Sample records for radiation graft polymerization

  1. Process for radiation grafting hydrogels onto organic polymeric substrates


    Ratner, Buddy D.; Hoffman, Allan S.


    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  2. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito


    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  3. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro; Sato, Nobuhiro; Matsuyama, Tomochika


    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through γ-ray-induced graft polymerization were investigated with 1H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of 1H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of γ-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  4. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi


    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  5. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    NASA Astrophysics Data System (ADS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin


    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  6. The use of radiation-induced graft polymerization for modification of polymer track membranes

    NASA Astrophysics Data System (ADS)

    Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.


    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted

  7. Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials.


    Pino-Ramos, Víctor H; Ramos-Ballesteros, Alejandro; López-Saucedo, Felipe; López-Barriguete, Jesús E; Varca, Gustavo H C; Bucio, Emilio


    Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the high-energy radiation exposition over the polymeric material. Thus, a microenvironment suitable for the reaction among monomer and/or polymer and the active sites is formed and then leading to propagation to form side-chain grafts. The modification of polymers using high-energy irradiation can be performed by the following methods: direct or simultaneous, pre-irradiation oxidative, and pre-irradiation. The most frequently used ones correspond to the pre-irradiation oxidative method as well as the direct one. Radiation-grafting has many advantages over other conventional methods because it does not require the use of catalyst nor additives to initiate the reaction and usually no changes on the mechanical properties with respect to the pristine polymeric matrix are observed. This chapter is focused on the synthesis of smart polymers and coatings obtained by the use of gamma radiation. In addition, the diverse applications of these materials in the biomedical area are also reported, with focus in drug delivery, sutures, and biosensors. PMID:27573505

  8. Grafting of N,N-dimethylaminoethyl methacrylate from PE/PP nonwoven fabric via radiation-induced RAFT polymerization and quaternization of the grafts

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Barsbay, Murat; Abad, Lucille; Güven, Olgun


    Radiation induced grafting method is one of the most promising grafting techniques and it works successfully together with the reversible addition fragmentation chain transfer (RAFT) polymerization, one of the most prominent controlled free-radical polymerization (CRP) methods. This study reports grafting of N,N-dimethylaminoethyl methacrylate (DMAEMA) from the surface of polyethylene/polypropylene nonwoven fabric (PE/PP NWF) by the combination of radiation-induced initiation and the RAFT polymerization technique. Effects of monomer concentration, absorbed dose and solvent choice on the grafting yield have been investigated. The grafted NWF's were characterized by ATR-FTIR, XPS, SEM, EDX and thermal analysis methods. The results indicated that surface properties were completely altered after grafting compared to pristine PE/PP even for those with very low degree of PDMAEMA grafting. Free homopolymers in solution have been analyzed by GPC in order to obtain information about the grafts. The PDMAEMA grafts on the fabric surfaces were later quaternized with dimethyl sulfate to yield positively charged surfaces that were tested for antibacterial properties.

  9. Radiation-induced graft polymerization of maleic acid and maleic anhydride onto ultra-fine powdered styrene butadiene rubber (UFSBR)

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Xia, Haibing; Zhai, Maolin; Li, Jiuqiang; Qiao, Jinliang; Wei, Genshuan


    The functionalization of ultra-fine powdered styrene-butadiene rubber (UFSBR) was carried out using gamma radiation-induced graft polymerization of maleic acid (MA) and maleic anhydride (MAH), respectively. It was found that the graft yield of MA onto UFSBR increased rapidly up to the peak and then decreased with increasing MA content. Moreover, the peak shifted to the direction of lower MA content with increasing absorbed dose. Similarly, there was the peak of graft yield with increasing MAH content for grafting of MAH onto UFSBR, whereas the peak of graft yield was achieved at 10 wt% MAH content at different absorbed doses. On the other hand, increasing absorbed dose and decreasing monomer contents are useful to improve the graft efficiency of MA and MAH. At high dose and low monomer content, the graft yield of MAH onto UFSBR is higher than that of MA. FTIR spectra confirmed that both MA and MAH can be grafted successfully onto the UFSBR under gamma irradiation, respectively. Comparing with maleation of rubber by melt grafting, the graft yield of MAH on UFSBR is higher, which can be attributed to the network structure and nanometer size of UFSBR as well as high energy provided by radiation.

  10. Molecular Design, Graft Polymerization and Performance Evaluation of Radiation Curable Flame Retardant Monomers Derived from Phosphorus-Nitrogen Systems

    NASA Astrophysics Data System (ADS)

    Edwards, Brian Tyndall

    The textile industry is constantly seeking new technologies to make its production more efficient, economical and environmentally friendly. An exciting new strategy to impart value-added functional finishes to textiles is the use of radiation, such as ultraviolet (UV) light, to drive the polymerization of monomers onto the surface of the substrates. These grafted polymeric layers provide the fiber or fabric with interesting new properties, such as antimicrobial behavior, water and oil repellency or flame retardancy. With the aid of a photoinitiator, UV curing can take place very rapidly and the process is waterless and uses less energy than traditional textile wet processing. With these thoughts in mind, this research explores the molecular design, synthesis, UV induced graft polymerization and performance evaluation of nine phosphorus-based flame retardant monomers for cellulosic cotton substrates. All monomers in this work were easily prepared using one-pot reactions procedures. With the assistance of Irgacure 819 photoinitiator, seven of the nine monomers were shown to simultaneously graft and polymerize onto the surface of cotton fabrics under UV radiation. JMPRTM Pro 10 software was used to explore the effect of variables, such as monomer concentration, photoinitiator concentration and UV exposure time, on the yield of the grafted polymeric layer. Burn testing of the treated fabrics in the vertical, 45° and horizontal orientations showed that all nine monomers were effective flame retardants that function via the condensed phase mechanism by encouraging the formation of nonflammable char. These burn test results were validated by thermogravimetric analysis, which demonstrated quantitatively that all nine monomers strongly promote the generation of a protective char. Finally, scanning electron microscopy was used to examine the surface morphology of the treated fabrics and visualize the grafted polymeric layer.

  11. Radiation-induced graft polymerization of chitosan onto poly(3-hydroxybutyrate).


    Torres, Maykel González; Muñoz, Susana Vargas; Rosales, Silvia G Solís; Carreón-Castro, Ma del Pilar; Muñoz, Rodrigo Alonso Esparza; González, Roberto Olayo; González, Miriam Rocío Estévez; Talavera, Rogelio Rodríguez


    Chitosan is among the most studied biopolymers and offers important advantages, such as biodegradability, biocompatibility and nontoxicity. In this study, this polysaccharide was grafted onto poly(3-hydroxybutyrate) using the simultaneous gamma-irradiation-initiated polymerization method. The polyester was immersed in diverse solvents, which allowed the preparation of graft copolymers with different yields and crystallinities. A successful synthesis and the estimation of the degree of crystallinity were verified by spectroscopic and calorimetric techniques. The most suitable method was found to be the thermoanalytical approach because it displayed a linear relationship between the degree of crystallinity and the increasing degree of grafting. The results also indicated that the lowest degree of grafting was seen for acetic acid (14.27%), while the highest degree corresponded to ethyl acetate (32.11%). The mechanism of grafting was proposed on the basis of the experimental results. PMID:26344305

  12. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill


    Ion-exchange membranes modified with the triethylamine [-N(CH 2CH 3) 3] and phosphoric acid (-PO 3 H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K +, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60°C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO 3 H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis.

  13. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Wang, Mozhen; Ge, Xuewu


    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 °C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by γ-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer ( GPU/monomer) was calculated from 1H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. GPU/monomer varied as GPU/styrene(37%)> GPU/butyl acrylate (BA)(21%)> GPU/methyl methacrylate (MMA)(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  14. Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via γ-radiation-induced graft polymerization.


    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Pang, Lijuan; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong


    A new kind of non-fluorine-based organic-inorganic hybrid superhydrophobic cotton fabric was successfully prepared by simultaneous radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxy silane (MAPS) and subsequent end-capping modification with hexamethyldisilazane (HMDS). The chemical structure and surface topography of the pristine and modified cotton fabrics were investigated in detail by ATR-FTIR, XPS, (29)Si NMR, SEM and TGA to confirm that the graft reaction and end-capping modification had taken place. The above results demonstrated that the grafting polymerization and following end-capping reaction were completed, and a grafting layer was immobilized onto the surface of the cotton fabric. Surface wettability measurement and oil-water separation showed that the modified cotton surface not only exhibited the superhydrophobicity with a water contact angle of 165°, but also afforded a high efficiency of oil-water separation (96%). In particular, this modified cotton fabric retains superhydrophobicity even after 30 laundering cycles or 400 cycles of abrasion. PMID:27261755

  15. Direct pyrolysis mass spectrometry of acrylonitrile-cellulose graft copolymer prepared by radiation-induced graft polymerization in presence of styrene as homopolymer suppressor

    NASA Astrophysics Data System (ADS)

    Badawy, Sayed M.; Dessouki, Ahmad M.; Nizam El-Din, Horia M.


    Graft polymerization of acrylonitrile onto cellulosic filter paper competing with the homopolymerization by mutual irradiation technique was studied in the presence of homopolymer suppressors. Addition of FeCl 3 decreased both homopolymerization and graft polymerization, whereas inclusion of a low ratio of styrene monomer with acrylonitrile leads to successful grafting of acrylonitrile with little homopolymer formation. Chemical structure and thermal behavior of the produced graft copolymers were investigated by gradual heating in the solid probe of a mass spectrometer equipped with a GCMS data system. The resulting total ion current (TIC) showed that the degradation of graft copolymers follows two-step pyrolysis. The presence of a low ratio of styrene comonomer increased thermal stability of the prepared acrylonitrile-cellulose graft copolymer. The pyrolysis products have mass spectra characteristic of the copolymer composition; they contain the repeating unit of the oligomers. Total ion current and spectrum subtractions were used to separate and measure spectra of graft copolymers at distinctly different temperatures.

  16. Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization

    SciTech Connect

    Tsuneda, Satoshi; Saito, Kyoichi; Misuhara, Hisashi; Sugo, Takanobu


    Ion-exchange membranes have been used to concentrate seawater to produce salt as well as to desalinate brackish water to render it potable. Also, the interest in applications of ion-exchange membranes as separators for electrodialytic desalination of bioproducts and separators in hydrogen-oxygen fuel cells has been growing. Novel ion-exchange membranes containing sulfonic acid (SO{sub 3}H) and trimethyl ammonium [N(CH{sub 3}){sub 3}] groups were prepared by a simple method of radiation-induced cografting of sodium styrene sulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 {micro}m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, receptively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 M NaCl solution were 0.25 and 0.85 {Omega} cm{sup 2}, respectively. From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 M NaCl solutions was reduced to 85% comparing with that of the commercial ion-exchange membranes.

  17. Radiation grafting of styrene and acrylonitrile to cellulose and polyethylene

    NASA Astrophysics Data System (ADS)

    Hassanpour, S.


    Radiation induced graft polymerization is one of the best methods for obtaining material with new properties. In this work, radiation grafting of styrene, mixture of styrene and acrylonitrile to cellulose and polyethylene in the presence of methanol as a solvent by mutual method is discussed. At a low dose rate, high grafting yields were obtained from the two systems used, due to lesser termination of free radicals with the polymer growing radicals and recombination of primary radicals, resulting in a longer chain length of the grafted copolymer. In the system of styrene and acrylonitrile, comonomer technique was used and the styrene controlled the homopolymer formation during graft polymerization. Water uptake of cellulose decreased by increasing the grafting yields. Grafted cellulose can be molded to some extent and in a high percent of grafting, a new transparent material was obtained. By radiation grafting of styrene-acrylonitrile to low density polyethylene a high degree of crosslinking was observed.

  18. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    NASA Astrophysics Data System (ADS)

    Grasselli, M.; Betz, N.


    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  19. Radiation graft modification of EPDM rubber

    NASA Astrophysics Data System (ADS)

    Katbab, A. A.; Burford, R. P.; Garnett, J. L.

    N-Vinyl pyrrolidone (NVP), 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) have been grafted to the surface of rubber vulcanizates based on ethylene-propylene-terpolymer (EPDM) using the simultaneous radiation method to alter surface properties such as wettability and therefore biocompatibility. The effect of monomer concentration, solvent and EPDM structural factors on the grafting behavior have been investigated. The inhibitory effect upon homopolymerization of various salts has also been evaluated for the three monomers. NVP and HEMA could be grafted onto EPDM rubber in the presence of aqueous solutions of cupric nitrate at 0.005 M and 1.0 M concentrations respectively. Aqueous solutions of Mohr's salt (ammonium ferrous sulphate) at 0.05 M not only suppressed the homopolymerization of AAm but also increased grafting yield. The percentage grafting also increased with increasing AAm concentration. A mechanism has been proposed to explain the behaviour of these monomers. The inclusion of multifunctional acrylates in additive amounts (1.0 vol%) enhanced the graft degree. Modified samples were able to be efficiently stained, allowing the depth of the graft copolymerization to be determined by light microscopy. Water was found to have an accelerating effect on the polymerization of these monomers, but methanol prevented their polymerization completely. The effect of EPDM structural factors upon degree of grafting was found to vary, depending upon the monomer type.

  20. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.


    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  1. Antibacterial cellulose fiber via RAFT surface graft polymerization.


    Roy, Debashish; Knapp, Jeremy S; Guthrie, James T; Perrier, Sébastien


    2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from cellulosic filter paper via reversible addition-fragmentation chain transfer (RAFT) polymerization. The tertiary amino groups of the grafted PDMAEMA chains were subsequently quaternized with alkyl bromides of different chain lengths (C8-C16) to provide a large concentration of quaternary ammonium groups on the cellulose surface. The antibacterial activity of the quaternized and nonquaternized PDMAEMA-grafted cellulosic fibers was tested against Escherichia coli. The antibacterial activity was found to depend on the alkyl chain length and on the degree of quaternization, i.e., the amount of quaternary amino groups present in the cellulose graft copolymers. The PDMAEMA-grafted cellulose fiber with the highest degree of quaternization and quaternized with the shortest alkyl chains was found to exhibit particularly high activity against E. coli. PMID:18067264

  2. Supramolecular Polymerization from Polypeptide-Grafted Comb Polymers

    SciTech Connect

    Wang, Jing; Lu, Hua; Kamat, Ranjan K; Pingali, Sai Venkatesh; Urban, Volker S; Cheng, Jianjun; Lin, Yao


    The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be 'polymerized' into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.

  3. Ethylene vinyl acetate based radiation grafted hydrophilic matrices: Process parameter standardization, grafting kinetics and characterization

    NASA Astrophysics Data System (ADS)

    Chaudhari, C. V.; Mondal, R. K.; Dubey, K. A.; Grover, V.; Panicker, L.; Bhardwaj, Y. K.; Varshney, L.


    A transparent, elastomeric, grafted matrix for several potential applications was synthesized by single-step simultaneous radiation grafting of methacrylic acid onto ethylene vinyl acetate (EVA). CuSO4 was found to be the most suitable homo-polymerization inhibitor among different inhibitors tried. The grafting kinetics was found to be a strong function of dose rate (D) and monomer content (M) and an equation relating grafting rate Rg=Kg [M]1.13D0.23 was deduced. Crystallinity of the grafted matrices as assessed from XRD and DSC measurements indicated decrease in crystalline content with increase in grafting yield, suggesting crystalline domain of EVA get disrupted on grafting. Elastic modulus increased linearly with the increase in grafting yield, though elongation at break decreased precipitously from 900% to 30% at even ~9% grafting. Thermo-gravimetric analysis showed three step weight loss of the grafted EVA matrix. The grafting of MAA resulted in increase in surface energy mainly due to enhanced polar component.

  4. Preparation of cassava starch grafted with polystyrene by suspension polymerization.


    Kaewtatip, Kaewta; Tanrattanakul, Varaporn


    Cassava starch grafted with polystyrene (PS-g-starch) copolymer was synthesized via free-radical polymerization of styrene by using suspension polymerization technique. Potassium persulfate (PPS) was used as an initiator and water was used as a medium. The graft copolymer was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. The sub-micron spherical beads of PS were observed on the surface of starch granules. SEM micrographs showed porous patches of PS adhering on the starch granules after Soxhlet extraction. FTIR spectra also indicated the presence of PS-g-starch copolymer. XRD analysis exhibited insignificant changes in crystalline structure and degree of crystallinity. The effects of starch:styrene weight ratio, amount of PPS, reaction time and reaction temperature on the percentage of grafting - G (%), were investigated. G (%) increased with increasing starch content. Other variables showed their own individual optimal values. The optimum condition yielding 31.47% of G (%) was derived when the component ratio was 1:3 and reaction temperature and time were 50°C and 2h, respectively. Graft copolymerization did not change granular shape and crystallinity of starch. This study demonstrated the capability of polymerization of styrene monomer on the granular starch without emulsifier and the synthesis of graft copolymer without gelatinization of starch. PMID:26048231

  5. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  6. Impact of solvent selection on graft polymerization of acrylamide onto starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact on polymer properties [molecular weight, monomer conversion, graft content, graft efficiency and anhydroglucose units between grafts (AGU/graft)] that result from changing the solvent for the graft co-polymerization of acrylamide onto starch from water to dimethylsulfoxide (DMSO) was eval...

  7. Durable Nanolayer Graft Polymerization of Functional Finishes Using Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Mazloumpour, Maryam

    Various applications of atmospheric pressure plasma were investigated in conjunction with different chemistries on nonwoven materials including spunbond polyester (PET) and spunbod polypropylene for fuel separation and antimicrobial functionalities. Hydrophobic/Oleophobic properties were conferred on nonwoven polyester (PET) via plasma-induced graft polymerization of different hydrophobic non-C8 perfluorocarbon chemistry including perfluorohexylethylmethacrylate, perfluorohexylethylacrylate, allylpentafluorobenzene, pentafluorostyrene, or 1,3-divinyltetramethyldisiloxane in the vapor form using both in-situ and down-stream plasma configurations. Different nanolayers of the grafted polymer were furnished on nonwovens to generate surfaces with different level of wettabilities for medical applications and water/fuel separation. The effect of various hydrophobic chemistry, different plasma conditions, and plasma device parameters including plasma power and plasma exposure time were studied and the performance was characterized by measuring the contact angle and the wettability rating against liquids with broad range of surface tensions. Vapor deposition of 2-(perfluorohexyl)ethyl methacrylate and pentafluorostyrene on nonwoven PET followed by plasma-induced graft polymerization was investigated for possible use in water/fuel separation. Different nanolayer thicknesses (80-180nm) of the grafted polymer were achieved to generate surfaces with different wettabilities for water/fuel separation of different fuel compositions. The effect of different plasma conditions and device parameters including the flow rate of monomers, power of the device, and time of plasma exposure on the separation of different fuels was studied and characterized by measuring the surface energy of the treated substrates. The surface chemistry and morphology of the treated samples were characterized using XPS, SEM and TOF-SIMS techniques which confirmed the grafting of monomer onto the substrate

  8. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko


    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields.

  9. Grafting of thermo-sensitive N-vinylcaprolactam onto silicone rubber through the direct radiation method

    NASA Astrophysics Data System (ADS)

    Valencia-Mora, Ricardo A.; Zavala-Lagunes, Edgar; Bucio, Emilio


    The modification of silicone rubber films (SR) was performed by radiation-induced graft polymerization of thermosensitive poly(N-vinylcaprolactam) (PNVCL) using gamma rays from a Co-60 source. The graft polymerization was obtained by a direct radiation method with doses from 5 to 70 kGy, at monomer concentrations between 5% and 70% in toluene. Grafting was confirmed by infrared, differential scanning calorimetry, thermogravimetric analysis, and swelling studies. The lower critical solution temperature (LCST) of the grafted SR was measured by swelling and differential scanning calorimetry.

  10. Preparation of a Proton-Exchange Me mbrane with -SO3H Group Based on Polyethylene and Poly(vinylidene fluoride) Film by Radiation-Induced Graft Polymerization for Proton-Exchange Fuel Cell.


    Kim, Sang-Kyum; Lee, Yong-Sang; Koo, Kee-Kahb; Kim, Sang-Ho; Choi, Seong-Ho


    This paper reports the preparation of a proton-exchange membrane (PEM) with sulfonic acid (-SO3H) groups based on polyethylene (PE) films and poly(vinylidene fluoride) (PVdF) films by the radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents, such as acrylic acid and pyrollidone in a methanol solution. A PEM with -SO3H based on PE and PVdF films were confirmed by ATR, XPS and contact angle measurements. The water uptake (%), graft yield (%), ion-exchange content (mmol/g), and proton conductivity (S/cm), as well as the current density (mA/cm2), and power density (mW/cm) for PEM with -SO3H groups prepared by RIGP were evaluated. The PEM prepared with the -SO3H groups based on PE and PVdF films can be used as a proton-exchange fuel cell membrane. PMID:26716266

  11. Radiation-hardened polymeric films


    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.


    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  12. Radiation-hardened polymeric films


    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.


    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  13. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    SciTech Connect

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi


    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  14. Polymer brush gradients grafted from plasma-polymerized surfaces.


    Coad, Bryan R; Bilgic, Tugba; Klok, Harm-Anton


    A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized. After surface-initiated atom transfer radical polymerization (SI-ATRP), poly(2-hydroxyethyl methacrylate) (PHEMA) chains were grafted from the surface and the measured thickness profiles provided direct evidence for how surface crowding provides an entropic driving force resulting in chain extension away from the surface. Film thicknesses were found to increase with the position along the gradient surface, reflecting the gradual transition from collapsed to more extended surface-tethered polymer chains as the grafting density increased. The method described is novel in that the approach provides covalent linkages from the polymer coating to the substrate and is not limited to a particular surface chemistry of the starting material. PMID:24967529

  15. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio


    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  16. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.


    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  17. Radiation grafting on natural films

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.


    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  18. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.


    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  19. Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide.


    Ghosh, Sandipta; Sen, Gautam; Jha, U; Pal, Sagar


    Novel biodegradable polymeric flocculants were produced by conventional redox grafting, microwave-initiated and microwave-assisted grafting of acrylamide to tamarind kernel polysaccharide (TKP). The graft copolymers were characterized by viscometry, elemental analysis, molecular weight determination using SLS analysis, and NMR spectroscopy. The flocculation efficiency of the grafting products in kaolin suspension, municipal sewage wastewater and textile industry wastewater was primarily dependent on the length of the grafted polyacrylamide chain. The flocculant obtained by microwave-assisted grafting method was superior to TKP and polyacrylamide-based commercial flocculant (Rishfloc 226 LV) in flocculation tests. PMID:20702087

  20. Light-induced surface graft polymerizations initiated by an anthraquinone dye on cotton fibers.


    Zhuo, Jingyuan; Sun, Gang


    Anthraquinone and its derivatives could serve as photo-sensitizers and generate radicals and reactive oxygen species in polymers under exposure of UVA or day light. Such a property was utilized in development of novel light-induced surface radical graft polymerizations on cotton fibers that were dyed with an anthraquinone derivative, 2-ethylanthraquinone. Several functional monomers were directly grafted onto the dyed cotton fibers upon UVA exposure. The chemical and morphological structures and thermal properties of the grafted fibers were confirmed and characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA). Reaction conditions including concentrations of the photosensitizer, the amount of monomers, as well as UVA irradiation time could influence grafting efficiencies. More interestingly, the surface graft polymerization did not significantly change the light active functions of the agent, evidenced by the light-active antimicrobial functions of the grafted fibers. PMID:25129730

  1. Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles.


    Wang, Huijun; Peng, Mao; Zheng, Jun; Li, Peng


    This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by 'grafting from' polymerization initiated by a redox system comprising ceric ion (Ce(4+)) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by 'grafting from' polymerization initiated by the redox reaction of Ce(4+) with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process. PMID:18684468

  2. Radiation-induced graft polymermization of acrylamide onto poly(tetrafluoroethylene/ Hexaflouropropylene/vinylidene fluoride) (TFB) films

    NASA Astrophysics Data System (ADS)

    Dessouki, A. M.; Taher, N. H.; El-Boohy, H. A.

    Radiation-induced graft polymerization of acrylamide (AAm) onto poly(tetrafluoroethylene/ hexafluoropropylene/vinylidene fluoride) (TFB) films has been investigated. The appropriate reaction conditions at which the graft polymerization was carried out successfully were selected. It was observed that the grafting process was enhanced remarkably by using distilled water as diluent. In this grafting system ammonium ferrous sulphate (Mohr's salt) was used as inhibitor to minimize the homopolymerization of AAm and the suitable concentration of such inhibitor was found to be 3.5wt%. The dependence of the grafting rate on the monomer concentration was calculated to be 2.8 order. Some properties of the grafted films such as water uptake, electrical conductivity, mechanical properties and chemical and thermal stability were investigated. An improvement in these properties was observed which makes possible the use of these membranes in some practical applications.

  3. 3D-Printed Biodegradable Polymeric Vascular Grafts.


    Melchiorri, Anthony J; Hibino, Narutoshi; Best, C A; Yi, T; Lee, Y U; Kraynak, C A; Kimerer, Lucas K; Krieger, A; Kim, P; Breuer, Christopher K; Fisher, John P


    Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth. PMID:26627057

  4. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.


    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao


    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure. PMID:20644821

  5. Comparison of surface modifications of poly(ether urethanes) by chemical infusion and graft polymerization

    SciTech Connect

    Wrobleski, D.A.; Cash, D.L.; Hermes, R.E.


    Our approach to surface modification uses the chemical infusion process to introduce materials into the outermost layer of the polymeric material, thereby altering the surface without changing the bulk properties of the polymer. The infused materials may slowly diffuse out of the infusion layer if they are volatile or highly mobile. However, if polymeric infusant materials are employed, they may become chain entangled with the host polymer and result in a permanently modified surface. A second approach utilizes photo-initiated graft polymerization of poly(ether urethanes) with an appropriate monomer. We have explored both of these methods by examining the infusion of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) (PEG) into commercially available poly(ether urethanes) and the graft polymerization of N-vinyl pyrrolidone onto poly(ether urethanes). Results are presented here. 7 refs., 1 tab.

  6. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation. [Uv and electron beams

    SciTech Connect

    Garnett, J.L.; Major, G.


    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables.

  7. Radiation grafting of N,N‧-dimethylacrylamide and 2-hydroxyethylmethacrylate onto polypropylene films by one step method

    NASA Astrophysics Data System (ADS)

    Morales-Wiemer, E. A.; Macossay, J.; Bucio, E.


    The work presented herein reports on polypropylene films grafted with N,N'-dimethylacrylamide and 2-hydroxyethylmethacrylate. The grafted films were obtained by an oxidative pre-irradiation method in one step using a gamma source of 60Co. The optimal conditions such as reaction time, monomer concentrations and radiation doses were investigated. Characterization of the grafted polymers was carried out through FTIR-ATR, TGA, DSC, and swelling. Grafts onto polymeric films between 10 and 850% were obtained at doses from 20 to 150 kGy and a dose rate of 8.3 kGy/h.

  8. Immobilization of peroxidase on SPEU film via radiation grafting

    NASA Astrophysics Data System (ADS)

    Hongfei, Ha; Guanghui, Wang; Jilan, Wu

    The acrylic acid or acrylamide were grafted via radiation onto segmented polyetherurethane (SPEU) film which is a kind of biocompatible material. Then the Horse radish peroxidase was immobilized on the grafted SPEU film through chemical binding. Some quantitative relationships between the percent graft and the activity, amount of immobilized enzyme were given. The properties and application of obtained biomaterial was studied as well.

  9. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    NASA Astrophysics Data System (ADS)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  10. Modification of polymeric substrates using surface-grafted nanoscaffolds

    NASA Astrophysics Data System (ADS)

    Thompson, Kimberlee Fay

    Surface grafting and modification of poly(acrylic acid) (PAA) were performed on nylon 6,6 carpet fibers to achieve permanent stain and soil resistance. PAA was grafted to nylon and modified with 1H, 1H-pentadecafluorooctyl amine (PDFOA) using an amidation agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). The first goal was to optimize acrylamide modification of PAA in solution. Aqueous reactions with taurine, hydroxyethyl amine, and butyl amine progressed ˜100%, while PDFOA reactions in MeOH progressed ˜80%. Reaction products precipitated at 77% butyl or 52% PDFOA acrylamide contents. The second goal was to optimize the PAA grafting process. First, PAA was adsorbed onto nylon 6,6 films. Next, DMTMM initiated grafting of adsorbed PAA. PAA surface coverage was ˜78%, determined by contact angle analysis of the top 0.1--1 nm and x-ray photoelectron spectroscopy (XPS) analysis of the top 3--10 nm. The third goal was to modify PAA grafted nylon films with butyl amine and PDFOA. Randomly methylated beta-cyclodextrin (RAMEB) solubilized PDFOA in water. Contact angle detected ˜100% surface reaction for each amine, while XPS detected ˜77% butyl amine (H2O) and ˜50% for PDFOA (MeOH or H2O pH = 7) reactions. In H2O pH = 12, the PDFOA reaction progressed ˜89%, perhaps due to greater efficiency, access and solubility. The fourth goal was to perform surface depth profiling via angle-resolved XPS analysis (ARXPS). The PAA surface coverage from contact angle and XPS was confirmed. Further, adsorbed PAA was thicker than grafted PAA, supporting the theory that PAA adsorption occurs in thick layers onto nylon followed by DMTMM-activated spreading and grafting of thinner PAA layers across the surface. The PDFOA reaction in McOH produced a highly fluorinated but thin exterior and an unreacted PAA interior. The PDFOA reaction in H 2O pH = 12 produced a completely fluorinated exterior and highly fluorinated interior. Thus surface modification levels

  11. The effects of early postoperative radiation on vascularized bone grafts

    SciTech Connect

    Evans, H.B.; Brown, S.; Hurst, L.N. )


    The effects of early postoperative radiation were assessed in free nonvascularized and free vascularized rib grafts in the canine model. The mandibles of one-half of the dogs were exposed to a cobalt 60 radiation dose of 4080 cGy over a 4-week period, starting 2 weeks postoperatively. The patency of vascularized grafts was confirmed with bone scintigraphy. Histological studies, including ultraviolet microscopy with trifluorochrome labeling, and histomorphometric analyses were performed. Osteocytes persist within the cortex of the vascularized nonradiated grafts to a much greater extent than in nonvascularized, nonradiated grafts. Cortical osteocytes do not persist in either vascularized or nonvascularized grafts subjected to radiation. New bone formation is significantly retarded in radiated grafts compared with nonradiated grafts. Periosteum and endosteum remained viable in the radiated vascularized grafts, producing both bone union and increased bone turnover, neither of which were evident to any significant extent in nonvascularized grafts. Bone union was achieved in vascularized and non-vascularized nonradiated bone. In the radiated group of dogs, union was only seen in the vascularized bone grafts.

  12. Radiation grafting of styrene on starch with high efficiency

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Akhavan, A.; Ataeivarjovi, E.


    Wheat starch grafted with polystyrene (PS-g-starch) was synthesized via polymerization grafting of styrene on starch by gamma-ray. The effects of starch/styrene weight ratio, and amount of applied doses (5-40 kGy) on the percentage of grafting, G (%), were investigated. The results showed that G (%) increased with increasing starch content. The optimum condition, starch/styrene weight ratio 1/3 and the applied dose 10 kGy, led to 252.9% of grafting. The obtained graft copolymer was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, and scanning electron microscopy. FTIR spectroscopy as well as the XRD analysis exhibited the changes in chemical and crystalline structure of starch after grafting reaction. TGA demonstrated the changes in thermal stability of PS-g-starch copolymer. SEM micrographs indicated porous patches of PS adhering on the starch.

  13. Membrane surface modification via polymer grafting and interfacial polymerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane separation is an important technology for separating food ingredients and fractionating high-value substances from food processing by-products. Long-term uses of polymeric membranes in food protein processing are impeded by formation of fouled layers on the membrane surface. Surface modif...

  14. Preparation and Characterization of Polymeric Surfactants Based on Epoxidized Soybean Oil Grafted Hydroxyethyl Cellulose.


    Huang, Xujuan; Liu, He; Shang, Shibin; Rao, Xiaoping; Song, Jie


    Epoxidized soybean oil (ESO) grafted hydroxyethyl cellulose (HEC) was prepared via ring-opening polymerization, in which the hydroxyl groups of HEC acted as initiators and the polymeric ESO were covalently bonded to the HEC. Hydrolysis of ESO-grafted HEC (ESO-HEC) was performed with sodium hydroxide, and the hydrolyzed ESO-HEC (H-ESO-HEC) products were characterized via Fourier transform infrared (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies, high-temperature gel permeation chromatography (HT-GPC), and differential scanning calorimetry (DSC). The results indicated that ring-opening polymerization of ESO occurred with the hydroxyl groups of HEC as initiators. The molecular weights of the H-ESO-HEC products were varied by adjusting the mass ratio of HEC and ESO. Through neutralizing the carboxylic acid of H-ESO-HEC with sodium hydroxide, novel polymeric surfactants (H-ESO-HEC-Na) were obtained, and the effects of polymeric surfactants on the surface tension of water were investigated as a function of concentration of H-ESO-HEC-Na. The H-ESO-HEC-Na was effective at lowering the surface tension of water to 26.33 mN/m, and the critical micelle concentration (CMC) value decreased from 1.053 to 0.157 g/L with increases in molecular weights of the polymeric surfactants. Rheological measurements indicated that the H-ESO-HEC-Na solutions changed from pseudoplastic property to Newtonian with increasing shear rate. PMID:26416659

  15. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun


    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  16. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization.


    Liu, Xiaohuan; Xu, Yuzhi; Yu, Juan; Li, Shouhai; Wang, Jifu; Wang, Chunpeng; Chu, Fuxiang


    Three kinds of acrylic monomers (2,2,3,4,4,4-hexafluorobutyl methacrylate (HFBMA), methyl methacrylate (MMA) and butyl acrylate (BA)) were utilized to modify the lignin (BBL) by "grafting from" free radical polymerization (FRP), respectively. Calcium chloride/hydrogen peroxide (CaCl2/H2O2) was used as initiator. Effects of monomer type and concentration, initiator concentration and polymerization time on grafting from BBL were studied. Grafting of poly (acrylic monomers) onto BBL was verified by the following characterizations and this synthesis method was found to be high efficient and selective for grafting polymerization of BBL. The presence of the BBL moiety in the backbone also resulted in higher glass transition temperature compared with the homopolymer of each monomer, and some modified copolymers also improved its thermal stability. All modifications made BBL more hydrophobic and the static contact angles of these modified copolymers were above 80°. XPS analysis revealed that the surface of these modified BBL copolymers were dominated by acrylate monomer moiety. Additionally, the BBL-g-PBA copolymers can be used as dispersion modifiers in PLA-based materials to enhance UV absorption. PMID:24742785

  17. Enhanced Polymer Grafting from Multiwalled Carbon Nanotubes through Living Anionic Surface-Initiated Polymerization.

    SciTech Connect

    Sakellariou, Georgios; Ji, Haining; Mays, Jimmy; Baskaran, Durairaj


    Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1 -phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 C. Surface-functionalized MWNTs-g-(BCB-EO)n and MWNTs-g-(BCB-PE)n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO)n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE)n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO)n and MWNTs-g-(BCB-PS)n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites

  18. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.


    Goda, Tatsuro; Konno, Tomohiro; Takai, Madoka; Moro, Toru; Ishihara, Kazuhiko


    The biomimetic synthetic phospholipid polymer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has improved the surface property of biomaterials. Both hydrophilic and anti-biofouling surfaces were prepared on polydimethylsiloxane (PDMS) with MPC grafted by surface-initiated photo-induced radical polymerization. Benzophenone was used as the photoinitiator. The quantity of the adsorbed initiator on PDMS was determined by UV absorption and ellipsometry. The poly(MPC)-grafted PDMS surfaces were characterized by XPS, ATR-FTIR and static water contact angle (SCA) measurements. The SCA on PDMS decreased from 115 degrees to 25 degrees after the poly(MPC) grafting. The in vitro single protein adsorption on the poly(MPC)-grafted PDMS decreased 50-75% compared to the unmodified PDMS. The surface friction of the poly(MPC)-grafted PDMS was lower than the unmodified PDMS under wet conditions. The oxygen permeability of the poly(MPC)-grafted PDMS was as high as the unmodified PDMS. The tensile property of PDMS was maintained at about 90% of the ultimate stress and strain after the poly(MPC) grafting. The surface-modified PDMS is expected to be a novel medical elastomer which possesses an excellent surface hydrophilicity, anti-biofouling property, oxygen permeability and tensile property. PMID:16797692

  19. Insolubilisation of biologically active materials with novel radiation graft copolymers

    NASA Astrophysics Data System (ADS)

    Garnett, J. L.; Jankiewicz, S. V.; Levot, R.; Sangster, D. F.

    The use of radiation grafting to immobilise a typical enzyme, trypsin, is reported. The technique involves radiation grafting to a backbone polymer a monomer containing an appropriate functional group to which the enzyme is bonded. In the present work, p-nitrostyrene has been grafted to representative trunk polymers, polypropylene and PVC, the nitro group in the resulting copolymer converted to the isothiocyanato derivative to which trypsin is attached. Of importance to this insolubilisation process, especially for radiation sensitive backbone polymers, is the inclusion of additives which enhance grafting. A new class of additives which increase the grafting yields is reported using as representative backbone polymers, naturally occurring cellulose and synthetic low density polyethylene. The new additives are specific metal salts such as LiClO 4. The reactivity of these salts in grafting enhancement has been compared with that of mineral acid which has previously been used as an additive to increase grafting yields in both preirradiation and simultaneous techniques. A new model for grafting enhancement in the presence of the metal salts as well as acids is proposed whereby increased grafting yields are attributed to increased partitioning of monomer into the graft region in the presence of ionic solutes. The value of these additives in preparing copolymers suitable for general reagent insolubilisation reactions is discussed.

  20. Radiation initiated grafting onto fluoro polymers for membrane preparation

    NASA Astrophysics Data System (ADS)

    El-Assy, N. B.; Dessouki, A. M.

    The radiation initiating grafting of acrylamide (AAm) onto poly(tetrafluoroethylene/ hexafluoropropylene/vinylidene fluoride), TFB, films using the post-radiation grafting technique has been investigated. The factors affecting the grafting process such as radiation dose, dose rate, monomer concentration and temperature on the grafting yield were studied. It was found that the grafting yield is strongly dependent on the dose but independent on the dose rate. The dependence of the grafting rate on monomer concentration was found to be of 1.44 order. The results showed a steady increase of the initial grafting rate with temperature, whereas the final grafting yield passes a maximum around 45°C. The Arrhenius plot reveals two straight lines with different slope intersecting around 35°C. The overall activation energy for this grafting system was calculated and found to be 16.5 and 32.4 kcal/mol above and below 35°C, respectively. This behaviour is presumably correlated to a glass transition of the trunk polymer arising from amorphous material under restraint by crystallites. Some properties of the grafted films such a specific electric resistance, water uptake, mechanical properties and chemical and thermal stability were investigated. An improvement in these properties was observed which makes possible the use of these membranes in some practical applications.

  1. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    NASA Astrophysics Data System (ADS)

    Einig, A.; Rumeau, P.; Desrousseaux, S.; Magga, Y.; Bai, J. B.


    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  2. Surface Grafting via Photo-Induced Copper-Mediated Radical Polymerization at Extremely Low Catalyst Concentrations.


    Laun, Joachim; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, Vanessa; Welle, Alexander; Barner-Kowollik, Christopher; Rodriguez-Emmenegger, Cesar; Junkers, Thomas


    Surface-initiated photo-induced copper-mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re-initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h. PMID:26149622

  3. Radiation grafting — state-of-the-art

    NASA Astrophysics Data System (ADS)

    Stannett, Vivian T.

    Radiation grafting is now a process more than 35 years old. In spite of an enermous amount of ingenious research, it has still not led to any large scale commercial exploitation. The same could be said, however, about the various chemical methods of graft copolymerization. Hopeful signs are beginning to appear and some of these possibilities will be discussed. The successful development of new applications of graft copolymers will be the clue to how the whole field develops. Three standard methods of grafting were developed early in the field and are still the main techniques available. These are the mutual (simulataneous), the preirradiation (consecutive), and the peroxide methods. The present status of each and the more modern developments and variations will be discussed in some detail. Although the kinetics of graft copolymerization point towards the lower dose rate gamma radiation sources, there are interesting possibilities with the use of electron beam processing. There is considerable interest, for example, in surface modification with grafting. In this respect, photo-grafting will complete with electron beam processing as it does with radiation curing. Methods of increasing the radiation yields and reducing the formation of homopolymer will also be emphasized. In the past several years, with all methods of grafting including radiation, there has been increased emphasis on applications. This may be regarded as a healthy sign in this fascinating technique.

  4. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong


    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  5. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.


    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A


    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. PMID:27370745

  6. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Li, Xiaomeng; Luan, Shifang; Yang, Huawei; Shi, Hengchong; Zhao, Jie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola


    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  7. Polyglycerol dendrimers immobilized on radiation grafted poly-HEMA hydrogels: Surface chemistry characterization and cell adhesion

    NASA Astrophysics Data System (ADS)

    Higa, Olga Z.; Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro A. A.


    Radiation induced grafting of poly(2-hydroxyethylmethacrylate) (PHEMA) on low density polyethylene (LDPE) films and subsequent immobilization of poly(glycerol) dendrimer (PGLD) has been performed with the aim to improve cell adhesion and proliferation on the surface of the polymer, in order to enhance their properties for bone tissue engineering scaffolding applications. Radiation grafting of PHEMA onto LDPE was promoted by γ-ray radiation. The covalent immobilization of PGLD on LDPE-g-PHEMA surface was performed by using a dicyclohexyl carbodiimide (DCC)/N,N-dimethylaminopyridine (DMAP) method. The occurrence of grafting polymerization of PHEMA and further immobilization of PGLD was quantitatively confirmed by photoelectron spectroscopy (XPS) and fluorescence, respectively. The LDPE-g-PHEMA surface topography after PGLD coupling was studied by atomic force microscopy (AFM). The hydrophilicity of the LDPE-g-PHEMA film was remarkably improved compared to that of the ungrafted LDPE. The core level XPS ESCA spectrum of PHEMA-grafted LDPE showed two strong peaks at 286.6 eV (from hydroxyl groups and ester groups) and 289.1 eV (from ester groups) due to PHEMA brushes grafted onto LDPE surfaces. The results from the cell adhesion studies show that MCT3-E1 cells tended to spread more slowly on the LDPE-g-PHEMA than on the LDPE-g-PHEMA-i-PGLD.

  8. Entanglements of End Grafted Polymer Brushes in a Polymeric Matrix

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Hoy, Robert S.


    The entanglement of a polymer brush immersed in a melt of mobile polymer chains is studied by molecular dynamics simulations. A primitive path analysis (PPA) is carried out to identify the brush/brush, brush/melt and melt/melt entanglements as a function of distance from the substrate. The PPA characterizes the microscopic state of conformations of the polymer chain and is ideally suited to identify chain/chain entanglements. We use a new thin-chain PPA technique to eliminate spurious non-entangled inter chain contacts arising from excluded volume. As the grafting density of the brush increases we find that the entanglements of the brush with the melt decrease as the system crosses over from the wet to dry brush regime. Results are compared to brush/brush entanglements in an implicit solvent of varying solvent quality. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers

    NASA Astrophysics Data System (ADS)

    Ebara, Mitsuhiro; Hoffman, John M.; Stayton, Patrick S.; Hoffman, Allan S.


    Microfluidic channels prepared from polydimethylsiloxane (PDMS) have been modified by UV-mediated graft polymerization of temperature-responsive polymers (poly[ N-isopropyl acrylamide] or pNIPAAm), temperature- and pH-responsive copolymers (P[NIPAAm-co-acrylic acid (AAc)]), and a non-fouling hydrogel (polyethyleneglycol diacrylate, or PEGDA). This was done by presorbing a photosensitizer (PS) within the PDMS channel surface regions, contacting the different monomer solutions with the PS-containing surface under nitrogen, and irradiating with UV. The pNIPAAm-grafted surface was hydrophilic below its lower critical solution temperature (LCST), resisting non-specific adsorption, while it was hydrophobic above its LCST, now binding pNIPAAm-coated nanoparticles. Combined temperature- and pH-responsive surfaces were also prepared by UV radiation grafting a monomer mixture of pNIPAAm with AAc. The surfaces have been characterized by advancing water contact angle measurements. These smart microfluidic channels should be useful for many applications such as affinity separations and diagnostic assays.

  10. Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates

    PubMed Central

    Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.


    This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558

  11. Utilizing advanced polymerization techniques for simplifying polymer grafting from silica colloidal crystal substrates

    NASA Astrophysics Data System (ADS)

    Yerneni, Charu K.

    Polyacrylamide has been well established as a biocompatible material when Polyacrylamide gel electrophoresis (PAGE) came into existence in the 1960s. Under aqueous buffer conditions it becomes non-adsorptive to proteins and due to its molecular level pore forming nature could be used in size based biomolecule separations. Since then considerable research has been done to explore the non-adsorptive nature of polyacrylamide on a platform or substrate. Attempts were made to grow polyacrylamide chains from silica as a substrate which can then be used in various protein separation techniques. Based on an ionic polymerization method which was used for gel casting in PAGE, polymers were grown on silica gel. Though considerable thickness could be achieved, polymerization was not just confined to the surface. Therefore a rigid polymer brush layer could not be achieved. Atom transfer radical polymerization (ATRP) method showed the solution to this problem. Polymer brush layers with acceptable thickness could now be achieved for growing polyacrylamide from silica gel. Yet it still suffered from several disadvantages such as the need of an inert atmosphere for polymerization and limited thickness. Many developments have taken place in the past decade which led to improvements in substrate and polymerization methods. This research used non porous sub-micron silica as the substrate and AGET ATRP (Activator generated electron transfer atom transfer radical polymerization) for surface grafting polyacrylamide. Non porous submicron silica has been shown to be a better stationary phase substrate for protein separations than conventional substrates. AGET ATRP enables polymerization to be performed under ambient conditions and in water based solutions which gives thicknesses much higher than conventional ATRP. Data from various analytical techniques showed that within the experimental range the polymerization is linear and has decent control. This means silica nanoparticles coated with

  12. Kinetics of radiation-induced graft copolymerization of vinyl acetate onto ethylene-co-propylene rubber membranes

    NASA Astrophysics Data System (ADS)

    Yue-E, Fang; Lu Xiao Bing; Wang Shan Zhi; Xia, Zhao; Wang, Fang


    The kinetics of radiation-induced graft copolymerization of vinyl acetate onto ethylene-co-propylene rubber (EPR) membrane has been studied in methanol with a radiation source of cobalt-60. The effect of monomer concentration, dose rate, Cu 2+ concentration and temperature on the grafting rate were investigated. The results show that the functional relationship is dg 0/ dt = k[M] 01.95Ḋ[ Cu2+] 0.5. The apparent activation energy and collision frequency factor of the grafting polymerization are 49 kJ mol -1 and 8.9 × 10 8G% kGy -1h -1mol -2.45L 2.45, respectively. The work established the relationship of the initial grafting rate (d g0/d t) with various effect factors: ln(d g0/d t) = 20.61 - 5894(1/ T) + 1.95 ln[ M] 0 + ln D + 0.5 ln[Cu 2+].

  13. Radiation grafting studies of acrylic acid onto cellulose triacetate membranes

    NASA Astrophysics Data System (ADS)

    Mazzei, R. O.; Smolko, E.; Torres, A.; Tadey, D.; Rocco, C.; Gizzi, L.; Strangis, S.


    Polymer surface modifications were obtained by the application of radiation treatments, etching and grafting of acrylic acid monomers on different membranes of cellulose triacetate materials. Cellulose triacetate foils from pellet dissolution and commercial cellulose triacetate solid state nuclear track detector membranes were assayed. Irradiation with fission fragments from Cf-252 source to obtain a porous structure, 25 MeV proton beam and Co-60 γ-source to produce peroxides were employed in the experiments. The present work gives the grafting yield of AAc monomer onto CTA membranes as a function of diverse variables including irradiation parameters ( γ-dose, Cf-252 ff irradiation time, proton fluency and electronic energy loss (d E/d x) e), structural parameters (pore diameter and pore density, etching time and etching temperature) and grafting parameters (monomer and Mohr salt concentration, grafting time and grafting temperature).

  14. Radiation polymerization of diethyl fumarate [rapid communication

    NASA Astrophysics Data System (ADS)

    Alkassiri, Haroun


    Diethyl fumarate (DEF) has been polymerized by gamma irradiation using doses in the range 50-300 kGy, and in this dose range the polymerization yield increased almost linearly. The polymer has a glass transition temperature of about -20 °C, softening point about 15 °C, and decomposition temperature 300 °C.

  15. Microwave assisted synthesis of polyacrylamide grafted dextrin (Dxt-g-PAM): Development and application of a novel polymeric flocculant.


    Pal, Sagar; Nasim, T; Patra, A; Ghosh, S; Panda, A B


    An efficient polymeric flocculant was synthesized by microwave assisted grafting of polyacrylamide to dextrin. By varying the reaction conditions, various grades of graft copolymers were synthesized to obtain the optimized one. Viscometry, elemental analysis, FTIR spectroscopy, (13)C NMR spectroscopy, determination of molecular weight and radius of gyration using SLS analysis, thermal analysis and SEM analysis were employed to confirm that polyacrylamide has been grafted onto the dextrin backbone. The flocculation efficiency of the grafted products in kaolin suspension was dependent on the molecular weight, radius of gyration and length of the grafted polyacrylamide chains. The flocculant obtained by microwave assisted grafting method was superior to dextrin and polyacrylamide-based commercial flocculant (Rishfloc 226 LV) in flocculation tests. PMID:20728467

  16. Preparation of polymer decorated graphene oxide by γ-ray induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bowu; Zhang, Yujie; Peng, Cheng; Yu, Ming; Li, Linfan; Deng, Bo; Hu, Pengfei; Fan, Chunhai; Li, Jingye; Huang, Qing


    Herein, we report a facile approach to decorate graphene oxide (GO) sheets with poly(vinyl acetate) (PVAc) by γ-ray irradiation-induced graft polymerization. The content of PVAc in the obtained sample, i.e., PVAc grafted GO (GO-g-PVAc) is calculated by the loss weight in thermogravimetric analysis (TGA) curves. A GO-g-PVAc sample with a degree of grafting (DG) of 28.5% was well dispersed in common organic solvents and the dispersions obtained were extremely stable at room temperature without any aggregation, even after standing for 2 months. The excellent dispersibility and stability of GO-g-PVAc in common organic solvents are readily rationalized in terms of the full coverage of PVAc chains and solvated layer formation on graphene oxide sheets surface, which weakens the interlaminar attraction of GO sheets. This approach presents a facile route for the preparation of dispersible GO and shows great potential in the preparation of graphene-based composites by solution-processes.Herein, we report a facile approach to decorate graphene oxide (GO) sheets with poly(vinyl acetate) (PVAc) by γ-ray irradiation-induced graft polymerization. The content of PVAc in the obtained sample, i.e., PVAc grafted GO (GO-g-PVAc) is calculated by the loss weight in thermogravimetric analysis (TGA) curves. A GO-g-PVAc sample with a degree of grafting (DG) of 28.5% was well dispersed in common organic solvents and the dispersions obtained were extremely stable at room temperature without any aggregation, even after standing for 2 months. The excellent dispersibility and stability of GO-g-PVAc in common organic solvents are readily rationalized in terms of the full coverage of PVAc chains and solvated layer formation on graphene oxide sheets surface, which weakens the interlaminar attraction of GO sheets. This approach presents a facile route for the preparation of dispersible GO and shows great potential in the preparation of graphene-based composites by solution-processes. Electronic

  17. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong


    A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.

  18. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Zhang, Yan; Zou, Chao; Shao, Jianzhong


    A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  19. PEG Molecular Net-Cloth Grafted on Polymeric Substrates and Its Bio-Merits

    NASA Astrophysics Data System (ADS)

    Zhao, Changwen; Lin, Zhifeng; Yin, Huabing; Ma, Yuhong; Xu, Fujian; Yang, Wantai


    Polymer brushes and hydrogels are sensitive to the environment, which can cause uncontrolled variations on their performance. Herein, for the first time, we report a non-swelling ``PEG molecular net-cloth'' on a solid surface, fabricated using a novel ``visible light induced surface controlled graft cross-linking polymerization'' (VSCGCP) technique. Via this method, we show that 1) the 3D-network structure of the net-cloth can be precisely modulated and its thickness controlled; 2) the PEG net-cloth has excellent resistance to non-specific protein adsorption and cell adhesion; 3) the mild polymerization conditions (i.e. visible light and room temperature) provided an ideal tool for in situ encapsulation of delicate biomolecules such as enzymes; 4) the successive grafting of reactive three-dimensional patterns on the PEG net-cloth enables the creation of protein microarrays with high signal to noise ratio. Importantly, this strategy is applicable to any C-H containing surface, and can be easily tailored for a broad range of applications.

  20. A mild strategy to encapsulate enzyme into hydrogel layer grafted on polymeric substrate.


    Zhu, Xing; Ma, Yuhong; Zhao, Changwen; Lin, Zhifeng; Zhang, Lihua; Chen, Ruichao; Yang, Wantai


    Although the hydrogel network has been widely investigated as a carrier for enzyme immobilization, to in situ encapsulate enzymes into a hydrogel network in an efficient, practical, and active way is still one of the great challenges in the field of biochemical engineering. Here, we report a new protocol to address this issue by encapsulating enzyme into poly(ethylene glycol) (PEG) hydrogel network grafted on polymeric substrates. In our strategy, isopropyl thioxanthone semipinacol (ITXSP) dormant groups were first planted onto the surface of a plastic matrix with low density polyethylene (LDPE) film as a model by a UV-induced abstracting hydrogen-coupling reaction. As a proof of concept, lipase, which could catalyze esterification of glucose with palmitic acid, then was in situ net-immobilized into a PEG-based hydrogel network layer through a visible light-induced surface controlled/living graft cross-linking polymerization. This strategy demonstrates the following novel significant merits: (1) in comparison with the UV irradiation or high temperature, the visible light and room temperature used provide a friendly condition to maintain activity of enzyme during immobilization; (2) the uniqueness of controlled/living cross-linking polymerization not only makes it easy to form a uniform PEG hydrogel network, which is a benefit to avoid the leakage of net-immobilizing enzyme, but also to tune the net-thickness or capacity to accommodate enzyme; and (3) as compared to systems of nanoparticles and porous matrixes, the flexible/robust end-products of the surface net-immobilizing enzyme with polymer film are more suitable to be applied in a bioreactor due to their features of easier separation and reuse. We confirmed that this catalytic film could retain almost all of its initial activity after seven batches of 24 h esterifications. The proposed strategy provides an extremely simple, effective, and flexible method for enzyme immobilization. PMID:25489918

  1. Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts

    PubMed Central

    Hibino, Narutoshi; Fisher, John P.


    Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding. PMID:23252992

  2. Fabrication and Short-Term in Vivo Performance of a Natural Elastic Lamina-Polymeric Hybrid Vascular Graft.


    McCarthy, Connor W; Ahrens, Danielle C; Joda, David; Curtis, Tyler E; Bowen, Patrick K; Guillory, Roger J; Liu, Shu Q; Zhao, Feng; Frost, Megan C; Goldman, Jeremy


    Although significant advances have been made in the development of artificial vascular grafts, small-diameter grafts still suffer from excessive platelet activation, thrombus formation, smooth muscle cell intimal hyperplasia, and high occurrences of restenosis. Recent discoveries demonstrating the excellent blood-contacting properties of the natural elastic lamina have raised the possibility that an acellular elastic lamina could effectively serve as a patent blood-contacting surface in engineered vascular grafts. However, the elastic lamina alone lacks the requisite mechanical properties to function as a viable vascular graft. Here, we have screened a wide range of biodegradable and biostable medical-grade polymers for their ability to adhere to the outer surface of the elastic lamina and allow cellular repopulation following engraftment in the rat abdominal aorta. We demonstrate a novel method for the fabrication of elastic lamina-polymeric hybrid small-diameter vascular grafts and identify poly(ether urethane) (PEU 1074A) as ideal for this purpose. In vivo results demonstrate graft patency over 21 days, with low thrombus formation, mild inflammation, and the general absence of smooth muscle cell hyperplasia on the graft's luminal surface. The results provide a new direction for developing small-diameter vascular grafts that are mass-producible, shelf-stable, and universally compatible due to a lack of immune response and inhibit the in-graft restenosis response that is common to nonautologous materials. PMID:26204095

  3. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.


    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B


    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. PMID:26847467

  4. Diversity-Oriented Polymerization: One-Shot Synthesis of Library of Graft and Dendronized Polymers by Cu-Catalyzed Multicomponent Polymerization.


    Kim, Hyunseok; Bang, Ki-Taek; Choi, Inho; Lee, Jin-Kyung; Choi, Tae-Lim


    Graft and dendronized polymers have attracted much attention in the polymer community, and there have been significant efforts to develop better synthetic methods. Herein, we report the highly efficient synthesis of graft and dendronized polymers by using Cu-catalyzed multicomponent polymerization (MCP). Based on diversity-oriented synthesis, we prepared a library of various graft and dendronized polymers from combinations of three types of monomers (mono-functionalized alkynes, bis-sulfonyl azides, and diamines/diols) that are bench stable and readily accessible. After reaction optimization, 54 samples of high-molecular-weight graft and dendronized polymers were prepared, the MCP method allowing simultaneous manipulation of the structures of both the main chains and the side chains. Moreover, because of the severe steric hindrance of the side chains, these polymers adopted extended conformations, as shown by the large shape parameter in solution. Also, the extended morphology of the single polymer chains was directly visualized by atomic force microscopy and transmission electron microscopy in the solid state. Most importantly, this diversity-oriented polymerization became possible because of highly step-economical and efficient one-step MCP, paving the way toward the easily tunable synthesis of graft and dendronized polymers. PMID:27355448

  5. Evaluation of microwave assisted grafted sago starch as controlled release polymeric carrier.


    Singh, Akhilesh Vikram; Nath, Lila Kanta


    In the present investigation an attempt has been made to develop a new co-polymeric material for controlled release tablet formulations. The acrylamide grafting was successfully performed on the backbone of sago starch. The modified starch was tested for acute toxicity and drug-excipient compatibility study. The grafted material was used in making of controlled release tablets of lamivudine. The formulations were evaluated for physical characteristics such as hardness, friability, %drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi model and the release mechanism of the optimized formulation predominantly exhibited combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T(max), C(max), AUC, V(d), T(1/2) and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir(®) was observed. The pharmacokinetics parameters were showed controlled pattern and better bioavailability. The optimized formulation exhibited good stability and release profile at the accelerated stability conditions. PMID:23707750

  6. Ring-opening graft polymerization of propylene carbonate onto xylan in an ionic liquid.


    Zhang, Xueqin; Chen, Mingjie; Liu, Chuanfu; Zhang, Aiping; Sun, Runcang


    The amidine organocatalyst 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is an effective nucleophilic catalyst. Biocomposites with tuneable properties were successfully synthesized by ring-opening graft polymerization (ROGP) of propylene carbonate (PC) onto xylan using DBU as a catalyst in the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The effects of reaction temperature, reaction time and the molar ratio of PC to anhydroxylose units (AXU) in xylan were investigated. The physico-chemical properties of xylan-graft-poly(propylene carbonate) (xylan-g-PPC) copolymers were characterised by FT-IR, NMR, TGA/DTG, AFM and tensile analysis. The FT-IR and NMR results indicated the successful attachment of PPC onto xylan. TGA/DTG suggested the increased thermal stability of xylan after the attachment of PPC side chains. AFM analysis revealed details about the molecular aggregation of xylan-g-PPC films. The results also showed that with the increased DS of xylan-g-PPC copolymers, the tensile strength and Young's modulus of the films decreased, while the elongation at break increased. PMID:25853319

  7. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization.


    Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav


    Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling. PMID:21682251

  8. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone.


    Luan, Shifang; Zhao, Jie; Yang, Huawei; Shi, Hengchong; Jin, Jing; Li, Xiaomeng; Liu, Jingchuan; Wang, Jianwei; Yin, Jinghua; Stagnaro, Paola


    Poly(N-vinyl pyrrolidone) (PNVP) was covalently grafted onto the surface of biomedical poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer via a technique of UV-induced graft polymerization combined with plasma pre-treatment. The surface graft polymerization of N-vinyl pyrrolidone (NVP) was confirmed by ATR-FTIR and XPS. Effect of the parameters of graft polymerization, i.e., the initiator concentration, the UV irradiation time and the monomer concentration on the grafting density was investigated. The morphology and the wettability of the PNVP-modified surfaces were characterized by AFM and DSA, respectively. Protein adsorption and platelet adhesion were obviously suppressed after PNVP was grafted onto the SEBS substrates. PMID:22264686

  9. Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite.


    Liu, Fengwei; Jiang, Xiaoze; Bao, Shuang; Wang, Ruili; Sun, Bin; Zhu, Meifang


    The aim of this study was to investigate the effect of poly bisphenol A glycidyl methacrylate (poly(Bis-GMA)) grafted hydroxyapatite whisker (PGHW) on water sorption, solubility and bioactivity of the dental resin composite. PGHW with different graft ratios was synthesized, by controlling grafting time, and filled into a dental resin matrix respectively. Fracture surface of the resin composites showed that PGHW-matrix interfacial compatibility and bonding were enhanced, and lower amounts of poly(Bis-GMA) on PGHW-1h (graft ratio: 8.5 wt.%) could facilitate the dispersion of PGHW-1 h in the composite. The PGHW-1h filled resin composite absorbed the lowest amount of water (27.16 μg/mm(3), 7 d), whereas the untreated hydroxyapatite whisker (HW) filled resin composite absorbed the highest. PGHW with higher graft ratios induced the decrease of the monomer conversion in the resulting composite, therefore, the PGHW-18 h (graft ratio: 32.8 wt.%) filled resin composite had the highest solubility. In vitro bioactivity of the studied resin composites in simulated body fluid (SBF) showed that a dense and continuous apatite layer was formed on the surface of the resin composite, and the surface graft polymerization on the whisker did not significantly affect the apatite forming ability of the resin composite. It was revealed that graft polymerization of an appropriate amount of Bis-GMA onto HW could be an effective method to improve the interfacial properties and stability in water of the dental resin composite without compromising the bioactivity. PMID:26042702

  10. In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns.


    Yao, Kejian; Yun, Junxian; Shen, Shaochuan; Chen, Fang


    Graft polymerization of monomer chains with expected functional groups onto the matrix pore surfaces by initiator is an effective approach for introducing ion-exchange groups to cryogel matrix to get anion- or cation-exchange supermacroporous cryogels. In this work, a novel cation-exchange cryogel with sulfo binding groups was prepared by grafting of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) onto polyacrylamide-based cryogels in glass columns. The grafting polymerization was achieved in an in-situ manner which was performed by pumping the initiator and the reactive solution of graft monomer with sulfo binding groups directly through a cryogel bed pre-produced in a glass column under frozen condition. The axial liquid dispersion characteristics within the monolithic cryogel beds before and after the in-situ polymerization were compared by measuring residence time distributions (RTDs) at various liquid flow rates using tracer pulse-response method. Microstructure morphology of pores within cryogels was analyzed by scanning electron microscopy (SEM). Chromatography of lysozyme was carried out to reveal the protein breakthrough and elution characteristics in the obtained cryogel beds. PMID:17517417

  11. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Wei, Jun


    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  12. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho


    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  13. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.


    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  14. Synthesis and Characterization of Graft Copolymers Poly(isoprene-g-styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization


    Wang, Wenwen; Wang, Weiyu; Li, Hui; Lu, Xinyi; Chen, Jihua; Kang, Nam-goo; Zhang, Qiuyu; Mays, Jimmy


    In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 105 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less

  15. Synthesis and Characterization of Graft Copolymers Poly(isoprene-g-styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization

    SciTech Connect

    Wang, Wenwen; Wang, Weiyu; Li, Hui; Lu, Xinyi; Chen, Jihua; Kang, Nam-goo; Zhang, Qiuyu; Mays, Jimmy


    In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermal analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 105 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.

  16. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization.


    Gao, Yuan; Gao, Xueping; Zhou, Yongfeng; Yan, Deyue


    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance ((1)H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper. PMID:21730679

  17. BenzoDODA grafted polymeric resin-Plutonium selective solid sorbent.


    Ruhela, R; Panja, S; Singh, A K; Dhami, P S; Gandhi, P M


    A new ligand grafted polymeric resin (BenzoDODA SDVB) was synthesized by covalently attaching plutonium selective ligand (BenzoDODA) on to styrene divinyl benzene (SDVB) polymer matrix. BenzoDODA SDVB resin was evaluated for separation and recovery of plutonium(IV) from nitric acid medium. Sorption of Pu(IV) was found to decrease with the increase in nitric acid concentration, with very small sorption above 7.0M HNO3. Sorption kinetics was fast enough to achieve the equilibrium within 60min of contact where the kinetic data fitted well to pseudo-second-order model. Sorption isotherm data fitted well to Langmuir model suggesting chemical interaction between the BenzoDODA moiety and plutonium(IV) ions. Sorption studies with some of representative radionuclides of high level waste showed that BenzoDODA SDVB is selective and therefore could be a promising solid sorbent for separation and recovery of plutonium. Further, the theoretical calculations done on BenzoDODA SDVB resin suggested Pu(NO3)4·BenzoDODA (1:1) sorbed complex conformed to generally observed square antiprism geometry of the plutonium complexes, with contributions from oxygen atoms of four nitrate ions as well as from four oxygen atoms present in BenzoDODA (two phenolic ether oxygen atoms and two carbonyl oxygen atoms of amidic moiety). PMID:27420390

  18. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide.


    Qiu, Xueyu; Hong, Zhongkui; Hu, Junli; Chen, Li; Chen, Xuesi; Jing, Xiabin


    A new method of surface modification of hydroxyapatite nanoparticles (n-HA) by surface grafting reaction of l-lactic acid and ring-opening polymerization of l-lactide (LLA) was developed. Two modified HA nanoparticles were obtained: HA modified by l-lactic acid (l-HA) and HA grafting with poly(l-lactide) (PLLA; p-HA). The modified surface of n-HA was attested by Fourier transformation infrared, (31)P MAS NMR, and thermal gravimetric analysis. The results showed that l-lactic acid could be easily grafted onto the n-HA surface by forming a Ca carboxylate bond and initiated by the hydroxyl group of the grafted l-lactic acid and LLA could be graft-polymerized onto the n-HA surface in the presence of stannous octanoate. The highest grafting amounts of l-lactic acid and PLLA were about 33 and 22 wt %, respectively. The modified HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p-HA/PLLA composite containing 15 wt % of p-HA were 67 MPa and 2.1 GPa, respectively, while those of the n-HA/PLLA composites were 45 MPa and 1.7 GPa, respectively. The elongation at the break of the l-HA/PLLA composite containing 15 wt % l-HA could reach 44%, in comparison with 6.5% of the n-HA/PLLA composites containing 15 wt % n-HA. PMID:15877333

  19. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin


    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  20. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    SciTech Connect

    Jansen, B.; Ellinghorst, G.


    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples.

  1. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.


    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  2. Development of hydrogels by radiation induced polymerization for use in slow drug delivery

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Bala, R.


    In the present work, in order to improve the drug release profile of indinavir sulfate, a potent inhibitor of HIV protease, controlled drug delivery systems in the form of hydrogels have been designed by a radiation graft polymerization method. These hydrogels have been prepared by using dietary fiber psyllium and binary monomers mixture of acrylamide (AAm) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA). These polymers have been characterized with cryo-SEMs, FTIR, XRD and swelling studies. The swelling of hydrogels has been determined in solution of different pH, temperature and [NaCl]. in vitro release studies of model drug indinavir sulfate in different pH have been carried out to determine the drug release mechanism. The release of dug occurred through non-Fickian mechanism.

  3. Towards application of one- and two-dimensional nanomaterials for reinforcement of polymeric nanocomposite bone grafts

    NASA Astrophysics Data System (ADS)

    Farrshid, Behzad

    One- and two-dimensional (1-D and 2-D) nanomaterials possess extraordinary physiochemical properties such as large surface area, excellent mechanical properties, high surface energy and good dispersivity in organic and biological solvents, therefore, they have been extensively used as reinforcing agents to improve the mechanical properties of polymeric scaffolds for bone tissue engineering applications. Carbon nanomaterials such as carbon nanotubes and graphene have been used as reinforcing agents for biodegradable polymeric scaffolds and composites, however, their short- and long-term in vitro cytotoxicity and in vivo biocompatibility is an area of extensive debate. In this study, we have systematically investigated the effects of addition of low concentrations (0.01-0.2 wt. %) of 1-D and 2-D carbon nanomaterials (graphene oxide nanoplatelets, graphene oxide nanoribbons and carbon nanotubes) and inorganic nanomaterials (boron nitride nanotubes, boron nitride nanoplatelers, tungsten disulfide nanotubes and molybdenum disulfide nanoplatelets) on the mechanical properties, cytocompatibility, and bioactivity of poly(propylene fumarate) (PPF) nanocomposites towards their potential applications as porous and nonporous implants for bone tissue engineering. Addition of nanomaterials in the PPF matrix improved the compressive and flexural mechanical properties of non-porous crosslinked PPF nanocomposites and porous PPF scaffolds. Our results suggest that in addition to high surface roughness and surface area of the nanomaterials, the presence of functional groups on the surface of nanomaterials leads to an increased nanomaterial-polymer interaction and a uniform dispersion of nanomaterials in polymer matrix which may be the key factors responsible for an improved mechanical reinforcement. The in vitro studies showed an excellent cytocompatibility for both carbon and inorganic nanomaterial reinforced PPF nanocomposites and scaffolds. Protein adsorption studies and in vitro

  4. Synthesis and characterization of N-vinylcaprolactam/N,N-dimethylacrylamide grafted onto chitosan networks by gamma radiation

    NASA Astrophysics Data System (ADS)

    Pérez-Calixto, M. P.; Ortega, A.; Garcia-Uriostegui, L.; Burillo, G.


    N-vinylcaprolactam (NVCL) and N,N-dimethylacrylamide (DMAAm) were grafted onto crosslinked chitosan by gamma radiation, using direct and indirect (pre-irradiation oxidative) methods. The binary graft systems were synthesized in one and two steps to evaluate the influences of architecture on the properties of the polymeric material. Maximum grafting percentages were obtained by the direct method. The different systems obtained were characterized by FTIR and TGA. The equilibrium swelling time of the (net-CS)-g-NVCL/DMAAm and [(net-CS)-g-NVCL]-g-DMAAm systems was 75 and 25 min, respectively, while crosslinked CS required about 24 h. Thermal and pH sensitivity were conserved in all systems; the pH response in [(net-CS)-g-NVCL]-g-DMAAm (LCST: 37°, pH: 5.2) is more defined than (net-CS)-g-NVCL/DMAAm (LCST: 37 °C, pH: 3.8). Grafting radiation showed to be an effective technique to modify CS hydrogels.

  5. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Meechai, Nispa


    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch- g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 × 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency.

  6. Functionalization of cotton fabrics by radiation induced grafting of quaternary salt to impart antibacterial property

    NASA Astrophysics Data System (ADS)

    Goel, N. K.; Kumar, Virendra; Rao, M. S.; Bhardwaj, Y. K.; Sabharwal, S.


    High energy gamma radiation has been used to covalently link polymer chains of a quaternary ammonium salt containing monomer, viz. [2-(Acryloyloxyethyl)]trimethylammonium chloride (AETC) to cotton fabric by mutual radiation grafting using 2-hydroxyethyl methacrylate (2-HEMA) monomer as the grafting facilitator. Grafting yield was found to increase with the radiation dose and monomer concentration. The grafted samples have been characterized for water uptake, surface morphology and thermal stability and for their antibacterial efficacy against various bacteria and were found to possess significant antibacterial activity particularly against gram-positive bacteria.

  7. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.


    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  8. Radiation-grafted, chemically modified membranes part I - Synthesis of a selective aluminum material

    NASA Astrophysics Data System (ADS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, José E.; Geraldo, Aurea B. C.


    Polymeric membranes were styrene grafted by irradiation methods and the obtained material was chemically modified to become aluminum selective. For this purpose, polymeric substrates of PVC (polyvinyl chloride) and PP (polypropylene) were styrene grafted mutually by gamma and electron beam irradiation. The modification process includes three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation to achieve aluminum selectivity. Although this specific chemical modification in derivatives of polystyrene is not new, the new challenge is to obtain a selective material where original membrane characteristics (physical shape and mechanical resistance) are minimally conserved after such an aggressive treatment.

  9. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun


    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  10. Radiation graft modification of ethylene-propylene rubber—II. Effect of additives

    NASA Astrophysics Data System (ADS)

    Haddadi-Asl, V.; Burford, R. P.; Garnett, J. L.


    The effect of multifunctional acrylic additives including TMPTA, PEGDA and PGTA on the radiation grafting of hydrophilic vinyl monomers onto ethylene—propylene elastomer (EPM rubbers) was studied. This work centres upon gamma irradiation-induced grafting of acrylamide (AAm), N-vinyl-2-pyrrolidone (NVP), 2-hydroxyethyl methacrylate (HEMA) and acrylonitrile (AN) onto EPM rubber by the simultaneous method. Water proved to be an effective solvent but methanol lowered grafting. Sulphuric acid was detrimental to both homopolymerisation and grafting, a result consistent with the theory proposed for the role of this additive in polymer grafting systems.

  11. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George


    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  12. Boron Nitride Nanosheets (BNNSs) Chemically Modified by "Grafting-From" Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites.


    Lee, Jinseong; Jung, Haejong; Yu, Seunggun; Man Cho, Suk; Tiwari, Vimal K; Babu Velusamy, Dhinesh; Park, Cheolmin


    To meet the growing demand for rapid heat dissipation in electronic devices to ensure their reliable performance with a high level of safety, many polymer composites with thermally conductive but electrically insulating 2D boron nitride nanosheets (BNNSs) are being developed. Here we present an efficient way to enhance the thermal conductivity (TC) of a polymer composite by means of "grafting-from" polymerization of a poly(caprolactone) (PCL) onto BNNSs. The BNNSs, which were exfoliated from bulk BN by means of ultra-sonication, were prepared by means of radical oxidation. These oxidized BNNSs (oxi-BNNSs) were employed as initiators for subsequent ring-opening polymerization of PCL, which successfully resulted in PCL chemically grafted onto BNNSs (PCL-g-BNNSs). The excellent dispersion of PCL-g-BNNSs in common solvents allowed us to readily fabricate a polymer composite that contained PCL-g-BNNSs embedded in a PCL matrix, and the composite showed TC values that were five and nine times greater in the out-of-plane and in-plane mode, respectively, than those of pristine PCL. PMID:27283727

  13. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Kuo, Chang-Yi; Lee, Wen-Li


    To obtain a chitosan wound dressings with temperature-responsive characteristics, polypropylene (PP) non-woven fabric (NWF) was modified by direct current pulsed oxygen plasma-induced grafting polymerization of acrylic acid (AAc) to improve hydrophilicity and to introduce carboxylic acid groups. Conjugation of chitosan and poly(N-isopropylacrylamide) (PNIPAAm) followed by using water-soluble carbodiimide as a coupling agent to form a novel bigraft PP-g-chitosan-g-PNIPAAm wound dressing. The amount of chitosan and PNIPAAm grafted to PP-g-chitosan-g-PNIPAAm were 83.0 ± 4.6 μg/cm2 and 189.5 ± 8.2 μg/cm2, respectively. The surface chemical composition and microstructure of the NWF were studied by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy (SEM). The linkages between AAc, chitosan, and PNIPAAm were confirmed with the formation of amide bonds. Physical properties of the NWF were characterized and potentials of these NWFs as wound dressings were evaluated using SD rat as the animal model. NWFs contained PNIPAAm were better than those contained only chitosan in wound healing rates and the wound areas covered by PP-g-chitosan-g-PNIPAAm wound dressings healed completely in 17 days.

  14. Effect of UV-irradiation intensity on graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on orthopedic bearing substrate.


    Kyomoto, Masayuki; Moro, Toru; Yamane, Shihori; Hashimoto, Masami; Takatori, Yoshio; Ishihara, Kazuhiko


    Photoinduced grafting of 2-methacryloyloxyethyl phosphorylcholine (MPC) onto cross-linked polyethylene (CLPE) was investigated for its ability to reduce the wear of orthopedic bearings. We investigated the effect of UV-irradiation intensity on the extent of poly(MPC) (PMPC) grafting, and found that it increased with increasing intensity up to 7.5 mW/cm(2), and the remained fairly constant. It was found to be extremely important to carefully control the UV intensity, as at higher values, a PMPC gel formed via homopolymerization of the MPC, resulting in the formation of cracks at the interface of the PMPC layer and the CLPE substrate. When the CLPE was exposed to UV-irradiation during the graft polymerization process, some of its physical and mechanical properties were slightly changed due to cross-linking and scission effects in the surface region; however, the results of all of the tests exceed the lower limits of the ASTM standards. Modification of the CLPE surface with the hydrophilic PMPC layer increased lubrication to levels that match articular cartilage. The highly hydrated thin PMPC films mimicked the native cartilage extracellular matrix that covers synovial joint surface, acting as an extremely efficient lubricant, and providing high-wear resistance. PMID:24124003

  15. Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery

    NASA Astrophysics Data System (ADS)

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio


    This work focuses on the pre-irradiation grafting of acrylamide (AAm) onto silicone rubber films (SR) and evaluates the effect of gamma-ray radiation conditions on the grafting yield, which in turn may influence the performance of the grafted materials as components of drug-eluting devices. Pristine and modified SR were characterized using FTIR-ATR, DSC, TGA, swelling, and water contact angle analysis in order to elucidate the effects of AAm grafting onto SR. Grafted films with content in AAm ranging from 0.81% to 22.20% showed excellent cytocompatibility against fibroblasts, and capability to uptake the anti-inflammatory drug diclofenac. Amount of drug loaded directly correlated with the grafting degree of the films. Drug release studies were performed at pH 7.4 and 37 °C (physiological conditions). Most grafted films released the drug in a sustained way for at least three hours.

  16. Novel Diblock Copolymer-Grafted Multiwalled Carbon Nanotubes via a combination of Living and Controlled/Living Surface Polymerizations

    SciTech Connect

    Priftis, Dimitrios; Sakellariou, Georgios; Mays, Jimmy; Hadjichristidis, Nikos


    Diels Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1-benzocylcobutene-10-phenylethylene (BCB-PE) or 4-hydroxyethylbenzocyclobutene (BCB-EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and e-caprolactone (e-CL), respectively. The OH-end groups were transformed to isopropylbromide groups by reaction with 2-bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2-dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs.

  17. Industrialization of radiation-induced emulsion polymerization ----technological process and its advantages

    NASA Astrophysics Data System (ADS)

    Zhicheng, Zhang; Manwei, Zhang


    A technological process for industrialization of radiation induced emulsion polymerization was introduced briefly. A batch process rather than continuous one was adopted in the industrial-scale production. The advantages of radiation induced emulsion polymerization were described in comparison with chemical initiated process.

  18. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    NASA Astrophysics Data System (ADS)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  19. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.


    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  20. Influence of gamma radiation onto polymeric matrix with papain

    NASA Astrophysics Data System (ADS)

    Zulli, Gislaine; Lopes, Patrícia Santos; Velasco, Maria Valéria Robles; Alcântara, Mara Tânia Silva; Rogero, Sizue Ota; Lugao, Ademar Benévolo; Mathor, Monica Beatriz


    Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.

  1. Synergistic-radiation grafting: A novel modification technique for the preparation of biomaterials

    NASA Astrophysics Data System (ADS)

    Müller-Schulte, D.


    Radiation grafting was performed using different vinylmonomers and solvents simultaneously to modify polyamide-6 substrates. With the new technique, immunadsorbents and media for affinity chromatography were developed for the separation of low density lipoproteins, IgG antibodies and biotin- antibodies. To increase the biocompatibility of polymers, a graft modification was applied which allowed a totally coherent endothelial cell seeding.

  2. Electrodialysis of Sulfuric Acid with Cation-Exchange Membranes Prepared by Electron-Beam-Induced Graft Polymerization

    NASA Astrophysics Data System (ADS)

    Asari, Yuki; Shoji, Nobuyoshi; Miyoshi, Kazuyoshi; Umeno, Daisuke; Saito, Kyoichi

    Strongly acidic cation-exchange membranes were prepared by the electron-beam-induced graft polymerization of glycidyl methacrylate onto a high-density polyethylene film with a thickness of 35 μm and the subsequent conversion of the resulting epoxy group into a sulfonic acid group. The resulting cation-exchange membranes with various ion-exchange capacities or sulfonic acid group densities ranging from 1.9 to 2.7 mmol/g were applied to the enrichment of 0.50 mol/L sulfuric acid by electrodialysis. Concentrated sulfuric acids at concentrations of 1.4 to 2.9 mol/L were obtained in the concentrate chamber during the electrodialysis operated at 30 mA/cm2 and 298 K, using a pair of this cation-exchange membrane and a commercially available anion-exchange membrane.

  3. Radical graft polymerization of an Allyl Monomer onto Hydrophilic Polymers and their antibacterial nanofibrous membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial pr...

  4. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol.


    Saito, Kei; Miyamoto, Koji; Nanayakkara, Sepa; Ihara, Hirotaka; Hearn, Milton T W


    A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) copper(I) complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene) solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl)-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide) was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst. PMID:26821005

  5. Grafting Poly(ethylene glycol) Onto Single-Walled Carbon Nanotubes by Living Anionic Ring-Opening Polymerization.


    Li, Wei; Zhang, Guoxiang; Sheng, Wenbo; Liu, Zhiyong; Jia, Xin


    Recent years, many methods have been developed to widen the practical application of single-walled carbon nanotubes (SWCNTs). Among them, PEGylation is a general strategy to endow functionality, biocompatibility as well as its good solubility. In this paper, poly(ethylene glycol) (PEG) is successfully grafted onto SWCNTs through living anionic ring-opening polymerization of ethylene oxide (EO). By controlling the amount of monomer and initiator, a series of PEGylated SWCNTs with different PEG molecular weight and density are prepared. Then, the as-prepared SWCNTs have been verified by thermogravimetric analyses (TGA), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS). Finally, the protein resistance property of the PEGylated SWCNTs is investigated. It is found that these PEGylated SWCNTs have a good protein resistance property and the higher the content of PEG grafted on the SWCNTs, the less adsorption amount of BSA and the larger capacity to resist protein absorption. This work provides a novel method to prepare PEGylated SWCNTs. PMID:27398490

  6. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    NASA Astrophysics Data System (ADS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi


    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  7. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    NASA Astrophysics Data System (ADS)

    Li, Qian; Bi, Qiu-Yan; Zhou, Bo; Wang, Xiao-Lin


    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N'-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm-2, the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  8. Polymeric Prodrug Grafted Hollow Mesoporous Silica Nanoparticles Encapsulating Near-Infrared Absorbing Dye for Potent Combined Photothermal-Chemotherapy.


    Zhang, Yuanyuan; Ang, Chung Yen; Li, Menghuan; Tan, Si Yu; Qu, Qiuyu; Zhao, Yanli


    In this study, polymeric prodrug coated hollow mesoporous silica nanoparticles (HMSNs) with encapsulated near-infrared (NIR) absorbing dye were prepared and explored for combined photothermal-chemotherapy. A copolymer integrated with tert-butoxycarbonyl protected hydrazide groups and oligoethylene glycols was initially grafted on the surface of HMSNs via reversible addition-fragmentation chain-transfer (RAFT) polymerization followed by the deprotection to reactivate the hydrazide groups for the conjugation of anticancer drug doxorubicin (DOX). DOX was covalently bound onto the polymer substrate by acid-labile hydrazone bond and released quickly in weak acidic environment for chemotherapy. The hollow cavity of HMSNs was loaded with an NIR absorbing dye IR825 to form the final multifunctional hybrid denoted as HMSNs-DOX/IR825. The hybrid exhibited good dispersity and stability as well as high light-to-heat conversion efficiency. As revealed by confocal microscopy and flow cytometry analysis, the hybrid was efficiently taken up by cancer cells, and the conjugated DOX could be released under the cellular environment. In vitro cytotoxicity study demonstrated that anticancer activity of HMSNs-DOX/IR825 could be significantly improved by the NIR irradiation, which led to a satisfactory therapeutic efficacy through the combination treatment. Thus, the developed hybrid could be a promising candidate for the combined photothermal-chemotherapy of cancer. PMID:26937591

  9. Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch.


    Lv, Xiaohua; Song, Weiqiang; Ti, Yongzhou; Qu, Lingbo; Zhao, Zhiwei; Zheng, Hongjuan


    Corn starch graft copolymers were prepared from acrylamide/dimethyl diallyl ammonium chloride binary monomers (AM/DMDAAC) by a simultaneous radiation grafting method, and were characterized by FTIR and (1)H NMR techniques, weight measurement and titration method. The copolymers with high grafting ratio and high grafting efficiency of binary monomers were achieved at absorbed doses of 2 kGy and 3 kGy using a 6:9.8:4.2 (w/w/w) ratio of starch/AM/DMDAAC, but their cationic degrees were low. Grafting ratio, grafting efficiency and cationic degree of the copolymers increased with increasing AM content in comonomer mixtures and then decreased at 3kGy using a 6:14 ratio of starch:total comonomers, but their cationic degrees generally decreased with increasing AM content. The grafting ratio, the grafting efficiency and the cationic degree of the copolymers increased, but the grafting efficiency of DMDAAC decreased with varying starch/(AM+DMDAAC) ratio from 6:3 to 6:18 at 3 kGy by using a fixed 7:3 ratio of AM:DMDAAC. PMID:23218310

  10. Hybrid Nanomaterials by Surface Grafting of Synthetic Polypeptides Using N-Carboxyanhydride (NCA) Polymerization.


    Borase, Tushar; Heise, Andreas


    The interaction of materials with their environment is largely dictated by interfacial phenomena. Polymers are very versatile materials to modulate material interfaces to provide functionality, stability and compatibility. A class of polymers that can close the gap between fully synthetic and natural macromolecules are polypeptides derived from N-carboxyanhydride (NCA) polymerization. Recent advances in using this technique to create biomimetic interfaces and hybrid materials are highlighted, with special emphasis on nanomaterials. PMID:26780161

  11. Surface-initiated Ring-opening Metathesis Polymerization in the Vapor Phase: An Efficient Method for Grafting Cyclic Olefins of Low Strain Energies

    PubMed Central

    Lerum, Maria Felisa Z.; Chen, Wei


    Surface grafting of cyclic olefins with low strain energies, including cyclopentene (CP), 1,4-cyclohexadiene (CHD), cycloheptene (CHP), cis-cyclooctene (CO), cis,cis-1,5-cyclooctadiene (COD), 1,3,5,7-cyclooctatetraene (COT), cyclododecene (CD), and trans,trans,cis-1,5,9-cyclododecatriene (CDT), were explored using ring-opening metathesis polymerization in the vapor phase. These monomers do not polymerize when SiROMP is carried out in solution due to pronounced chain transfer on surfaces where chains are in close proximities. In the vapor phase, however, chain transfer is suppressed at the solid-vapor interfaces, which permits the polymerization of most of these monomers. A minimal required strain energy of 2.2 kcal/mol was determined in this study, which is significantly lower than the estimated 13.3 kcal/mol for SiROMP carried out in solution, indicating that the enhancement in monomer polymerizability is significant using the vapor phase approach. A series of polyalkenamers with controlled fraction of unsaturation from 8% to 50% along the polymer backbone were grafted to solid substrates. It was observed that the logarithm of largest grafted layer thickness obtained before the removal of chain transfer products – which correlates with the extent of polymerization – scales with monomer strain energy. This confirms that the release of ring strain is the thermodynamic driving force for SiROMP. It was also found that although chain transfer is suppressed in the vapor phase, it is important in monomer/polymer systems where the fraction of unsaturated bonds is high. In these cases, grafted polymer thickness is dominated by chain transfer, rather than by monomer strain energy. A quantitative relationship is established for estimating graft thickness of a particular monomer using its strain energy and fraction of unsaturated bonds in the monomer. PMID:21469729

  12. Kinetics of a methyl methacrylate polymerization initiated by the stable free radicals in irradiated polytetrafluoroethylene and properties of the resultant graft polymer

    SciTech Connect

    Donato, K.A.E.


    The kinetics of the polymerization of methyl methacrylate (MMA) initiated by the stable free radicals in commercially available irradiated polytetrafluoroethylene micropowder and the rheological, thermal, chemical, and mechanical properties of the resultant graft polymer are described. Test tube runs using different ratios of MMA to PTFE were made to determine the feasibility of the reaction and optimum reaction conditions. The amount of graft produced was equal to the weight gain of the solids after removal of the adventitious homopolymer by extraction in acetone. Test quantities of material were produced in a 500 milliliter agitated reactor. A higher ratio of PTFE to excess MMA and longer reaction times result in higher conversion in test tubes. A kinetic model was developed to relate the original concentration of PTFE free radical to the amount of MMA polymer. Graft polymer containing PTFE micropowder, PMMA graft, and PMMA homopolymer in a ratio of 18:5:1 was used for property characterization. The graft material extrudes well at 513K and has a viscosity comparable to that of PMMA homopolymer. The material is stable upon re-extrusion. DSC thermograms show that the heat of transition of the PTFE melting peak is proportional to the amount of PTFE in the sample. Good solvents for PMMA are detrimental to the structural integrity of the graft extrudate; heat treatment improves the chemical resistance. The PTFE block controls the mechanical properties of the graft.

  13. Synthesis and Characterization of Surface Grafted Poly(N-isopropylacrylamide) and Poly(Carboxylic Acid)– Iron Particles via Atom Transfer Radical Polymerization for Biomedical Applications

    PubMed Central

    Sutrisno, Joko; Fuchs, Alan; Evrensel, Cahit


    This research relates to the preparation and characterization of surface grafted poly(N-isopropylacrylamide) and poly(carboxylic acid)–micron-size iron particles via atom transfer radical polymerization (ATRP). The surface grafted polymers–iron particles result in multifunctional materials which can be used in biomedical applications. The functionalities consist of cell targeting, imaging, drug delivery, and immunological response. The multifunctional materials are synthesized in two steps. First, surface grafting is used to place polymer molecules on the iron particles surface. The second step, is conjugation of the bio-molecules onto the polymer backbone. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy were used to confirm the presence of polymers on the iron particles. The thickness of the grafted polymers and glass transition temperature of the surface grafted polymers were determined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The covalent bond between grafted polymers and iron particles caused higher glass transition temperature as compared with non-grafted polymers. The ability to target the bio-molecule and provide fluorescent imaging was simulated by conjugation of rat immunoglobulin and fluorescein isothiocyanate (FITC) labeled anti-rat. The fluorescence intensity was determined using flow cytometry and conjugated IgG-FITC anti-rat on iron particles which was imaged using a fluorescence microscopy. PMID:25382869

  14. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.


    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F


    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  15. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway.


    Sosnik, Alejandro; Imperiale, Julieta C; Vázquez-González, Brenda; Raskin, Maya Menaker; Muñoz-Muñoz, Franklin; Burillo, Guillermina; Cedillo, Gerardo; Bucio, Emilio


    Thermo-sensitive graft copolymer amphiphiles of chitosan (CS) and poly(N-isopropylacrylamide) (PNiPAAm), CS-g-PNIPAAm, were successfully synthesized by a catalyst-less one-pot gamma (γ)-radiation-assisted free radical polymerization at three different radiation doses: 5, 10 and 20 kGy. The chemical structure of the copolymers was confirmed by FTIR and solid-state (13)C NMR and the grafting extent by (1)H NMR and gravimetric analysis. In general, the higher the dose, the smaller the grafting due to the more significant NiPAAm homopolymerization. Due to the grafting of poly(NiPAAm) blocks, aqueous solutions of the different copolymers underwent a sharp transition upon heating above 32 °C, the characteristic lower critical solution temperature (LCST) of poly(NiPAAm). Then, the critical micellar concentration (CMC), the size and size distribution and the zeta-potential were characterized by dynamic light scattering (DLS) and the polymeric micelles visualized in suspension and quantified by Nanoparticle Tracking Analysis (NTA), at 37 °C. CMC values were in the 0.0012-0.0025%w/v range and micelles displayed sizes between 99 and 203 nm with low polydispersity (<0.160) and highly positive zeta-potential (>+15 mV) that suggested the partial conservation of the amine groups upon NiPAAm grafting. Consequently, polymeric micelles displayed the intrinsic mucoadhesiveness of CS, as established in vitro by the mucin solution assay. Finally, the encapsulation capacity of the micelles was assessed with the highly hydrophobic protease inhibitor antiretroviral indinavir free base (IDV). Polymeric micelles led to a significant 24-fold increase of the aqueous solubility from 63 μg/mL to 1.45 mg/mL, a performance remarkably better than different poly(ethylene oxide)-b-poly(propylene oxide) block copolymers assessed before. Overall results highlight the potential of this nanotechnology platform to expand the application of polymeric micelles to mucosal administration routes. PMID

  16. Polymer-grafted silica: A screening system for polymeric adsorption resin development

    SciTech Connect

    Browne, T.E.; Cohen, Y. )


    A screening-level methodology was developed for the evaluation of solute affinity for polymers that are candidate sorption resins. In this approach novel grafted polymer-silica resins were synthesized to produce poly(vinylpyrrolidone)-silica (PVP-Si) and poly(vinyl acetate)-silica (PVAc-Si) resins. The polymer-silica resins along with a number of commercially available polymer resins were used to evaluate the aqueous-phase adsorption of phenol, tetrachloroethene (PCE), trichloroethene (TCE), and chloroform. The polymer-grafted silicas were able to selectively remove pollutants from water with a covalently bonded polymer layer that has a high affinity for the target pollutant. The PVAc-silica resin had a sorption capacity for TCE and CHCl[sub 3] as high as commercial poly(styrene) resin XAD-4; the PVP-Si resin had a sorption capacity for phenol higher than a commercial poly-(vinylpyridine) resin (Reillex 425). PCE adsorption onto the PVAc-silica was comparable to the commercial poly(methacrylate) and poly(vinylpyridine) resins but less than the poly(styrene) resin. The results show that the Hildebrand solubility parameter along with the dipole moment of the polymer functional groups can be used for an initial screening-level assessment of polymer-solute affinity.

  17. Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water

    PubMed Central


    Magnetic nanoparticles (MNPs) were modified with 3-Mercaptopropytrimethoxysiline (MPTMS) and grafted with allyl glycidyl ether for coupling with beta naphtol as a method to form a novel nano-adsorbent to remove two poly aromatic hydrocarbons (PAHs) from contaminated water. The modified MNPs were characterized by transmission electron microscopy, infrared spectroscopy and thermogravimetric analysis. Results showed that the modified MNPs enhanced the process of adsorption. Tests were done on the adsorption capacity of the two PAHs on grafted MNPs; factors applied to the tests were temperature, contact time, pH, salinity and initial concentration of PAHs. Results revealed that adsorption equilibrium was achieved in 10 min, and the maximum adsorption capacity was determined as 4.15 mg/g at pH = 7.0 and 20°C. The equilibrium adsorption data of the two PAHs by the modified MNPs were analyzed by Langmuir, Freundlich and Temkin models. Equilibrium adsorption data was determined from the Langmuir, Freundlich and Temkin constants from tests under conditions of pH = 7 and temperature 20°C. Analysis of the adsorption-desorption process indicated that the modified MNPs had a high level of stability and good reusability. Magnetic separation in these tests was fast and this shows that the modified MNPs have great potential to be used as a new adsorbent for the two PAHs removal from contaminated water in water treatment. PMID:25101170

  18. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    SciTech Connect

    Kumakura, M.; Kaetsu, I.


    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells.

  19. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.


    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz


    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  20. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile. I. Effect of γ-irradiation on grafting parameters

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, S.; Chvajarernpun, J.; Nakason, C.


    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85°C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminum foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis.

  1. Preparation of Mg(OH)2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing


    Mg(OH)2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)2 crystals and affect the formation of lamella-like Mg(OH)2 crystals. The cellulose fiber grafted with modified Mg(OH)2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  2. Effect of solvents on the radiation-induced polymerization of ethyl and isopropyl vinyl ethers

    SciTech Connect

    Hsieh, W.C.


    The effect of solvents on the radiation-induced cationic polymerization of ethyl and isopropyl vinyl ethers (EVE and IPVE, respectively) was investigated. EVE and IPVE polymerizations were carried out in bulk and in solution under superdry conditions in which polar impurities, especially water, have been reduced to negligible levels. This was accomplished by means of a sodium mirror technique using joint free baked out glass equipment and high vacuum. Plots of the monomer conversions and irradiation times were obtained for EVE and IPVE polymerizations in bulk and in benzene solution at constant monomer concentrations. The monomer concentration dependence of the polymerization rate was studied for EVE polymerization in bulk and in benzene, diethlyl ether, diglyme and methylene chloride, and for IPVE polymerization in bulk and in benzene. Solvent effect on the estimated propagating rate constants was examined for EVE and IPVE polymerization in bulk and in solution. The effect of temperature on the polymerization rate was also investigated for EVE polymerization in bulk ad in benzene, diethyl and diisopropyl ethers, methylene chloride and nitromethane, and for IPVE ploymerization in bulk and in benzene.

  3. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh


    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  4. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.


    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh


    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  5. Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride

    NASA Astrophysics Data System (ADS)

    Ting, T. M.; Nasef, Mohamed Mahmoud; Hashim, Kamaruddin


    Modification of nylon-6 fibres by radiation-induced graft copolymerisation (RIGP) of vinylbenzyl chloride (VBC) using the preirradiation method was investigated. A number of grafting parameters such as type of solvent, total dose, monomer concentrations, reaction temperature and reaction time were studied to obtain desired degree of grafting (DG). The DG was found to be a function of reaction parameters and achieved a maximum value of 130 wt% at 20 vol% VBC concentration in methanol, 300 kGy dose, 30 °C temperature and 3 h reaction time. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to evaluate the chemical, morphological and structural changes that occurred in the grafted fibres, respectively. Thermogravimetric analysis (TGA) was also applied to determine the thermal stability, whereas differential scanning calorimeter (DSC) and universal mechanical tester were used to analyse respective thermal and mechanical properties of the grafted fibres. The results of these analyses provide strong evidence for successful grafting of VBC onto nylon-6, and the variation in the properties of the grafted fibres depends on DG.

  6. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend

    NASA Astrophysics Data System (ADS)

    Tan, Xiumin


    A novel method to prepare maleic anhydride grafting onto poly (propylene) (PP-g-MAH) was described. It was performed by γ-irradiation in solid state via ultrafine blend in the absence of any initiator and the grafting mechanism was proposed based on the experimental results. First, ultrafine blend of MAH and PP was prepared through ultrasonic initiation in melt state and then cooled rapidly. Second, the blend was radiated by γ-irradiation in the circumstance of atmosphere. Effects of irradiation dose and MAH concentration on the amount of grafted MAH were investigated. Compared with the conventional solid-state radiation grafting method, PP-g-MAH obtained via this method shows a higher graft rate of MAH. This novel method also has the advantages of solventless, energy efficient, low cost and simple operation. Furthermore, it is very easy to get purified products. The molecular structures of grafted copolymer were characterized by Fourier-transform infrared spectroscopy. Differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscope were used to determine the degree of crystallinity and crystalline structure.

  7. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.


    Zhao, Yong-Hong; Zhu, Xiao-Ying; Wee, Kin-Ho; Bai, Renbi


    A major problem in membrane technology for applications such as wastewater treatment or desalination is often the loss of membrane permeability due to biofouling initiated from protein adsorption and biofilm formation on the membrane surface. In this study, we developed a relatively simple and yet versatile approach to prepare polypropylene (PP) membrane with highly effective non-biofouling performance. Copolymer brushes were grafted to the surface of PP membrane through UV-induced polymerization of two oppositely charged monomers, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TM) and 3-sulfopropyl methacrylate potassium salt (SA), with varying TM:SA molar ratios. Surface analysis with scanning electron microscope (SEM) clearly showed the grafted copolymer brushes on the membrane surfaces and that with X-ray photoelectron spectroscope (XPS) revealed a similar TM:SA ratio of the grafted copolymer brushes to that of the monomer solution used for the polymerization. Water contact angle measurements indicated that the hydrophilicity of the membrane surfaces was remarkably improved by the grafting of the TM/SA copolymer brushes, with the lowest water contact angle of 27 degrees being achieved at the TM:SA ratio of around 1:1. Experiments for antiprotein adsorption with bovine serum album (BSA) and lysozyme (LYZ) and antibiofilm formation with Escherichia coli (E. coli) demonstrated a great dependence of the membrane performance on the TM:SA ratios of the grafted copolymer brushes. It was found that the characteristics of the surface charges of the membrane surfaces played a very important role in the non-biofouling performance, and the membrane surface with balanced positive and negative charges showed the best non-biofouling performance for the proteins and bacteria tested in this study. PMID:20121056

  8. Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes

    NASA Astrophysics Data System (ADS)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Ruiz, Juan-Carlos; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.; Bucio, Emilio


    This work focuses on the effects of gamma-ray irradiation conditions on the stimuli-responsiveness of polypropylene (PP) films and silicone (SR) rubber substrates grafted with N-vinylcaprolactam (NVCL) and acrylic acid (AAc). PP films and SR rubber were modified by simultaneous polymerization and grafting of NVCL and AAc, using pre-irradiation oxidative method at a dose rate of 12.23 kGy h-1 and doses ranging from 5 to 70 kGy. NVCL and AAc solutions (1/1, v/v) at 50% monomer concentration (v/v) in toluene were added to the sample substrates, degassed, sealed and heated at 60 and 70 °C for 12 h. After grafting, the samples were soaked in ethanol and distilled water for 24 h successively, followed by drying under vacuum. Samples were characterized by FTIR-ATR, DSC and swelling measurements. Critical points (pH critical or LCST) of grafts were obtained in a pH-environment (pH ranges from 2.2 to 9) and in a thermo-environment (temperature ranges from 22 to 50 °C). Cytotoxicity evaluation was performed using fibroblast BALB/c 3T3 cells. The relationship between NVCL-co-AAc grafting and radiation dose was different for each substrate, PP and SR. At 50% NVCL/AAc concentration in toluene, grafting values were higher for SR than for PP. Despite the fact that PP-g-(NVCL-co-AAc) membrane presented a cytotoxic profile at the highest experimental concentration assayed, cytotoxicity evaluation revealed noncytotoxic profiles for the membranes synthesized highlighting their applications for biomedical purposes.

  9. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease

    SciTech Connect

    LeBoit, P.E.


    The histopathologic changes of radiation dermatitis have been classified either as early effects (necrotic keratinocytes, fibrin thrombi, and hemorrhage) or as late effects (vacuolar changes at the dermal-epidermal junction, atypical radiation fibroblasts, and fibrosis). Two patients, one exposed to radiation therapeutically and one accidentally, are described. Skin biopsy specimens showed an interface dermatitis characterized by numerous dyskeratotic epidermal cells with lymphocytes in close apposition (satellite cell necrosis); that is, the epidermal changes were similar to those in acute graft-versus-host disease. Because recipients of bone marrow transplants frequently receive total body irradiation as part of their preparatory regimen, the ability of radiation to cause persistent epidermal changes similar to those in acute graft-versus-host disease could complicate the interpretation of posttransplant skin biopsy specimens.

  10. Comparing calvarial transport distraction with and without radiation and fat grafting.


    Yuhasz, Mikell M; Koch, Felix P; Kwiatkowski, Anna; Young, Calvin; Clune, James; Travieso, Rob; Wong, Kenneth; Van Houten, Joshua; Steinbacher, Derek M


    The purpose of this study is to: a) assess transport distraction to reconstruct cranial defects in radiated and non-radiated fields b) examine adipose grafting's effect on the bony regenerate and overlying wound, and c) elucidate sources of bone formation during transport distraction osteogenesis. Twenty-three male New Zealand white rabbits (3 months; 3.5 kg) were used, 10 non-irradiated and 13 irradiated (17 treatment, 6 control) with a one-time fraction of 35 Gy. A 16 × 16 mm defect was abutted by a 10 × 16 mm transport disc 5 weeks after irradiation, and 11 animals were fat grafted at the distraction site. Latency (1 day), distraction (1.5 mm/day), and consolidation (4 weeks) followed. Fluorochromes were injected subcutaneously and microCT, fluorescence, and histology assessed. In distracted animals without fat grafting, bone density measured 701.87 mgHA/ccm and 2271.95 mgHA/ccm in irradiated and non-irradiated animals. In distracted animals with fat grafting, bone density measured 703.23 mgHA/ccm and 2254.27 mgHA/ccm in irradiated and non-irradiated animals. Fluorescence revealed ossification emanating from the dura, periosteum, and transport segment with decreased formation in irradiated animals. Transport distraction is possible for cranial reconstruction in irradiated fields but short-term osseous fill is significantly diminished. Adipose grafting enhances wound healing in previously irradiated fields but does not enhance ossification. PMID:24864072

  11. [Evaluation of Radiation Dose during Stent-graft Treatment Using a Hybrid Operating Room System].


    Haga, Yoshihiro; Chida, Kouichi; Kaga, Yuji; Saitou, Kazuhisa; Arai, Takeshi; Suzuki, Shinichi; Iwaya, Yoshimi; Kumasaka, Eriko; Kataoka, Nozomi; Satou, Naoto; Abe, Mitsuya


    In recent years, aortic aneurysm treatment with stent graft grafting in the X-ray fluoroscopy is increasing. This is an endovascular therapy, because it is a treatment which includes the risk of radiation damage, having to deal with radiation damage, to know in advance is important. In this study, in order to grasp the trend of exposure stent graft implantation in a hybrid operating room (OR) system, focusing on clinical data (entrance skin dose and fluoroscopy time), was to count the total. In TEVAR and EVAR, fluoroscopy time became 13.40 ± 7.27 minutes, 23.67 ± 11.76 minutes, ESD became 0.87 ± 0.41 mGy, 1.11 ± 0.57 mGy. (fluoroscopy time of EVAR was 2.0 times than TEVAR. DAP of EVAR was 1.2 times than TEVAR.) When using the device, adapted lesions and usage are different. This means that care changes in exposure-related factors. In this study, exposure trends of the stent graft implantation was able to grasp. It can be a helpful way to reduce/optimize the radiation dose in a hybrid OR system. PMID:26685833

  12. Specialty polymeric membranes. 8: Separation of benzene from benzene/cyclohexane mixtures with nylon 6-graft-poly(butyl methacrylate) membranes

    SciTech Connect

    Yoshikawa, Masakazu; Tsubouchi, Keisuke; Kitao, Toshio


    A novel pervaporation membrane was prepared by radical graft polymerization of butyl methacrylate onto nylon 6. The permselectivity toward benzene was increased by the introduction of poly(butyl methacrylate) onto a nylon 6 membrane. From pervaporation and sorption experiments, it was shown that the introduction of poly(butyl methacrylate) onto a nylon 6 membrane leads to the enhancement of permselectivity toward benzene. The solubility data for benzene were described by a combination of simple sorption and specific sorption, while cyclohexane solubility was described by simple sorption.

  13. Synergistic effect on corrosion resistance of Phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA).


    Barthélémy, Bastien; Maheux, Simon; Devillers, Sébastien; Kanoufi, Frédéric; Combellas, Catherine; Delhalle, Joseph; Mekhalif, Zineb


    Phynox is of high interest for biomedical applications due to its biocompatibility and corrosion resistance. However, some Phynox applications require specific surface properties. These can be imparted with suitable surface functionalizations of its oxide layer. The present work investigates the surface-initiated atom transfer radical polymerization (ATRP) of 2-methacryloyoxyethyl phosphorylcholine (MPC), 2-hydroxyethyl methacrylate (HEMA), and ATRP copolymerization of (HEMA-co-MPC) (block and statistic copolymerization with different molar ratios) on grafted Phynox substrates modified with 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) as initiator. It is found that ATRP (co)polymerization of these monomers is feasible and forms hydrophilic layers, while improving the corrosion resistance of the system. PMID:24915233

  14. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone.


    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong


    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1kGy dose. PMID:27040205

  15. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods.


    Kaur, Inderjeet; Sharma, Neelam; Kumari, Vandna


    Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.80 × 10(-3) mol/L, [HNO3] = 112.68 × 10(-2) mol/L and [AN] = 114.49 × 10(-2) mol/L in 20 mL of water at 45 °C within 120 min while in case of gamma radiation method, maximum Pg (90.24%) was obtained at an optimum concentration of AN of 76.32 × 10(-2) mol/L using 10 mL of water at room temperature with total dose exposure of 3.456 kGy/h. The grafted fiber was characterized by FTIR, SEM, TGA and XRD studies. Swelling behavior of grafted rayon in different solvents such as water, methanol, ethanol, DMF and acetone was studied and compared with the unmodified rayon. Dyeing behavior of the grafted fiber was also investigated. PMID:25685464

  16. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods

    PubMed Central

    Kaur, Inderjeet; Sharma, Neelam; Kumari, Vandna


    Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.80 × 10−3 mol/L, [HNO3] = 112.68 × 10−2 mol/L and [AN] = 114.49 × 10−2 mol/L in 20 mL of water at 45 °C within 120 min while in case of gamma radiation method, maximum Pg (90.24%) was obtained at an optimum concentration of AN of 76.32 × 10−2 mol/L using 10 mL of water at room temperature with total dose exposure of 3.456 kGy/h. The grafted fiber was characterized by FTIR, SEM, TGA and XRD studies. Swelling behavior of grafted rayon in different solvents such as water, methanol, ethanol, DMF and acetone was studied and compared with the unmodified rayon. Dyeing behavior of the grafted fiber was also investigated. PMID:25685464

  17. Radiation-induced graft copolymer SBS-g-VP for biomaterial usage.


    Yang, J M; Hsiue, G H


    The grafting of 4-vinyl pyridine (VP) to styrene-butadienestyrene triblock copolymer (SBS) by radiation-induced graft copolymerization was studied. The cohesive properties such as cohesive energy (Ecoh), molar volume (V), solubility parameter (delta), molar molecular weight (WM), specific volume (Vg), and density (1/Vg) of SBS-g-VP graft copolymer were calculated according to the group contribution of Fedors. The morphology of SBS-g-VP was studied by optical polarizing microscopy. We also measured the glass transition temperature and the mechanical properties of SBS-g-VP graft copolymer. Contact angle and blood-clotting time experiments were also performed to evaluate the biocompatibility of SBS-g-VP. A second domain was found in the SBS-g-VP graft copolymer, which resulted in different properties between SBS-g-VP and SBS. The blood compatibility of SBS-g-VP as measured by the Lee-White clotting test was better than that of SBS and polystyrene. PMID:8731218

  18. Influence of Space Radiation on the Outgassing Rate of a Patterned Polymeric Composite in Vacuum

    SciTech Connect

    Khasanshin, R. H.; Timofeev, A. N.; Ivanov, M. F.


    Experimental results on outgassing rates of patterned polymeric composites preliminary subjected to separate and combined radiation have been analyzed and presented. Mathematical models describing the outgassing processes in these materials were used for interpretation of the experimental data. Numerical results found using the models are presented.

  19. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki


    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  20. Laser radiation in the treatment of prosthetic graft stenosis. A preliminary study of prosthesis damage by laser energy

    SciTech Connect

    Seeger, J.M.; Abela, G.S.; Klingman, N.


    Transluminal laser recanalization is potentially an important new treatment of anastomotic intimal hyperplasia. However, currently used grafts or sutures may be damaged by laser radiation at power and energy levels required for plaque removal. To investigate this problem, two commonly used grafts (Dacron and polytetrafluoroethylene (PTFE)) and two types of vascular suture (polypropylene and PTFE) were exposed to argon laser radiation in vitro. Dacron and PTFE grafts recovered from amputations were also studied to determine whether graft healing affected graft resistance to laser damage. Power and energy levels required to perforate atherosclerotic superficial femoral arteries were determined for comparison. PTFE grafts were significantly (1.5 to 7 times) more resistant to perforation by laser energy than atherosclerotic arteries under all conditions. In contrast, Dacron grafts perforated at power and energy levels one half to one third of that required for vaporization of atherosclerotic plaque. PTFE sutures remained intact at power and energy levels above the levels that perforated atherosclerotic arteries, whereas polypropylene sutures were destroyed by very low levels of power and energy (0.5 joules at 0.5 watts). Because of the variable levels of power and energy that damage different types of prosthetic grafts and sutures, laser angioplasty should only be investigated clinically as a therapy for anastomotic intimal hyperplasia when PTFE grafts and sutures are present.

  1. Synthesis and characterization of thermo- and pH- sensitive hydrogels based on Chitosan-grafted N-isopropylacrylamide via γ-radiation

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Zhang, Zheng Pu; Chuan Sun, Ping; Lin He, Bing; Xia Zhu, Xiao


    Thermo- and pH-sensitive hydrogels were prepared by graft copolymerization of chitosan (CS) and N-isopropylacrylamide via γ-radiation. The effects of monomer concentration and irradiation dose on grafting percentage and grafting efficiency were studied. The graft copolymers were characterized by 13C CP/MAS NMR and thermogravimetric analysis. The pH and thermosensitivity and swelling properties of the hydrogels were investigated. The results showed that the grafting percentage and grafting efficiency increased with the increase of monomer concentration and total irradiation dose. The highest grafting percentage is 620%, the lower critical solution temperature (LCST) of this hydrogel is about 28 °C.

  2. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.


    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit


    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ∼ 540.0mg/g and ∼ 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used. PMID:26256369

  3. Ultraviolet/Ozone as a Tool To Control Grafting Density in Surface-Initiated Controlled-Radical Polymerizations via Ablation of Bromine.


    Sheridan, Richard J; Orski, Sara V; Muramoto, Shin; Stafford, Christopher M; Beers, Kathryn L


    We used an ultraviolet-ozone (UVO) cleaner to create substrates for atom-transfer radical polymerization (ATRP) with varying surface initiator coverage. We collected complementary time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) measurements to investigate the precise chemical origin of the variation in grafting density. At short exposure times, the atomic composition underwent minor changes except for the relative amount of bromine. At longer UVO exposure times, there is clear evidence of exposure-dependent surface initiator oxidation. We interpret these data as evidence of a bromine ablation process within the UVO cleaner, with additional oxidative modification of the rest of the surface. We then used these substrates to create a series of poly(methyl methacrylate) (PMMA) brushes varying in grafting density, demonstrating the utility of this tool for the control of polymer brush density. The measured brush grafting densities were correlated with the bromine concentration measured by both ToF-SIMS and XPS. XPS and brush thicknesses correlated strongly, following an exponential decay with a half-life of 18 ± 1 s. PMID:27442615

  4. Influence of matrix porosity on the immobilization of penicillin acylase by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Carenza, M.; Lora, S.; Palma, G.; Boccù, E.; Largajolli, R.; Veronese, F. M.

    Penicillin acylase was immobilized by low temperature radiation-induced polymerization into polymer matrices obtained from monomers of different hydrophilicities, at various ratios of monomer to enzyme solution and at different polymerization conversions. It was found that the penicillin acylase retention (60-85% of the starting enzyme) is independent of the monomer used in thepolymerization, of the polymerization conversion and of the porosity of the polymer matrix. On the other hand, the penicillin acylase retention strongly depends on the presence in the irradiation mixture of the hydrophobic crosslinking agent, trimethylolpropane trimethacrylate, even in low amounts. The data suggest that the enzyme is bound to the polymer matrix by hydrophobic interactions through crosslinking agent molecules.

  5. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan


    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.

  6. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  7. Comparative study of grafting a polyampholyte in a fluoropolymer membrane by gamma radiation in one or two-steps

    NASA Astrophysics Data System (ADS)

    Estrada-Villegas, G. M.; Bucio, E.


    Binary graft copolymerization of pH-sensitive monomers (N,N-dimethylaminoethyl methacrylate, (DMAEMA) and acrylic acid (AAc) onto polyvinylidene fluoride (PVDF) membranes with pore sizes of 0.22 and 0.45 μm was conducted by one and two-steps grafting using a 60Co gamma radiation source (Gammabeam 651 PT). The DMAEMA and AAc monomers were grafted by an oxidative pre-irradiation method in one-step grafting to obtain PDVF-g-(DMAEMA-co-AAc), and both direct irradiation and an oxidative pre-irradiation method were used to obtain the graft copolymer (PVDF-g-DMAEMA)-g-AAc in two-steps grafting. The optimal conditions, such as reaction time, temperature, solvent, monomer concentration and dose, were studied, the aim of this work was to investigate how these factors affecting the graft percent of DMAEMA and AAc prepared in one and two-steps grafting and their structural differences and also characterize the grafting membrane through analytical techniques.

  8. Radiation grafted and sulfonated (FEP-g-polysterene) - An alternative to perfluorinated membranes for PEM fuel cells?

    NASA Astrophysics Data System (ADS)

    Buechi, F. N.; Gupta, B.; Rouilly, M.; Hauser, P. C.; Chapiro, A.; Scherer, G. G.

    Partially fluorinated proton exchange membranes (PEMs) were synthesized for fuel cell applications by simultaneous radiation grafting of styrene on FEP films followed by sulfonation. Properties of the synthesized membranes can be tailored by varying the degree of grafting and crosslinking. The performance of these membranes was tested in H2/O2 fuel cells. Long time testing showed steady performance for high grafted membranes over periods of more than 300 h at a cell temperature of 60 C. Low grafted membranes and the Morgane CDS membrane showed considerable decay of cell power on the same time scale. A fast degradation of all membranes occurred at a cell temperature of 80 C. It is noted that grafting in film form makes this process a potentially cheap and easy technique for the preparation of solid polymer fuel cell electrolytes.

  9. Fundamental investigation of ultraviolet radiation effects in polymeric film-forming materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.; Llewellen, P.; Gilligan, J.


    A literature search from 1958 to present was conducted on the effect of ultraviolet radiation on polymeric materials, with particular emphasis on vacuum photolysis, mechanisms of degradation, and energy transfer phenomena. The literature from 1958 to 1968 was searched manually, while the literature from 1968 to present was searched by using a computerized keyword system. The primary objective was to provide the necessary background information for the design of new or modified materials with improved stability to the vacuum-radiation environment of space.

  10. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    NASA Astrophysics Data System (ADS)

    Ping, Xiang; Wang, Mozhen; Ge, Xuewu


    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and 1H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature ( Tg) and cold-crystallization temperature ( Tcc) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  11. Analysis of Mass Loss of a Polymeric Composite under Space Radiations

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid


    Polymeric materials find ever-widening application in space technique. This is tied with the simplicity of producing the polymeric-based composites with the predetermined set of properties. However, these materials in space become the sources of volatile products that increase density of spacecraft outer atmosphere that undermines on serviceability of the on-board equipment. Therefore, study of mass loss of spacecraft materials in service conditions is a vital task. Polymeric composites are often used as thermal control coatings (TCC), which are subjected to maximum radiation exposure in service. It is known that irradiation of a PC is accompanied by intense gas formation but evolution of volatile products (VP) through the material-vacuum surface is limited by diffusion. Well-developed surface together with little thickness of a TCC film facilitate migration of radiolysis products to free coating surface. In this case outgassing and destruction of material augment permeability of the film, accelerate migration processes and make them easier. This work is devoted to studying action of separate (electron, proton, and electromagnetic), paired, and the whole set of radiations on mass loss of a pattern material in vacuum. The primary focus was on studying and interpretation of synergistic effects appearing in the course of mass loss of the pattern materials EKOM-1 and EKOM-2 polymeric composites, the widely used spacecraft TCC. Irradiation was made by 20-50-keV electrons and 20-keV protons and electromagnetic radiation in vacuum chamber of the UV-1/2 test facility. It was found that parameters characterizing the synergistic effects of mass loss of the material for fixed conditions of electron-proton and combined radiations are the functions of irradiation time. To interpret the experimental data, a physical-mathematical model of mass loss of polymeric materials in vacuum was proposed. The obtained data can be explained by diffusion fluxes associated with the gradient of

  12. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.


    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  13. Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP)

    PubMed Central


    Poly(methyl methacrylate) in the brush form is grown from the surface of magnetite nanoparticles by ambient temperature atom transfer radical polymerization (ATATRP) using a phosphonic acid based initiator. The surface initiator was prepared by the reaction of ethylene glycol with 2-bromoisobutyrl bromide, followed by the reaction with phosphorus oxychloride and hydrolysis. This initiator is anchored to magnetite nanoparticles via physisorption. The ATATRP of methyl methacrylate was carried out in the presence of CuBr/PMDETA complex, without a sacrificial initiator, and the grafting density is found to be as high as 0.90 molecules/nm2. The organic–inorganic hybrid material thus prepared shows exceptional stability in organic solvents unlike unfunctionalized magnetite nanoparticles which tend to flocculate. The polymer brushes of various number average molecular weights were prepared and the molecular weight was determined using size exclusion chromatography, after degrafting the polymer from the magnetite core. Thermogravimetric analysis, X-ray photoelectron spectra and diffused reflection FT-IR were used to confirm the grafting reaction.

  14. Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rafiqul; Bach, Long Giang; Lim, Kwon Taek


    A fluorescent nanohybrid complex comprising of halloysite nanotubes (HNTs), poly(2-hydroxyethyl methacrylate) (PHEMA), and europium ions (Eu3+) was synthesized by the combination of surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and coordination chemistry. Initially, PHEMA was grafted from the HNTs by SI-RAFT and then reacted with succinic anhydride to provide carboxyl acid groups on the external layers of HNTs-g-PHEMA nanohybrids. The subsequent coordination of the nanohybrids with Eu3+ ions afforded photoluminescent Eu3+ tagged HNTs-g-PHEMA nanohybrid complexes (HNTs-g-PHEMA-Eu3+). The structure, morphology, and fluorescence properties of the Eu3+ coordinated nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR, XPS, and EDS analyses suggested the formation of the HNTs-g-PHEMA-Eu3+ nanohybrids. FE-SEM images indicated the immobilization of polymer layers on HNTs. TGA scans further demonstrated the grafting of PHEMA onto HNTs surface. The optical properties of HNTs-g-PHEMA-Eu3+ nanohybrid complexes were investigated by photoluminescence spectroscopy.

  15. Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite.


    Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi


    For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. PMID:27516276

  16. Role of Polymeric Endosomolytic Agents in Gene Transfection: A Comparative Study of Poly(l-lysine) Grafted with Monomeric l-Histidine Analogue and Poly(l-histidine)

    PubMed Central


    Endosomal entrapment is one of the main barriers that must be overcome for efficient gene expression along with cell internalization, DNA release, and nuclear import. Introducing pH-sensitive ionizable groups into the polycationic polymers to increase gene transfer efficiency has proven to be a useful method; however, a comparative study of introducing equal numbers of ionizable groups in both polymer and monomer forms, has not been reported. In this study, we prepared two types of histidine-grafted poly(l-lysine) (PLL), a stacking form of poly(l-histidine) (PLL-g-PHis) and a mono- l-histidine (PLL-g-mHis) with the same number of imidazole groups. These two types of histidine-grafted PLL, PLL-g-PHis and PLL-g-mHis, showed profound differences in hemolytic activity, cellular uptake, internalization, and transfection efficiency. Cy3-labeled PLL-g-PHis showed strong fluorescence in the nucleus after internalization, and high hemolytic activity upon pH changes was also observed from PLL-g-PHis. The arrangement of imidazole groups from PHis also provided higher gene expression than mHis due to its ability to escape the endosome. mHis or PHis grafting reduced the cytotoxicity of PLL and changed the rate of cellular uptake by changing the quantity of free ε-amines available for gene condensation. The subcellular localization of PLL-g-PHis/pDNA measured by YOYO1-pDNA intensity was highest inside the nucleus, while the lysotracker, which stains the acidic compartments was lowest among these polymers. Thus, the polymeric histidine arrangement demonstrate the ability to escape the endosome and trigger rapid release of polyplexes into the cytosol, resulting in a greater amount of pDNA available for translocation to the nucleus and enhanced gene expression. PMID:25144273

  17. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.


    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  18. Cell culture on polymers prepared by radiation-induced polymerization of various glass-forming monomers.


    Yoshii, F; Kaetsu, I


    The growth of cells on polymers prepared by the radiation polymerization of monomethacrylate and dimethacrylate was investigated. Cell growth was affected greatly by such properties of the polymers as water content, wettability, and porosity. Growth was promoted remarkably by rinsing the polymers with warm water at 60-70 degrees C and by irradiation of polymers with an electron beam. Cell growth decreased with increasing oxyethylene length (n) in the polymerized dimethacrylate of same series, CH2C(CH3)CO(OCH2CH2)nOCOC(CH3)CH2. A decrease in the hydrophilicity of the polymer increased cell growth rate. Formation of pore structures in the polymer films also increased the cell growth. PMID:6679189

  19. New Advanced Fabrication Technique for Millimeter-Wave Planar Components based on Fluororesin Substrates using Graft Polymerization

    NASA Astrophysics Data System (ADS)

    Ito, Naoki; Mase, Atsushi; Kogi, Yuichiro; Seko, Noriaki; Tamada, Masao; Sakata, Eiji


    As the importance of advanced millimeter-wave diagnostics increases, a reliable and accurate fabrication technique for high-performance devices and relevant components is essential. We describe a new improved fabrication technique for millimeter-wave planar components, such as antennas using low-loss fluororesin substrates. A fragile adhesion between the copper foil and fluororesin substrate and the accuracy of the device pattern using conventional fabrication techniques have been prime suspects in the failure of the devices. In order to solve these problems, surface treatment of fluororesin films and a fabrication method using electro-fine-forming (EF2) are proposed. The peel adhesion strength between the metal and fluororesin films and the value of the dielectric constant of the fluororesin films before and after grafting are reported. A prototype antenna using conventional fluororesin substrates and grafted-poly(tetrafluoroethylene) (PTFE) films produced using the EF2 fabrication technique are also introduced.

  20. Fractional epidermal grafting in combination with laser therapy as a novel approach in treating radiation dermatitis.


    Tran, Thanh-Nga Trinh; Hoang, Minh Van; Phan, Quynh-Anh Ngoc; Phung, Thuy L; Purschke, Martin; Ferinelli, William A; Sabir, Sameer; Ziegler, Andrew; Nelson, Stuart; Anderson, R Rox


    Radiation injury to the skin is a major source of dysfunction, disfigurement, and complications for thousands of patients undergoing adjunctive treatment for internal cancers. Despite the great potential for affecting quality of life, radiation injury has received little attention from dermatologists and is primarily being managed by radiation oncologists. During our volunteer work in Vietnam, we encountered numerous children with significant scarring and depigmentation of skin from the outdated use of radioactive phosphorus P32 in the treatment of hemangiomas. This dangerous practice has left thousands of children with significant fibrosis and disfigurement. Currently, there is no treatment for radiation dermatitis. Here, we report a case series using the combination of laser treatment, including pulsed-dye laser, fractional CO2 laser, and epidermal grafting to improve the appearance and function of the radiation scars in these young patients. We hope that by improving the appearance and function of these scars, we can improve the quality of life for these young patients and potentially open up a new avenue of treatment for cancer patients affected with chronic radiation dermatitis, potentially improving their range of motion, cosmesis, and reducing their risk of secondary skin malignancies. PMID:25922957

  1. Study of mass loss of spacecraft polymeric thermal control coatings under electron and proton radiations

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid; Novikov, Lev; Galygin, Alexander

    Polymeric composites have a number of properties that give a possibility to apply them as spacecraft external coatings. In space environment, however, such materials become one of the main sources of volatile products that form the outer spacecraft atmosphere and are able to con-dense on contamination-sensitive surfaces of onboard equipment. Thermal control coatings oc-cupy a considerable part of a satellite surface and are mostly subjected to ionizing radiations ac-companying by outgassing. The main stages of the process are the following: formation of vola-tile radiolysis products, diffusion of the products to free material surface, and desorption. Radia-tion-induced destruction and outgassing of material increase its permeability and accelerate mi-gration processes in it. Experimental data of effect of radiation on mass loss of polymeric composites used as thermal control coatings was analyzed and interpreted in the work. As a particular case, it was shown that mass loss of a polymeric composite irradiated by protons is greater than by electrons if energies and flux densities of the particles are the same. It can be explained that volatile products, in the first case, generate within a thin near-surface layer of material which permeability increases together with the absorbed dose, and quickly escape in vacuum. In the second case, a bulk of volatile products emerges far enough from the free surface of material which permeability increases slower as compared with proton radiation. Therefore, migration time of volatile products to the free surface grows and quantity of chemical reactions which they are involved in increases. To analyze and interpret experimental data, a mathematical model describing mass loss of polymeric composites subject to its growth of permeability under radiation is proposed. Based upon analysis of experiments and numerical simulation results, thresholds of fluen-cies and flux densities of electron and proton were determined. Exceeding these

  2. Characterization and fuel cell testing of radiation-grafted PSI membranes

    SciTech Connect

    Brack, H.P.; Koebel, M.M.; Tsukada, A.; Huslage, J.; Buechi, F.; Geiger, F.; Rota, M.; Scherer, G.G.


    The authors have demonstrated earlier the useful performance of PSI radiation-grafted membranes in terms of the current-voltage characteristics of 30 cm{sup 2} active area fuel cells containing these membranes and their long-term testing over 6,000 h at 60 C. They report here on testing of PSI radiation-grafted membranes in these fuel cells at 80 C and in short stacks comprised of two or four 100 cm{sup 2} active area cells. The in-situ degradation of membranes has been investigated by characterizing membranes both before testing in fuel cells and post-mortem after testing in fuel cells. Characterization was accomplished by means of ion-exchange capacity and infrared and Raman spectroscopic measurements. In addition, a rapid screening method for ex-situ testing of the oxidative stability of proton-conducting membranes was developed in this work. Comparison of the initial screening test results concerning the oxidative stability of some perfluorinated, partially-fluorinated, and non-fluorinated membranes compare well qualitatively with the relative stability of these same membranes during their long-term testing in fuel cells.

  3. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.


    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to

  4. Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads.


    D'Souza, S F; Sar, Pinaki; Kazy, Sufia K; Kubal, B S


    A Pseudomonas strain identified as a potent biosorbent of uranium (U) and thorium was immobilized in radiation-induced polyacrylamide matrix for its application in radionuclide containing wastewater treatment. The immobilized biomass exhibited a high U sorption of 202 mg g(-1) dry wt. with its optimum at pH 5.0. A good fit of experimental data to the Freundlich model suggested multilayered uranium binding with an affinity distribution among biomass metal binding sites. Scanning electron microscopy revealed a highly porous nature of the radiation-polymerized beads with bacterial cells mostly entrapped on pore walls. Energy dispersive X-ray analysis (EDXA) coupled with SEM ascertained the accumulation of uranium by the immobilized biomass without any physical damage to the cells. A significant (90%) part of biosorbed uranium was recovered using sodium bicarbonate with the immobilized biomass maintaining their U resorption capacity for multiple sorption-desorption cycles. Uranium loading and elution behavior of immobilized biomass evaluated within a continuous up-flow packed bed columnar reactor showed its effectiveness in removing uranium from low concentration (50 mg U L(-1)) followed by its recovery resulting in a 4-5-fold waste volume reduction. The data suggested the suitability of radiation polymerization in obtaining bacterial beads for metal removal and also the potential of Pseudomonas biomass in treatment of radionuclide containing waste streams. PMID:16484078

  5. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.


    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young


    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs. PMID:25420910

  6. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Xin, Lu Zhao; Carenza, Mario; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78°C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizing mixture.

  7. Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis.


    Albert, Albert; Lochner, Tim; Schmidt, Thomas J; Gubler, L


    Radiation-grafted membranes are a promising alternative to commercial membranes for water electrolyzers, since they exhibit lower hydrogen crossover and area resistance, better mechanical properties, and are of potentially lower cost than perfluoroalkylsulfonic acid membranes, such as Nafion. Stability is an important factor in view of the expected lifetime of 40 000 h or more of an electrolyzer. In this study, combinations of styrene (St), α-methylstyrene (AMS), acrylonitrile (AN), and 1,3-diisopropenylbenzene (DiPB) are cografted into 50 μm preirradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) base film, followed by sulfonation to produce radiation-grafted membranes. The stability of the membranes with different monomer combinations is compared under an accelerated stress test (AST), and the degradation mechanisms are investigated. To mimic the conditions in an electrolyzer, in which the membrane is always in contact with liquid water at elevated temperature, the membranes are immersed in water for 5 days at 90 °C, so-called thermal stress test (TST). In addition to testing in air atmosphere tests are also carried out under argon to investigate the effect of the absence of oxygen. The water is analyzed with UV-vis spectroscopy and ion chromatography. The ion exchange capacity (IEC), swelling degree, and Fourier transform infrared (FTIR) spectra of the membranes are compared before and after the test. Furthermore, energy-dispersive X-ray (EDX) spectroscopic analysis of the membrane cross-section is performed. Finally, the influence of the TST to the membrane area resistance and hydrogen crossover is measured. The stability increases along the sequence St/AN, St/AN/DiPB, AMS/AN, and AMS/AN/DiPB grafted membrane. The degradation at the weak-link, oxygen-induced degradation, and hydrothermal degradation are proposed in addition to the "swelling-induced detachment" reported in the literature. By mitigating the possible paths of degradation, the AMS

  8. PDMS-Glass bonding using grafted polymeric adhesive - Alternative process flow for compatibility with patterned biological molecules

    PubMed Central

    Beh, Cyrus Weijie; Zhou, Weizhuang


    We report a novel modification of silicone elastomer, polydimethylsiloxane (PDMS) with a polymer graft that allows interfacial bonding between elastomer and glass substrate to be performed without exposure of said substrate to harsh treatment conditions like oxygen plasma. Organic molecules can thus be patterned within microfluidic channels and still remain functional post-bonding. In addition, after polymer grafting the PDMS can be stored in a desiccator for at least 40 days, and activated upon exposure to acidic buffer for bonding. The bonded devices remain fully bonded in excess of 80 psi driving pressure, with no signs of compromise to the bond integrity. Finally, we demonstrate the compatibility of our method with biological molecules using a proof-of-concept DNA sensing device, in which fluorescently-labelled DNA targets are successfully captured by a patterned probe in a device sealed using our method, while the pattern on a plasma-treated device was completely destroyed. Therefore, this method provides a much-needed alternative bonding process for incorporation of biological molecules in microfluidic devices. PMID:22858861

  9. Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking

    SciTech Connect

    Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi; Safranj, Agneza; Yoshida, Masaru; Omichi, Hideki


    Poly(N-isopropylacrylamide) [poly(NIPAAm)] shows a typical thermal reversibility of phase transition in aqueous solutions. That is, it precipitates from solution above a critical temperature called the lower critical solution temperature (LCST) and dissolves below this temperature. When it is cross-linked, the obtained hydrogel collapses above LCST, while it swells and expands below LCST. This hydrogel has received much attention recently and has been used as a model system to demonstrate the validity of theories describing the coil-globule transition, swelling of networks, and folding and unfolding of biopolymers. It has also been proposed for various applications ranging from controlled drug delivery to solute separation. Poly(NIPAAm) hydrogel is usually synthesized at room temperature from an aqueous solution of the monomer by using a redox initiator composed of ammonium persulfate and N,N,N{prime},N{prime}-tetramethylethylenediamine in the presence of N,N{prime}-methylenebisacrylamide as a cross-linker. Since the LCST of poly(NIPAAm) is around 32 C, the polymerization at room temperature proceeds in a homogeneous solution. Recently, poly(NIPAAm) hydrogels were synthesized by starting the polymerization below the LCST and then elevating the temperature above it, by which method macroporous gels with fast temperature response were obtained. The idea is to apply a radiation--induced polymerization method for the synthesis of poly(NIPAAm) hydrogels. This method offers unique advantages for synthesis: it is a simple and additive-free process at all temperatures, and the degree of cross-linking can be easily controlled by irradiation conditions. Therefore, radiation methods are especially attractive for the synthesis of hydrogels with potential biomedical application where the residual chemical initiators may contaminate the product. It is possible to combine into one step the synthesis and sterilization of the product, and it is economically competitive.

  10. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Ichikawa, Tsuneki


    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as MnR1 COOCH (C6H5)R2Mn +e- →MnR1COO- + rad CH (C6H5)R2Mn . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  11. Radiation-cured polymeric nanocomposites of enhanced surface-mechanical properties

    NASA Astrophysics Data System (ADS)

    Gläsel, H.-J.; Bauer, F.; Hartmann, E.; Mehnert, R.; Möbus, H.; Ptatschek, V.


    Though polymerisation-active metallo-organic nanoparticles have proven exceedingly efficient in modifying the viscoelastic properties of UV and EB crosslinked polymeric nanocomposites, they are obviously unsuitable for practical applications. Rather, adequate polymerisation-activity was imparted on inorganic nanoparticles, e.g. silica and alumina, by grafting onto them functionalised trialkoxysilanes, yielding covalent-bonded, hydrolysis-stable surface compounds. Extensive spectroscopic studies of their siloxane structure led to the idea of a core-shell nanocapsule. The polysiloxane shell formed around the inorganic nanoparticle is not only of major importance to the rheological behaviour of the nanodispersion but, moreover, also admits a sufficiently high nanofiller content for a pronounced reinforcement of the nanocomposite coating. In recent work, organophilation of the inorganic nanoparticles could be accomplished by just applying adsorptive means, thus evading the formation of the precarious alcohols and alkyl acrylates. In the event, round milled corundum micro-particles turned out to be efficient synergists in further improving the respective coatings.

  12. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization.


    Al Zaki, Ajlan; Joh, Daniel; Cheng, Zhiliang; De Barros, André Luís Branco; Kao, Gary; Dorsey, Jay; Tsourkas, Andrew


    Gold nanoparticles (AuNPs) have generated interest as both imaging and therapeutic agents. AuNPs are attractive for imaging applications since they are nontoxic and provide nearly three times greater X-ray attenuation per unit weight than iodine. As therapeutic agents, AuNPs can sensitize tumor cells to ionizing radiation. To create a nanoplatform that could simultaneously exhibit long circulation times, achieve appreciable tumor accumulation, generate computed tomography (CT) image contrast, and serve as a radiosensitizer, gold-loaded polymeric micelles (GPMs) were prepared. Specifically, 1.9 nm AuNPs were encapsulated within the hydrophobic core of micelles formed with the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ε-capralactone). GPMs were produced with low polydispersity and mean hydrodynamic diameters ranging from 25 to 150 nm. Following intravenous injection, GPMs provided blood pool contrast for up to 24 h and improved the delineation of tumor margins via CT. Thus, GPM-enhanced CT imaging was used to guide radiation therapy delivered via a small animal radiation research platform. In combination with the radiosensitizing capabilities of gold, tumor-bearing mice exhibited a 1.7-fold improvement in the median survival time, compared with mice receiving radiation alone. It is envisioned that translation of these capabilities to human cancer patients could guide and enhance the efficacy of radiation therapy. PMID:24377302

  13. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Pasanphan, Wanvimol; Rattanawongwiboon, Thitirat; Rimdusit, Pakjira; Piroonpan, Thananchai


    Poly(ethylene glycol) monomethacrylate-grafted-deoxycholate chitosan nanoparticles (PEGMA-g-DCCSNPs) were successfully prepared by radiation-induced graft copolymerization. The hydrophilic poly(ethylene glycol) monomethacrylate was grafted onto deoxycholate-chitosan in an aqueous system. The radiation-absorbed dose is an important parameter on degree of grafting, shell thickness and particle size of PEGMA-g-DCCSNPs. Owing to their amphiphilic architecture, PEGMA-g-DCCSNPs self-assembled into spherical core-shell nanoparticles in aqueous media. The particle size of PEGMA-g-DCCSNPs measured by TEM varied in the range of 70-130 nm depending on the degree of grafting as well as the irradiation dose. Berberine (BBR) as a model drug was encapsulated into the PEGMA-g-DCCSNPs. Drug release study revealed that the BBR drug was slowly released from PEGMA-g-DCCSNPs at a mostly constant rate of 10-20% in PBS buffer (pH 7.4) at 37 °C over a period of 23 days.

  14. Preparation of thermosensitive membranes by radiation grafting of acrylic acid/ N-isopropyl acrylamide binary mixture on PET fabric

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Mishra, Swaiti; Saxena, Shalini


    Thermosensitive membranes were prepared by radiation-induced graft copolymerization of monomers on PET fabrics. A binary mixture of N-isopropyl acrylamide (NIPAAm) and acrylic acid (AA) was grafted on polyester fabric as a base material to introduce thermosensitive poly( N-isopropyl acrylamide) pendant chains having LCST slightly higher than 37 °C in the membrane. The influence of ferrous sulfate, radiation dose and monomer composition on the degree of grafting was studied. The structure of the grafted fabric was characterized by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The thermosensitive nature of the fabric was monitored by swelling at different temperatures. The graft copolymerization of AA with NIPAAm enhanced the LCST of the resultant membrane to ˜37 °C. The moisture vapor transmission rate (MVTR) and air permeability of the fabric decreased slightly, may be due to the slight blocking of the fabric pores. The immobilization of tetracycline hydrochloride as the model drug and its release characteristics at different temperatures were monitored.

  15. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.


    Cai, Xianmei; Yuan, Jiang; Chen, Shuangchun; Li, Pengfei; Li, Li; Shen, Jian


    Poly (ethylene terephthalate) (PET) has been widely adopted as a scaffold biomaterial, but further hemocompatibility improvement is still needed for wide biomedical applications. Inspired by the composition of adhesive proteins in mussels, we propose to use self-polymerized dopamine to form a surface-adherent polydopamine layer onto PET sheet, followed by Michael addition with N,N-dimethylethylenediamine (DMDA) to build tertiary amine, and final zwitterions(sulfobetaine and carboxybetaine) construction through ring-opening reaction. Physicochemical properties of substrates were demonstrated by water contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The hemocompatibility was evaluated by platelet adhesion, hemolytic, and protein adsorption. The results showed that the zwitterions immobilized PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion as well as nonhemolytic. The zwitterions with desirable hemocompatibility can be readily tailored to catheter for various biomedical applications. PMID:24433885

  16. Nylon 6 water-permeable membranes prepared by electron beam radiation-induced graft copolymerization

    SciTech Connect

    Harugy, Y.; Rajbenbach, A.L.


    Nylon 6 films, 25 thick, were grafted with polar monomers in aqueous solution following preirradiation with a 550-kV electron beam accelerator. The graft yield rose linearly with grafting period up to 100% graft and leveled off at a graft yield above 150%. At 100 to 200% graft of several acrylic acid derivatives onto the nylon 6 films, water permeation rates comparable to those of PVA and cellophane films were observed. These high water permeation rates of the grafted nylon films were considered as an indication that some of the acrylate copolymers penetrated throughout the matrix of the host polymer. The highest rates of water permeability were observed in nylon acrylamide grafts.

  17. Graft polymerization of wood sawdust and peat with ethylene carbonate. A novel method for the preparation of supports with enhanced mechanical properties to be used in biofiltration of organic vapors.


    Hernández-Meléndez, O; Peydecastaing, J; Bárzana, E; Vaca-Garcia, C; Hernández-Luna, M; Borredon, M E


    The graft polymerization reaction between ethylene carbonate (EC) and scots pine sawdust (SPS) or peat moss (PM) offers a solvent-free approach to the simple and inexpensive aliphatic derivatization of these lignocellulosic fibers. This reaction was studied with liquid or vapor EC phases in three different reactor configurations: batch stirred (BSR), semi-continuous stirred (SSR) and continuous tubular in the gas phase (CVTR). The use of a vapor phase allowed a satisfactory grafting yield and minimal production of non-grafted polyol by-products. The crosslinking agent 4,4'-methylenebis(phenylisocyanate) (MDI) achieved superior characteristics to form shaped tablets resistant to water disaggregation, a high water retention capacity and high compression strength, characteristics that conventional organic supports like PM or PM-polyurethane foam mixtures used in biofiltration of waste gases do not completely possess. PMID:18757197

  18. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine.


    Zhao, Lijuan; Zhao, Faqiong; Zeng, Baizhao


    A novel brucine imprinted polymer was prepared on multi-walled carbon nanotubes by reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization. The polymer was further grafted with hydrophilic poly(glycerol monomethacrylate) brushes to improve its water-compatibility. The obtained molecularly imprinted material showed enhanced accessibility to brucine and improved selective recognition property in water medium. When the material was supported on an ionic liquid functionalized graphene coated glassy carbon electrode for the electrochemical determination of brucine, the resulting electrochemical sensor presented good analytical performance. Under the optimized conditions, the peak current was linear to brucine concentration in the ranges of 0.006-0.6 μM and 0.6-5.0 μM with sensitivities of 15.3 μA/μMmm(2) and 5.4 μA/μM mm(2), respectively; the detection limit was 2 nM (S/N=3). The sensor was successfully applied to the determination of brucine in practical samples and the recovery for the standards added was 94-104%. PMID:24769450

  19. Robust Thick Polymer Brushes Grafted from Gold Surfaces Using Bidentate Thiol-Based Atom-Transfer Radical Polymerization Initiators.


    Park, Chul Soon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall


    A new bromoisobutyrate-terminated alkanethiol, 16-(3,5-bis(mercaptomethyl)phenoxy)hexadecyl 2-bromo-2-methylpropanoate (BMTBM), was designed as a bidentate adsorbate to form thermally stable bromoisobutyrate-terminated self-assembled monolayers (SAMs) on flat gold surfaces to conduct atom-transfer radical polymerizations (ATRPs). The monolayers derived from BMTBM were characterized by ellipsometry, X-ray photoelectron spectroscopy (XPS), and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and compared to the monolayers formed from 16-mercaptohexadecyl 2-bromo-2-methylpropanoate (MBM), 16-(3-(mercaptomethyl)phenoxy)hexadecyl 2-bromo-2-methyl-propanoate (MTBM), and octadecanethiol (C18SH). In this study, although the monolayer derived from BMTBM was less densely packed than those derived from MBM and MTBM, the bidentate adsorbates demonstrated much higher thermal stability in solution-phase thermal desorption tests, owing to the "chelate effect". The enhanced stability of the BMTBM SAMs ensured the development of thick brushes of poly(methyl methacrylate) and polystyrene at elevated temperatures (60, 90, 105, and 120 °C). In contrast, SAMs derived from MBM and MTBM failed to grow polymer brushes at temperatures above 100 °C. PMID:26841087

  20. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.


    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  1. Radiolytic method of preparation of semiconductor assemblies supported on polymeric membranes

    NASA Astrophysics Data System (ADS)

    Haruvy, Y.; Gratzel, M.; Rajbenbach, L. A.

    Radiation induced grafting of hydrophilic acrylic monomers onto polymeric films and fabric has been employed to prepare supports for catalytic assemblies, which are highly permeable to water and low molecular weight solutes. Transition-metal-oxide semiconductor clusters embedded within the grafted membranes were formed by swelling the membranes with a solution of metal alkoxides followed by gradual hydrolysis. Photolytic methods have been employed to form Pt° clusters onto the semiconductor agregates. Kinetic aspects of the radiation induced grafting of the polymeric supports and the mechanistic features of the preparation of polymer-anchored TiO 2 clusters loaded with Pt° are described. The photocatalytic effectiveness of the TiO 2-Pt assemblies embedded in recoverable polymeric grids was demonstrated in hydrogen generation from aqueous solution and in the degradation of environmental pollutants.

  2. Radiation graft copolymerization of butyl methacrylate and acrylamide onto low density polyethylene and polypropylene films, and its application in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Abdel Ghaffar, A. M.; El-Arnaouty, M. B.; Aboulfotouh, Maysara E.; Taher, N. H.; Taha, Ahmed A.


    Butyl methacrylate and acrylamide (BMA/AAm) comonomers were grafted onto low-density polyethylene (LDPE) and polypropylene (PP) films using the mutual gamma radiation grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that using dimethyl formamide as a solvent enhanced the copolymerization process. The grafting yield increases as the comonomer concentration increases up to 60%. Also it was found that the degree of grafting of BMA/AAm onto both LDPE and PP films increases as the AAm content increases till an optimum value at 50:50 wt%. The grafting yield of the comonomers was found to increase with increase in the radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that of polypropylene (PP) films at the same conditions. Some selected properties of the graft copolymers, such as water uptake and thermal properties, were determined using thermogravimetric analysis. The morphology and structure of the grafted films were investigated using scanning electron microscopy, infra-red, and X-ray diffraction. Improvement in such properties of the prepared copolymers was observed which offers possible uses in some practical applications such as the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer followed the order Cu2+>Co2+>Ni2+ ions.

  3. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna; Muñoz, Rodrigo Alonso Esparza


    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted.

  4. Physico-chemical aspects of the drugs radiation sterilization in commercial packing (applied scientific problems of radiation pharmaceutical chemistry)

    SciTech Connect

    Safarov, S.A.


    The results of studies on the simultaneous radiosterilization of direct and bifurcational trachea prostheses made of silicon-organic rubber of soft elastic consistency, with polyethylenterephthalate and polyamid cuffs, and radiation chemical grafting of polymeric layer and linking with functional groups of the graft sulfanilamide and antibiotics layer are discussed. Radiopharmaceuticals are also described.

  5. Semi-interpenetrating polymer networks of poly(3-hydroxybutyrate) prepared by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Innocentini Mei, Lúcia H.; Lora, Silvano; Carenza, Mario


    Semi-interpenetrating polymer networks (IPNs) based on bacterial poly(3-hydroxy butyrate) with a hydrophilic monomer at different compositions were prepared by radiation-induced polymerization using γ-rays from a 60Co source with a total dose of 10-100 kGy. The swelling behaviour was determined by water content at equilibrium, while thermal properties and crystallinity were studied by differential scanning calorimetry. Extraction of the soluble part of PHB from the films at low and high temperature with water or chloroform as well as FTIR data indicate the occurrence of the crosslinking reaction in the hydrogels. The results show a water uptake increasing with the hydrophilic component until 25%.

  6. Characterization of Network Structure of Polyacrylamide Based Hydrogels Prepared By Radiation Induced Polymerization

    SciTech Connect

    Mahmudi, Naim; Sen, Murat; Gueven, Olgun; Rendevski, Stojan


    In this study network structure of polyacrylamide based hydrogels prepared by radiation induced polymerization has been investigated. Polyacrylamide based hydrogels in the rod form were prepared by copolymerization of acrylamide(AAm) with hydroxyl ethyl methacrylate(HEMA) and methyl acrylamide(MAAm) in the presence of cross-linking agent and water by gamma rays at ambient temperature. Molecular weight between cross-links and effective cross-link density of hydrogels were calculated from swelling as well as shear modulus data obtained from compression tests. The results have shown that simple compression analyses can be used for the determination of effective cross-link density of hydrogels without any need to some polymer-solvent based parameters as in the case of swelling based determinations. Diffusion of water into hydrogels was examined by analyzing water absorption kinetics and the effect of network, structure on the diffusion type and coefficient was discussed.

  7. Effects of γ-ray radiation grafting on aramid fibers and its composites

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Huang, Y. D.; Liu, L.; Cai, K. L.


    Armos fiber was modified by Co 60 γ-ray radiation in the different concentrations' mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers' surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers' surface was also enhanced by the treatment. The conclusion that γ-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.

  8. Application of radiation grafted media for lectin affinity separation and urease immobilization: A novel approach to tumor therapy and renal disease diagnosis

    NASA Astrophysics Data System (ADS)

    Müller-Schulte, D.; Daschek, W.


    Carriers modified by synergistic radiation grafting are used as affinity media for the separation of a lectin from a mistletoe extract. The grafted supports show distinctly superior properties when compared to conventional affinity media. The application of these carriers as urease immobilization support incorporated in a conductimetric bioreactor for urea analysis as potential diagnostic device in renal diseases is also described.

  9. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.


    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao


    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  10. Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT).


    Wang, Panpan; Ma, Jun; Wang, Zhenghui; Shi, Fengmei; Liu, Qianliang


    A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via "grafting from" polymerization in the presence of H(2)O(2)-NH(3)·H(2)O as the initiator, and then the nanocomposite membrane of poly(vinylidene fluoride) (PVDF) and PVP-g-MMT was fabricated by wet phase inversion onto clean glass plates. The existence and dispersion of PVP-g-MMT had a great role on structures, morphologies, surface composition, and chemistry of the as-prepared nanocomposite membranes confirmed by varieties of spectroscopic and microscopic characterization techniques, all of which were the correlated functions of PVP-g-MMT content in casting solution. By using the dead-end filtration of protein aqueous solution, the performance of the membrane was evaluated. It was seen that all of the nanocomposite membranes showed obvious improvement of water flux and proper BSA rejection ratio, compared to the control PVDF membrane. Meanwhile, dynamic BSA fouling resistance and flux recovery properties were also greatly enhanced due to the changes of surface hydrophilicity and morphologies. All the experimental results indicated that the as-prepared PVDF nanocomposite membranes showed better separation performances than the control PVDF membrane. Hopefully, the demonstrated method of hydrophilic nanocomposite additive synthesis would be applied for commonly hydroxyl group-containing inorganic nanoparticles, which was favorable to fabricate hydrophilic nanoparticle-enhanced polymer membranes for water treatment. PMID:22376185

  11. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.


    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  12. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    NASA Astrophysics Data System (ADS)

    Kaur, Inderjeet; Gupta, Nitika; Kumari, Vandna


    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by γ-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6×10 -2 mol/L ([MAAc]=176.5×10 -2 mol/L, [AAm]=28.1×10 -2 mol/L), [BPO]=8.3×10 -2 mol/L at 100 °C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days.

  13. Effect of solvents on the radiation-induced polymerization of ethyl and isopropyl vinyl ethers. [gamma rays

    SciTech Connect

    Hsieh, W.C.; Kubota, H.; Squire, D.R.; Stannett, V.


    The radiation-induced cationic polymerization of ethyl and isopropyl vinyl ethers was studied in a variety of solvents. The propagation rate constants were estimated and found to vary widely with the nature of the solvent. In particular, a good linear relationship existed between the logarithms of the rate constants and the reciprocal of the dielectric constants. The lowest rates were those of the highest dielectric constant solvents. These results have been interpreted in terms of the Laidler and Eyring theory of ion-molecule reactions. Isopropyl vinyl ether polymerizes much faster than ethyl vinyl ether, although the rates approach the same value at infinite dielectric constant. In contrast, free carbenium ion polymerizations initiated by stable carbenium ion salts in methylene chloride solution had similar values for both monomers. A comparison is made between the rate constants obtained with both methods of initiation.

  14. Comparative studies on PADC polymeric detector treated by gamma radiation and Ar ion beam

    NASA Astrophysics Data System (ADS)

    El-Saftawy, A. A.; Abdel Reheem, A. M.; Kandil, S. A.; Abd El Aal, S. A.; Salama, S.


    In the present study, a comparative analysis and evaluation of the induced defects in polyallyl diglycol carbonate (PADC) polymeric detector exposed to Ar+ and gamma radiation were made. To get insight into the structure defects due to irradiation, X-ray diffraction (XRD) technique was employed. The PADC surface structure changed after irradiation due to the reduction in the surface crystalline structure and the formation of disordered systems. Also, surface morphology changes were traced using scanning electron microscopy (SEM) and showed minor surface irregularities after gamma irradiation and large changes upon Ar+ irradiation. Additionally, micro-hardness and friction coefficient of the irradiated samples were investigated and found to increase after irradiation. UV-vis spectroscopy was used to estimate the optical band gap energy which considered as the basis for calculating the number of conjugated carbon atoms responsible for the blackening effect and color changes took place over the PADC surface. It was found that as the applied dose increased, the band gap decreased and the number of carbon clusters get larger. The refractive index and the dispersion parameters for the studied polymer were calculated and discussed. Also, the induced defects on the polymer surface which serve as a non-radiative centers resulting in reduced photoluminescence (PL) intensity. For nearly all the measured parameters, gamma irradiated samples showed a significant changes compared to that induced by ions. But, low energy Ar+ prove efficiency in controlling surface properties of PADC polymer without affecting its sensitive bulk properties, besides that the obtained results are reasonable and comparable to that induced by gamma radiation.

  15. Pre-irradiation-induced graft reaction of maleic anhydride onto polypropylene

    NASA Astrophysics Data System (ADS)

    Tan, X. M.; Xu, Y. S.; Wang, C. L.


    The radiation induced graft polymerization is a well-known method to obtain new materials. Until recently, only conventional radiation sources, such as Co-60 and electron beams, were used. Moreover, part of the damage induced in polymers by heavy ions can produce active sites (peroxides and hydroperoxides) that are useful to initiate grafting reactions. Maleic anhydride (MAH) was grafted onto polypropylene (PP) wax with a number-average molecular weight (Mn) of 8000 by gamma pre-irradiation technique. Effects of total dose, monomer concentration, reaction time, and temperature on percentage of grafting are studied in detail. It is shown that the optimum conditions for grafting are temperature of 70 degrees C and total dose of 14.4 kGy. PP-g-MAH is characterized by infrared spectrum. Differential scanning calorimetry shows that the compatibility of PP-g-MAH is better than that of PP.

  16. Radiation grafting of acrylamide onto starch-filled low density polyethylene

    NASA Astrophysics Data System (ADS)

    Bagheri, Rouhallah; Naimian, Franak; Sheikh, Nassrin


    Acrylamide (AAm) was grafted on the surface of starch-filled low density polyethylene (SLDPE) and low density polyethylene (LDPE) films by the mutual irradiation technique at doses from 0.75 to 5 kGy. The effect of dose, solvents and dihydroxybenzoquinone on the degree of grafting was studied by Fourier transform infrared spectroscopy and the weight measurement method of extracted films at a constant monomer concentration (10% w/w). An ultraviolet spectrophotometer was also used to elucidate the results of the above methods. Grafting on SLDPE and LDPE samples reaches a maximum followed by a slight decrease with increasing dose. A higher degree of grafting was obtained on SLDPE samples compared with that on LDPE. An induction period was observed in the case of the samples prepared in tetrahdyrfuran (THF) as the solvent compared with those in chloroform. Addition of benzene to chloroform and THF (50% v/v) accelerates the rate of AAm grafting on the samples. Dihydroxybenzoquinone inhibits the grafting reactions of the samples especially in the THF solutions. The water uptake measurement of the samples correlates with the degree of grafting.

  17. Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio


    Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.

  18. Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation.


    Adamus, A; Komasa, J; Kadłubowski, S; Ulański, P; Rosiak, J M; Kawecki, M; Klama-Baryła, A; Dworak, A; Trzebicka, B; Szweda, R


    This report demonstrates the feasibility of radiation grafting for the preparation of polymer layers functionalised with short peptide ligands which promote cell adhesion. Thermoresponsive poly [tri(ethylene glycol) monoethyl ether methacrylate] (PTEGMA) layers were synthesised on a polypropylene substrate by post-irradiation grafting. A cell adhesion moiety, the CF-IKVAVK peptide modified with a methacrylamide function and a fluorescent label were introduced to the surface during the polymerisation process. The amount of CF-IKVAVK was easily controlled by changing its concentration in the reaction mixture. The changes in the surface composition, morphology, philicity and thickness at each step of the polypropylene functionalisation confirmed that the surface modification procedures were successful. The increase in environmental temperature above the cloud point temperature of PTEGMA caused a decrease in surface philicity. The obtained PTEGMA and PTEGMA-peptide surfaces above TCP were tested as scaffolds for fibroblast sheet culture and temperature induced detachment. PMID:27182653

  19. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard


    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  20. Studies of composite ion exchange membranes formed from gamma radiation initiated formed from gamma radiation initiated grafting of polymers to modified expanded teflon membranes

    SciTech Connect

    Blubaugh, E.A.; Ramos, B.L.; Heineman, W.R.


    This report will present our results for evaluating expanded Teflon as a matrix for polymer grafting. The porosity of the ePTFE starting material was kept constant. However, the volume percent of monomer to solvent and the radiation dosage levels were varied. Also, the monomers used were styrene and (2-dimethylaminoethyl methacrylate) and the influence on the microscopic characteristics of the composite polymers was evaluated via gravimetric determinations and Scanning Electron Microscopy (SEM), respectively. The grafted polystyrene or poly-(2-dimethylaminoethyl methacrylate) must be further modified chemically. The polystyrene must be sulfonated and the poly-(2-dimethylaminoethyl methacrylate) must be quatemized via 2-Bromobutane. These chemical modifications convert the polystyrene into polystyrene-sulfonate (a cation exchanger) and the conversion of poly-(2-dimethylaminoethyl methacrylate) to poly-(2-dimethyl-butyl ammonium ethyl methacrylate) bromide (an anion exchange medium). These polymer composites were evaluated as to their ion-exchange ability, via the electrochemical activity displayed through exchanged electroactive ions.

  1. A gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, S.; Park, Y. S.; Schreiner, L. J.


    In this presentation we show results of investigations on gelatin-free dosimeters containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide (named Aqueous Polyacrylamide, APA, dosimeters). The dosimeters were prepared with three different total monomer concentrations (2, 6, and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all three dosimeters, show a continuous degree of polymerization over the range of dose 0.5 - 25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of cross-linked polymer formed at each dose. This model may be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  2. Synthesis and characterization of β-CD-coated polystyrene microspheres by γ-ray radiation emulsion polymerization.


    Xu, Dezhi; Wang, Mozhen; Ge, Xuewu; Lam, Michael Hon-Wah


    Polystyrene (PS) microspheres coated with β-cyclodextrin (β-CD) were fabricated via γ-ray-induced emulsion polymerization in a ternary system of styrene/β-CD/water (St/β-CD/water). The solid inclusion complex of St and β-CD particles formed at the St droplets-water interface can stabilize the emulsion as the surfactant. TEM and XPS results showed that β-CD remains on the surface of PS particles. The average size of the PS particles increases from 186 to 294 nm as the weight ratio of β-CD to St rises from 5% to 12.5%. The water contact angle (CA) of PS latex film is lower than 90°, and reduces with the β-CD content even to 36°. Thus, this work provides a new and one-pot strategy to surface hydrophilic modification on hydrophobic polymer particles with cyclodextrins through radiation emulsion polymerization. PMID:22887797

  3. Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers.


    Forner-Cuenca, Antoni; Biesdorf, Johannes; Gubler, Lorenz; Kristiansen, Per Magnus; Schmidt, Thomas Justus; Boillat, Pierre


    A novel method to produce gas diffusion layers with patterned wettability for fuel cells is presented. The local irradiation and subsequent grafting permits full design flexibility and wettability tuning, while modifying throughout the whole material thickness. These water highways have improved operando performance due to an optimized water management inside the cells. PMID:26395373

  4. Skin graft


    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  5. Radiation-induced reduction-polymerization route for the synthesis of PEDOT conducting polymers

    NASA Astrophysics Data System (ADS)

    Cui, Zhenpeng; Coletta, Cecilia; Rebois, Rolando; Baiz, Sarah; Gervais, Matthieu; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Remita, Samy


    Synthesis of conducting poly(3,4-ethylenedioxythiophene), PEDOT, is achieved through an original reduction-polymerization route: γ-radiolysis of aqueous solutions containing EDOT monomers under N2 atmosphere. According to UV-vis absorption spectrophotometry and ATR-FTIR spectroscopy, reduction of EDOT is initiated by hydrated electrons produced by water radiolysis and leads to PEDOT polymers through coupling reactions. The morphology of PEDOT is characterized by Cryo- TEM microscopy in aqueous solution and by SEM after deposition. In an original way, high resolution AFM microscopy, coupled with infrared nanospectroscopy, is used to probe the local chemical composition of PEDOT nanostructures. The results demonstrate that spherical self-assembled PEDOT nanostructures are formed. TGA analysis and four point probe measurements demonstrate that thermal stability and electrical conductivity of PEDOT polymers obtained by the present original reduction-polymerization method are close to those of PEDOT we previously prepared by radiolysis according to an oxidation-polymerization route.

  6. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.


    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  7. Synthesis of high-molecular-weight polymer of methyl chloride salt of N,N-dimethylaminoethyl methacrylate by radiation-induced polymerization at high pressure. [Gamma radiation

    SciTech Connect

    Ishigaki, I.; Okada, T.; Sasuga, T.; Takehisa, M.; Machi, S.


    Polymer of the methyl chloride salt of N,N-dimethylaminoethyl methacrylate and its copolymer with acrylamide are used as cationic flocculants for the treatment of waste water containing organic suspensions. As reported, radiation-induced polymerization is one of the most convenient methods because of its temperature independence of initiation and extremely large G-value. In general, a flocculant with higher molecular weight has larger flocculation effects. The high-molecular-weight products were prepared in high monomer concentration and a low dose rate. This paper concerns the polymerization and copolymerization of methyl chloride salt of N,N-dimethylaminoethyl methacrylate at high pressure, up to 7000 kg/cm/sup 2/, providing high-molecular-weight cationic flocculants.

  8. Gamma-ray co-irradiation induced graft polymerization of NVP and SSS onto polypropylene non-woven fabric and its blood compatibility

    NASA Astrophysics Data System (ADS)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin


    Sodium styrenesulfonate was grafted onto PPNWF via γ-ray co-irradiation method with the existence of N-vinyl-2-pyrrolidone. The effect of absorbed dose, dose rate and concentration of binary monomer on the degree of grafting was investigated. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The wettability was characterized through the measurement of adsorption percentage of water and phosphate buffer solution (PBS). The result demonstrated that the grafted poly(NVP-co-SSS) chains can improve the hydrophilicity of PPNWF. Furthermore, the modified PPNWF has good blood compatibility, such as low hemolysis rate, low platelet adhesion and effectively extending the blood coagulation times. Consequently, hydrophilicity and hemocompatibility of PPNWF were greatly enhanced by the immobilization of poly(NVP-co-SSS) chains.

  9. A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non-woven fabric by pre-irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Hongjuan; Yao, Side; Li, Jingye; Cao, Changqing; Wang, Min


    A mild pre-irradiation method was used to graft glycidyl methacrylate (GMA) onto polyethylene (PE) non-woven fabric (NF). The polymer was irradiated by electron beam in air atmosphere at room temperature. The degree of grafting (Dg) was determined as a function of reaction time, absorbed dose, monomer concentration and temperature. After 30 kGy irradiation, with 5% GMA, surfactant Tween 20 (Tw-20) of 0.5% at 55 °C for 15 min, the trunk polymer was made grafted with a Dg of 150%. Selected PE-g-PGMA of different Dg was modified with aminated compounds such as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). The obtained amine-type adsorbents were prepared to remove copper and uranium ions from solution. It was shown that at least 90% of copper and 60% of uranium with the initial concentration from 3 to 1000 ppb can be removed from water.

  10. In-situ polymerization of vinyl pyrrolidinone on nylon 66 by gamma radiation

    SciTech Connect

    Hsieh, Y.L.; Potter, D.; Ellison, M.S.


    The polymerization of vinyl pyrrolidinone on nylon 66, with the assistance of aqueous phenol and formic acid, was investigated by mutual and post irradiation procedures. Both solvents were found to greatly facilitate the polymerization with the post irradiation procedure, whereas neither presented any advantage with the mutual irradiation procedure. Tensile properties of the modified fibers were affected in similar ways by both the irradiation procedures and solvents in that the only notable changes were the somewhat higher extensions at yield and at break. The moisture regain values of the treated yarns and fabrics were increased up to three-fold. Surface morphology of the modified fibers was revealed by SEM.

  11. Fire proofing by radiation grafting (application on polyester and polypropylene). Scientific technical report

    SciTech Connect

    Hill, B.J.; Einsele, U.; Di Modica, G.; Wattiez, D.


    This report outlines efforts to try out a modern technique, radition grafting, rather than chemical and heat fixation, to make textiles more fire-proof by reducing as much as possible the deterioration in conventional properties, in particular softness and handle, to which the former give rise. The expected consequences are twofold: possession of a general method for fire-proofing textile materials which retain the conventional initial characteristics more fully, and improvement of the durability of the fire-proof properties.

  12. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Youwei; Zhang, Long; Wang, Liancai; Sun, Chao; Liu, Pinggui; He, Lihua; Zeng, Xinmiao; Zhai, Maolin


    Dimethylaminoethyl methacrylate (DMAEMA)-grafted graphene oxide hybrid materials (GO-g-P) were fabricated using γ-ray irradiation at ambient temperature. The morphology and structure of GO-g-P were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron (XPS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). It was confirmed that DMAEMA was grafted successfully on the surface of graphene sheet. The grafting yield of GO-g-P increased with monomer concentration (0-2.5 mol L-1) and dose (0-40 kGy). The resulting adsorbent (GO-g-P) with amine groups was highly efficient for removing Cr(VI) from its acidic aqueous solution and could be easily separated by filtration. The optimum pH for Cr(VI) removal was observed at pH 1.1 and the Cr(VI) uptake of GO-g-P at this pH was 82.4 mg g-1.

  13. Mechanical properties of tough hydrogels synthesized with a facile simultaneous radiation polymerization and cross-linking method

    NASA Astrophysics Data System (ADS)

    Jiang, Fangzhi; Wang, Xuezhen; He, Changcheng; Saricilar, Sureyya; Wang, Huiliang


    Radiation-induced polymerization and cross-linking method has been applied to hydrogel preparations for decades, but less attention has been paid to the mechanical properties of the hydrogels. In this work, we provide a systematic study on the mechanical properties of hydrogels synthesized with the simultaneous radiation polymerization and cross-linking method. The prepared polyacrylamide (PAAm) had very good mechanical properties, namely high compressive strengths (several to more than 10 MPa), high tensile strengths (up to 260 kPa), high fracture strains (up to 12) and high fracture energies (10-160 J/m2). Absorbed dose and monomer concentration were the two important factors affecting the mechanical properties of the gels. The compressive strength and elastic modulus of the gels increased with increasing absorbed dose and monomer concentration, while the tensile strength, fracture strain and fracture energy of the gels decreased with increasing absorbed dose. The gels also showed excellent elastic recovery property, as indicated by the low stress-strain hysteresis ratios in cyclic tensile tests as well as the small loss factors measured with dynamic mechanical analysis (DMA).

  14. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Vashishtha, Manu


    In order to modify the sterculia gum polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared sterculia gum, 2-hydroxyethylmethacrylate (HEMA) and acrylic acid (AAc) based hydrogels by radiation-induced crosslinking polymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR,TGA and swelling studies which were carried out as a function monomers concentration, radiation dose, amount of sterculia contents in the polymer matrix and nature of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anti-diarrhea model drug ornidazole from the hydrogels to evaluation of swelling and drug release mechanism. Diffusion exponent 'n' have 0.73, 0.56 and 0.61 values and gel characteristic constant 'k' have 1.28 × 10-2, 2.95 × 10-2 and 2.14 × 10-2 values in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of drug from the polymer matrix occurred through non-Fickian diffusion mechanism. The values for the late time diffusion coefficients have been lower than the values of initial and average diffusion coefficients. It reflects that in the initial stages rate of release of drug from polymer matrix was higher as compared to the late stages, it means after certain time the drug release occurred in controlled manner.

  15. Immobilization of glucoamylase on polymer surface by radiation-induced polymerization of glass-forming monomers at low temperatures. [Gamma radiation; 2-hydroxyethyl methacrylate; diethylene glycol dimethacrylate

    SciTech Connect

    Yoshida, M.; Kaetsu, I.


    Glucoamylase was immobilized in hydrophilic porous poly(2-hydroxyethyl methacrylate) (PHEMA) and hydrophobic microsphere poly(diethylene glycol dimethyacrylate) (PDGDA) by radiation-induced polymerization at low temperatures, in the presence of acetate buffer solution. The distribution on the matrix of immobilized glucoamylase was investigated using fluorescein isothiocyanate (FITC)-conjugated glucoamylase and the fluorescence microscope. It was found that in the porous PHEMA system, the FITC-conjugated glucoamylase is present mainly on the interface between polymer membrane and pore structure and partly in the polymer, while in the microsphere PDGDA system the immobilized glucoamylase is present merely on the surface of the polymer microsphere.

  16. High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels

    NASA Astrophysics Data System (ADS)

    Grimaldi, N.; Sabatino, M. A.; Przybytniak, G.; Kaluska, I.; Bondì, M. L.; Bulone, D.; Alessi, S.; Spadaro, G.; Dispenza, C.


    Poly(N-vinylpyrrolidone)-grafted-acrylic acid biocompatible nanogels (NGs) were prepared using an exiting industrial-type electron accelerator and setups, starting from semi-dilute aqueous solutions of a commercial PVP and the acrylic acid monomer. As a result, NGs with tunable size and structure can be obtained quantitatively. Sterility was also imparted at the integrated dose absorbed. The chemical structure of the NGs produced was confirmed through Fourier Transformer Infrared Spectroscopy (FT-IR). The molecular and physico-chemical properties of NGs, such as the hydrodynamic dimensions and surface charge densities, for various polymer and monomer concentrations in the irradiated solutions, are discussed here.

  17. Bone Grafts


    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  18. New trends of radiation processing applications

    NASA Astrophysics Data System (ADS)

    Machi, Sueo


    Major fields of radiation processing applications are: polymeric materials, food processing, sterilization of medical products and environmental conservation. There are about 200 60Co gamma irradiation facilities and 700 electron beam accelerators, mainly for commercial purposes, throughout the world. Radiation cross-linking and grafting techniques of polymeric materials have been providing many unique products including heat materials, heat shrinkable materials, curing of coatings and battery separators. Extensive studies have been devoted to the development of bio-medical materials using radiation processing to prepare bio-compatible materials and controlled release of drugs. New wound dressings have been successfully developed in Poland and Israel for commercial clinical use.

  19. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.


    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  20. Investigation of space radiation effects in polymeric film-forming materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.; Jarke, F.


    The literature search in the field of ultraviolet radiation effects that was conducted during the previous program, Contract No. NAS1-12549, has been expanded to include the effects of charged particle radiation and high energy electromagnetic radiation. The literature from 1958 to 1969 was searched manually, while the literature from 1969 to present was searched by using a computerized keyword system. The information generated from this search was utilized for the design of an experimental program aimed at the development of materials with improved resistance to the vacuum-radiation environment of space. Preliminary irradiation experiments were performed which indicate that the approaches and criteria employed are very promising and may provide a solution to the challenging problem of polymer stability to combined ultraviolet/high energy radiation.

  1. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.


    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  2. Polymeric micelles of amphiphilic graft copolymer of α-tocopherol succinate-g-carboxymethyl chitosan for tamoxifen delivery: Synthesis, characterization and in vivo pharmacokinetic study.


    Jena, Sunil K; Sangamwar, Abhay T


    Novel amphiphilic graft copolymers were prepared from low molecular weight carboxymethyl chitosan (LMW Cmc) and α-tocopherol succinate (TS) via an amidation reaction and confirmed by (1)H NMR and IR spectroscopy. These graft copolymers are self-assembled to nanosized core-shell-structural micelles in an aqueous milieu. The critical micelle concentration (CMC) decreased with an increasing substitution of TS on LMW Cmc, which ranged from 7.94×10(-8) to 1.58×10(-6)g/mL. Cmc-TS4.5 (Cmc-TS with a charged molar ratio of TS to glucosamine units of Cmc∼4.5) was shown maximum TMX loading up to 8.08±0.98%. Both blank and TMX-loaded PM's of Cmc-TS4.5 exhibit spherical shape with particle size below 200nm. An in vitro release study in simulated gastric and intestinal fluid demonstrated that TMX release from TMX-PM4.5 (TMX-PMs prepared with amphiphilic polymer Cmc-TS4.5, and the weight ratio of Cmc-TS4.5 to TMX was 8:1) was slow and pH dependent. In vivo oral absorption study revealed Cmc-TS4.5 based PM's permeated the epithelial barrier via the paracellular route without causing any intestinal damage. In vivo toxicity study demonstrated the safety of PM's after oral administration. Compared to tamoxifen control, TMX-PM4.5 dosed to fasted female Sprague Dawley rats showed a 1.9 fold increase in AUC0-72h. Thus, the results suggested that Cmc-TS micelles are a promising carrier for TMX delivery. PMID:27474667

  3. Radiation-induced and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces

    NASA Astrophysics Data System (ADS)

    Kodama, Yasko; Barsbay, Murat; Güven, Olgun


    This paper presents the results of RAFT mediated free-radical graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto cellulose fibers in a "grafting-from" approach under γ-irradiation. The effects of absorbed dose and monomer concentration on the graft ratios were investigated at different monomer (HEMA) to RAFT agent (cumyl dithiobenzoate, CDB) ratios. Cellulose-g-PHEMA copolymers with various graft ratios up to 92% (w/w) have been synthesized. The synthesized copolymers were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy, elemental analysis and scanning electron microscopy. The results of various techniques confirmed the existence of PHEMA in the copolymer composition.



    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid


    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  5. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    SciTech Connect

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.


    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD.

  6. Hydrocarbon compositions containing polyolefin graft polymers

    SciTech Connect

    Kapuscinski, M.M.; Liu, C.S.; Hart, W.P.; Grina, L.D.


    A graft polymer is described comprising an oil-soluble, substantially linear, carbon-carbon backbone polymer having graft polymerized thereon units derived from, as a functional monomer, the reaction product of (i) an unsaturated aldehyde or ketone and (ii) a primary or secondary amine which contains at least one nitrogen atom in a heterocyclic ring. The graft polymer is also described wherein the backbone polymer is a copolymer of ethylene-propylene or a terpolymer of ethylene-propylene-diene monomer.

  7. Methods of fiber surface grafting for interphase design and tailored composite response

    NASA Astrophysics Data System (ADS)

    Arnold, Jesse Judson


    The objective of this research was to develop methods of fiber surface grafting for interphase formation, and to experimentally evaluate and model these interphases in order to further elucidate their role in fiber-reinforced composites. Surface modification by sp{60}Co gamma irradiation was used initially to graft acrylic polymers on the surface of ultra-high modulus (UHMPE) fibers. This technique utilized low dose rates and low total doses, and achieved grafting with retention of the exceptional UHMPE properties. The surface properties of the fibers were evaluated using fourier transform infra-red spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA), and mechanical tests and dynamic mechanical spectrometry (DMS) of discontinuous fiber composites. Depending on the glass transition temperature, Tg, and chemical structure of the graft, the fiber/matrix adhesion and the interfacial failure mechanism was tailored to provide either enhanced reinforcement or toughening. Using a three-phase block model, the DMS characteristics of the composites were modeled and the reinforcement efficiencies extrapolated as a function of surface treatment. The model successfully predicts the tan delta response of the composite and the appearance of additional loss dispersions associated with the interphase. However, the interactions between the high-energy gamma radiation and the fiber and grafts yield interphases that are difficult to characterize and control. The hydroperoxidation grafting method was subsequently developed, which permitted the grafting of tethered, linear chains by a free radical-type polymerization. Poly(styrene-stat-acrylonitrile) was grafted initially, in which the nitrogen in acrylonitrile was used as a marker to verify grafting and to estimate the grafting efficiency by ESCA analysis. Tapping modesp{TM} atomic force microscopy (TMAFM) images of the grafted fibers revealed a nodular surface topography with dimensions that were correlated to the

  8. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Casimiro, M. H.; Oliveira, C.; Cabeço Silva, M. E.; Marques Abreu, M. J.; Coelho, A.


    The large number of surgical operations with post-operative infection problems and the appearing of new infectious diseases, contribute to the development of new materials in order to answer the needs of health care services. This development must take into account the modifications promoted by sterilisation methods in materials, namely by gamma radiation. The differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques show that a nonwoven and a laminate textiles maintain a good molecular cohesion, do not showing high levels of degradation, for gamma radiation dose values lower than 100 kGy in nonwoven and 200 kGy in laminate materials. The tensile strength and the elongation decrease slowly for the nonwoven textile and decrease faster for the laminate textile for 25 and 80 kGy absorbed dose. This paper shows that the DSC and TGA techniques can be helpful for the prevision of mechanical changes occurred in the materials as a consequence of the gamma irradiation.

  9. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.


    Pandey, Sadanand; Ramontja, James


    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. PMID:27118045

  10. Synthesis and characterization of photoluminescent hybrids of poly( ɛ-caprolactone)-grafted-polyhedral oligosilsesquioxane by using a combination of ring-opening polymerization and click chemistry

    NASA Astrophysics Data System (ADS)

    Cao, Xuan Thang; Showkat, Ali Md; Bach, Long Giang; Jeong, Yeon Tae; Kim, Jong Soo; Lim, Kwon Taek; Gal, Yeong-Soon


    Photoluminescent hybrids of poly( ɛ-caprolactone) (PCL), polyhedral oligosilsesquioxane (POSS) and terbium ions (Tb3+) were synthesized by using a combination of ring-opening polymerization (ROP), click chemistry and coordination chemistry. Initially, acetylene functionalized PCL (alkyne-PCL-COOH) was prepared by using ROP of ɛ-caprolactone with propargyl alcohol, and azide-substituted POSS (POSS-N3) was prepared by using the reaction of chloropropyl-heptaisobutyl-substituted POSS with NaN3. The click reaction between alkyne-PCL-COOH and POSS-N3 afforded POSS-g-PCL, which was subsequently coordinated with Tb3+ ions in the presence of 1,10-phenanthroline to produce POSS-g-PCL-Tb3+-Phen. The structures and compositions of the hybrids were investigated by using 1H nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning electron microscope (FE-SEM), Transmission electron microscopy (TEM), and Thermogravimetric analysis (TGA). The optical properties of POSS-g-PCL-Tb3+-Phen complexes were characterized by using photoluminescence spectroscopy, which showed four high emission bands centered at 489, 545, 584, and 620 nm with excitation at 330 nm. The emission spectra of the europium-ion-coordinated hybrids, POSS-g-PCL-Eu3+-Phen, had four high-intensity peaks, 594, 617, 652 and 686 nm, for an excitation wavelength of 352 nm.