular Eddington factor. Moreover, different source and border terms occur. The latter introduce couplings between the macroscopic and microscopic quantities and between the + and - streams, through the intensity in the plane perpendicular to the flux. The main theoretical application of the half moment model, treated in this paper, is its reduction to a full moment model, called M(sup +)(sub 1), for the particular but important case of a hot, opaque source radiating in a cold transparent (or semi-transparent) medium for very specific applications, such as stellar interiors or atmospheres, or combustion problems. The structure of the paper is as follows. In section 2, the model M(sup 1/2)(sub 1) is presented. In section 3, for the particular case of a hot, opaque source radiating into a cold medium, the half moment model is reduced to the M(sup +)(sub 1) model. In section 4, we first solve a simple and academic problem to validate the models, followed by a simplified solar atmosphere.

  4. Why the near field radiation from a large distributed source is independent of position

    NASA Astrophysics Data System (ADS)

    Doty, Duane R.; Scudder, Henry J.; Gupta, Ravi R.; Saa, Carlos Y.

    2007-04-01

    Background radiation from terrestrial sources of uranium, thorium, and potassium complicate the counting of radiation from a weak source. Although radiation from a localized point source decreases as the inverse square of the distance from the source, moving a counter further from a concrete table or floor does not decrease the background. Measurements of the intensity of radiation versus height above a local surface were made and found not to vary with height. A simple model is proposed assuming a uniform volume distribution with self-absorption as a source. It is shown that most of the radiation comes from relatively close surroundings.

  5. Electric currents and fields induced in cells in the human brain by radiation from hand-held cellular telephones

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    2000-01-01

    After a review of recent work on the interaction of electromagnetic fields from cellular telephones with the human head, the structural and radiating properties of two common types of transceivers are determined. These include the impedance and current amplitude distribution of the antennas. The tangential electric field maintained by the antennas on the adjacent surface of the head is next determined. From this, the electric field propagating through the skull into the brain is analyzed and, from it, the electric field in spherical and long cylindrical cells is determined. It ranges from 27 to 13.5 V/m in the first 3 cm inside the skull. Of interest is the fact that the induced field in the interior of all cells, regardless of their shape, is the same as the incident field in the brain. It is hoped that biomedical scientists will review these results and determine possible biological effects.

  6. Fluence field modulated CT on a clinical TomoTherapy radiation therapy machine

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Purpose: The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging. Methods: A clinical TomoTherapy machine was programmed to deliver 30% imaging dose outside predefined VOIs. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received "full dose" while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at "full" and 30% dose. The noise (pixel standard deviation) was measured inside the VOI region and compared between the three scans. Results: The VOI-FFMCT technique produced an image noise 1.09, 1.05, 1.05, and 1.21 times higher than the "full dose" scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. Conclusions: Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the first time.

  7. Genomic predictors of patterns of progression in glioblastoma and possible influences on radiation field design

    PubMed Central

    Paulsson, Anna K.; Page, Brandi R.; Miller, Lance D.; Liu, Wennuan; Xu, Jianfeng; Hinson, William H.; Lesser, Glenn J.; Laxton, Adrian W.; Tatter, Stephen B.; Debinski, Waldemar; Chan, Michael D.

    2015-01-01

    We present a retrospective investigation of the role of genomics in the prediction of central versus marginal disease progression patterns for glioblastoma (GBM). Between August 2000 and May 2010, 41 patients with GBM and gene expression and methylation data available were treated with radiotherapy with or without concurrent temozolomide. Location of disease progression was categorized as within the high dose (60 Gy) or low dose (46 Gy) volume. Samples were grouped into previously described TCGA genomic groupings: Mesenchymal (m), classical (c), proneural (pn), and neural (n); and were also classified by MGMT-Methylation status and G-Cimp methylation phenotype. Genomic groupings and methylation status were investigated as a possible predictor of disease progression in the high dose region, progression in the low dose region, and time to progression. Based on TCGA category there was no difference in OS (p = 0.26), 60 Gy progression (PN: 71 %, N: 60 %, M: 89 %, C: 83 %, p = 0.19), 46 Gy progression (PN: 57 %, N: 40 %, M: 61 %, C: 50 %, p = 0.8) or time to progression (PN: 9 months, N:15 months, M: 9 months, C: 7 months, p = 0.58). MGMT methylation predicted for improved OS (median 25 vs. 13 months, p = 0.01), improved DFS (median 13 vs. 8 months, p = 0.007) and decreased 60 Gy (p = 0.003) and 46 Gy (p = 0.006) progression. There was a cohort of MGMT methylated patients with late marginal disease progression (4/22 patients, 18 %). TCGA groups demonstrated no difference in survival or progression patterns. MGMT methylation predicted for a statistically significant decrease in in-field and marginal disease progression. There was a cohort of MGMT methylated patients with late marginal progression. Validations of these findings would have implications that could affect radiation field size. PMID:26186902

  8. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  9. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    SciTech Connect

    Du, Weiliang; Gao, Song

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  10. Controlling the emission profile of an H2 discharge lamp to simulate interstellar radiation fields

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Paardekooper, D. M.; Chuang, K.-J.; Both, M. L.; Cruz-Diaz, G. A.; van Helden, J. H.; Linnartz, H.

    2015-12-01

    Context. Microwave discharge hydrogen-flow lamps have been used for more than half a century to simulate interstellar ultraviolet radiation fields in the laboratory. Recent discrepancies between identical measurements in different laboratories, as well as clear wavelength dependent results obtained in monochromatic (synchrotron) experiments, hint at a more elaborate dependence on the exact discharge settings than assumed so far. Aims: We have investigated systematically two lamp geometries in full dependence of a large number of different running conditions and the spectral emission patterns are characterized for the first time with fully calibrated absolute flux numbers. Methods: A sophisticated plasma lamp calibration set-up has been used to record the vacuum-ultraviolet emission spectra with a spectral resolution of 0.5 nm and bandwidth of 1.6 nm in the 116-220 nm region. Spectra are compared with the output of a calibrated D2-lamp which allows a derivation of absolute radiance values. Results: The general findings of over 200 individual measurements are presented, illustrating how the lamp emission pattern depends on i) microwave power; ii) gas and gas mixing ratios; iii) discharge lamp geometry; iv) cavity positioning; and v) gas pressure.

  11. Cosmological Radiative Transfer Codes Comparison Project I: The Static Density Field Tests

    E-print Network

    Ilian T. Iliev; Benedetta Ciardi; Marcelo A. Alvarez; Antonella Maselli; Andrea Ferrara; Nickolay Y. Gnedin; Garrelt Mellema; Taishi Nakamoto; Michael L. Norman; Alexei O. Razoumov; Erik-Jan Rijkhorst; Jelle Ritzerveld; Paul R. Shapiro; Hajime Susa; Masayuki Umemura; Daniel J. Whalen

    2006-03-08

    Radiative transfer simulations are now at the forefront of numerical astrophysics. They are becoming crucial for an increasing number of astrophysical and cosmological problems; at the same time their computational cost has come to the reach of currently available computational power. Further progress is retarded by the considerable number of different algorithms (including various flavours of ray-tracing and moment schemes) developed, which makes the selection of the most suitable technique for a given problem a non-trivial task. Assessing the validity ranges, accuracy and performances of these schemes is the main aim of this paper, for which we have compared 11 independent RT codes on 5 test problems: (0) basic physics, (1) isothermal H II region expansion and (2) H II region expansion with evolving temperature, (3) I-front trapping and shadowing by a dense clump, (4) multiple sources in a cosmological density field. The outputs of these tests have been compared and differences analyzed. The agreement between the various codes is satisfactory although not perfect. The main source of discrepancy appears to reside in the multi-frequency treatment approach, resulting in different thicknesses of the ionized-neutral transition regions and different temperature structure. The present results and tests represent the most complete benchmark available for the development of new codes and improvement of existing ones. To this aim all test inputs and outputs are made publicly available in digital form.

  12. Production of K-shell radiation using double gas puffs with stabilizing axial magnetic field

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Baksht, R. B.; Chaikovsky, S. A.

    2000-10-01

    Use of z-pinch implosions for producing K-shell radiation on the generators with a slow current rise rate requires large initial radii of the imploding shells. However, implosions of z-pinches with large initial radii are very unstable, and such loads could only be used if additional measures are taken to stabilize the implosions. This paper presents the results of 1D RMHD simulation of double gas puff implosion with stabilizing axial magnetic field. The simulations were carried out for the conditions of two different generators: IMRI-5 generator, peak current up to 0.5 MA, current rise time 500 ns, Ne gas puff; and GIT-12 generator, peak current up to 2.5 MA, current rise time 300 ns, Ar gas puff. The optimal load parameters with respect to K-shell yield were determined: masses and initial radii of the shells, mass ratio and radius ratio of inner and outer shells. The K-shell emission was shown to take place in the inner shell, which is compressed and heated by work of the ponderomotive forces.

  13. Reconstructing single-field inflationary actions from cosmic microwave background radiation data

    NASA Astrophysics Data System (ADS)

    Gauthier, Christopher S.; Akhoury, Ratindranath

    2008-07-01

    This paper describes a general program for deriving the action of single-field inflation models with non-standard kinetic energy terms using cosmic microwave background radiation power spectrum data. This method assumes that an action depends on a set of undetermined functions, each of which is a function of either the inflaton wavefunction or its time derivative. The scalar, tensor and non-Gaussianity of the curvature perturbation spectrum are used to derive a set of reconstruction equations whose solution set can specify up to three of the undetermined functions. The method is then used to find the undetermined functions in various types of action assuming power law type scalar and tensor spectra. In actions that contain only two unknown functions, the third reconstruction equation implies a consistency relation between the non-Gaussianity, sound speed and slow roll parameters. In particular we focus on reconstructing a generalized Dirac-Born-Infeld action with an unknown potential and warp factor. We find that for realistic scalar and tensor spectra, the reconstructed warp factor and potential are very similar to the theoretically derived result. Furthermore, physical consistency of the reconstructed warp factor and potential imposes strict constraints on the scalar and tensor spectral indices. This work was supported by the US Department of Energy.

  14. Study of Resistive Micromegas in a Mixed Neutron and Photon Radiation Field

    E-print Network

    Georgios Iakovidis; Theodoros Alexopoulos; Georgios Tsipolitis

    2011-11-14

    The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and testing of large-area muon detectors based on the bulk-Micromegas technology. These detectors are candidates for the upgrade of the ATLAS Muon System in view of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will combine trigger and precision measurement capability in a single device. A novel protection scheme using resistive strips above the readout electrode has been developed. The response and sparking properties of resistive Micromegas detectors were successfully tested in a mixed (neutron and gamma) high radiation field supplied by the Tandem accelerator, at the N.C.S.R. Demokritos in Athens. Monte-Carlo studies have been employed to study the effect of 5.5 MeV neutrons impinging on Micromegas detectors. The response of the Micromegas detectors on the photons originating from the inevitable neutron inelastic scattering on the surrounding materials of the experimental facility was also studied.

  15. Vacuum channeling radiation by relativistic electrons in a transverse field of a laser-based Bessel beam.

    PubMed

    Schächter, L; Kimura, W D

    2015-05-15

    Relativistic electrons counterpropagating through the center of a radially polarized J_{1} optical Bessel beam in vacuum will emit radiation in a manner analogous to the channeling radiation that occurs when charged particles traverse through a crystal lattice. However, since this interaction occurs in vacuum, problems with scattering of the electrons by the lattice atoms are eliminated. Contrary to inverse Compton scattering, the emitted frequency is also determined by the amplitude of the laser field, rather than only by its frequency. Adjusting the value of the laser field permits the tuning of the emitted frequency over orders of magnitude, from terahertz to soft X rays. High flux intensities are predicted (~100 MW/cm^{2}). Extended interaction lengths are feasible due to the diffraction-free properties of the Bessel beam and its radial field, which confines the electron trajectory within the center of the Bessel beam. PMID:26024179

  16. EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR

    SciTech Connect

    Brook, P. R.; Karastergiou, A.; Buchner, S.; Roberts, S. J.; Keith, M. J.; Johnston, S.; Shannon, R. M.

    2014-01-10

    Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inward and interact with a pulsar's magnetosphere, causing changes in torque and emission. Long-term monitoring of PSR J0738–4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from 2005 September. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing and radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.

  17. Angular distribution of binary encounter electrons

    SciTech Connect

    Liao, C.; Richard, P.; Grabbe, S.

    1993-05-01

    The double differential cross section, DDCS, of the binary encounter electrons (BEe) in 1 MeV/u F{sup q+} + H{sub 2} (q = 4, 6, 8, 9) is measured from 0 to 70 degrees with respect to the beam direction. At 0{degrees} the data confirm the decrease of the cross section with increasing projectile charge state. At larger observation angles, the data are in fair agreement with the prediction proposed by Shingal et al. where the ratio of the DDCS for 6+ ions to bare ions is less than 1 for {theta}{sub lab} > 30{degrees} and greater than 1 for {theta}{sub lab} < 30{degrees} as recently observed for C{sup q+}. We also observed that the energies of the BEe peak are charge state, q, independent at 0{degrees} observation angle, but q dependent at larger observation angles.

  18. Altered body image: managing social encounters.

    PubMed

    Price, B

    2000-04-01

    For terminally ill people who are still active within the community, altered body image can pose significant problems. Patients may have an obvious change in appearance or function, but be unsure how to present a positive image to others. Moreover, lay supporters are often equally unsure how to react to the changed appearance of the dying person. Changes in physical appearance and function associated with disease processes (and sometimes treatment) need to be integrated into the interaction that occurs between patients and lay carers. This is likely to be a difficult matter to facilitate, taxing the ingenuity of the palliative care nurse who hopes to assist the patient in this regard. This article uses a case study from the community-based palliative care setting to introduce steps that nurses and patients might consider as the patient sets out to manage such social encounters. PMID:11143644

  19. Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials

    E-print Network

    Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries

  20. Experimental determination of radiated internal wave power without pressure field data Frank M. Lee, M. S. Paoletti, Harry L. Swinney, and P. J. Morrison

    E-print Network

    Experimental determination of radiated internal wave power without pressure field data Frank M. Lee Articles you may be interested in Internal wave and boundary current generation by tidal flow over) Experimental determination of radiated internal wave power without pressure field data Frank M. Lee,1 M. S