Science.gov

Sample records for radiation hard scintillation

  1. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  2. Development of radiation hard scintillators

    NASA Astrophysics Data System (ADS)

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyl trimethyl trisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made from monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetra phenyl butadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  3. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.; Rivard, M.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyltrimethyltrisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made form monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetraphenylbutadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  4. Study of radiation hardness of Gd2SiO5 scintillator for heavy ion beam

    NASA Astrophysics Data System (ADS)

    Kawade, K.; Fukatsu, K.; Itow, Y.; Masuda, K.; Murakami, T.; Sako, T.; Suzuki, K.; Suzuki, T.; Taki, K.

    2011-09-01

    Gd2SiO5 (GSO) scintillator has very excellent radiation resistance, a fast decay time and a large light yield. Because of these features, GSO scintillator is a suitable material for high radiation environment experiments such as those encountered at high energy accelerators. The radiation hardness of GSO has been measured with Carbon ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC). During two nights of irradiation the GSO received a total radiation dose of 7 × 105 Gy and no decrease of light yield was observed. On the other hand an increase of light yield by 25% was observed. The increase is proportional to the total dose, increasing at a rate of 0.025%/Gy and saturating at around 1 kGy. Recovery to the initial light yield was also observed during the day between two nights of radiation exposure. The recovery was observed to have a slow exponential time constant of approximately 1.5 × 104 seconds together with a faster component. In case of the LHCf experiment, a very forward region experiment on LHC (pseudo-rapidity η > 8.4), the irradiation dose is expected to be approximately 100 Gy for 10 nb-1 of data taking at (s)1/2 = 14TeV. The expected increase in light yield of less than a few percent will not affect the LHCf measurement.

  5. Radiation hardness of plastic scintillating fiber against fast neutron and [gamma]-ray irradiation

    SciTech Connect

    Murakami, Akira; Yoshinaka, Hideki; Goto, Minehiko . Dept. of Physics)

    1993-08-01

    In future collider experiments, where a background radiation level is estimated to be very high, e.g. around 10[sup 2] [approximately] 10[sup 5] Gy/yr and 10[sup 11] [approximately] 10[sup 14] n/cm[sup 2]/yr at SSC, the detectors operating around the collision point in the experiments will encounter a considerable amount of radiation. Therefore, the detectors, especially the calorimeter, are required to be resistive against high radiation levels. From this point of view, it is of great importance to study the effects of radiation damage on the performance of the detectors. The authors report preliminary results of measurements of radiation hardness of the plastic scintillating fiber Kuraray SCSF-81 against irradiation with fast neutrons and [sup 60]Co [gamma]-rays in the region of the neutron fluence from 1 [times] 10[sup 11] to 5 [times] 10[sup 13] n/cm[sup 2] and the integrated [gamma]-ray dose from 890 to 10[sup 5] Gy, respectively. Deterioration of both intrinsic light yield and light transmittance of the SCSF-81 has been studied.

  6. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  7. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mellado, B.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Solvyanov, O.

    2015-06-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs but a breakdown in the light transfer between base and fluor dopants is observed. For doses of 8 MGy to 80 MGy, structural damage leads to hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss as dose is increased.

  8. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  9. A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Liao, S.; Erasmus, R.; Jivan, H.; Pelwan, C.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed.

  10. Radiation sensitivity of GSO and LSO scintillation detectors

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Kozma, Petr

    2005-02-01

    Radiation resistance of 4×4×30 mm 3 GSO and LSO imaging scintillation detectors has been studied for low-energy gamma-ray doses of 10 4 Gy (10 6 rad) and 10 5 Gy (10 7 rad). Radiation hardness was determined by the measurement of optical transmission through GSO and LSO scintillation crystals before and after irradiations with 60Co gamma-rays. The results have been analysed in terms of the radiation-induced absorption coefficients and compared with radiation sensitivity measurements of small BGO scintillation crystals. The recovery time of irradiated small GSO and LSO crystals has also been determined.

  11. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  12. Thin scintillators for ultrafast hard X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Barnes, Cris W.; Kapustinsky, Jon S.; Morris, Chris L.; Nelson, Ron O.; Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan

    2015-05-01

    A multilayer thin-scintillator concept is described for ultrafast imaging. The individual layer thickness is determined by the spatial resolution and light attenuation length, the number of layers is determined by the overall efficiency. By coating the scintillators with a high quantum-efficiency photocathode, single X-ray photon detection can be achieved using fast scintillators with low light yield. The fast, efficient sensors, when combined with MCP and novel nanostructed electron amplification schemes, is a possible way towards GHz hard X-ray cameras for a few frames of images.

  13. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  14. Proton induced radiation damage in fast crystal scintillators

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  15. MISTIC: Radiation hard ECRIS

    NASA Astrophysics Data System (ADS)

    Labrecque, F.; Lecesne, N.; Bricault, P.

    2008-10-01

    The ISAC RIB facility at TRIUMF utilizes up to 100 μA from the 500 MeV H- cyclotron to produce RIB using the isotopic separation on line (ISOL) method. In the moment, we are mainly using a hot surface ion source and a laser ion source to produce our RIB. A FEBIAD ion source has been recently tested at ISAC, but these ion sources are not suitable for gaseous elements like N, O, F, Ne, … , A new type of ion source is then necessary. By combining a high frequency electromagnetic wave and a magnetic confinement, the ECRIS [R. Geller, Electron Cyclotron Resonance Ion Source and ECR Plasmas, Institute of Physics Publishing, Bristol, 1996], [1] (electron cyclotron resonance ion source) can produce high energy electrons essential for efficient ionization of those elements. To this end, a prototype ECRIS called MISTIC (monocharged ion source for TRIUMF and ISAC complex) has been built at TRIUMF using a design similar to the one developed at GANIL [GANIL (Grand Accélérateur National d'Ions Lourds), www.ganil.fr], [2] The high level radiation caused by the proximity to the target prevented us to use a conventional ECRIS. To achieve a radiation hard ion source, we used coils instead of permanent magnets to produce the magnetic confinement. Each coil is supplied by 1000 A-15 V power supply. The RF generator cover a frequency range from 2 to 8 GHz giving us all the versatility we need to characterize the ionization of the following elements: He, Ne, Ar, Kr, Xe, C, O, N, F. Isotopes of these elements are involved in star thermonuclear cycles and, consequently, very important for researches in nuclear astrophysics. Measures of efficiency, emittance and ionization time will be performed for each of those elements. Preliminary tests show that MISTIC is very stable over a large range of frequency, magnetic field and pressure.

  16. New radiation stable and long-lived plastic scintillator for the SSC

    SciTech Connect

    Senchishin, V.; Koba, V.; Korneeva, O.

    1993-11-01

    The study of the influence of the concentration of secondary flour, high concentrations of primary dopant, diffusion enhancer, and stabilizer, on radiation hardness is presented. It is concluded that the diffusion enhancing technique is the most powerful method for improving rad hardness. A new polystyrene scintillator which contains 2% pT and 0.02% POPOP and 20% diffusion enhancer and 0.02% stabilizer gave 91% of initial light output immediately after 3MRad in air. Data are presented that show that scintillator prepared form commercial polymer is more radiation hard and has greater light output than scintillator prepared from monomer. It is assumed that this difference is due to different molecular weight distributions. Some protocols for acceleration of aging (yellowing and crazing) are presented. It is shown that one of the main reasons for aging of plastic scintillators is residual monomer.

  17. Radiation hard avalanche photodiodes for CMS ECAL

    NASA Astrophysics Data System (ADS)

    Grahl, J.; Kronquist, I.; Rusack, R.; Singovski, A.; Kuznetsov, A.; Musienko, Y.; Reucroft, S.; Swain, J.; Deiters, K.; Ingram, Q.; Renker, D.; Sakhelashvili, T.

    2003-05-01

    The photo detectors of the CMS electromagnetic calorimeter have to operate in a rather hostile environment, in a strong magnetic field of 4 T and under unprecedented radiation levels. Avalanche Photo Diodes (APDs) have been chosen to detect the scintillation light of the 62,000 lead tungstate crystals in the barrel part of the calorimeter. After a 6 year long R&D work Hamamatsu Photonics produces APDs with a structure that is basically radiation hard. Only a few percent of the delivered APDs are weak due to defects at the surface caused by dust particles in the production process. Since a reliability of 99.9% is required, a method to detect weak APDs before they are built into the detector had to be developed. The described screening method is a combination of 60Co irradiations and annealing under bias of all APDs and irradiations with hadrons on a sampling basis.

  18. Development of position sensitive scintillation counter for balloon-borne hard x-ray telescope

    NASA Astrophysics Data System (ADS)

    Tamura, Keisuke; Kunieda, Hideyo; Ogasaka, Yasushi; Furuzawa, Akihiro; Shibata, Ryo; Nakamura, Tomokazu; Ohnishi, Katsuhiko; Kanou, Yasufumi; Miyata, Emi; Tsunemi, Hiroshi

    2006-06-01

    We have been developing position sensitive scintillation counter as focal plane detector of hard X-ray telescope onboard a balloon borne experiment. This detector consists NaI(TI) scintillator and position sensitive photo-multiplier tube. Focal plane detector has to have high efficiency in hard X-ray region, enough position resolution and detection area. 3mm thickness of NaI(TI) scintillator can achieve almost 100% efficiency below 80 keV. We measured position resolved energy and position resolution in synchrotron radiation facility SPring-8 BL20B2. Position resolution of 2.4mm at 60keV is about half of plate scale of half power diameter of X-ray telescope. The detector has 6 cm diameter window and it corresponds to 25 arcmin field of view, and it is enough lager than the that of telescope, which is 12 arcmin in FWHM. Balloon borne experiment for observation of the background was performed on May 24, 2005 from Sanriku balloon center. We could obtain background data for 3 hours at altitude of 40 km.

  19. Radiation hardness and mechanical durability of Kuraray optical fibers

    NASA Astrophysics Data System (ADS)

    Hara, K.; Hata, K.; Kim, S.; Mishina, M.; Sano, M.; Seiya, Y.; Takikawa, K.; Tanaka, M.; Yasuoka, K.

    1998-02-01

    The radiation hardness of Kuraray 3HF scintillating and clear optical fibers has been investigated using 60Co γ-rays in the dose range 0.4-500 krad. Significant initial degradation in the attenuation length was observed both for 3HF and clear fibers at a dose as small as 10 krad. The radiation hardness of both the scintillating and clear fibers is identical if it is expressed in terms of the ratio of the attenuation lengths after to before irradiation. The radiation damage of 3HF fibers was observed to recover substantially with a time scale of a few months. The attenuation length and mechanical durability against bending were measured for clear fibers by changing S parameter which characterizes the softness of the fibers.

  20. Development of Lanthanum Bromide and Lanthanum Chloride Scintillator Detectors for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Budden, B. S.; Case, G. L.; Cherry, M. L.; Macri, J. R.; McConnell, M. L.; Ryan, J. M.

    2006-09-01

    Advanced scintillator materials such as LaBr3:Ce and LaCl3:Ce hold great promise for future hard X-ray and gamma-ray astrophysics missions due to their high density, high light output, good linearity, and fast decay times. Of particular importance for future space-based imaging instruments, such as coded-aperture telescopes, are the precise spatial location of individual gamma-ray interactions and the susceptibility of the material to radiation damage. We have investigated the position and energy resolution achievable within LaBr3:Ce and LaCl3:Ce crystals (both monolithic and pixellated) using a variety of readout techniques, including position-sensitive photomultiplier tubes, multi-anode photomultiplier tubes, and orthogonal layers of wavelength-shifting fibers. We have also exposed LaBr3:Ce and LaCl3:Ce detectors to high-energy proton irradiation in order to study any radiation damage and activation. We present the results of these tests and discuss the applicability of such advanced scintillators to future high-energy imaging astrophysics missions.

  1. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  2. Radiation Hardness Assurance (RHA) Guideline

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

  3. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGESBeta

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  4. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  5. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; Yuan, Ding; Mukhopadhyay, Sanjoy; O'Brien, Robert; Lowe, Daniel; Kang, Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-01-01

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum tribromide, lanthanum trifluoride, or cerium tribromide. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  6. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; O'Brien, Robert; Lowe, Daniel; Kang Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  7. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  8. Automated radiation hard ASIC design tool

    NASA Technical Reports Server (NTRS)

    White, Mike; Bartholet, Bill; Baze, Mark

    1993-01-01

    A commercial based, foundry independent, compiler design tool (ChipCrafter) with custom radiation hardened library cells is described. A unique analysis approach allows low hardness risk for Application Specific IC's (ASIC's). Accomplishments, radiation test results, and applications are described.

  9. Study of radiation hardness of pure CsI crystals for Belle-II calorimeter

    NASA Astrophysics Data System (ADS)

    Boyarintsev, A.; Boyarintseva, Y.; Gektin, A.; Shiran, N.; Shlyakhturov, V.; Taranyuk, V.; Timoshenko, N.; Bobrov, A.; Garmash, A.; Golkovski, M.; Kuzmin, A.; Matvienko, D.; Savrovski, P.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Krumshtein, Z. V.; Nozdrin, A. A.; Olshevsky, A. G.

    2016-03-01

    A study of the radiation hardness of pure CsI crystals 30 cm long was performed with a uniformly absorbed dose of up to 14.3 krad. This study was initiated by the proposed upgrade of the end cap calorimeter of the Belle-II detector, using pure CsI crystals. A set of 14 crystals of truncated pyramid shape used in this study was produced at the Institute for Scintillation Materials NAS from 14 different ingots grown with variations of the growing technology. Interrelationship of crystal scintillation characteristics, radiation hardness and the growing technology was observed.

  10. Improved Growth Methods for LaBr3 Scintillation Radiation Detectors

    SciTech Connect

    McGregor, Douglas S

    2011-05-01

    The objective is to develop advanced materials for deployment as high-resolution gamma ray detectors. Both LaBr3 and CeBr3 are advanced scintillation materials, and will be studied in this research. Prototype devices, in collaboration Sandia National Laboratories, will be demonstrated along with recommendations for mass production and deployment. It is anticipated that improved methods of crystal growth will yield larger single crystals of LaBr3 for deployable room-temperature operated gamma radiation spectrometers. The growth methods will be characterized. The LaBr3 and CeBr3 scintillation crystals will be characterized for light yield, spectral resolution, and for hardness.

  11. Quenching the scintillation in CF4 Cherenkov gas radiator

    NASA Astrophysics Data System (ADS)

    Blake, T.; D`Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C. R.; Lambert, R. W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D. L.; Piedigrossi, D.; Plackett, R.; Powell, A.; Topp-Joergensen, S.; Ullaland, O.; Websdale, D.; Wotton, S. A.; Wyllie, K.

    2015-08-01

    CF4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  12. Interstellar scattering of pulsar radiation. 1: Scintillation

    NASA Technical Reports Server (NTRS)

    Backer, D. C.

    1974-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that scintillation spectra have a Gaussian shape, scintillation indices are near unity, and the scintillation bandwidth depends linearly on dispersion measure. Observations near 2.5 GHz suggest a strong dependence of the frequency at which scintillation indices fall below unity on dispersion measure. Multistation measurements of scintillation provide values or limits for the scale size of the scattering diffraction pattern. The dependences of scattering parameters on dispersion measure is discussed in terms of the current models. It is suggested that any line of sight through the galaxy encounters increasingly rare, increasingly large deviations of thermal electron density on the scale of 10 to the 11th power cm.

  13. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  14. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  15. Radiation damage to scintillator in the D0 luminosity monitor

    SciTech Connect

    Casey, Brendan; DeVaughan, Kayle; Enari, Yuji; Partridge, Richard; Yacoob, Sahal; /Northwestern U.

    2006-12-01

    We report the result of evaluating radiation damage to Bicron BC408 plastic scintillator used in the D0 Luminosity Monitor during Run IIa. The Luminosity Monitor provides pseudo-rapidity coverage over the range 2.7 < |{eta}| < 4.4, with the radiation dose in Run IIa estimated to be 0.5 MRad for the region closest to the beams. We find the light yield is degraded by 10-15% due to radiation damage by comparing new and old scintillator in four observables: (1) visual inspection, (2) optical transmittance, (3) response to the radioactive source of {sup 90}Sr and (4) light yield for cosmic rays.

  16. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  17. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  18. Development of radiation stable plastic scintillator. Final technical report, July 1991--July 1993

    SciTech Connect

    1998-07-22

    The Detector Development Group at the University of Florida has identified the only known optically radiation hard polymer, scintillator and wavelength shifter materials. The authors summarize their findings here. They conducted an extensive study of siloxane polymers using monomers of dimethyl, diphenyl and methylphenyl siloxanes. An important finding of that study was that polymethylphenylsiloxane is a candidate polymer for use at the SSC. However, the most important result of that work was the demonstration of the existence of optical polymers with extreme resistance to radiation damage. It held out the promise that other possibly more convenient polymers with similar properties could be identified. The first high viscosity, transparent, radiation hard siloxane with high fluor solubility was processed into prototype plates. The authors propose a mechanism to account for radiation induced annealable color center formation in commercial scintillator polymers such as PS and PMMA. The authors produced analogues of these polymers with T{sub g} < room temperatures. These polymers are optically radiation hard. The University of Florida has applied for a patent on this breakthrough discovery. It was found that dye mobility for radiation hard elastomers (T{sub g} < room temperature) was unacceptable over a period of one year. Dyes would tend to crystallize on the surface of the plates. The work concentrated therefore on thermoplastic polymers which had T{sub g} {approximately} 50 C (i.e., high enough for structural stability) and with high color center annealing rate such as polyisobutylmethacrylate. These polymers were both radiation hard and had minimal dye migration. The University of Florida has a patent on these materials. These materials were extruded and tested for stability and found adequate for operation up to 10 Mrad at the SSC.

  19. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  20. Radiation characteristics of scintillator coupled CMOS APS for radiography conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyun; Kim, Soongpyung; Kang, Dong-Won; Kim, Dong-Kie

    2006-11-01

    Under industrial radiography conditions, we analyzed short-term radiation characteristics of scintillator coupled CMOS APS (hereinafter SC CMOS APS). By means of experimentation, the contribution of the transmitted X-ray through the scintillator to the properties of the CMOS APS and the afterimage, generated in the acquired image even at low dose condition, were investigated. To see the transmitted X-ray effects on the CMOS APS, Fein focus™ X-ray machine, two scintillators of Lanex™ Fine and Regular, and two CMOS APS array of RadEye™ were used under the conditions of 50 kV p/1 mAs and 100 kV p/1 mAs. By measuring the transmitted X-ray on signal and Noise Power Spectrum, we analytically examined the generation mechanism of the afterimage, based on dark signal or dark current increase in the sensor, and explained the afterimage in the SC CMOS APS.

  1. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  2. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  3. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  4. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  5. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  6. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  7. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  8. In Situ Measurement of Radiation Damage in Scintillating Fibers

    NASA Astrophysics Data System (ADS)

    Ziegler, Ar.; Holm, U.; Latuske, N.; Wick, K.; Zoufal, T.

    2002-11-01

    The radiation induced degradation of the optical transmission of the fibers SCSF-38M, SCSF-81M (Kuraray), BCF-60 and BCF-98 (Bicron) with polystyrene core (PS) was studied. During and after irradiation with a 100 kV X-ray source, a 137Cs source and a 60Co source the effects depend on the fiber type: (1) The permanent damage for BCF-98 (clear PS) is smaller than for the scintillators. (2) The BCF-60 is radiation harder than the other two scintillators but very light sensitive. Temperature treatments (up to 68°C) of SCSF-38M, without irradiation showed a transmission loss which clearly rises with the increasing temperature. This accelerated ageing phenomenon does not recover and the fiber is permanently damaged. In an additional experiment it was studied whether the transmission damage can be influenced by short illuminations with visible light during and after irradiation. For SCSF-38M a strong reduction of the permanent induced absorption remaining after the end of the recovery process was observed.

  9. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  11. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  12. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  13. (Effects of ionizing radiation on scintillators and other particle detectors)

    SciTech Connect

    Proudfoot, J.

    1992-01-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference.

  14. High efficiency, radiation-hard solar cells

    SciTech Connect

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  15. Radiation hardness characteristics of Si-PIN radiation detectors

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    The Korea Atomic Energy Research Institute (KAERI) has fabricated Si-PIN radiation detectors with low leakage current, high resistivity (>11 kΩ cm) and low capacitance for high-energy physics and X-ray spectroscopy. Floating-zone (FZ) 6-in. diameter N-type silicon wafers, with <1 1 1> crystal orientation and 675 μm thick, were used in the detector fabrication. The active areas are 3 mm×3 mm, 5 mm×5 mm and 10 mm×10 mm. We used a double deep-diffused structure at the edge of the active area for protection from the surface leakage path. We also compared the electrical performance of the Si-PIN detector with anti-reflective coating (ARC). For a detector with an active area of 3 mm×3 mm, the leakage current is about 1.9 nA and 7.4 nA at a 100 V reverse bias voltage, and 4.6 pF and 4.4 pF capacitance for the detector with and without an ARC, respectively. In addition, to compare the energy resolution in terms of radiation hardness, we measured the energy spectra with 57Co and 133Ba before the irradiation. Using developed preamplifiers (KAERI-PA1) that have ultra-low noise and high sensitivity, and a 3 mm×3 mm Si-PIN radiation detector, we obtained energy resolutions with 122 keV of 57Co and 81 keV of 133Ba of 0.221 keV and 0.261 keV, respectively. After 10, 100, 103, 104 and 105 Gy irradiation, we tested the characteristics of the radiation hardness on the Si-PIN radiation detectors in terms of electrical and energy spectra performance changes. The fabricated Si-PIN radiation detectors are working well under high dose irradiation conditions.

  16. 1500 Gate standard cell compatible radiation hard gate array

    SciTech Connect

    Mills, B.D.; Shafer, B.D.; Melancon, E.P.

    1984-11-01

    The G1500 gate array combines Sandia Labs' 4/3..mu.. CMOS silicon gate radiation hard process with a novel gate isolated standard cell compatible design for quick turnaround time, low cost, and radiation hardness. This device is hard to 5 x 10/sup 5/ rads, utilizes a configuration that provides high packing density, and is supported on both the Daisy and Mentor workstations. This paper describes Sandia Labs' radiation hard 4/3..mu.. process, the G1500's unique design, and the complete design capabilities offered by the workstations.

  17. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  18. Geometric optimization for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Northum, J.; Guetersloh, S.

    The probability of a single event effect occurring is generally a function of the energy deposited in a sensitive volume, which is typically expressed as the absorbed dose in that volume. For short segments of high energy particle tracks, the dose due to a single event is proportional to the chord length through the sensitive volume. Thus, the distribution of dose in chord length is likely to relate to the probability of single event effects. For various geometries, a differential chord length distribution was generated and from this the dose distribution, frequency mean chord length, and dose mean chord length were calculated. In every case, the dose mean chord length was greater than the frequency mean chord length by a minimum of 26% and increased with the eccentricity of the volume. The large value of the dose mean chord length relative to the frequency mean chord length demonstrates the need to consider rare, long-chord-length crossings in radiation hardness testing, despite their relatively low probability of occurrence.

  19. Implementing QML for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Sexton, F. W.; Fleetwood, D. M.; Terry, M. D.; Shaneyfelt, M. R.

    1990-12-01

    The US government has proposed a qualified manufacturers list (QML) methodology to qualify integrated circuits for high reliability and radiation hardness. An approach to implementing QML for single-event upset (SEU) immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates is demonstrated. It is seen that the process capability indices, Cp and Cpk, for the manufacture of 400-k-ohm feedback resistors required to provide SEU tolerance do not conform to 6 sigma quality standards. For total-dose, interface trap charge, Delta Vit, shifts measured on transistors are correlated with circuit response in the space environment. Statistical process control (SPC) is illustrated for Delta Vit, and violations of SPC rules are interpreted in terms of continuous improvement. Design validation for SEU and quality conformance inspections for total-dose are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, 3-D device-plus-circuit codes, and improved design simulators.

  20. Development of a radiation-hard photomultiplier tube

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  1. Hard x-ray and gamma-ray imaging and spectroscopy using scintillators coupled to silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.

    2008-07-01

    Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.

  2. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  3. Potential Application of Fabricated Sulfide-Based Scintillation Materials for Radiation Detection

    SciTech Connect

    Im, Hee-Jung; Dai, Sheng; Pawel, Michelle D; Brown, Suree

    2010-01-01

    In our laboratories, we have produced ZnS(Ag)/{sup 6}Li sol-gel scintillation materials which produce an excellent light output with an alpha radiation (compared to commercial high temperature lithiated glass; KG-2 and a plastic scintillator; BC-400). However, when tested with a neutron radiation, the opacity of the ZnS(Ag)/{sup 6}Li sol-gel scintillation materials, which were composed of a homogeneous micron-sized ZnS(Ag), prevented a clear neutron energy peak formation, thus making it difficult to set a threshold for neutron-gamma discrimination. In an effort to increase the transparency of the scintillation materials and to develop new technologies to fabricate sulfide-based scintillation materials for neutron detection, we turned to the methods of a chemical bath deposition (CBD) and a nano-particle synthesis for possible solutions.

  4. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.

    2013-03-01

    We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).

  5. Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation

    SciTech Connect

    Fahimian, Benjamin; Türkcan, Silvan; Kapp, Daniel S.; Pratx, Guillem; Ceballos, Andrew

    2014-01-15

    Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  6. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  7. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  8. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  9. Radiation Hardness Assurance (RHA) for Small Missions

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  10. A High-Pressure Gas-Scintillation-Proportional Counter for the Focus of a Hard-X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Austin, R. A.; Ramsey, B. D.; Tse, C. L.

    1999-01-01

    We are developing a high-pressure Gas Scintillation Proportional Counter (GSPC) for the focus of a balloon-borne hard-x-ray telescope. The device has a total active diameter of 50 mm, of which the central 20 mm only is used, and is filled with xenon + 4% helium at a total pressure of 10 6 Pa giving a quantum efficiency of greater than 85% up to 60 keV. The detector entrance is sealed with a beryllium window, 3-mm thick, which provides useful transmission down to 6 keV, way below the atmospheric cut-off at balloon float altitudes. Scintillation light exits the detector via a UV transmitting window in its base and is registered by a Hamamatsu position-sensitive crossed-grid-readout photomultiplier tube. Initial testing is underway, quantifying light yield and energy resolution. Following that, the spatial resolution and absolute efficiency will be calibrated. Simulations show that a spatial resolution of better than 0.5 mm FWHM should be achievable up to 60 keV, and this is well matched to the angular resolution and plate scale of the mirror system. The energy resolution will be around 5% at 22 keV. Full details of the instrument design and its performance will be presented. A first flight is scheduled for the Fall of 99, on a stratospheric balloon to be launched from Fort Sumner, New Mexico.

  11. Manufacturing and studying of new polystyrene scintillators

    NASA Astrophysics Data System (ADS)

    Senchishin, Vitalij G.; Vasilchuk, Vladimir L.; Borysenko, Artem; Lebedev, Valentin N.; Adadurov, Alexander F.; Kalinichenko, Alexander I.; Titskaja, Valentina D.; Koba, Valentina S.; Khlapova, Nina P.; Pelipyagina, Ludmilla E.; Miroshnichenko, Ludmilla A.; Osadchenko, Valentina N.; Kluban, Nikolaj A.

    1999-10-01

    New type of polystyrene-based scintillators UPS98GC were tested regarding long term stability, radiation hardness and light yield uniformity for different doses and dose-rate levels of gamma radiation. They were compared to SCSN-81 produced by Kuraray Co. which has often used in high-energy physics experiments. The dependence of scintillator properties on radiation dose rates as well on total dose values is studied. It is shown that for relatively small dose rate, closed to those expected during scintillator lifetime, our UPS98GC does not yield to SCSN-81.

  12. Curve Fitting Solar Cell Degradation Due to Hard Particle Radiation

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.; Cikoski, Rebecca; Mekadenaumporn, Danchai

    2003-01-01

    This paper investigates the suitability of the equation for accurately defining solar cell parameter degradation as a function of hard particle radiation. The paper also provides methods for determining the constants in the equation and compares results from this equation to those obtained by the more traditionally used.

  13. Radiation Hard 0.25 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2008-08-01

    To support space applications we have produced a test chip with our in house 0.25 micron BiCMOS- Technology. Then the chips were radiated and measured. During measurements no threshold voltage shift and no single event latchup (SEL) were obtained up to a level of 200 krad. As conclusion of the measurement we developed new radiation hard design rules and according to these rules we created a new radiation hard CMOS library. With this new library we produced a Leon3 chip with triple module redundancy. Single event upsets did occur. Therefore we upgrade the library to make the flip flops more resistant against single event upset (SEU) by adding two p-MOS transistors.

  14. Radiation-hard/high-speed data transmission using optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Abi, B.; Fernando, W.; Kagan, H. P.; Kass, R. D.; Lebbai, M. R. M.; Moore, J. R.; Rizatdinova, F.; Skubic, P. L.; Smith, D. S.

    2009-12-01

    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We investigate the radiation-hardness of various components for possible application in the data transmission upgrade. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs from various sources using 24 GeV/c protons at CERN. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, especially for the GaAs devices. We have designed the ASICs for the opto-link applications and find that the degradation with radiation is acceptable.

  15. Radiation response of inorganic scintillators: Insights from Monte Carlo simulations

    SciTech Connect

    Prange, Micah P.; Wu, Dangxin; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2014-07-24

    The spatial and temporal scales of hot particle thermalization in inorganic scintillators are critical factors determining the extent of second- and third-order nonlinear quenching in regions with high densities of electron-hole pairs, which, in turn, leads to the light yield nonproportionality observed, to some degree, for all inorganic scintillators. Therefore, kinetic Monte Carlo simulations were performed to calculate the distances traveled by hot electrons and holes as well as the time required for the particles to reach thermal energy following γ-ray irradiation. CsI, a common scintillator from the alkali halide class of materials, was used as a model system. Two models of quasi-particle dispersion were evaluated, namely, the effective mass approximation model and a model that relied on the group velocities of electrons and holes determined from band structure calculations. Both models predicted rapid electron-hole pair recombination over short distances (a few nanometers) as well as a significant extent of charge separation between electrons and holes that did not recombine and reached thermal energy. However, the effective mass approximation model predicted much longer electron thermalization distances and times than the group velocity model. Comparison with limited experimental data suggested that the group velocity model provided more accurate predictions. Nonetheless, both models indicated that hole thermalization is faster than electron thermalization and thus is likely to be an important factor determining the extent of third-order nonlinear quenching in high-density regions. The merits of different models of quasi-particle dispersion are also discussed.

  16. The low Earth orbit radiation environment and its impact on the prompt background of hard x-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Fioretti, V.; Bulgarelli, A.; Malaguti, G.; Bianchin, V.; Trifoglio, M.; Gianotti, F.

    2012-07-01

    The background minimization is a science-driven necessity in order to reach deep sensitivity levels in the hard X-ray band, one of the key scientific requirements for hard X-ray telescopes (e.g. NuSTAR, ASTRO-H). It requires a careful modeling of the radiation environment and new concepts of shielding systems. We exploit the Bologna Geant4 Multi-Mission Simulator (BoGEMMS) features to evaluate the impact of the Low Earth Orbit (LEO) radiation environment on the prompt background level for a hybrid Si/CdTe soft and hard X-ray detection assembly and a combined active and passive shielding system. For each class of particles, the spectral distribution of the background flux is simulated, exploring the effect of different materials (plastic vs inorganic active scintillator) and configurations (passive absorbers enclosing or surrounded by the active shielding) on the background count rate. While protons are efficiently removed by the active shielding, an external passive shielding causes the albedo electrons and positrons to be the primary source of background. Albedo neutrons are instead weakly interactive with the active shielding, and they cause an intense background level below 10 keV via elastic scattering. The best shielding configuration in terms of background and active shielding count rates is given by an inorganic scintillator placed inside the passive layers, with the addition of passive material to absorb the intense fluorescence lines of the active shielding and avoid escape peaks on the CdTe detector.

  17. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator.

    PubMed

    Lee, Hyun Cheol; Shin, Wook-Geun; Park, Hyo Jun; Yoo, Do Hyun; Choi, Chang-Il; Park, Chang-Su; Kim, Hong-Suk; Min, Chul Hee

    2016-01-01

    To prevent illicit tracking of radionuclides, radiation portal monitor (RPM) systems employing plastic scintillators have been used in ports and airports. However, their poor energy resolution makes the discrimination of radioactive material inaccurate. In this study, an energy weight algorithm was validated to determine (133)Ba, (22)Na, (137)Cs, and (60)Co by using a plastic scintillator. The Compton edges of energy spectra were converted to peaks based on the algorithm. The peaks have a maximum error of 6% towards the theoretical Compton edge. PMID:26516988

  18. Radiation tolerance implications for the mechanical design of a scintillator calorimeter for the SSC

    SciTech Connect

    Proudfoot, J.

    1990-01-01

    This paper discusses the issue of radiation damage in a sampling scintillator calorimeter with regard to the mechanical and optical design of such a device. Radiation damage is inevitable in some regions of the detector and the different damage and recovery time constants are compared to anticipated calibration data from W Z Boson decays. Some plausible values for safety factors in the initial design are given. 5 refs., 1 fig.

  19. Design of new polymers to improve radiation stability of plastic scintillators

    SciTech Connect

    Barashkov, N.; Korotkikh, N.; Novikova, T.; Markley, F.; Pla-Dalmau, A.; Foster, G.; Rivard, M.

    1993-11-01

    Diffusion enhancers have been used to increase the radiation stability of scintillators. There is a danger that such additions will also allow the scintillation dyes to diffuse out of the matrix. Covalent bonding of the dyes into the matrix would eliminate any luminophore migration. We have demonstrated that dyes with vinyl and divinyl groups can be successfully bonded into a styrene matrix. Both primary and secondary luminophores have been bonded into the matrix and in several cases they have been compared with similar luminophores without the vinyl groups in otherwise identical compositions. In general the bonding does not greatly affect either the radiation stability of the composition or its light output, but is therefore proven to be an acceptable method of preventing luminophore migration. Scintillators with a base of aromatic or alicyclic epoxy resins have also been made with bonded luminophores. In these compositions the bonding is accomplished by using luminophores with one or two amine groups or epoxy groups. When using the amines, they are first prereacted with the epoxy resin and the modified epoxy is then cured with hexahydrophthalic anhydride or trimethoxyboroxine. The emission and absorption spectra of many of these reactive luminophores are given, along with the light outputs and radiation stability of the resulting scintilators.

  20. RD50 Collaboration overview: Development of new radiation hard detectors

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors.

  1. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  2. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.

    PubMed

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-03-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  3. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  4. Photon dosimetry using plastic scintillators in pulsed radiation fields

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; James T. Johnson; Scott W. Watson

    2007-04-01

    Simulations and experiments have been carried out to explore using a plastic scintillator as a dosimetry probe in the vicinity of a pulsed bremsstrahlung source in the range 4 to 20 MeV. Taking advantage of the tissue-equivalent properties of this detector in conjunction with the use of a fast digital signal processor near real-time dosimetry was shown to be possible. The importance of accounting for a broad energy electron beam in bremsstrahlung production, and photon scattering and build-up, in correctly interpreting dosimetry results at long stand-off distances is highlighted by comparing real world experiments with ideal geometry simulations. Close agreement was found between absorbed energy calculations based upon spectroscopic techniques and calculations based upon signal integration, showing a ratio between 10 MeV absorbed dose to 12 MeV absorbed dose of 0.66 at a distance of 91.4 m from the accelerator. This is compared with an idealized model simulation with a monoenergetic electron beam and without scattering, where the ratio was 0.46.

  5. Radiation-hard electrical coil and method for its fabrication

    DOEpatents

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  6. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  7. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Sheromov, M. A.; Sokolov, A. S.

    1986-05-01

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring ( f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4.

  8. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  9. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  10. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    SciTech Connect

    Jing, T

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N {approximately}20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  11. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    NASA Astrophysics Data System (ADS)

    Jing, T.

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (less than 10 ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N approx. 20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micro s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  12. Measurement of Low Energy Detection Efficiency of a Plastic Scintillator: Implications on the Lower Energy Limit and Sensitivity of a Hard X-Ray Focal Plane Compton Polarimeter

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Shanmugam, M.; Goyal, S. K.

    2014-05-01

    The polarization measurements in X-rays offer a unique opportunity for the study of physical processes under the extreme conditions prevalent at compact X-ray sources, including gravitation, magnetic field, and temperature. Unfortunately, there has been no real progress in observational X-ray polarimetry thus far. Although photoelectron tracking-based X-ray polarimeters provide realistic prospects of polarimetric observations, they are effective in the soft X-rays only. With the advent of hard X-ray optics, it has become possible to design sensitive X-ray polarimeters in hard X-rays based on Compton scattering. An important point that should be carefully considered for the Compton polarimeters is the lower energy threshold of the active scatterer, which typically consists of a plastic scintillator due to its lowest effective atomic number. Therefore, an accurate understanding of the plastic scintillators energy threshold is essential to make a realistic estimate of the energy range and sensitivity of any Compton polarimeter. In this context, we set up an experiment to investigate the plastic scintillators behavior for very low energy deposition events. The experiment involves the detection of Compton scattered photons from a long, thin, plastic scintillator (a similar configuration as the eventual Compton polarimeter) by a high resolution CdTe detector at different scattering angles. We find that it is possible to detect energy deposition well below 1 keV, though with decreasing efficiency. We present detailed semianalytical modeling of our experimental setup and discuss the results in the context of the energy range and sensitivity of the Compton polarimeter involving plastic scintillators.

  13. Radiation scintillator embedded with a converting medium to detect and discriminate the four species of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Pellegrin, Scott; Wilson, Chester G.

    2010-04-01

    A new nanoparticle loaded plastic scintillator embedded in a glass substrate detects and discriminates all species of radiation emitted from fissionable bomb making materials. The fast electron scintillating resin is doped with tailored charge conversion nanoparticles to produce characteristic optical pulses. The created optical pulses exit the detector, since the nanoparticles are appreciably smaller than the wavelength of light. Microsandblasting is used to etch deep cavities in the glass substrate forming independent optical paths. The doped resin is injected into the cavities and cured. A separate off-the-shelf PM tube linearly amplifies the created light pulse into a usable electrical signal. By using tailored nanoparticles, the physical mechanisms for converting different species of radiation into lower energy electrons allows for pulse height spectroscopy to discriminate between alpha, beta, gamma, and neutron radiation. A 90Sr source was used to test the beta detector, which is loaded with W. The drop in count rates versus distance was found to be similar to traditional detectors. The gamma detector loaded with Pb nanoparticles was tested with a 60Co source. The addition of Pb provided greater sensitivity to the gamma radiation. A 210Pl source was used to test the glass doped scintillator. The count rates remained fairly constant for varying distances since alpha particles tend to travel in straight paths until losing most of their initial energy. The 157Gd loaded scintillator was tested with an Am/Be source. 157Gd has the largest thermal neutron absorption cross section at 255,000 barns and releases a usable characteristic 72keV electron in 39% of the capture reactions.

  14. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  15. Data-driven exploration of the ionization-phonon partitioning in scintillating radiation detector materials

    SciTech Connect

    Ferris, Kim F.; Webb-Robertson, Bobbie-Jo M.; Jordan, David V.; Jones, Dumont M.

    2008-06-01

    An information-based approach to scintillating materials development has been applied to ranking the alkali halide and alkali earth halide series in terms of their energy conversion efficiency. The efficiency of scintillating radiation detection materials can be viewed as the product of a consecutive series of electronic processes (energy conversion, transfer, and luminescence) as outlined by Lempicki and others. Relevant data are relatively sparse, but sufficient for the development of forward mapping of materials properties through materials signatures. These mappings have been used to explore the limits of the K ratio in the Lempicki model with chemical composition, and examine its relationship with another common design objective, density. The alkali halides and alkali earth halide compounds separate themselves into distinct behavior classes favoring heavier cations and anions for improved K ratio. While the coupling of ionization is strongly related to the optical phonon modes, both dielectric and band gap contributions cannot be ignored. When applied within a candidate screen, the resulting model for K imposes design rules—simple structural restrictions—on scintillating radiation detector materials.

  16. GaN as a radiation hard particle detector

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O'Shea, V.

    2007-06-01

    Semiconductor tracking detectors at experiments such as ATLAS and LHCb at the CERN Large Hadron Collider (LHC) will be subjected to intense levels of radiation. The proposed machine upgrade, the Super-LHC (SLHC), to 10 times the initial luminosity of the LHC will require detectors that are ultra-radiation hard. Much of the current research into finding a detector that will meet the requirements of the SLHC has focused on using silicon substrates with enhanced levels of oxygen, for example Czochralski silicon and diffusion oxygenated float zone silicon, and into novel detector structures such as 3D devices. Another avenue currently being investigated is the use of wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). Both SiC and GaN should be intrinsically more radiation hard than silicon. Pad and guard ring structures were fabricated on three epitaxial GaN wafers. The epitaxial GaN thickness was either 2.5 or 12 μm and the fabricated detectors were irradiated to various fluences with 24 GeV/c protons and 1 MeV neutrons. Detectors were characterised pre- and post-irradiation by performing current-voltage ( I- V) and charge collection efficiency (CCE) measurements. Devices fabricated on 12 μm epitaxial GaN irradiated to fluences of 1016 protons cm-2 and 1016 neutrons cm-2 show maximum CCE values of 26% and 20%, respectively, compared to a maximum CCE of 53% of the unirradiated device.

  17. Implementing QML (Qualified Manufacturers List) for radiation hardness assurance

    SciTech Connect

    Winokur, P.S.; Sexton, F.W.; Fleetwood, D.M.; Terry, M.D.; Shaneyfelt, M.R.; Dressendorfer, P.V.; Schwank, J.R.

    1990-01-01

    Statistical process control (SPC) of technology parameters relevant to radiation hardness, test structure to Integrated Circuit (IC) correlation, and extrapolation from laboratory to threat scenarios are keys to implementing Qualified Manufacture's List (QML) for radiation hardness assurance in a cost-effective manner. Data from approximately 300 wafer lots fabricated in Sandia's 4/3-{mu}m and Complementry Metal Oxide Semiconductor (CMOS) IIIA (2-{mu}m) technologies are used to demonstrate approaches to, and highlight issues associated with, implementing QML for radiation-hardened CMOS in space applications. An approach is demonstrated to implement QML for signal-event upset SEU immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates. It is seen that the process capability indices, C{sub p} and C{sub pk}, for the manufacture of 400 k{Omega} feedback resistors required to provide SEU tolerance do not conform to 6{sigma}'' quality standards. For total-dose, {triangle}V{sub it} shifts measured on transistors are correlated with circuit response in the space environment. SPC is illustrated for {triangle}V{sub it}, and violations of SPC rules are interpreted in terms of continuous improvement. Finally, design validation for SEU, and quality conformance inspections for total-dose, are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, three-dimensional device-plus-circuit codes, and improved design simulators. 29 refs., 10 figs., 1 tab.

  18. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  19. Scintillation mechanism and radiation damage in Ce{sub x}La{sub 1-x}F{sub 3} crystals

    SciTech Connect

    Wojtowicz, A.J.; Wisniewski, D. |; Lempicki, A.; Brecher, C.; Bartram, R.H.; Woody, C.; Levy, P.; Stoll, S.; Kierstead, J.; Pedrini, C.

    1994-08-01

    Recent spectroscopic and radiation damage experiments on a series of Ce{sub x}La{sub 1{minus}x}F{sub 3} crystals suggest that the scintillation light output is limited by an unusual quenching mechanism, which also plays a major role in minimizing radiation-induced damage. The intensity of the radiation-induced absorptions is a strong function of the Ce content x, reaching a maximum for x = 0.03 and a minimum for x = 1. This peculiar dependence appears to be due to the influence of deep-lying Ce levels on both scintillation mechanism and radiation damage. The authors suggest that various charge transfer processes can explain many aspects of the performance of Ce{sub x}La{sub 1{minus}x}F{sub 3} scintillators.

  20. Tests of Radiation-Hard Silicon Microstrip Sensors for CMS in S-LHC

    SciTech Connect

    Luukka, Panja; Maenpaa, Teppo; Tuovinen, Esa; Spiegel, Lenny; Flight, Robert; /Rochester U.

    2011-02-21

    The tests are to study the performance of various silicon microstrip sensors that are sufficiently radiation-hard to be considered as candidates for the CMS outer (R > 25cm) tracker in the second phase of the currently envisioned S-LHC upgrade. The main goal of the beam test is to test Float Zone (FZ) and Magnetic Czochralski (MCz) silicon sensors that have been procured from Hamamatsu by the CMS collaboration as possible replacements for the CMS outer tracker for phase 2 operations. The detectors under test (DUT) will be isntalled in a cold box that contains 10 slots for modules based on CMS Tracker hybrids. Slots 1-4 and 7-10 are occupied by reference planes and slots 5 and 6 are reserved for DUTs. The box is cooled by Peltier elements in thermal contact with the top and bottom aluminum baseplates and is typically operated at around -25 C. A PCI based version of the CMS DAQ is used to read out the 10 slots based on triggers provided by beam scintillation counters. Given the low rate of beam particles the hybrid APVs will be operated in Peak mode, which maximizes the signal-to-noise performance of the readout chips. The internal clock operates at the LHC frequency of 40 MHz.

  1. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, Robert J.; McElhaney, Stephanie A.; Bates, John B.

    1994-01-01

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

  2. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

    1994-07-26

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

  3. Design of organic scintillators for non-standard radiation field dosimetry: experimental setup.

    PubMed

    Norman H, Machado R; Maximiliano, Trujillo T; Javier E, García G; Diana C, Narvaez G; Paula A, Marín M; Róbinson A, Torres V

    2013-01-01

    This paper describes an experimental setup designed for sensing the luminescent light coming from an organic plastic scintillator stimulated with ionizing radiation. This device is intended to be a part of a complete dosimeter system for characterization of small radiation fields which is the project of the doctoral thesis of the medical physicist at the Radiation Oncology facility of Hospital San Vicente Fundación in conjunction with the Universidad de Antioquia of Medellín Colombia. Some preliminary results predict a good performance of the unit, but further studies must be conducted in order to have a completed evaluation of the system. This is the first step in the development of an accuracy tool for measurement of non-standard fields in the Radiotherapy or Radiosurgery processes. PMID:24110369

  4. Super radiation hard vacuum phototriodes for the CMS endcap ECAL

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. I.; Kovalev, A. I.; Levchenko, L. A.; Lukianov, V. N.; Moroz, F. V.; Mamaeva, G. A.; Seliverstov, D. M.; Trautman, V. Yu.; Yakorev, D. O.

    2004-12-01

    The energy resolution σ/E of the electromagnetic calorimeter (ECAL) in the energy range of 50-500 GeV is defined mainly by two terms: stochastic α/√E and constant C. The photoreadout of the CMS Endcap ECAL consists of vacuum phototriodes (VPT), which are broadening a signal from np photoelectrons characterized by the excess noise factor F=np(σ/E)2. The technical specification of the CMS ECAL requires the value of F to be smaller than 4 in the CMS LHC environment during 10 years of detector operation. In this paper we present results of the VPT performance study in a magnetic field up to 4 T, in a gamma radiation field of 0-50 kGy and in a neutron fluence of 7×1015 n/cm2. The standard phototriodes FEU-188 with faceplates from UV glass used in CMS ECAL as well as VPTs with super radiation hard cerium-doped glasses were investigated at the 60Co gamma facility, a neutron generator and a nuclear reactor in the Petersburg Nuclear Physics Institute (PNPI). The dependence of the VPT gain and the excess noise factor in magnetic fields on the fine-mesh plane orientation has also been studied.

  5. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  6. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    PubMed Central

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-01-01

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate 137Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu2+, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu2+ dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100–700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0–5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu2+ material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu2+ exhibits strong radiation hardness and lends support for further investigations

  7. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  8. SU-E-T-553: Characterization of Plastic Scintillator Detectors for Radiation Therapy

    SciTech Connect

    Liu, H; Lin, H; Darafsheh, A; Finlay, J; Both, S; Zhu, T

    2014-06-01

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) designed for dosimetry of radiation therapy. Methods: The Exradin W1 Scintillator is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. The Cerenkov emissions were corrected using spectral separation. The optical signal was converted to electronic signal with a photodiode. We measured its dosimetry performance, including percentage depth dose, output factor, dose and dose rate linear response. We compared the dosimetry results with reference ion chamber measurements. Results: The dosimetry results of PSD agree well with reference ion chamber measurements. For percentage depth dose, the differences between PSD and ion chamber results are on average 1.7±1.1% and 0.8±0.8% with a maximum of 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 2% from ion chamber results. The dose linear response is within 1% when dose is larger than 20 MU for both 6 MV and 15 MV. The dose rate linear response is within 1% for the entire dose rate used (100 MU/min to 600MU/min). Conclusions: The current design of PSD is feasible for the dosimtry measurement in radiation therapy. This combination of PSD and photodiode system could be extended to multichannel array detection of dose distribution. It might as well be used as range verification in proton therapy. The work is partially supported by: DOD (W81XWH-09-2-0174) and American Cancer Society (IRG-78-002-28)

  9. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    NASA Astrophysics Data System (ADS)

    Saengkaew, Phannee; Sanorpim, Sakuntam; Jitpukdee, Manit; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho; Yordsri, Visittapong; Thanachayanont, Chanchana; Nuntawong, Noppadon

    2016-08-01

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange

  10. Radiation-tolerant 50MHz bulk CMOS VLSI circuits utilizing radiation-hard structure NMOS transistors

    SciTech Connect

    Hatano, H.; Takatsuka

    1986-10-01

    A radiation-tolerant, high speed, bulk CMOS VLSI circuit design, utilizing a new NMOS structure, has been investigated, based on ..gamma..-ray irradiation experimental results for 2 ..mu..m shift registers. By utilizing 60-bit clocked gate and transfer gate static shift register circuits, the usefulness of radiation-hard NMOS structure and circuit design parameter optimization has been confirmed experimentally, showing 50 MHZ operation CMOS circuits at 5 V supply voltage after 1 x 10/sup 5/ rads (Si) irradiation. The limitations of dynamic circuits in radiation-tolerant circuit designs have also been shown, using 120-bit dynamic shift register circuits. Based on the above results, radiation-tolerant, high-performance, bulk CMOS VLSI circuit designs are discussed.

  11. [Effects of ionizing radiation on scintillators and other particle detectors]. Conference summary

    SciTech Connect

    Proudfoot, J.

    1992-09-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ``apple of the high energy physicist`s eye.`` Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference.

  12. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  13. SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    The research project "SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications" approved under the NASA High Energy Astrophysics Research Program. The principal investigator of the proposal was Prof. Geoffrey N. Pendleton, who is currently on extended leave from UAH. Prof. William S. Paciesas administered the grant during Dr. Pendleton's absence. The project was originally funded for one year from 6/8/2000 to 6/7/2001. Due to conflicts with other commitments by the PI, the period of performance was extended at no additional cost until 6/30/2002. The goal of this project was to study scintillating fiber pair-tracking gamma-ray telescope configurations specifically designed to perform imaging and spectroscopy in the 5 - 250 MeV energy range. The main efforts were concentrated in two areas: 1) development of tracking techniques and event reconstruction algorithms, with particular emphasis on angular resolution; and 2) investigation of coded apertures as a means to improve the instrument angular resolution at low energies.

  14. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    NASA Astrophysics Data System (ADS)

    Jackson, Sarah F.; Monk, Stephen D.; Stanley, Steven J.; Lennox, Kathryn

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine®’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine® to a highly controlled dose rate (ranging from 0 Sv h-1 to 320 Sv h-1), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site.

  15. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  16. Synthesis of scintillating metal organic frameworks for the detection of radiation from subatomic particles

    NASA Astrophysics Data System (ADS)

    Ingram, Conrad; Williams, Michael

    2013-04-01

    The objective of this research is to develop fluorescent metal organic frameworks (MOFs) as scintillation materials for more efficient light output and detection of ionizing radiation, such as neutrons, alpha particles or gamma rays, generated by fissile materials. MOFs are multidimensional porous structures, which are synthesized from the covalent bonding of metal ions or metal oxide clusters with organic ligand linkers, such as benzene dicarboxylates. The ligands will be chosen to have fluorescent characteristics, when excited by radiation or energetic sub-atomic particles. We will explore the synthesis of new MOFs, containing carboxylate ligands with unique conjugated chromophores, such as, benzene-1,3,5-triyltris(ethene-2,1-diyl)) tribenzoic acid and 9-hydroxy-9-vinyl-9H-fluorene-2,7-dicarboxylic acid), and doped with heavy metal as triplet-state harvesters, that we are proposing will result in stronger and possibly, unique luminescence spectral features that will allow for the discrimination between different ionizing radiations from subatomic particles. Photo-, catho- and radio-luminescence studies will be conducted on the materials, and radiation mechanism(s) will be investigated.

  17. Scintillator assembly for alpha radiation detection and method of making the assembly

    DOEpatents

    McElhaney, Stephanie A.; Bauer, Martin L.; Chiles, Marion M.

    1992-01-01

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window.

  18. Scintillator assembly for alpha radiation detection and method of making the assembly

    DOEpatents

    McElhaney, S.A.; Bauer, M.L.; Chiles, M.M.

    1992-09-22

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs.

  19. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  20. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  1. The response of a radiation resistant ceramic scintillator (Al{sub 2}O{sub 3}:Cr) to low energy ions (0-60 keV)

    SciTech Connect

    Jimenez-Rey, D.; Zurro, B.; McCarthy, K. J.; Baciero, A.; Garcia, G.

    2008-10-15

    This work extends a previous study on ionoluminescence of a radiation-hard ceramic scintillator, Al{sub 2}O{sub 3}:Cr, to ions accelerated to keV energies [K. J. McCarthy et al., J. Nucl. Mater. 321, 78 (2003)]. It is motivated by the identification of this material as a promising candidate for use in the fast-ion-loss detector for ITER [for the range of thermal (low energy) and suprathermal ions]. In the paper we quantify and compare its ionoluminescence with that of some common luminescent materials (YAG:Ce and ruby) when irradiated by H{sup +} ions accelerated to {<=}60 keV using a purpose built laboratory setup. Next, studies are made on the ceramic to quantify its response as a function of incident ion mass, i.e., to He{sup +}. For this, the absolute luminosities of the material are estimated in terms of the number of photons emitted per incident ion as a function of energy. Moreover, the radiation hardness and postirradiation recovery of the ceramic are investigated. Finally, from the studies it can be concluded that the ceramic ruby is a good candidate for detecting low energy ions as long as its temporal response (approximately several milliseconds) is not a constraint for specific ion measurements.

  2. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.

    PubMed

    Kafi, M; Salar Elahi, A; Ghoranneviss, M; Ghanbari, M R; Salem, M K

    2016-09-01

    In a tokamak with a toroidal electric field, electrons that exceed the critical velocity are freely accelerated and can reach very high energies. These so-called `runaway electrons' can cause severe damage to the vacuum vessel and are a dangerous source of hard X-rays. Here the effect of toroidal electric and magnetic field changes on the characteristics of runaway electrons is reported. A possible technique for runaways diagnosis is the detection of hard X-ray radiation; for this purpose, a scintillator (NaI) was used. Because of the high loop voltage at the beginning of a plasma, this investigation was carried out on toroidal electric field changes in the first 5 ms interval from the beginning of the plasma. In addition, the toroidal magnetic field was monitored for the whole discharge time. The results indicate that with increasing toroidal electric field the mean energy of runaway electrons rises, and also an increase in the toroidal magnetic field can result in a decrease in intensity of magnetohydrodynamic oscillations which means that for both conditions more of these high-energy electrons will be generated. PMID:27577779

  3. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this

  4. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  5. Comparison of the radiation hardness of various VLSI technologies for defense applications

    SciTech Connect

    Gibbon, C.F.

    1985-01-01

    In this review the radiation hardness of various potential very large scale (VLSI) IC technologies is evaluated. IC scaling produces several countervailing trends. Reducing vertical dimensions tends to increase total dose hardness, while reducing lateral feature sizes may increase susceptibility to transient radiation effects. It is concluded that during the next decade at least, silicon complimentary MOS (CMOS), perhaps on an insulating substrate (SOI) will be the technology of choice for VLSI in defense systems.

  6. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  7. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    SciTech Connect

    Cerjan, C.J.; Sigmon, T.W.

    2000-02-15

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  8. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  9. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  10. Detectors on base of scintillation structures for registration of volumetric activities of gaseous and liquid media gamma radiation

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Yurov, V. N.; Ryabeva, E. V.; Samossadny, V. T.; Lupar, E. E.; Trofimov, Yu A.; Kolesnikov, S. V.; Chebishev, S. B.; Nebolsin, V. O.

    2016-02-01

    The main aim of this research is the development and prototyping of the ionizing radiation detectors for the diagnosis of the physical processes used for monitoring the radiation situation at the thermal or fast neutrons reactors. In this article we present the experimental verification of applicability of the scintillation detectors based on LaBr3(Ce) and YAlO3(Ce). The experimental studies of the gamma-ray detection with several designs of the crystal scintillation detectors in gas and liquid are considered. It was shown that the measurement range in the liquid medium at the duration of one measurement of 100 seconds for 137Cs equals from 3.79·102 Bq/l to 1.08·108 Bq/l for detector prototype based on YAlO3(Ce).

  11. Silica scintillating materials prepared by sol-gel methods

    SciTech Connect

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-12-31

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons.

  12. The effect of heavy metal contamination in SIMOX on radiation hardness of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ipri, Alfred C.; Jastrzebski, L.; Peters, D.

    1989-12-01

    It is shown that heavy-metal contamination introduced during implantation of oxygen into silicon results in a reduction of SIMOX (separation by implanted oxygen) oxide radiation hardness. Radiation-induced back-channel leakage currents in MOS transistors processed in SIMOX films containing various levels of heavy metals, as measured by surface photovoltage (SPV), are a strong function of heavy metal concentration. It is concluded that SPV measurements of as-implanted SIMOX wafers can be used as a rapid nondestructive quality control inspection technique to predict the radiation hardness of the SIMOX oxide prior to processing.

  13. Photoluminescence and radiation response properties of Ce3+-doped CsCaCl3 crystalline scintillator

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Saeki, Keiichiro; Tanaka, Hironori; Yahaba, Takuma; Yanagida, Takayuki; Koshimizu, Masanori; Asai, Keisuke

    2016-09-01

    In this paper, we report on the photoluminescence and scintillation properties of a newly developed CsCaCl3:Ce (0.5 mol%) crystalline scintillator grown by the vertical Bridgman method. The fluorescence quantum efficiency for the Ce3+ characteristic emission bands centered at around 350–400 nm was 76% under excitation at 330 nm light. The photoluminescence decay time of the Ce3+ was approximately 32 ns. When x-ray excited the crystal, intense emission bands were observed at 350–400 nm, and could be attributed to the Ce3+ emission. The scintillation light yield of the developed crystal was ∼7600 ph MeV‑1 compared to a NaI:Tl commercial scintillator, and the principal scintillation decay time was approximately 340 ns plus two fast components of around 1.6 ns and 45 ns.

  14. Radiation hardness by design for mixed signal infrared readout circuit applications

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Gates, James; Dobyns, David; Pauls, Greg; Wall, Bruce

    2013-09-01

    Readout integrated circuits (ROICs) to support space-based infrared detection applications often have severe radiation tolerance requirements. Radiation hardness-by-design (RHBD) significantly enhances the radiation tolerance of commercially available CMOS and custom radiation hardened fabrication techniques are not required. The combination of application specific design techniques, enclosed gate architecture nFETs and intrinsic thin oxide radiation hardness of 180 nm process node commercial CMOS allows realization of high performance mixed signal circuits. Black Forest Engineering has used RHBD techniques to develop ROICs with integrated A/D conversion that operate over a wide range of temperatures (40K-300K) to support infrared detection. ROIC radiation tolerance capability for 256x256 LWIR area arrays and 1x128 thermopile linear arrays is presented. The use of 130 nm CMOS for future ROIC RHBD applications is discussed.

  15. A radiation-hard, low-background multiplexer design for spacecraft imager applications

    NASA Astrophysics Data System (ADS)

    Staller, Craig; Ramirez, Luis; Niblack, Curtiss; Blessinger, Michael; Kleinhans, William

    1992-07-01

    A possible multiplexer design for the focal plane for the Cassini Visible and Infrared Mapping Spectrometer (VIMS) is reviewed. The instrument's requirements for the multiplexed array are summarized. The VIMS instrument has a modest radiation-hardness requirement due to the trajectory and planetary environments in which the instrument will be required to operate. The total ionizing dose hardness requirement is a few tens of kilorads. A thin-gate oxide of a few hundred angstroms thickness is to be used. Field hardness is to be achieved by guard bands or hardened dielectric isolation. The design is argued to meet the low-noise and radiation-hardness required for imaging at Saturn. The design is versatile enough to provide double-correlated and double-uncorrelated sampling, which is accomplished in the signal processing electronics outside the focal plane.

  16. Radiation hardness of Efratom M-100 rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    English, T. C.; Vorwerk, H.; Rudie, N. J.

    1983-01-01

    The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily; the total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.

  17. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  18. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  19. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  20. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber.

    PubMed

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Lee, Seung Ho; Han, Won-Taek

    2016-02-22

    We have investigated gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber. Radiation-induced attenuation (RIA) of the optical fiber was measured under intermittent gamma-ray irradiations with dose rate of ~10 kGy/h. No radiation hardening effect on the RIA by the gamma-ray pre-dose was found when the exposed fiber was bleached for long periods of time (27~47 days) at room-temperature. Photo-bleaching scheme upon 980 nm LD pumping has proven to be an effective deterrent to the RIA, particularly by suppressing the incipient RIA due to room-temperature unstable self-trapped hole defects (STHs). Large temperature dependence of the RIA of the optical fiber together with the photo-bleaching effect are worthy of note for reinforcing its radiation hard characteristics. PMID:26907044

  1. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  2. Radiation Hard Sensors for the BeamCal of the ILC

    NASA Astrophysics Data System (ADS)

    Grah, C.

    2008-06-01

    BeamCal is an electromagnetic sampling calorimeter in the very forward region of the detectors at the ILC. BeamCal will be hit by a large fraction of electron-positron pairs stemming from beamstrahlung. The sensors used for BeamCal have to withstand very high levels of total ionizing dose. We report on the investigations of radiation hard sensor materials for BeamCal of the FCAL collaboration. Artificial diamond, radiation hard silicon, SiC and GaAs sensors are under consideration. Static measurements of the current-voltage characteristics, response to minimum ionizing particles and test beam measurements are part of our investigations.

  3. FPIX2: A radiation-hard pixel readout chip for BTeV

    SciTech Connect

    David C. Christian et al.

    2000-12-11

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results of initial tests of prototype 0.25{micro} CMOS devices are presented, as are plans for the balance of the development effort.

  4. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  5. Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation.

    PubMed

    Rack, Alexander; García-Moreno, Francisco; Helfen, Lukas; Mukherjee, Manas; Jiménez, Catalina; Rack, Tatjana; Cloetens, Peter; Banhart, John

    2013-11-20

    Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample. The hard x-rays that pass through the sample either create an image on the first detector or keep on propagating until they are captured by a second x-ray detector located further downstream. In this way, a process can be imaged simultaneously in a hierarchical manner within a single exposure and a projection of the complete object with moderate resolution as well as a subregion with high resolution are obtained. As a proof-of-concept experiment, image sequences of an evolving liquid-metal foam are shown, employing frame rates of 1000  images/s (1.2 μm pixel size) and 15,000  images/s (18.1 μm pixel size) for the first and second detector, respectively. PMID:24513767

  6. Radiation-hard silicon gate bulk CMOS cell family

    SciTech Connect

    Gibbon, C. F.; Habing, D. H.; Flores, R. S.

    1980-01-01

    A radiation-hardened bulk silicon gate CMOS technology and a topologically simple, high-performance dual-port cell family utilizing this process have been demonstrated. Additional circuits, including a random logic circuit containing 4800 transistors on a 236 x 236 mil die, are presently being designed and processed. Finally, a joint design-process effort is underway to redesign the cell family in reduced design rules; this results in a factor of 2.5 cell size reduction and a factor of 3 decrease in chip interconnect area. Cell performance is correspondingly improved.

  7. Radiation hardness of n-GaN schottky diodes

    SciTech Connect

    Lebedev, A. A. Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V.; Makarov, Yu. N.; Usikov, A. S.; Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D.; Kozlovski, V. V.

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  8. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  9. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  10. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2015-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.

  11. Irradiation facility at the IBR-2 reactor for investigation of material radiation hardness

    NASA Astrophysics Data System (ADS)

    Bulavin, M.; Cheplakov, A.; Kukhtin, V.; Kulagin, E.; Kulikov, S.; Shabalin, E.; Verkhoglyadov, A.

    2015-01-01

    Description of the irradiation facility and available parameters of the neutron and gamma exposures including the maximal integrated doses are presented in the paper. The research capabilities for radiation hardness tests of materials in high intensity beam of fast neutrons at the IBR-2 reactor of the Joint Institute for Nuclear Research in Dubna (Russia) are outlined.

  12. Irradiation facility at the IBR-2 reactor for investigating material radiation hardness

    NASA Astrophysics Data System (ADS)

    Bulavin, M. V.; Verkhoglyadov, A. E.; Kulikov, S. A.; Kulagin, E. N.; Kukhtin, V. V.; Cheplakov, A. P.; Shabalin, E. P.

    2015-03-01

    A description of the irradiation facility and available parameters of neutron and gamma exposures, including the maximum integrated doses, are presented in the paper. The research capabilities for radiation hardness tests of materials in a high-intensity beam of fast neutrons at the IBR-2 reactor of the Joint Institute for Nuclear Research in Dubna (Russia) are outlined.

  13. Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2010-08-01

    To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].

  14. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  15. Radiation-hard power electronics for the ATLAS New Small Wheel

    NASA Astrophysics Data System (ADS)

    Ameel, J.; Amidei, D.; Baccaro, S.; Citterio, M.; Cova, P.; Delmonte, N.; Sekhon Edgar, K.; Edgar, R.; Fiore, S.; Lanza, A.; Latorre, S.; Lazzaroni, M.; Yang, Y.

    2015-01-01

    The New Small Wheel (NSW) is an upgrade for the ATLAS detector to provide enhanced triggering and reconstruction of muons in the forward region. The large LV power demands of the NSW necessitate a point-of-load architecture with on-detector power conversion. The radiation load and magnetic field of this environment, while significant, are nevertheless still in the range where commercial-off-the-shelf power devices may suffice. We present studies on the radiation-hardness and magnetic-field tolerance of several candidate buck converters and linear regulators. Device survival and performance are characterized when exposed to gamma radiation, neutrons, protons and magnetic fields.

  16. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    SciTech Connect

    Sun, Ke-Xun; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-09-21

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 1015 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 1012 protons/cm2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2x1012 protons/cm2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have demonstrated

  17. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  18. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  19. Impact of radiation hardness and operating temperatures of silicon carbide electronics on space power system mass

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1999-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kWe, 1 MWe, and 10 MWe) for near term technology (i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  20. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  1. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  2. Light yield measurements of "finger" structured and unstructured scintillators after gamma and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Afanasiev, S. V.; Boyarintsev, A. Yu.; Danilov, M. V.; Emeliantchik, I. F.; Ershov, Yu. V.; Golutvin, I. A.; Grinyov, B. V.; Ibragimova, E.; Levchuk, L. G.; Litomin, A. V.; Makankin, A. M.; Malakhov, A. I.; Moisenz, P. V.; Nuritdinov, I.; Popov, V. F.; Rusinov, V. Yu.; Shumeiko, N. M.; Smirnov, V. A.; Sorokin, P. V.; Tarkovskii, E. I.; Tashmetov, A.; Vasiliev, S. E.; Yuldashev, B.; Zamiatin, N. I.; Zhmurin, P. N.

    2016-05-01

    Plastic scintillators are often used as detectors in High Energy Physics (HEP), but have insufficient radiation hardness. Organization of better light collection inside a single detector may prolong operation life of scintillators. A finger-strip plastic scintillator option has many advantages to keep the excellent detector performance at high luminosity. Measurements assigned to show an advantage of a stripped detector vs. the un-stripped one in the range of increased absorbed doses and the smallest dose rates have been performed. This method has proved to be a good upgrade strategy.

  3. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  4. FPIX2: a radiation-hard pixel readout chip for BTeV

    NASA Astrophysics Data System (ADS)

    Christian, D. C.; Appel, J. A.; Cancelo, G.; Hoff, J.; Kwan, S.; Mekkaoui, A.; Yarema, R.; Wester, W.; Zimmermann, S.

    2001-11-01

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment [A. Kulyavtsev, et al., Proposal for an Experiment to Measure Mixing, CP Violation and Rare Decays in Charm and Beauty Particle Decays at the Fermilab Collider (2000), http://www-btev.fnal.gov/public_documents/btev_proposal/]. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results (including the effects of irradiation to ˜33 Mrad) of initial tests of prototype 0.25 μm CMOS devices are presented, as are plans for the balance of the development effort.

  5. Effect of gate oxide thickness on the radiation hardness of silicon-gate CMOS

    SciTech Connect

    Nordstrom, T.V.; Gibbon, C.F.

    1981-01-01

    Significant improvements have been made in the radiation hardness of silicon-gate CMOS by reducing the gate oxide thickness. The device studied is an 8-bit arithmetic logic unit designed with Sandia's Expanded Linear Array (ELA) standard cells. Devices with gate oxide thicknesses of 400, 570 (standard), and 700 A were fabricated. Irradiations were done at a dose rate of 2 x 10/sup 6/ rads (Si) per hour. N- and P-channel maximum threshold shifts were reduced by 0.3 and 1.2 volts, respectively, for the thinnest oxide. Approximately, a linear relationship is found for threshold shift versus thickness. The functional radiation hardness of the full integrated circuit was also measured.

  6. Interplanetary phase scintillation and the search for very low frequency gravitational radiation

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Woo, R.; Estabrook, F. B.

    1979-01-01

    Observations of radio-wave phase scintillation are reported which used the Viking spacecraft having an earth-spacecraft link very similar to that which will be used in very low-frequency (VLF) gravitational-wave searches. The phase power-spectrum level varies by seven orders of magnitude as the sun-earth-spacecraft (elongation) angle changes from 1 to 175 deg. It is noteworthy that a broad minimum in the S-band (2.3 GHz) phase fluctuation occurs in the antisolar direction; the corresponding fractional frequency stability (square root Allan variance) is about 3 x 10 to the -14th for 1000-s integration times. A simultaneous two-frequency two-station observation indicates that the contribution to the phase fluctuation from the ionosphere is significant but dominated by the contribution from the interplanetary medium. Nondispersive tropospheric scintillation was not detected (upper limit to fractional frequency stability about 5 x 10 to the -14th). Evidently, even observations in the antisolar direction will require higher radio frequencies, phase scintillation calibration, and correlation techniques in the data processing, for detection of gravitational bursts at the anticipated strain amplitude levels of no more than 10 to the -15th.

  7. A Radiation-Hard Analog Memory In The AVLSI-RA Process

    SciTech Connect

    Britton, C.L. Jr.; Wintenberg, A.L.; Read, K.F.; Simpson, M.L.; Young, G.R.; Clonts, L.G., Kennedy, E.J., Smith, R.S., Swann, B.K.; Musser, J.A.

    1995-12-31

    A radiation hardened analog memory for an Interpolating Pad Camber has been designed at Oak Ridge National Laboratory and fabricated by Harris Semiconductor in the AVLSI-RA CMOS process. The goal was to develop a rad-hard analog pipeline that would deliver approximately 9-bit performance, a readout settling time of 500ns following read enable, an input and output dynamic range of +/-2.25V, a corrected rms pedestal of approximately 5mV or less, and a power dissipation of less than 10mW/channel. The pre- and post-radiation measurements to 5MRad are presented.

  8. 22nd RD50 Workshop on Radiation Hard Semiconductor Devices for High Luminosity Colliders

    SciTech Connect

    Seidel, Sally

    2013-05-06

    The 22nd RD50 Workshop on Radiation Hard Semiconductor Devices for High Luminosity Colliders was held on the campus of the University of New Mexico from June 3 to 5, 2013. This was the first North American meeting of the series going back to 2001. The sessions covered Material and Defect Characterization, Detector Characterization, Full Detector Systems, and New Structures. A half-day mini-workshop was allocated to radiation damage at LHC experiments. All talks are archived permanently available to the public at rd50.web.cern.ch. Financial support was used for room rental audiovisual equipment rental, and document preparation services.

  9. HTLT oxygenated silicon detectors: radiation hardness and long-term stability

    NASA Astrophysics Data System (ADS)

    Li, Z.; Dezillie, B.; Bruzzi, M.; Chen, W.; Eremin, V.; Verbitskaya, E.; Weilhammer, P.

    2001-04-01

    Silicon detectors fabricated by BNLs high-temperature, long time (HTLT) oxidation technology have been characterized using various techniques for material/detector properties and radiation hardness with respect to gamma, proton and neutron irradiation. It has been found that a uniform oxygen distribution with a concentration of 4×10 17/cm 3 has been achieved in high-resistivity FZ silicon with our HTLT technology. With the standard HTLT technology, the original high resistivity of FZ silicon will be retained. However, the controlled introduction of thermal donors (TD) with a concentration higher than the original shallow doping impurity can be achieved with a process slightly altered from the standard HTLT technology (HTLT-TD). Detectors made by both technologies (HTLT and HTLT-TD) have been found to be advantageous in radiation hardness to gamma and proton irradiation, in terms of detector full depletion voltage degradation, as compared to the control samples. In fact, these detectors are insensitive to gamma irradiation up to 600 Mrad and more tolerant by at least a factor of two to proton irradiation and the following reverse annealing. However, there is little improvement in radiation hardness to neutron irradiation, which has been attributed to the nature of neutron-induced damage that is dominated by extended defects or defect clusters. Microscopic measurements (I-DLTS) have also been made on control and HTLT samples and will be compared and presented.

  10. The ESA RADGLASS activity: a radiation study of non rad-hard glasses

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Bézy, Jean-Loup; Costantino, Alessandra; Vink, Ramon; Deep, Atul; Ahmad, Munadi; Amorim, Emmanuel; Miranda, Micael D.; Meynart, Roland

    2015-10-01

    Only a small set of radiation hardened optical glasses are currently offered in the market, thus drastically limiting the optical design choices available to the engineers at the early phases of an instrument development. Furthermore, availability of those glasses cannot be easily guaranteed for the long term horizon of future space instrument developments. Radiation tests on conventional glasses on the other hand have shown significant sensitivity to high radiation levels but such levels are not necessarily representative of typical low Earth (LEO) orbits. We have conducted irradiation campaigns on several different types of conventional, non-radiation hard glasses, selected from the wider pool of the Schott "new" arsenic and lead free series (N-*) and characterized their spectral transmission properties before and after ionizing dose deposition. We report our first findings here.

  11. New scintillator and waveshifter materials

    SciTech Connect

    Zheng, H.; Baumbaugh, B.; Gerig, A.; Marchant, J.; Reynolds, K.; Ruchti, R.; Warchol, J; Wayne, M. Hurlbut, C. Kauffman, J. Pla-Dalmau, A.

    1998-11-01

    Experimental applications requiring fast timing and/or high efficiency position and energy measurements typically use scintillation materials. Scintillators utilized for triggering, tracking, and calorimetry in colliding beam detectors are vulnerable to the high radiation fields associated with such experiments. We have begun an investigation of several fluorescent dyes which might lead to fast, efficient, and radiation resistant scintillators. Preliminary results of spectral analysis and efficiency are presented. {copyright} {ital 1998 American Institute of Physics.}

  12. Satellite project "CORONAS-PHOTON" for study of solar hard radiation

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.; Cor-Phot Team

    "CORONAS-PHOTON" is the Russian mission for study of the solar hard electromagnetic radiation in the very wide energy range from Extreme UV up to high-energy gamma - radiation. GOAL OF PROJECT: The investigation of energy accumulation and its transformation into energy of accelerated particles processes during solar flares; the study of the acceleration mechanisms, propagation and interaction of fast particles in the solar atmosphere; the study of the solar activity correlation with physical-chemical processes in the Earth upper atmosphere. SCIENTIFIC PAYLOAD CAPABILITY Radiation / Energy region / Detector type: Full solar disk X- radiation / 2keV - 2000MeV / Prop. counter; NaI(Tl); Full solar disk X- and γ-radiation / NaI(Tl)/CsI(Na) phoswich; Full solar disk X- and γ-radiation and solar neutrons / 20 - 300MeV / YalO_3(Ce); CsI(Tl); Hard X-ray polarization in large flares / 20 - 150keV / p-terphenyl scatterer and CsI(Na) absorbers; Full solar disk EUV-radiation monitoring / 6 spectral windows in <10 - 130nm / Filtered photodiodes; Solar images in narrow spectral bands and monochromatic emission lines of hot plasma / Emission of HeII, SiXI, FeXXI, FeXXIII, MgXII ions / Multi-layer and Bregg spherical crystal quartz mirrors with CCDs; Additionally, the temporal and energy spectra of electrons (0.2-14MeV), protons (1-61MeV) and nuclei (Z<26, 2-50MeV/nuclon) at the satellite orbit will be registrated by several instruments. MAIN CHARACTERISTICS OF SPACECRAFT: Spacecraft weight: 1900 kg; Orbit type: Circular; Scientific payload weight: 540 kg; Height: 500 km; Orientation to the Sun [arc min]: better 5; Inclination: 82.5 degree; Instability of orientation [deg/s]: less 0.005; Solar - synchronous orbit is under study. Launching date of "CORONAS-PHOTON" spacecraft is 2006.

  13. Effects of film thickness on scintillation characteristics of columnar CsI:Tl films exposed to high gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Shinde, Seema; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2016-02-01

    Oriented columnar films of Tl doped CsI (CsI:Tl) of varying thicknesses from 50 μm to 1000 μm have been deposited on silica glass substrates by a thermal evaporation technique. The SEM micrographs confirmed the columnar structure of the film while the powder X-ray diffraction pattern recorded for the films revealed a preferred orientation of the grown columns along the <200> direction. Effects of high energy gamma exposure up to 1000 Gy on luminescence properties of the films were investigated. Results of radio-luminescence, photo-luminescence and scintillation studies on the films are compared with those of a CsI:Tl single crystal with similar thickness. A possible correlation between the film thicknesses and radiation damage in films has been observed.

  14. On the nature of the sources of hard pulse X-ray radiation

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1978-01-01

    Besides the identified sources of cosmic pulse X-ray radiation with globular clusters NGC 6624, NGC 1851 and MXB 1730-335 several new identifications were made. The source in Norma was probably identified with globular cluster NGC 5927, the source in Aquila with globular cluster NGC 6838 (M71), and the source in Puppis with globular cluster NGC 2298. Gamma pulses discovered by the Vela satellites and X-ray pulses thoroughly measured by the SAS-3, Ariel-5, and ANS satellites are thought to be the same phenomenon. The sources of such a radiation must be some kind of peculiarity at the central part of globular clusters; it is most probably a massive black hole. The sources of hard pulse radiation which cannot be identified with globular clusters are considered to be a new kind of galactic object, invisible globular clusters, which are naked nuclei of globular clusters.

  15. Results of radiation hardness tests and performance tests of the HS9008RH flash ADC

    SciTech Connect

    Nutter, S.; Tarle, G. . Physics Dept.); Crawley, H.B.; McKay, R.; Meyer, W.T.; Rosenberg, E.I.; Thomas, W.D. . Dept. of Physics and Astronomy Ames Lab., IA )

    1994-08-01

    Results from tests characterizing the performance and radiation hardness of the HS9008RH flash analog to digital converter (FADC) are presented. These tests were performed primarily to evaluate the suitability of this device for use in the GEM Central Tracker at the SSC experiment. Basic performance characteristics and susceptibility of these characteristics to radiation were examined. Performance test results indicate that the device integral nonlinearity is sampling rate dependent and worsens rapidly above rate of 15 megasamples per second (MSPS). No degradation in performance of the device was observed after its exposure of up to 81 Mrad of 1.25 MeV [gamma] radiation from a [sup 60]Co source. Exposure of the device to a reactor fast neutron fluence (E > 100keV) of 5 [times] 10[sup 14]/cm[sup 2] resulted in no significant observed performance degradation as well.

  16. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  17. Radiation Hardness Tests of SiPMs for the JLab Hall D Barrel Calorimeter

    SciTech Connect

    Yi Qiang, Carl Zorn, Fernando Barbosa, Elton Smith

    2013-01-01

    We report on the measurement of the neutron radiation hardness of silicon photomultipliers (SiPMs) manufactured by Hamamatsu Corporation in Japan and SensL in Ireland. Samples from both companies were irradiated by neutrons created by a 1 GeV electron beam hitting a thin lead target at Jefferson Lab Hall A. More tests regarding the temperature dependence of the neutron radiation damage and self-annealing were performed on Hamamatsu SiPMs using a calibrated Am–Be neutron source from the Jefferson Lab Radiation Control group. As the result of irradiation both dark current and dark rate increase linearly as a function of the 1 MeV equivalent neutron fluence and a temperature dependent self-annealing effect is observed

  18. Radiation-hard active CMOS pixel sensors for HL-LHC detector upgrades

    NASA Astrophysics Data System (ADS)

    Backhaus, Malte

    2015-02-01

    The luminosity of the Large Hadron Collider (LHC) will be increased during the Long Shutdown of 2022 and 2023 (LS3) in order to increase the sensitivity of its experiments. A completely new inner detector for the ATLAS experiment needs to be developed to withstand the extremely harsh environment of the upgraded, so-called High-Luminosity LHC (HL-LHC). High radiation hardness as well as granularity is mandatory to cope with the requirements in terms of radiation damage as well as particle occupancy. A new silicon detector concept that uses commercial high voltage and/or high resistivity full complementary metal-oxide-semiconductor (CMOS) processes as active sensor for pixel and/or strip layers has risen high attention, because it potentially provides high radiation hardness and granularity and at the same time reduced price due to the commercial processing and possibly relaxed requirements for the hybridization technique. Results on the first prototypes characterized in a variety of laboratory as well as test beam environments are presented.

  19. Development of radiation-hard optical links for the CMS tracker at CERN

    SciTech Connect

    Vasey, F.; Arbet-Engels, V.; Cervelli, G.; Gill, K.; Grabit, R.; Mommaert, C.; Stefanini, G.; Batten, J.; Troska, J.

    1998-06-01

    A radiation-hard optical link is under development for readout and control of the tracking detector in the future CMS experiment at the CERN Large Hadron Collider. The authors present the optical system architecture based on edge-emitting InGaAsP laser-diode transmitters operating at a wavelength of 1.3 {micro}m, single mode fiber ribbons, multi-way connectors and InGaAsP in photodiode receivers. They report on radiation hardness tests of lasers, photodiodes, fibers and connectors. Increases of laser threshold and pin leakage currents with hadron fluence have been observed together with decreases in laser slope-efficiency and photodiode responsivity. Short lengths of single-mode optical fiber and multi-way connectors have been found to be little affected by radiation damage. They analyze the analog and digital performance of prototype optical links transmitting data generated at a 40 MSample/s rate. Distortion, settling time, bandwidth, noise, dynamic range and bit-error-rate results are discussed.

  20. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  1. The impact of morphology upon the radiation hardness of ZnO layers.

    PubMed

    Burlacu, A; Ursaki, V V; Skuratov, V A; Lincot, D; Pauporte, T; Elbelghiti, H; Rusu, E V; Tiginyanu, I M

    2008-05-28

    It is shown that ZnO nanorods and nanodots grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe(23+) irradiation at a dose of 1.5 × 10(14) cm(-2) in ZnO nanorods is nearly identical to that induced by a dose of 6 × 10(12) cm(-2) in bulk layers. The damage introduced by irradiation is shown to change the nature of electronic transitions responsible for luminescence. The change of excitonic luminescence to the luminescence related to the tailing of the density of states caused by potential fluctuations occurs at an irradiation dose around 1 × 10(14) cm(-2) and 5 × 10(12) cm(-2) in nanorods and bulk layers, respectively. More than one order of magnitude enhancement of radiation hardness of ZnO nanorods grown by MOCVD as compared to bulk layers is also confirmed by the analysis of the near-bandgap photoluminescence band broadening and the behavior of resonant Raman scattering lines. The resonant Raman scattering analysis demonstrates that ZnO nanostructures are more radiation-hard as compared to nanostructured GaN layers. High energy heavy ion irradiation followed by thermal annealing is shown to be a way for the improvement of the quality of ZnO nanorods grown by electrodeposition and chemical bath deposition. PMID:21730593

  2. Radiation hardness tests of GaAs amplifiers operated in liquid argon in the ATLAS calorimeter

    NASA Astrophysics Data System (ADS)

    Ban, J.; Brettel, H.; Cheplakov, A.; Cwienk, W.; Fent, J.; Golikov, V.; Golubyh, S.; Jakobs, K.; Kukhtin, V.; Kulagin, E.; Kurchaninov, L.; Ladygin, E.; Luschikov, V.; Oberlack, H.; Obudovsky, V.; Schacht, P.; Shalyugin, A.; Stiegler, U.; Zweimüller, T.

    2008-09-01

    Highly integrated Gallium Arsenide (GaAs) chips of preamplifiers and summing amplifiers have been exposed to high fluence of fast neutrons and γ-dose at the IBR-2 reactor in Dubna. A stable performance of the electronics has been demonstrated up to a fluence of 5×1014 n cm-2 and a γ-dose of 55 kGy. The radiation hardness tests confirm the applicability of the preamplifiers for more than 10 years operation in the ATLAS hadronic end-cap calorimeter at LHC.

  3. Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams.

    PubMed

    Martinez, Nahuel; Teichmann, Tobias; Molina, Pablo; Sommer, Marian; Santiago, Martin; Henniger, Jürgen; Caselli, Eduardo

    2015-12-01

    The investigation of scintillation properties of europium doped yttrium orthovanadate shows the suitability of this material for fiber-based dose rate measurements. All measurements were carried out with a 6 MV Varian linear accelerator. The temperature dependence of the signal is lower than that of the plastic scintillators reported so far. By measuring the afterglow of probes between Linac-pulses, the signal due to the stem effect can be successfully eliminated. Comparison of depth dose profiles in a water phantom for radiation field dimensions between 1 x 1 cm(2) and 10 x 10 cm(2) shows that the probes are suitable for small fields having dimensions up to 1 x 1 cm(2). The high light yield of probes having dimensions of 1 mm opens up the possibility for their use in spatially confined radiation fields, such as in intensity-modulated radiotherapy (IMRT) and volume-modulated radiation therapy (VMAT). PMID:25957990

  4. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  5. Foreign technology assessment: Environmental evaluation of a radiation-hard oscillator/divider

    NASA Astrophysics Data System (ADS)

    Dvorack, M. A.

    1993-03-01

    Salford Electrical Instruments, Ltd., and the General Electric Company's Hirst Research Center, under contract to the United Kingdom's (UK) Ministry of Defence, developed a radiation-hard, leadless chip-carrier-packaged oscillator/divider. Two preproduction clocks brought to Sandia National Laboratories (SNL) by a potential SNL customer underwent mechanical and thermal environmental evaluation. Because of the subsequent failure of one device and the deteriorating condition of another device, the devices were not subjected to radiation tests. The specifics of the environmental evaluation performed on these two clocks and the postmortem analysis of one unit, which ultimately failed, are described. Clock startup time versus temperature studies were also performed and compared to an SNL-designed clock having the same fundamental frequency.

  6. Development of radiation hard semiconductor sensors for charged particle tracking at very high luminosities

    NASA Astrophysics Data System (ADS)

    Betancourt, Christopher; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.; Wright, John

    2010-09-01

    The RD50 collaboration (sponsored by the European Organization for Nuclear Research CERN) has been exploring the development of radiation hard semiconductor devices for very high-luminosity colliders since 2002. The target fluence to qualify detectors set by the anticipated dose for the innermost tracking layers of the future upgrade of the CERN large hadron collider (LHC) is 1016 1 MeV neutron equivalent (neq) cm-2. This is much larger than typical fluences in space, but is mainly limited to displacement and total dose damage, without the single-event effects typical for the space environment. RD50 investigates radiation hardening from many angles, including: Search for alternative semiconductor to replace silicon, improvement of the intrinsic tolerance of the substrate material (p- vs. n-type, initial doping concentration, oxygen concentration), optimization of the readout geometry (collection of holes or electrons, surface treatment), novel detector designs (3D, edge-less, interconnects).

  7. A PCI Express optical link based on low-cost transceivers qualified for radiation hardness

    NASA Astrophysics Data System (ADS)

    Triossi, A.; Barrientos, D.; Bellato, M.; Bortolato, D.; Isocrate, R.; Rampazzo, G.; Ventura, S.

    2013-02-01

    In this paper we want to demonstrate that an optical physical medium is compatible with the second generation of PCI Express. The benefit introduced by the optical decoupling of a PCI Express endpoint is twofold: it allows for a geographical detachment of the device and it remains compliant with the usual PCI accesses to the legacy I/O and memory spaces. We propose two boards that can bridge the PCI Express protocol over optical fiber. The first is a simple optical translator while the second is a more robust switch developed for connecting up to four devices to a single host. Such adapters are already working in the control and data acquisition system of a particle detector at CERN and hence they had been qualified for radiation hardness. The positive outcomes of the radiation tests of four types of off-the-shelf transceivers are finally reported.

  8. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Astrophysics Data System (ADS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-10-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  9. Development of radiation hard electron monitor RADEM for ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Desorgher, Laurent; Goncalves, Patricia; Pinto, Costa; Marques, Arlindo; Maehlum, Gunnar; Meier, Dirk

    2015-04-01

    Future mission of ESA to Jupiter - JUICE - will be equipped with a new radiation monitoring instrument RADEM. The main purpose is characterizing of the highly dynamic and hazardous although rather weakly known particle environment of the giant planet. RADEM performance must be tailored with numerous constraints and severe risks put on the instrument and its detection system. The first objective is precise spectroscopy of electrons and protons over more than two energy orders i.e. up to 40 MeV and 250 MeV respectively. It requires an exact identification of particles and supreme suppression of the background. Measurements should in addition provide dynamic maps of particle directionality and be very accurate even for extremely high particle fluxes. Further goals cover detection of heavy ions with their LET and determination of the radiation dose and dose rate absorbed by the spacecraft. Constrains and risks are given by limitations put on the monitor mass, volume and power and by radiation damage hazards imposed on its materials, electronic components and detection sensors. Additional challenge is in required instrument operational longevity. The design of RADEM is supported by extensive modeling and Monte Carlo simulations based on present knowledge of the Jupiter radiation environment. Deeper level of optimization requires taking into account the whole spacecraft with all its modules and structures. For entire detection system of RADEM the Si-sensors equipped with structures minimizing radiation damage are chosen. They have individual design features in accordance to their specific functionality such as pitch angle measurements with the directionality detector or energy spectroscopy with the telescope. Detected signals are processed using specially designed low power, radiation hard ASIC responsible for both analogue and digital branches. Initial results based on the previous ASIC version as well as data from studies of the detector radiation damage already exist

  10. The radiation hardness of silica optical fiber used in the LED-fiber monitor of BLM and BESIII EMC

    NASA Astrophysics Data System (ADS)

    Xue, Zhen; Hu, Tao; Fang, Jian; Xu, Zi-Zong; Wang, Xiao-Lian; Lü, Jun-Guang; Zhou, Li; Cai, Xiao; Yu, Bo-Xiang; Wang, Zhi-Gang; Sun, Li-Jun; Sun, Xi-Lei; Zhang, Ai-Wu

    2012-02-01

    LED-fiber system has been used to monitor BLM and BESIII EMC. A radiation hard silica optical fiber is essential for its stability and reliability. Three types of silica optical fibers, silicone-clad silica optical fiber with high OH - content (SeCS), silica-clad silica optical fiber with low OH - content (SCSL) and silica-clad silica opical fiber with high OH - content (SCSH) were studied. In the experiment, 12 groups of fiber samples were irradiated by 60Co and 3 groups of fiber samples were irradiated by BEPCII background radiation. Radiation hardness: the radiation hardness of SCSH is best and meets the radiation hardness requirement for LED-fiber monitor of BLM and BESIII EMC. The transmission of SeCS and SCSH decreased to around 80% under the 60Co-irradiation of 5 Gy and 10 Gy, respectively. The radiation hardness of SeCS is worst because of its silicone cladding. Recovery characteristics: 60Co-irradiated by the same doses, there were both more annealable and more permanent color centers formed in SeCS than SCSL, and for the same kind of fibers, as long as the irradiated doses are under a certain amount (for example, less than 5 Gy for SeCS), the higher the doses, both the more annealable and the more permanent color centers are formed.

  11. A high frame rate, 16 million pixels, radiation hard CMOS sensor

    NASA Astrophysics Data System (ADS)

    Guerrini, N.; Turchetta, R.; Van Hoften, G.; Henderson, R.; McMullan, G.; Faruqi, A. R.

    2011-03-01

    CMOS sensors provide the possibility of designing detectors for a large variety of applications with all the benefits and flexibility of the widely used CMOS process. In this paper we describe a novel CMOS sensor designed for transmission electron microscopy. The overall design consists of a large 61 × 63 mm2 silicon area containing 16 million pixels arranged in a 4K × 4K array, with radiation hard geometry. All this is combined with a very fast readout, the possibility of region of interest (ROI) readout, pixel binning with consequent frame rate increase and a dynamic range close to 12 bits. The high frame rate has been achieved using 32 parallel analogue outputs each one operating at up to 20 MHz. Binning of pixels can be controlled externally and the flexibility of the design allows several possibilities, such as 2 × 2 or 4 × 4 binning. Other binning configurations where the number of rows and the number of columns are not equal, such as 2 × 1 or 2 × 4, are also possible. Having control of the CMOS design allowed us to optimise the pixel design, in particular with regard to its radiation hardness, and to make optimum choices in the design of other regions of the final sensor. An early prototype was also designed with a variety of geometries in order to optimise the readout structure and these are presented. The sensor was manufactured in a 0.35 μm standard CMOS process.

  12. Radiation hardness of a 180 nm SOI monolithic active pixel sensor

    NASA Astrophysics Data System (ADS)

    Fernandez-Perez, S.; Backhaus, M.; Pernegger, H.; Hemperek, T.; Kishishita, T.; Krüger, H.; Wermes, N.

    2015-10-01

    The use of Silicon-on-Insulator (SOI) technology as a particle detector in a high radiation environment is, at present, limited mostly by radiation effects on the transistor characteristics, back gate effect, and mutual coupling between the Buried Oxide (BOX) and the sensor. We have fabricated and tested a new 0.18 μm SOI CMOS monolithic pixel sensor using the XFAB process. In contrast to the most commonly used SOI technologies, this particular technology uses partially depleted SOI transistors, offering a double well structure, which shields the thin gate oxide transistors from the BOX. In addition, an increased distance between transistors and a thicker BOX than has been previously used offers promising solutions to the performance limitations mentioned above. The process further allows the use of high voltages (up to 200 V), which are used to partially deplete the substrate. Thus, the newly fabricated device in the XFAB process is especially interesting for applications in extremely high radiation environments, such as LHC experiments. A four stage validation programme of the technology and the fabricated monolithic pixel sensor has been performed and its results are shown in this paper. The first targets radiation hardness of the transistor characteristics up to 700 Mrad, the second investigates the existence of the back gate effect, the third one targets the coupling between the BOX and the sensor, and the fourth investigates the characterization of charge collection in the sensor diode below the BOX.

  13. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    SciTech Connect

    Hamel, M.; Normand, S.; Turk, G.; Darbon, S.

    2011-07-01

    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  14. DSB:Ce3+ scintillation glass for future

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Akchurin, N.; Benaglia, A.; Borisevich, A.; Cowden, C.; Damgov, J.; Dormenev, V.; Dragoiu, C.; Dudero, P.; Korjik, M.; Kozlov, D.; Kunori, S.; Lecoq, P.; Lee, S. W.; Lucchini, M.; Mechinsky, V.; Pauwels, K.

    2015-02-01

    One of the main challenges for detectors at future high-energy collider experiments is the high precision measurement of hadron and jet energy and momentum. One possibility to achieve this is the dual-readout technique, which allows recording simultaneously scintillation and Cherenkov light in an active medium in order to extract the electromagnetic fraction of the total shower energy on an event- by-event basis. Making use of this approach in the high luminosity LHC, however, puts stringent requirements on the active materials in terms of radiation hardness. Consequently, the R&D carried out on suitable scintillating materials focuses on the detector performance as well as on radiation tolerance. Among the different scintillating materials under study, scintillating glasses can be a suitable solution due to their relatively simple and cost effective production. Recently a new type of inorganic scintillating glass: Cerium doped DSB has been developed by Radiation Instruments and New Components LLC in Minsk for oil logging industry. This material can be produced either in form of bulk or fiber shape with diameter 0.3-2mm and length up to 2000 mm. It is obtained by standard glass production technology at temperature 1400°C with successive thermal annealing treatment at relatively low temperature. The production of large quantities is relatively easy and the production costs are significantly lower compared to crystal fibers. Therefore, this material is considered as an alternative and complementary solution to crystal fibers in view of a production at industrial scale, as required for a large dual readout calorimeter. In this paper, the first results on optical, scintillation properties as well as the radiation damage behaviour obtained on different samples made with different raw materials and various cerium concentrations will be presented.

  15. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    SciTech Connect

    Qureshi, S.

    1991-01-01

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine.

  16. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  17. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  20. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  1. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    NASA Astrophysics Data System (ADS)

    Liu, J.; Barbero, M.; Bilbao De Mendizabal, J.; Breugnon, P.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.

    2016-03-01

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm-2s-1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R&D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given.

  2. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  3. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  4. A radiation hard dipole magnet coils using aluminum clad copper conductors

    SciTech Connect

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm/sup 2/, no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs.

  5. Radiation-hard beam position detector for use in the accelerator dump lines

    SciTech Connect

    Pavel Degtiarenko; Danny Dotson; Arne Freyberger; Vladimir Popov

    2005-06-01

    A new method of beam position measurement suitable for monitoring high energy and high power charged particle beams in the vicinity of high power beam dumps is presented. We have found that a plate made of Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) has physical properties that make it suitable for such an application. CVD SiC material is a chemically inert, extremely radiation-hard, thermo-resistive semiconductor capable of withstanding working temperatures over 1500 C. It has good thermal conductivity comparable to that of Aluminum, which makes it possible to use it in high-current particle beams. High electrical resistivity of the material, and its semiconductor properties allow characterization of the position of a particle beam crossing such a plate by measuring the balance of electrical currents at the plate ends. The design of a test device, and first results are presented in the report.

  6. Development of radiation hard edgeless detectors with current terminating structure on p-type silicon

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Ruggiero, G.

    2011-12-01

    The development of edgeless Si detectors was stimulated by the tasks of the total pp cross-section study in the TOTEM experiment at the Large Hadron Collider at CERN. For this, the dead region at the detector diced side should be reduced below 50 μm. This requirement is successfully realized in edgeless Si detectors with current terminating structure (CTS), which are now operating at LHC. The development of the experiment and future LHC upgrade need the elaboration of radiation hard version of edgeless Si detectors. The current investigation represents an extension in understanding on edgeless detectors operation and development of a new issue - edgeless detectors with CTS on p-type Si.

  7. Development of radiation hard CMOS active pixel sensors for HL-LHC

    NASA Astrophysics Data System (ADS)

    Pernegger, Heinz

    2016-07-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  8. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    NASA Astrophysics Data System (ADS)

    Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.

    2015-07-01

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  9. Optimization of radiation hardness and charge collection of edgeless silicon pixel sensors for photon science

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tartarotti Maimone, D.; Pennicard, D.; Sarajlic, M.; Graafsma, H.

    2014-12-01

    Recent progress in active-edge technology of silicon sensors enables the development of large-area tiled silicon pixel detectors with small dead space between modules by utilizing edgeless sensors. Such technology has been proven in successful productions of ATLAS and Medipix-based silicon pixel sensors by a few foundries. However, the drawbacks of edgeless sensors are poor radiation hardness for ionizing radiation and non-uniform charge collection by edge pixels. In this work, the radiation hardness of edgeless sensors with different polarities has been investigated using Synopsys TCAD with X-ray radiation-damage parameters implemented. Results show that if no conventional guard ring is present, none of the current designs are able to achieve a high breakdown voltage (typically < 30 V) after irradiation to a dose of ~ 10 MGy. In addition, a charge-collection model has been developed and was used to calculate the charges collected by the edge pixels of edgeless sensors when illuminated with X-rays. The model takes into account the electric field distribution inside the pixel sensor, the absorption of X-rays, drift and diffusion of electrons and holes, charge sharing effects, and threshold settings in ASICs. It is found that the non-uniform charge collection of edge pixels is caused by the strong bending of the electric field and the non-uniformity depends on bias voltage, sensor thickness and distance from active edge to the last pixel (``edge space"). In particular, the last few pixels close to the active edge of the sensor are not sensitive to low-energy X-rays ( < 10 keV), especially for sensors with thicker Si and smaller edge space. The results from the model calculation have been compared to measurements and good agreement was obtained. The model can be used to optimize the edge design. From the edge optimization, it is found that in order to guarantee the sensitivity of the last few pixels to low-energy X-rays, the edge space should be kept at least 50% of

  10. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  11. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    PubMed

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse. PMID:27131653

  12. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  13. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  14. Bridgman growth of large SrI2:Eu2+ single crystals: A high-performance scintillator for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Hawrami, R.; Higgins, W. M.; van Loef, E.; Glodo, J.; Shah, K. S.; Rowe, Emmanuel; Bhattacharya, Pijush; Tupitsyn, Eugene; Groza, Michael; Burger, Arnold; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3-6%) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+—a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+—unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 ns) than the 1.2 μs decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (˜515 °C), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a "bent" or "bulb" grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

  15. Radiation hard fiber optic thermo-hygrometers for relative humidity detection in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Berruti, G.; Consales, M.; Giordano, M.; Buontempo, S.; Breglio, G.; Makovec, A.; Petagna, P.; Cusano, A.

    2014-05-01

    This work investigates the performances and the radiation hardness capability of optical thermo-hygrometers based on Fiber Bragg Gratings (FBG) technology for humidity monitoring in the Compact Muon Solenoid experiment (CMS) at CERN, in Geneva. Extensive characterizations in terms of sensitivity, repeatability and accuracy on 80 specially produced polyimide-coated FBG sensors and 80 commercial temperature FBG sensors are presented. Progressive irradiation campaigns with γ- ionizing radiations were also performed. Results showed that the sensors sensitivity is unchanged after each radiation exposure; while the wavelength peak exhibits a radiation-induced shift. The saturation properties of this shift are discussed.

  16. Radiation damage studies for the SDC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fazely, A. R.; Gunasingha, R.; Imlay, R. L.; Khosravi, E. S.; Lim, Jit-Ning; Lyndon, C.; McMills, G.; McNeil, R. R.; Metcalf, W. J.; Courtney, J. C.; Tashakkori, R.; Vegara, B. J.

    1993-01-01

    We report the results from a year long study aimed at radiation resistance and optical performance of scintillator tile with green wave shifter fiber readout. A careful investigation of several rad-hard plastic scintillators from Bicron and Kuraray, studies indicate that for a specific rad-hard Bicron scintillator, it is possible to build a tile/fiber EM calorimeter that can operate in the design luminosity of SSC. This calorimeter with excellent optical response would only have a light loss of about 5% after being exposed to 1 Mrad.

  17. High Speed, Radiation Hard CMOS Pixel Sensors for Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad

    CMOS monolithic active pixel sensors are currently being established as the technology of choice for new generation digital imaging systems in Transmission Electron Microscopy (TEM). A careful sensor design that couples μm-level pixel pitches with high frame rate readout and radiation hardness to very high electron doses enables the fabrication of direct electron detectors that are quickly revolutionizing high-resolution TEM imaging in material science and molecular biology. This paper will review the principal characteristics of this novel technology and its advantages over conventional, optically-coupled cameras, and retrace the sensor development driven by the Transmission Electron Aberration corrected Microscope (TEAM) project at the LBNL National Center for Electron Microscopy (NCEM), illustrating in particular the imaging capabilities enabled by single electron detection at high frame rate. Further, the presentation will report on the translation of the TEAM technology to a finer feature size process, resulting in a sensor with higher spatial resolution and superior radiation tolerance currently serving as the baseline for a commercial camera system.

  18. Radiation hardness of SiC subjected to alternating irradiation and annealing

    SciTech Connect

    Ivanov, A. M. Strokan, N. B.; Lebedev, A. A.

    2008-12-15

    Effect of the cycle 'introduction of defects, annealing, and repeated introduction of defects' on the SiC properties has been studied by means of nuclear spectrometry for an example of degradation of characteristics of a p-n nuclear radiation detector. The defects were introduced by irradiation with 8-MeV protons in two equal fluences of 3 x 10 14 cm{sup -2}. The total fluence of 6 x 10{sup 14} cm{sup -2} corresponded to an introduction of 2.4 x 10 17 cm{sup -3} primary knocked-out atoms. The annealing was made in two stages, each 1 h long, at temperatures of 600 and 700 {sup o}C. The detectors were tested with 5.4-MeV {alpha} particles, with the charge collection efficiency and specific features of the amplitude spectrum determined. The measurements were performed in the temperature range of 20-250 deg. C. It was shown that the effect of the first irradiation and the subsequent annealing does not significantly change the radiation hardness of SiC. The effective concentration of centers introduced in the course of the second irradiation (at the same fluence) is higher by a factor of 1.2. The nonequivalence of the fluences can also be attributed to the effect of the high total proton fluence of 6 x 10{sup 14} cm{sup -2}.

  19. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  20. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  1. Radiation background in a LaBr3(Ce) gamma-ray scintillation detector.

    PubMed

    Rosson, Robert; Lahr, Jeffrey; Kahn, Bernd

    2011-12-01

    Gamma-ray spectral analyses with a 5-cm × 5-cm LaBr3(Ce) detector and a NaI(Tl) detector of the same size show that the LaBr3(Ce) has much better gamma-ray peak resolution and full-energy peak counting efficiency but worse detection sensitivity. The LaBr3(Ce) detector has relatively high intrinsic radiation background due to the naturally occurring La radioisotope in lanthanum. Although this La background is entirely below the energy of 1,500 keV, additional background is in the energy region between 1,500 keV and 2,750 keV. The manufacturer attributes this radiation to alpha particles emitted by the five short-lived progeny of an Ac impurity. Comparative values for peak resolution, full-energy peak counting efficiency, and detection sensitivity are reported for Am, Co, and Cs. Results of counting Cs sources at two activity levels demonstrate the impact of background on detection sensitivity. PMID:22048488

  2. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  3. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  4. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  5. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  6. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  7. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The

  8. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  9. Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.

    2012-01-01

    We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.

  10. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  11. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  12. Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) scintillation-based polymer optical fibre sensor for real time monitoring of radiation dose in oncology

    NASA Astrophysics Data System (ADS)

    Lewis, E.; O'Keeffe, S.; Grattan, M.; Hounsell, A.; McCarthy, D.; Woulfe, P.; Cronin, J.; Mihai, L.; Sporea, D.; Santhanam, A.; Agazaryan, N.

    2014-05-01

    A PMMA based plastic optical fibre sensor for use in real time radiotherapy dosimetry is presented. The optical fibre tip is coated with a scintillation material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb), which fluoresces when exposed to ionising radiation (X-Ray). The emitted visible light signal penetrates the sensor optical fibre and propagates along the transmitting fibre at the end of which it is remotely monitored using a fluorescence spectrometer. The results demonstrate good repeatability, with a maximum percentage error of 0.5% and the response is independent of dose rate.

  13. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  14. Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.

    1994-01-01

    In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.

  15. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  16. Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.

    1991-01-01

    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.

  17. Influence of gamma radiation on morphology structure, electrochemical corrosion behavior and hardness of Ni-Cr based alloys

    NASA Astrophysics Data System (ADS)

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-Fallalb, Abeer A.

    This study evaluates the effects of gamma radiation on structure, electrochemical corrosion behavior and Vickers hardness of commercial dental Nikkeli-Kromi-Polttosekoitus [Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn)] alloy. The corrosion rate of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) alloy with 0.5 M HCl is increased with increasing the exposure rate of gamma radiation. The corrosion resistance of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) is varied and reaches a minimum value at 30 KGy. The corrosion potential value also is varied and reaches its highest value at 30 KGy. The Vickers hardness value of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) alloy is decreased by increasing the gamma radiation dose. Also it is obvious from our results that the effects of gamma radiation at the surface are much higher as compared with deeper parts and the structure of the alloy is changed due to its exposure to gamma radiation.

  18. First Tests of 6Li Doped Glass Scintillators for Ultracold Neutron Detection

    PubMed Central

    Ban, G.; Fléchard, X.; Labalme, M.; Lefort, T.; Liénard, E.; Naviliat-Cuncic, O.; Fierlinger, P.; Kirch, K.; Bodek, K.; Geltenbort, P.

    2005-01-01

    We report the results of test measurements aimed at determining the performances of 6Li doped glass scintillators for the detection of ultra-cold neutrons. Four types of scintillators, GS1, GS3, GS10 and GS20, which differ by their 6Li concentrations, have been tested. The signal to background separation is fully acceptable. The relative detection efficiencies have been determined as a function of the neutron velocity. We find that GS10 has a higher efficiency than the others for the detection of neutrons with velocities below 7 m/s. Two pieces of scintillators have been irradiated with a high flux of cold neutrons to test the radiation hardness of the glasses. No reduction in the pulse height has been observed up to an absorbed neutron dose of 1 × 1013 cm−3. PMID:27308137

  19. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  20. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  1. Improvements in apparatus and procedures for using an organic liquid scintillator as a fast-neutron spectrometer for radiation protection applications

    SciTech Connect

    Thorngate, J.H.

    1987-05-15

    For use in radiation protection measurements, a neutron spectrometer must have a wide energy range, good sensitivity, medium resolution, and ease of taking and reducing data. No single spectrometer meets all of these requirements. Several experiments aimed at improving and characterizing the detector response to gamma rays and neutrons were conducted. A light pipe (25 mm) was needed between the scintillator cell and the photomultiplier tube to achieve the best resolution. The light output of the scintillator as a function of gamma-ray energy was measured. Three experiments were conducted to determine the light output as a function of neutron energy. Monte Carlo calculations were made to evaluate the effects of multiple neutron scattering and edge effects in the detector. The electronic systems associated with the detector were improved with a transistorized circuit providing the bias voltage for the photomultiplier tube dynodes. This circuit was needed to obtain pulse-height linearity over the wide range of signal sizes. A special live-time clock was built to compensate for the large amount of dead time generated by the pulse-shape discrimination circuit we chose to use. 64 refs., 58 figs., 9 tabs.

  2. RADECS Short Course Section 4 Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian

    2003-01-01

    Contents include the following: Introduction. Programmatic aspects of RHA. RHA componens: requirements and specifications; mission radiation environment; and parts selection and radiation tolerance. Analysis at the function/subsystem/system level: TID/DD; SEE. Conclusion.

  3. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  4. Effects of quenching, irradiation, and annealing processes on the radiation hardness of silica fiber cladding materials (I)

    NASA Astrophysics Data System (ADS)

    Wen, Jianxiang; Gong, Renxiang; Xiao, Zhongyin; Luo, Wenyun; Wu, Wenkai; Luo, Yanhua; Peng, Gang-ding; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun

    2016-07-01

    Silica optical fiber cladding materials were experimentally treated by a series of processes. The treatments involved quenching, irradiation, followed by annealing and subsequent re-irradiation, and they were conducted in order to improve the radiation hardness. The microstructural properties of the treated materials were subsequently investigated. Following the treatment of the optical fiber cladding materials, the results from the electron spin resonance (ESR) analysis demonstrated that there was a significant decrease in the radiation-induced defect structures. The ESR signals became significantly weaker when the samples were annealed at 1000 °C in combination with re-irradiation. In addition, the microstructure changes within the silica optical fiber cladding material were also analyzed using Raman spectroscopy. The experimental results demonstrate that the Sisbnd Osbnd Si bending vibrations at ω3 = 800-820 cm-1 and ω4 = 1000-1200 cm-1 (with longitudinal optical (LO) and transverse optical (TO) splitting bands) were relatively unaffected by the quenching, irradiation, and annealing treatments. In particular, the annealing process resulted in the disappearance of the defect centers; however, the LO and TO modes at the ω3 and ω4 bands were relatively unchanged. With the additional support of the ESR test results, we can conclude that the combined treatment processes can significantly enhance the radiation hardness properties of the optical fiber cladding materials.

  5. Liquid scintillating fiber calorimetry prototype

    SciTech Connect

    Gui, M.; Brookes, D.; David, A.

    1995-08-01

    A full size liquid scintillating fiber spaghetti-hadronic calorimeter has been constructed and tested using cosmic rays at Texas A and M University. The purpose of this research is to find practical solutions for detectors to be used in extremely high radiation environments. The details of design and construction of this module are presented. The advantages of using liquid scintillating materials were investigated. Relevant subjects are addressed. Cosmic ray test results are compared with that of GEANT Monte Carlo simulations. Over all, they agree well with each other. The conclusion is that calorimeters utilizing this technique can be used in high radiation environments such as SSC colliding area.

  6. Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

    PubMed

    Suzuki, Motohiro

    2014-11-01

    X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning

  7. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  8. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines. PMID:26724009

  9. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  10. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  11. Radiation Hardness Assurance Issues Associated with COTS in JPL Flight Systems: The Challenge of Europa

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.

    1999-01-01

    With the decreasing availability of radiation hardened electronics and the new NASA paradigm of faster, more aggressive and less expensive space missions, there has been an increasing emphasis on using high performance commercial microelectronic parts and circuits in NASA spacecraft.

  12. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  13. A Radiation-Hard Silicon Drift Detector Array for Extraterrestrial Element Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Chen, Wei; De Geronimo, Gianluigi; Keister, Jeff; Li, Shaouri; Li, Zhen; Siddons, David P.; Smith, Graham

    2011-01-01

    Measurement of x-rays from the surface of objects can tell us about the chemical composition Absorption of radiation causes characteristic fluorescence from material being irradiated. By measuring the spectrum of the radiation and identifying lines in the spectrum, the emitting element (s) can be identified. This technique works for any object that has no absorbing atmosphere and significant surface irradiation : Our Moon, the icy moons of Jupiter, the moons of Mars, the planet Mercury, Asteroids and Comets

  14. Radiation-hard analog-to-digital converters for space and strategic applications

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Dantas, A. R. V.

    1985-01-01

    During the course of the Jet Propulsion Laboratory's program to study radiation-hardened analog-to-digital converters (ADCs), numerous milestones have been reached in manufacturers' awareness and technology development and transfer, as well as in user awareness of these developments. The testing of ADCs has also continued with twenty different ADCs from seven manufacturers, all tested for total radiation dose and three tested for neutron effects. Results from these tests are reported.

  15. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  16. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, J.M.

    1994-03-29

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  17. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, Joel M.

    1994-01-01

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  18. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  19. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  20. Low-mass, intrinsically-hard high temperature radiator. Final report, Phase I

    SciTech Connect

    1990-07-15

    This paper reports on the investigation of layered ceramic/metal composites in the design of low-mass hardened radiators for space heat rejection systems. The investigation is part of the Strategic Defence Initiative. This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. Composite materials evaluations were performed on combinations of refractory metals and ceramic powders. Fabrication experiments were performed to demonstrate weldability. Two titanium/titanium diboride composite tubes were successfully fabricated into potassium heat pipes and operated at temperatures in excess of 700C. Testing and analysis for composite tubes are described in the report. The study has verified the feasibility of using layered composites for forming thin-walled, light weight heat pipe tubes for use in hardened space radiators.

  1. Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement

    NASA Astrophysics Data System (ADS)

    Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam

    2012-11-01

    The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. A 2-point mPSD used a band-pass approach that included splitters, color filters and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6 MV photon beam at various depths and lateral positions in a water tank. For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4% and 0.32±0.19% for BCF-60, BCF-12 and BCF-10, respectively. This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. US Patent pending.

  2. Improvement of the radiation hardness of a directly converting high resolution intra-oral X-ray imaging sensor

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos; Pyyhtiä, Jouni; Schulman, Tom

    2003-11-01

    The radiation tolerance of a directly converting digital intra-oral X-ray imaging sensor reported in Spartiotis et al. [Nucl. Instr. and Meth. A 501 (2003) 594] has been tested using a typical dental X-ray beam spectrum. Radiation induced degradation in the performance of the sensor which consists of CMOS signal readout circuits bump bonded to a high resistivity silicon pixel detector was observed already before a dose (in air) of 1 krad. Both increase in the leakage current of the pixel detector manufactured by Sintef, Norway and signal leakage to ground from the gate of the pixel input MOSFETs of the readout circuit were observed and measured. The sensitive part of the CMOS circuit was identified as the protection diode of the gate of the input MOSFET. After removing the gate protection diode no signal leakage was observed up to a dose of 5 krad (air) which approximately corresponds to 125.000 typical dental X-ray exposures. The radiation hardness of the silicon pixel detector was improved by using a modified oxidation process supplied by Colibrys, Switzerland. The improved pixel detectors showed no increase in the leakage current at dental doses.

  3. Radiation hard polyimide-coated FBG optical sensors for relative humidity monitoring in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Makovec, A.; Berruti, G.; Consales, M.; Giordano, M.; Petagna, P.; Buontempo, S.; Breglio, G.; Szillasi, Z.; Beni, N.; Cusano, A.

    2014-03-01

    This work investigates the performance and the radiation hardness capability of optical thermo-hygrometers based on Fibre Bragg Gratings (FBG) for humidity monitoring in the Compact Muon Solenoid (CMS), one of the four experiments running at CERN in Geneva. A thorough campaign of characterization was performed on 80 specially produced Polyimide-coated RH FBG sensors and 80 commercial temperature FBG sensors. Sensitivity, repeatability and accuracy were studied on the whole batch, putting in evidence the limits of the sensors, but also showing that they can be used in very dry conditions. In order to extract the humidity measurements from the sensor readings, commercial temperature FBG sensors were characterized in the range of interest. Irradiation campaigns with ionizing radiation (γ-rays from a Co60 source) at incremental absorbed doses (up to 210 kGy for the T sensors and up to 90 kGy for the RH sensors) were performed on sample of T and RH-Sensors. The results show that the sensitivity of the sensors is unchanged up to the level attained of the absorbed dose, while the natural wavelength peak of each sensor exhibits a radiation-induced shift (signal offset). The saturation properties of this shift are discussed.

  4. Generation of hard x rays from transition radiation using high-density foils and moderate-energy electrons

    SciTech Connect

    Piestrup, M.A. ); Moran, M.J. ); Boyers, D.G.; Pincus, C.I. ); Kephart, J.O. ); Gearhart, R.A. ); Maruyama, X.K. )

    1991-03-01

    In experiments using targets consisting of many thin metal foils, we have demonstrated that a narrow, forward-directed cone of transition radiation in the 8- to 60-keV spectral range can be generated by electron beams with moderate energies (between 100 and 500 MeV). The theory suggests that high-density, moderate-atomic-number metals are the optimum foil materials and that the foil thickness can be chosen to maximize photon production within a desired spectral range. The three targets used in the experiments consisted of 10 foils of 1-{mu}m-thick gold, 40 foils of 8.5-{mu}m stainless steel, and 20 foils of 7.9-{mu}m copper. The efficiency with which hard x rays are generated, and the fact that the requisite electron-beam energies are lower by a factor of 5 to 10, make such a radiation source an attractive alternative to synchrotron radiation for applications such as medical imaging, spectroscopy, and microscopy.

  5. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  6. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  7. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project.

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-02-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with the AMS H35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  8. Radiation hardness test of the Philips Digital Photon Counter with proton beam

    NASA Astrophysics Data System (ADS)

    Barnyakov, M. Yu.; Frach, T.; Kononov, S. A.; Kuyanov, I. A.; Prisekin, V. G.

    2016-07-01

    The Philips Digital Photon Counter (DPC) is a silicon photomultiplier combining Geiger-mode avalanche photodiodes (G-APD) and dedicated readout electronics in the same chip. The DPC is a promising photon sensor for future RICH detectors. A known issue of G-APD is its sensitivity to radiation damage. Two DPC sensors were tested using 800 MeV/c protons. An increase of dark counting rate with proton fluence up to 4 ·1011cm-2 has been measured.

  9. X-rays and hard ultraviolet radiation from the first galaxies: ionization bubbles and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Benson, Andrew

    2011-11-01

    The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard ultraviolet (UV) radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual H II, He II and He III regions around early galaxies with first stars and/or quasi-stellar object populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at z˜ 10-20, contributing relatively modest increases to IGM ionization and heating up to ˜103-105 K in IGM temperatures. We also calculate the 21-cm signal expected from a number of scenarios with metal-free starbursts and quasars in varying combinations and masses at these redshifts. The peak values for the spin temperature reach ˜104-105 K in such cases. The maximum values for the 21-cm brightness temperature are around 30-40 mK in emission, while the net values of the 21-cm absorption signal range from ˜a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21-cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifests. This difference is time-dependent and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore 'blur' the 21-cm signature of the percolation of ionized bubbles around early haloes (depending on whether a cosmic X-ray or UV background is built up first) and affect the interpretation of 21-cm data constraints on reionization.

  10. Performance of Multilayer Monochromators for Hard X-Ray Imaging with Coherent Synchrotron Radiation

    SciTech Connect

    Dietsch, R.; Holz, T.; Kraemer, M.; Weissbach, D.; Rack, A.; Weitkamp, T.; Morawe, Ch.; Cloetens, P.; Ziegler, E.; Riotte, M.; Rack, T.; Siewert, F.

    2011-09-09

    We present a study in which multilayers of different periodicity (from 2.5 to 5.5 nm), composition (W/Si, Mo/Si, Pd/B{sub 4}C, Ru/B{sub 4}C), and numbers of layers have been compared. Particularly, we chose mirrors with similar intrinsic quality (roughness and reflectivity) to study their performance (flatness and coherence of the outgoing beam) as monochromators in synchrotron radiography. The results indicate that material composition is the dominating factor for the performance. This is important to consider for future developments in synchrotron-based hard x-ray imaging methods. In these techniques, multilayer monochromators are popular because of their good tradeoff between spectral bandwidth and photon flux density of the outgoing beam, but sufficient homogeneity and preservation of the coherent properties of the reflected beam are major concerns. The experimental results we collected may help scientists and engineers specify multilayer monochromators and can contribute to better exploitation of the advantages of multilayer monochromators in microtomography and other full-field imaging techniques.

  11. Proton radiation hardness of single-nanowire transistors using robust organic gate nanodielectrics

    SciTech Connect

    Ju, Sanghyun; Lee, Kangho; Janes, David B.; Dwivedi, Ramesh C.; Baffour-Awuah, Habibah; Wilkins, R.; Yoon, Myung-Han; Facchetti, Antonio; Mark, Tobin J.

    2006-08-14

    In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60 nm SiO{sub 2} gate insulator. A total-radiation dose study was performed using 10 MeV protons at doses of 5.71 and 285 krad(Si). The threshold voltage (V{sub th}) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, V{sub th} parameters of the SiO{sub 2}-based ZnO NW-FETs display average shifts of {approx}-4.0 and {approx}-10.9 V for 5.71 and 285 krad(Si) H{sup +} irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H{sup +} irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H{sup +} irradiation are significantly lower than those for the corresponding SiO{sub 2} gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays.

  12. Design of a radiation-hard optical fiber Bragg grating temperature sensor

    NASA Astrophysics Data System (ADS)

    Gusarov, Andrei I.; Starodubov, Dmitry S.; Berghmans, Francis; Deparis, Olivier; Defosse, Yves; Fernandez, Alberto F.; Decreton, Marc C.; Megret, Patrice; Blondel, Michel

    1999-12-01

    Optical fiber sensors (OFSs) offer numerous advantages, which include immunity to electromagnetic interference, intrinsic safety, small size, a possibly high sensitivity, multiplexing capabilities, and the possibility of remote interrogation. However, OFSs have a relatively low penetration in the commercial market, which is still dominated by standard electromechanical sensors. Nuclear environments are an example where particular OFSs might have a distinct superiority in the competition, but the feasibility of using OFSs in radiation environments still needs to be assessed. In the present paper we report on irradiation experiments performed to provide a sound basis for the design of a fiber Bragg grating based sensor capable to operate even under high total dose exposure.

  13. Generation of radicals in hard biological tissues under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  14. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  15. Comparison of the response of a NaI scintillation crystal with a pressurized ionization chamber as a function of altitude, radiation level and Ra-226 concentration

    SciTech Connect

    Provencher, R.; Smith, G.; Borak, T.B.; Kearney, P.

    1986-01-01

    The Grand Junction Uranium Mill Tailings Remedial Action-Radiological Survey Activities Group (UMTRA-RASA) program employs a screening method in which external exposure rates are used to determine if a property contaminated with uranium mill tailings is eligible for remedial action. Portable NaI detectors are used by survey technicians to locate contaminated areas and determine exposure rates. The exposure rate is calculated using a regression equation derived from paired measurements made with a pressurized ionization chamber (PIC) and a NaI detector. During July of 1985 extensive measurements were taken using a PIC and a NaI scintillator with both analogue and digital readout for a wide range of exposure rates and at a variety of elevations. The surface soil was sampled at most of these locations and analyzed for /sup 226/Ra. The response of the NaI detectors was shown to be highly correlated to radiation level but not to /sup 226/Ra concentration or elevation.

  16. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  17. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    NASA Astrophysics Data System (ADS)

    Miucci, A.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; La Rosa, A.; Muenstermann, D.; George, M.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J. C.; Liu, J.; Barbero, M.; Rozanov, A.; HV-CMOS Collaboration

    2014-05-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown.

  18. Design of Si-photonic structures to evaluate their radiation hardness dependence on design parameters

    NASA Astrophysics Data System (ADS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Pezzullo, G.; Seif El Nasr-Storey, S.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-01-01

    Particle detectors for future experiments at the HL-LHC will require new optical data transmitters that can provide high data rates and be resistant against high levels of radiation. Furthermore, new design paths for future optical readout systems for HL-LHC could be opened if there was a possibility to integrate the optical components with their driving electronics and possibly also the silicon particle sensors themselves. All these functionalities could potentially be combined in the silicon photonics technology which currently receives a lot of attention for conventional optical link systems. Silicon photonic test chips were designed in order to assess the suitability of this technology for deployment in high-energy physics experiments. The chips contain custom-designed Mach-Zehnder modulators, pre-designed ``building-block'' modulators, photodiodes and various other passive test structures. The simulation and design flow of the custom designed Mach-Zehnder modulators and some first measurement results of the chips are presented.

  19. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  20. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  1. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (< 5 W) Thermal Instrument (TI) concept for measuring possible warm thermal anomalies on Europa s cold surface caused by recent (< 10,000 years) eruptive activity. Regions of anomalously high heat flow will be identified by thermal mapping using a nadir pointing, push-broom filter radiometer that provides far-IR imagery in two broad band spectral wavelength regions, 8-20 m and 20-100 m, for surface temperature measurements with better than a 2 K accuracy and a spatial resolution of 250 m/pixel obtained from a 100 Km orbit. The temperature accuracy permits a search for elevated temperatures when combined with albedo information. The spatial resolution is sufficient to resolve Europa's larger cracks and ridge axial valleys. In order to accomplish the thermal mapping, the TI uses sensitive thermopile arrays that are readout by a custom designed low-noise Multi-Channel Digitizer (MCD) ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  2. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  3. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  4. Current status on plastic scintillators modifications.

    PubMed

    Bertrand, Guillaume H V; Hamel, Matthieu; Sguerra, Fabien

    2014-11-24

    Recent developments of plastic scintillators are reviewed, from 2000 to March 2014, distributed in two different chapters. First chapter deals with the chemical modifications of the polymer backbone, whereas modifications of the fluorescent probe are presented in the second chapter. All examples are provided with the scope of detection of various radiation particles. The main characteristics of these newly created scintillators and their detection properties are given. PMID:25335882

  5. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  6. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    SciTech Connect

    Rizwan, Mohamad Uozumi, Yusuke; Matsuo, Kazuki; Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun; Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  7. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    NASA Astrophysics Data System (ADS)

    Rizwan, Mohamad; Uozumi, Yusuke; Matsuo, Kazuki; Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun; Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov

    2015-04-01

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  8. Scintillators with silicon photomultiplier readouts for high-energy astrophysics and heliophysics

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2014-07-01

    Space-based gamma-ray and neutron detectors face strict constraints of mass, volume, and power, and must endure harsh operating environments. Scintillator materials have a long history of successful operation under these conditions, and new materials offer greatly improved performance in terms of efficiency, time response, and energy resolution. The use of scintillators in space remains constrained, however, by the mass, volume, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). Recently developed silicon photomultipliers (SiPMs) offer gains and efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, and no high-voltage requirements. We have therefore been investigating the use of SiPM readouts for scintillator gamma-ray and neutron detectors, with an emphasis on their suitability for space-based instruments for astrophysics and heliophysics. We present preliminary radiation hardness tests of two promising SiPM devices, and describe two concepts for SiPM-based instruments: an advanced scintillator-based Compton telescope, and a double-scatter neutron telescope suitable for measuring fast solar and magnetospheric neutrons. Supporting laboratory measurements are presented to demonstrate the feasibility of these telescope concepts.

  9. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  10. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  11. An APD for the efficient detection of the fast scintillation component of BaF2

    NASA Astrophysics Data System (ADS)

    Hitlin, D. G.; Kim, J. H.; Trevor, J.; Hoenk, M.; Hennessy, J.; Jewell, A.; Farrell, R.; McClish, M.

    2016-07-01

    Barium fluoride crystals are the baseline choice for the calorimeter of the Mu2e experiment at Fermilab. By the fast (decay time 0.9 ns) 220 nm scintillation component and discriminating against the larger slow (decay time 630 ns) 300 nm component, it is possible to build a radiation-hard calorimeter with good energy and time resolution and high rate capability. This requires a solid state photosensor with high quantum efficiency at 220 nm, discrimination against the 300 nm component and good rise and decay times. Progress on the development of such a sensor is presented.

  12. Scintillation proximity assay using polymeric membranes

    SciTech Connect

    Mansfield, R.K.

    1992-01-01

    Liquid scintillation counting (LSC) is typically used to quantify electron emitting isotopes. In LSC, radioactive samples are dissolved in an organic fluor solution (scintillation cocktail) to ensure that the label is close enough to the fluor molecules to be detected. Although efficient, scintillation cocktail is neither specific or selective for samples labeled with the same radioisotope. Scintillation cocktail is flammable posing significant health risks to the user and is expensive to purchase and discard. Scintillation Proximity Assay (SPA) is a radioanalytical technique where only those radiochemical entities (RCE's) bound to fluor containing matrices are detected. Only bound RCE's are in close enough proximity the entrapped fluor molecules to induce scintillations. Unbound radioligands are too far removed from the fluor molecules to be detected. The research in this dissertation focused on the development and evaluation of fluor-containing membranes (scintillation proximity membranes, SP membranes) to be used for specific radioanalytical techniques without using scintillation cocktail. Polysulfone and PVC SP membranes prepared in our laboratory were investigated for radioimmunossay (RIA) where only bound radioligand is detected, thereby eliminating the separation step impeding the automation of RIA. These SP membranes performed RIA where the results were nearly identical to commercial SP microbeads. SP membranes functionalized with quaternary ammonium hydroxide moieties were able to trap and quantify [sup 14]CO[sub 2] without using liquid scintillation cocktail. RCE's bound in the pore structure of SP membranes are intimate with the entrapped fluor providing the geometry needed for high detection efficiencies. Absorbent SP membranes were used in radiation surveys and were shown to be as effective as conventional survey techniques using filter paper and scintillation cocktail.

  13. Lanthanum Halide Scintillators and Optical Fiber Readout for X-Ray Astronomy and National Security Applications

    NASA Astrophysics Data System (ADS)

    Cherry, Michael L.; Case, Gary L.; Welch, Christopher E.

    2006-04-01

    The Black Hole Finder Probe (BHFP) mission is intended to survey the local Universe for black holes. One approach to such a survey is a hard X-ray coded aperture imaging telescope operating in the 20 - 600 keV energy band. A sensitive hard X-ray/gamma ray imaging telescope is also well suited to surveillance applications searching for shielded sources of illicit nuclear materials, for example "dirty bomb" materials being smuggled into a harbor or city. The development of new inorganic scintillator materials (e.g., LaBr3 and LaCl3) provides improved energy resolution and timing performance that is well suited to the requirements for these national security and astrophysics applications. LaBr3 or LaCl3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a mission concept for a BHFP, and the High Sensitivity Gamma Ray Imager (HiSGRI), a device intended for surveillance for nuclear materials, and present laboratory test results demonstrating the expected scintillator performance.

  14. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    PubMed Central

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Alonso-Mori, R.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Bergmann, U.

    2013-01-01

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of \\documentclass[12pt]{minimal}\\begin{document}$\\frac{E}{\\Delta E} \\sim 10\\,000$\\end{document}EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments. PMID:23742527

  15. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  16. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  17. Apparatuses for large area radiation detection and related method

    DOEpatents

    Akers, Douglas W; Drigert, Mark W

    2015-04-28

    Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.

  18. Scintillator reflective layer coextrusion

    SciTech Connect

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  19. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  20. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  1. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  2. Accompanying of parameters of color, gloss and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bardi, Marcelo Augusto Gonçalves; Machado, Luci Diva Brocardo

    2012-09-01

    In the search for alternatives to traditional paint systems solvent-based, the curing process of polymer coatings by ultraviolet light (UV) has been widely studied and discussed, especially because of their high content of solids and null emission of VOC. In UV-curing technology, organic solvents are replaced by reactive diluents, such as monomers. This paper aims to investigate variations on color, gloss and hardness of print inks cured by different UV radiation doses. The ratio pigment/clear coating was kept constant. The clear coating presented higher average values for König hardness than pigmented ones, indicating that UV-light absorption has been reduced by the presence of pigments. Besides, they have indicated a slight variation in function of cure degree for the studied radiation doses range. The gloss loss related to UV light exposition allows inferring that some degradation occurred at the surface of print ink films.

  3. Comparisons of exact results for the virtual photon contribution to single hard bremsstrahlung in radiative return for e{sup +}e{sup -} annihilation

    SciTech Connect

    Jadach, S.; Ward, B.F.L.; Yost, S.A.

    2006-04-01

    We compare fully differential exact results for the virtual photon correction to single hard photon bremsstrahlung obtained using independent calculations, both for e{sup +}e{sup -} annihilation at high-energy colliders and for radiative return applications. The results are compared using Monte Carlo evaluations of the matrix elements as well as by direct analytical evaluation of certain critical limits. Special attention is given to the issues of numerical stability and the treatment of finite-mass corrections. It is found that agreement on the order of 10{sup -5} or better is obtained over most of the range of hard photon energies, at CMS energies relevant to both high-energy collisions and radiative return experiments.

  4. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  5. Recent development in organic scintillators

    NASA Technical Reports Server (NTRS)

    Horrocks, D. L.; Wirth, H. O.

    1969-01-01

    Discussion on recent developments of organic scintillators includes studies of organic compounds that form glass-like masses which scintillate and are stable at room temperature, correlations between molecular structure of organic scintillators and self-quenching, recently developed fast scintillators, and applications of liquid-scintillation counters.

  6. Shifting scintillator neutron detector

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  7. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-11-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

  8. Extruded plastic scintillation detectors

    SciTech Connect

    Anna Pla-Dalmau, Alan D. Bross and Kerry L. Mellott

    1999-04-16

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of the raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  9. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  10. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect

    Bignell, Lindsey J.; Jackson, Timothy W.; Mume, Eskender; Lee, George P.

    2013-05-27

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  11. Plasmonic light yield enhancement of a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Bignell, Lindsey J.; Mume, Eskender; Jackson, Timothy W.; Lee, George P.

    2013-05-01

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  12. Waveshifting fiber readout of lanthanum halide scintillators

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Cherry, M. L.; Stacy, J. G.

    2006-07-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6 8 m2 hard X-ray coded aperture imaging telescope operating in the 20 600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr3 and LaCl3) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr3 or LaCl3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance.

  13. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  14. Development of an Adaptive Optical System for Sub-10-nm Focusing of Synchrotron Radiation Hard X-rays

    SciTech Connect

    Mimura, H.; Kimura, T.; Matsuyama, S.; Yokoyama, H.; Yumoto, H.

    2011-09-09

    In the hard x-ray region, to obtain the theoretical resolution or diffraction-limited focusing size in an imaging optical system, both ultraprecise optics and highly accurate alignment are necessary. An adaptive optical system is used for the compensation of aberrations in various optical systems, such as optical microscopes and space telescopes. In situ wavefront control of hard x-rays is also effective for realizing ideal performance. The aim of this paper is to develop an adaptive optical system for sub-10-nm hard x-ray focusing. The adaptive optical system performs the wavefront measurement using a phase retrieval algorithm and wavefront control using grazing-incidence deformable mirrors. Several results of experiments using the developed system are reported.

  15. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  16. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  17. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  18. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  19. Fluorescent compounds for plastic scintillation applications

    SciTech Connect

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  20. Luminescence properties of a Lu2O3:Eu3+ nano-phosphor and radiation hardness measurements with a proton beam

    NASA Astrophysics Data System (ADS)

    Oh, Myeongjin; Kim, H. J.; Kim, Sunghwan; Cheon, ChongKyu

    2012-07-01

    Eu3+-doped Lu2O3 phosphors typically have an emission wavelength in the red region. The transition of Eu3+ is due to the 5D0 → 7F2 transition at 610 nm. To produce the Lu2O3:Eu3+ phosphors, we used a co-precipitation method with lutetium nitrate hydrate (Lu(NO3)3·6H2O), europium nitrate hydrate (Eu(NO3)3·6H2O) and diethanolamine (C4H11NO2). The phosphors were sintered at temperatures from 1,100 °C to 1,700 °C by using an electric furnace in an air atmosphere. Then, we obtained the luminescence properties of the phosphors, such as emission and excitation spectra, Field-emission scanning electron microscopy images, X-ray diffraction patterns, radiation hardness, etc. Lu2O3:Eu3+ showed the highest efficiency when sintered at 1,600 °C with a 6%Eu3+ concentration. For the radiation hardness test, a 45-MeV, 10-nA proton beam (MC-50 cyclotron at the KIRMS) was used. Three samples were irradiated with the proton beam: 10, 20, and 40 minutes. The total irradiation dose was approximately 105 ˜ 106 Gy. We did not observe any remarkable changes in the intensity of the luminescence or in the range of the emission wavelength. Hence, we conclude that Lu2O3:Eu3+ phosphors are radiation hard.

  1. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  2. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    SciTech Connect

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application.

  3. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  4. Tests of the radiation hardness of VLSI integrated circuits and silicon strip detectors for the SSC under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Cartiglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnesy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Tennenbaum, P. . Inst. for Particle Physics); Ellison, J.; Jerger, S.; Lietzke, C.; Wimpenny, S.J. ); Ferguson, P. ); Giubellino, P. )

    1991-04-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. In this paper, the authors report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at U.C. Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC.

  5. New Efficient Organic Scintillators Derived from Pyrazoline.

    PubMed

    Bliznyuk, Valery N; Seliman, Ayman F; Ishchenko, Alexander A; Derevyanko, Nadezhda A; DeVol, Timothy A

    2016-05-25

    We report on the synthesis, spectroscopic and scintillation properties of three new pyrazoline core based fluorophores. Fluorescence properties of the fluorophores have been studied both in a solution state and in a solid polyvinyltoluene (PVT) resin matrix of different porosity. The synthesized fluorophores were found to be promising candidates for application in plastic scintillators for detection of ionizing radiation (alpha, beta particles, γ rays and neutrons) and demonstrated superior efficiency in comparison to the existing commercially used fluorophores (2-(1-naphthyl)-5-phenyloxazole (αNPO), 9,10-diphenylanthracene, etc.). Moreover, the suggested synthetic route allows functionalization of the fluorophores with a vinyl group for further covalent bound to the PVT or other vinyl polymer matrices, which dramatically improves chemical stability of the system simultaneously improving the photoluminescence quantum yield. Possible mechanisms of the enhanced scintillation properties are discussed based on preliminary quantum mechanical calculations and spectroscopic characteristics of the fluorophores under study. PMID:27163887

  6. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs. PMID:9571621

  7. Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Buganov, O.; Fedorov, A.; Korjik, M.; Mechinsky, V.; Tikhomirov, A.; Vasil'ev, A.; Lecoq, P.

    2014-07-01

    Here we report the first results of a search of a signature for picosecond time stamps of the interaction between ionizing particles and transparent crystalline media. The induced absorption with sub-picosecond rise time observed in a cerium fluoride scintillation single crystal under UV excitation is directly associated with the ionization of Ce3+ atoms in CeF3 crystals, and the very fast occurrence thereof can be used to generate picosecond-precise time stamps corresponding to the interaction of ionizing particles with the crystal in high energy physics experiments.

  8. Review on photonic crystal coatings for scintillators

    NASA Astrophysics Data System (ADS)

    Knapitsch, Arno; Lecoq, Paul

    2014-11-01

    The amount of light and its time distribution are key factors determining the performance of scintillators when used as radiation detectors. However most inorganic scintillators are made of heavy materials and suffer from a high index of refraction which limits light extraction efficiency. This increases the path length of the photons in the material with the consequence of higher absorption and tails in the time distribution of the extracted light. Photonic crystals are a relatively new way of conquering this light extraction problem. Basically they are a way to produce a smooth and controllable index matching between the scintillator and the output medium through the nanostructuration of a thin layer of optically transparent high index material deposited at the coupling face of the scintillator. Our review paper discusses the theory behind this approach as well as the simulation details. Furthermore the different lithography steps of the production of an actual photonic crystal sample will be explained. Measurement results of LSO scintillator pixels covered with a nanolithography machined photonic crystal surface are presented together with practical tips for the further development and improvement of this technique.

  9. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  10. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  11. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  12. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  13. Progress in studying scintillator proportionality: Phenomenological model

    SciTech Connect

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  14. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  15. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  16. Metal/ceramic composite heat pipes for a low-mass, intrinsically-hard 875 K radiator

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Ernst, Donald M.; Nardone, Vincent C.

    1991-01-01

    Thermacore, Inc. of Lancaster, Pennsylvania has recently completed Phase I of a development program to investigate the use of layered metal/ceramic composites in the design of low-mass hardened radiators for space heat rejection systems. This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. This approach forms an attractive alternative to carbon/carbon, or silicon-carbide fiber reinforced metal heat pipes by offering a combination of low mass and improved fabricability. Thermacore and United Technologies Research Center have jointly developed an approach for fabrication of layered composite thin-walled heat pipes for use in hardened space radiators. Potassium heat pipes with wall thicknesses as low a 0.3 mm have been built and tested. Wall thicknesses as low as 0.13 mm are believed to be achievable with this approach.

  17. Scintillating crystals for precision crystal calorimetry in high energy physics

    SciTech Connect

    Zhu, R.

    1998-11-01

    Scintillating crystals in future high energy physics experiments face a new challenge to maintain its performance in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals. The importance of maintaining crystal{close_quote}s light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen/hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis used to reach these conclusions are presented in details. {copyright} {ital 1998 American Institute of Physics.}

  18. Test beam results with a sampling calorimeter of cerium fluoride scintillating crystals and tungsten absorber plates for calorimetry at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Becker, R.; Dissertori, G.; Djambazov, L.; Donegà, M.; Dröge, M.; Haller, C.; Horisberger, U.; Lustermann, W.; Nessi-Tedaldi, F.; Quittnat, M.; Pandolfi, F.; Peruzzi, M.; Schönenberger, M.; Cavallari, F.; Dafinei, I.; Diemoz, M.; D`Imperio, G.; del Re, D.; Gelli, S.; Jorda Lope, C.; Meridiani, P.; Micheli, F.; Nuccetelli, M.; Organtini, G.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Tabarelli de Fatis, T.; Martelli, A.; Monti, V.; Pastrone, N.; Trapani, P. P.; Candelise, V.; Della Ricca, G.

    2016-07-01

    A sampling calorimeter using cerium fluoride scintillating crystals as active material, interleaved with absorber plates made of tungsten, and read out by wavelength-shifting fibres has been tested with high-energy electron beams at the CERN SPS H4 beam line, as well as with lower-energy beams at the INFN Frascati Beam Test Facility in Italy. Energy resolution studies revealed a low stochastic term (< 10 % /√{ E }). This result, combined with high radiation hardness of the material used, marks this sampling calorimeter as a good candidate for the detectors' forward regions during the high luminosity phase of LHC.

  19. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  20. Sorohalide scintillators, phosphors, and uses thereof

    DOEpatents

    Yang, Pin; Deng, Haoran; Doty, F. Patrick; Zhou, Xiaowang

    2016-05-10

    The present invention relates to sorohalide compounds having formula A.sub.3B.sub.2X.sub.9, where A is an alkali metal, B is a rare earth metal, and X is a halogen. Optionally, the sorohalide includes a dopant D. Such undoped and doped sorohalides are useful as scintillation materials or phosphors for any number of uses, including for radiation detectors, solid-state light sources, gamma-ray spectroscopy, medical imaging, and drilling applications.

  1. X-Ray Ccds for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith Charles

    1995-01-01

    This thesis has two distinct components. One concerns the physics of the high energy resolution X-ray charge coupled devices (CCD) detectors used to measure the cosmic X-ray background (XRB) spectrum. The other involves the measurements and analysis of the XRB spectrum and instrumental background with these detectors on board the advanced satellite for cosmology and astrophysics (ASCA). The XRB has a soft component and a hard component divided at ~2 keV. The hard component is extremely isotropic, suggesting a cosmological origin. The soft component is extremely anisotropic. A galactic component most likely dominates the soft band with X-ray line emission due to a hot plasma surrounding the solar system. ASCA is one of the first of a class of missions designed to overlap the hard and soft X-ray bands. The X-ray CCD's energy resolution allows us to spectrally separate the galactic and cosmological components. Also, the resolution offers the ability to test several specific cosmological models which would make up the XRB. I have concentrated on models for the XRB origin which include active galactic nuclei (AGN) as principal components. I use ASCA data to put spectral constraints on the AGN synthesis model for the XRB. The instrumental portion of this thesis concerns the development and calibration of the X-ray CCDs. I designed, built and operated an X-ray calibration facility for these detectors. It makes use of a reflection grating spectrometer to measure absolute detection efficiency, characteristic absorption edge strengths, and spectral redistribution in the CCD response function. Part of my thesis research includes a study of radiation damage mechanisms in CCDs. This work revealed radiation damage-induced degradation in the spectral response to X-rays. It also uncovered systematic effects which affect both data analysis and CCD design. I have developed a model involving trap energy levels in the CCD band gap structure. These traps reduce the efficiency in which

  2. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  3. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  4. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  5. Bread-Board Testing of the Radiation Hard Electron Monitor (RADEM) being developed for the ESA JUICE Mission

    NASA Astrophysics Data System (ADS)

    Mrigakshi, Alankrita; Hajdas, Wojtek; Marcinkowski, Radoslaw; Xiao, Hualin; Goncalves, Patricia; Pinto, Marco; Pinto, Costa; Marques, Arlindo; Meier, Dirk

    2016-04-01

    The RADEM instrument will serve as the radiation monitor for the JUICE spacecraft. It will characterize the highly dynamic radiation environment of the Jovian system by measuring the energy spectra of energetic electrons and protons up to 40 MeV and 250 MeV, respectively. It will also determine the directionality of 0.3-10 MeV electrons. Further goals include the detection of heavy ions, and the determination of the corresponding LET spectra and dose rates. Here, the tests of the Electron and Proton Telescopes, and the Directionality Detector of the RADEM Bread-Board model are described. The objective of these tests is to validate RADEM design and physical concept applied therein. The tests were performed at various irradiation facilities at the Paul Scherrer Institute (PSI) where energy ranges relevant for space applications can be covered (electrons: ≤100 MeV and protons: ≤230 MeV). The measured values are also compared with GEANT4 Monte-Carlo Simulation results.

  6. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  7. Contact and noncontact laser preparation of hard dental tissues by Er:YAG laser radiation delivered by hollow glass waveguide or articulated arm

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Miyagi, Mitsunobu; Nemec, Michal; Hamal, Karel; Krejsa, Otakar

    1999-05-01

    The differences between a contact and non-contact Er:YAG laser hard dental tissue preparation were verified. The influence of laser energy and number of pulses on a profile and depth of a drilled cavity was investigated. The delivery systems used were an articulated arm and a cyclic olefin polymer-coated silver hollow glass waveguide with or without a special sapphire tip. In the case of the non-contact preparation, the laser radiation was directed onto the dental tissue by focusing optics (CaF2 lens) together with the cooling water spray in order to ensure that the tissues will not be burned. The water spray was also used during the preparation when the waveguide with a sapphire tip was used to deliver the radiation. For the evaluation of shapes, depth and profiles of the prepared cavities the metallographic microscope, photographs from the light microscope and scanning electron microsec were used. From the result it follows that great differences exist in the laser speed, value of energy, the profile, and depth of the cavities prepared by the contact and non-contact preparation. In the case of contact ablation the procedure is quicker, the energy fluence needed is lower and more precise cavities with larger diameters are produced.

  8. Novel method of producing nanoparticles for gadolinium-scintillator-based digital radiography.

    PubMed

    Lee, Young Kyu; Park, Sung Kwang; Shin, Jung Wook; Oh, Kyung Min; Heo, Seung Uk; Cho, Gyu Seok; Kim, Jin Young; Nam, Sang Hee

    2013-10-01

    Radiation image sensor properties affect the dose of radiation that patients are exposed to in a clinical setting. Numerous radiation imaging systems use scintillators as materials that absorb radiation. Rare-earth scintillators produced from elements such as gadolinium, yttrium, lutetium, and lanthanum have been investigated to improve the properties of radiation imaging systems. Although such rare-earth scintillators are manufactured with a bulk structure, they exhibit low resolution and low efficiency when they are used as conversion devices. Nanoscintillators have been proposed and researched as a possible solution to these problems. According to the research, the optical properties and size of fine scintillators are affected by the sintering temperature used to produce nanoscintillators instead of the existing bulk-structured scintillators. Therefore, the main purpose of this research is to develop radiation-imaging sensors based on nanoscintillators in order to evaluate the quantitative properties of various scintillators produced under various conditions such as sintering temperature. This is accomplished by measuring acquired phantom images, and modulation transfer functions (MTFs) for complementary-symmetry metal-oxide-semiconductor (CMOS) image sensors under the same X-ray conditions. Low-temperature solution combustion was used to produce fine scintillators consisting of 5 wt% of europium as an activator dopant in a Gd2O3 scintillator host. Variations in the characteristics of the fine scintillators were investigated. The characteristics of fine scintillators produced at various sintering temperatures (i.e., 600, 800, or 1000 degrees C) and with a europium concentration of 0.5 wt% were also analyzed to determine the optimal conditions for synthesizing the fine scintillators. PMID:24245181

  9. Development of scintillation materials for medical imaging and other applications

    SciTech Connect

    Melcher, C. L.

    2013-02-05

    Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons, neutrons, and charged particles, are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years, due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques, composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

  10. The effect of hard/soft segment composition on radiation stability of poly(ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Walo, Marta; Przybytniak, Grażyna; Łyczko, Krzysztof; Piątek-Hnat, Marta

    2014-01-01

    In this paper studies on the structures and radiation stability of four poly(ester-urethane)s (PUR)s synthesized from oligo(ethylene-butylene adipate)diol of various molecular weights and isophorone diisocyanate/1,4-butanediol are reported. PURs with 40 and 60 wt% soft segments were irradiated at ambient temperature with a high energy electron beam to a dose of 112 kGy. The effect of different segmental compositions on thermal and mechanical properties of polyurethanes, both before and after irradiation, were investigated using mechanical testing and dynamic mechanical thermal analysis. ATR-FTIR spectroscopy was used to study the progress of polycondensation, structure of synthesized polymers and extent of phase separation were determined on a basis of the contribution of hydrogen bonding in poly(ester-urethane)s. Correlation between degree of phase separation and mechanical and thermal properties of poly(ester-urethane)s was found.

  11. First study of nano-composite scintillators under alpha irradiation

    SciTech Connect

    Letant, S; Wang, T

    2005-06-01

    We demonstrate that nano-composite materials based on semiconductor quantum dots have great potential for radiation detection via scintillation. While quantum dots and laser dyes both emit in the visible range at room temperature, the Stokes shift of the dyes is significantly larger. The scintillation output of both systems was studied under alpha irradiation and interpreted using a combination of energy-loss and photon transport Monte Carlo simulation models. The comparison of the two systems, which allows the quantification of the role played by the Stokes shift in the scintillation output, opens up exciting possibilities for a new class of scintillators that would take advantage of the limitless assembly of nano-crystals in large, transparent, and sturdy matrices.

  12. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  13. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  14. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Neutron detection with single crystal organic scintillators

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia P.; Newby, Jason; Hamel, Sebastien; Carman, Leslie; Faust, Michelle; Lordi, Vincenzo; Cherepy, Nerine J.; Stoeffl, Wolfgang; Payne, Stephen A.

    2009-08-01

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10- diphenylanthracene and diphenylacetylene.

  16. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  17. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  18. ANL/WSU radiation damage studies

    SciTech Connect

    Jankowski, D.; Lopiano, D.; Proudfoot, J.; Underwood, D.; Miles, L.; Neidiger, J.; Tripard, G.

    1993-12-31

    We report preliminary results for the radiation hardness of (polystryrene) plastic scintillator stacks using a spectrum of energy hardened neutrons from a MARK-III TRIGA reactor. The total dose ranged from 100 KRad to 3MRad. The corresponding fluence was 3.8 {times} 10{sup 13} to 3.8 {times} 10{sup 14} (n/cm/cm) with the gamma contribution on the order 2--3% (of fluence). The measurements used Li-6, Li-7 Thermo-luminescence dosimeters. Radiochromic/GaF- Chromic film, and activated foils simultaneously allowing an inter-comparison of these various methods of dosimetry.

  19. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  20. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  1. Uranium hohlraum with an ultrathin uranium-nitride coating layer for low hard x-ray emission and high radiation temperature

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Ding, Yongkun; Xing, Pifeng; Li, Sanwei; Kuang, Longyu; Li, Zhichao; Yi, Taimin; Ren, Guoli; Wu, Zeqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Baibin; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

    2015-11-01

    An ultrathin layer of uranium nitrides (UN) has been coated on the inner surface of depleted uranium hohlraum (DUH), which has been proven by our experiment to prevent the oxidization of uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on an SGIII-prototype laser facility. Under a laser intensity of 6 × 1014 W cm-2, we observe that the hard x-ray (hν \\gt 1.8 keV) fraction of the uranium hohlraum decreases by 61% and the peak intensity of the total x-ray flux (0.1 keV˜5.0 keV) increases by 5%. Radiation hydrodynamic code LARED is used to interpret the above observations. Our result for the first time indicates the advantages of the UN-coated DUH in generating a uniform x-ray source with a quasi-Planckian spectrum, which should have important applications in high energy density physics.

  2. Apparatus and method for temperature correction and expanded count rate of inorganic scintillation detectors

    DOEpatents

    Ianakiev, Kiril D.; Hsue, Sin Tao; Browne, Michael C.; Audia, Jeffrey M.

    2006-07-25

    The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.

  3. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  4. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  5. Lithium glass scintillator neutron detector as an improved alternative to the standard 3 he proportional counter

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2011-06-01

    Lithium glass scintillator made from 6Li-enriched substrate is a well known for its neutron detection capability. In spite of neutron interaction, cross section of 6Li happens to be lower than that of 3He. However, the neutron detection efficiency could be higher due to higher volume content of 6Li nuclear in the solid scintillator vs. gas filled proportional counter. At the same time, as lithium glass is sensitive to gamma and charge particle radiation, non-neutron radiation discrimination is required. Our detector is composed of two equal-size cylindrical Li(Ce) glass scintillators. The first one is high-sensitive to thermal neutrons GS-20 (6Li doped), the second one is GS-30 (7Li doped) type Scint-Gobain made lithium glass scintillator. Each of scintillators is coupled with R7400U Hamamatsu subminiature photomultiplier tube, and all assembly is fitted into NP100H 3He tube size. 6Li absorbs thermal neutrons releasing alpha particles and triton with 4.8 MeV total energy deposit inside the scintillator (equivalent to about ~1.3 MeV gamma energy depositions). Because 7Li isotope does not absorb thermal neutrons, and the physical properties of the two scintillators are virtually identical, the difference between these two scintillators could be used to provide neutron dose rate information. Results of study of neutron detector assembled of two Li(Ce) scintillators and NP100H moderator are presented

  6. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    SciTech Connect

    Bircher, Chad; Shao Yiping

    2012-02-15

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used

  7. Development of High Resolution Scintillator Systems Based on Photocell Technology

    SciTech Connect

    W.J. Kernan; L.A. Franks; M. Groza; A. Burger

    2006-01-01

    Inorganic scintillator/photomultiplier-based spectrometers are the systems of choice for a multitude of X-ray and gamma radiation measurement applications. Despite widespread use, they have numerous shortcomings. The most serious shortcoming is the relatively poor energy resolution that makes isotope identification problematic, particularly in the case of trace quantities. Energy resolution in scintillator/photomultiplier tube (PMT) spectrometers is governed by a combination of the crystal intrinsic resolution that includes non-linearity effects, photomultiplier statistics, and the variability in the probability of a scintillation photon generating a photoelectron at the photocathode. It is evident that energy resolution in these systems is linked to both the physics of light generation in the scintillator and the characteristics of the PMT. PMTs also present design problems, especially in the case of handheld and portable instruments, due to their considerable weight and volume. Additionally, PMTs require well-regulated high voltage, and are vulnerable to magnetic fields. The objective of this work is to provide instrument designers of scintillation-based gamma-ray spectrometers with superior energy resolution and greatly reduced weight and volume. It is planned to achieve this advancement by optimizing the performance of a new class of inorganic scintillators by matching their emission spectra with the enhanced quantum efficiency of certain photocells.

  8. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  9. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  10. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  11. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  12. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  13. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  14. An analytical model of nonproportional scintillator light yield in terms of recombination rates

    SciTech Connect

    Bizarri, G.; Moses, W. W.; Singh, J.; Vasil'ev, A. N.; Williams, R. T.

    2009-02-15

    Analytical expressions for the local light yield as a function of the local deposited energy (-dE/dx) and total scintillation yield integrated over the track of an electron of initial energy E are derived from radiative and/or nonradiative rates of first through third order in density of electronic excitations. The model is formulated in terms of rate constants, some of which can be determined independently from time-resolved spectroscopy and others estimated from measured light yield efficiency as a constraint assumed to apply in each kinetic order. The rates and parameters are used in the theory to calculate scintillation yield versus primary electron energy for comparison to published experimental results on four scintillators. Influence of the track radius on the yield is also discussed. Results are found to be qualitatively consistent with the observed scintillation light yield. The theory can be applied to any scintillator if the rates of the radiative and nonradiative processes are known.

  15. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  16. Radiation resistivity of BGO crystals due to low-energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Kozma, Petr

    2003-04-01

    Radiation resistivity of 4×4×30 mm 3 BGO crystals from three suppliers has been studied for doses 10 4 Gy (10 6 rad) and 10 5 Gy (10 7 rad). Radiation hardness was examined by the measurement of optical transmission through BGO crystals before and after 60Co gamma-ray irradiations. The absolute degradation of transmission for 10 4 and 10 5 Gy doses at 480 nm wavelength of the peak emission of BGO, was found to be lower than 3.4% and 7.5%, respectively. The results have been also compared with radiation hardness measurements for a large volume ∅30×30 mm 3 BGO crystal as well as another heavy scintillation crystals: fluorides and tungstates. Complete recovery of BGO radiation damage was observed only after few days.

  17. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  18. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  19. Single-photoelectron noise reduction in scintillation detectors

    SciTech Connect

    Marvin, T.P.; The SLAC mQ Collaboration

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 {times} 21 {times} 130-cm{sup 3} Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 {mu}s) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures.

  20. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  1. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks

    SciTech Connect

    James, A. N.; Hollmann, E. M.; Tynan, G. R.

    2010-10-15

    We present details of a new bismuth germanate [Bi{sub 4}Ge{sub 3}O{sub 12} (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  2. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaksa)

    NASA Astrophysics Data System (ADS)

    James, A. N.; Hollmann, E. M.; Tynan, G. R.

    2010-10-01

    We present details of a new bismuth germanate [Bi4Ge3O12 (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  3. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  4. Pulse shape discrimination with lithium-containing organic scintillators

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia; Glenn, Andrew; Paul Martinez, H.; Carman, Leslie; Pawełczak, Iwona; Faust, Michelle; Payne, Stephen

    2013-11-01

    6Li-containing organic scintillators have been prepared and characterized as a new type of transparent, single-phase materials with pulse shape discrimination (PSD) properties for simultaneous detection of thermal and fast neutrons discriminated from gamma radiation. Tests conducted with recently developed PSD-capable plastic scintillators showed that incorporation of 6Li into the aromatic matrix with fast-neutron/gamma discrimination properties offers the additional sensitivity to thermal neutrons, substantially increasing efficiency and the energy range of neutron detection. Comparative analyses of 6Li-loaded plastic, liquid and single crystal organic scintillators provide evidence that, in addition to neutron/gamma discrimination, these novel materials have the ability for discrimination between the signatures of fast and thermal neutrons.

  5. A potential base substrate for deformable scintillation materials

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Sato, Nobuhiro; Kitamura, Hisashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2016-05-01

    Deformable scintillation materials for radiation detection are an original concept that will impact many applications. Here we reveal the optical characteristics of readily available, transparent grease that consists of adhesive aromatic ring polymers. The aromatic ring polymer is methyl phenyl polysiloxane, commonly used in cosmetics, lubrication, heat conduction, and mechanical damping. It has a 285-nm excitation maximum and emits short wavelength light that peaks at 315 nm. The stopping power for 1 MeV electrons is 1.78 MeV cm2/g. The light-yield distribution has distinct peaks at 976 keV from internal conversion electrons and at 5486 keV from alpha particles. In addition, this particular methyl phenyl polysiloxane is safe for use and disposal, which is an excellent advantage. These aromatic ring polymers are potential base substrates for deformable scintillation materials and make an important addition to the categories of scintillation materials.

  6. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  7. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  8. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    SciTech Connect

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  9. Fast Analysis of Potential Scintillators Using Ion Time Of Flight

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian; Zhang, Yanwen

    2008-05-01

    The development of scintillators for radiation applications such as national security, medical imaging, and experimental nuclear/particle physics has historically been rather slow, principally due to the developmental time necessary for large crystal growth. Scintillator crystals must achieve dimensions of a few mm before important characterizations, such as gamma ray energy resolution, can be performed. In order to facilitate accelerated discovery, we developed a time of flight (TOF) telescope for use on an ion beam. This allows individual determination of the ion energies prior to impinging the crystal, which may be a very thin prototype material. With such a technique, the scintillator performance in terms of energy resolution, light yield, decay time, and spectrum, can be determined quickly over a broad energy range. Though the analysis is performed using ions rather than the gamma-rays whose detection is the ultimate aim of the materials investigated, we have found useful correlations between the ion and gamma responses of the materials we have investigated (CaF2:Eu, YAP:Ce, BGO, CsI:Tl, and plastic scintillator). The technique appears to be able to rapidly determine whether a scintillator material has promise for further development.

  10. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  11. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  12. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than

  13. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  14. Lack of progress on waveshifting fluors for use in or with polystyrene scintillators in high-energy particle detection

    SciTech Connect

    Kauffman, J.M.; Bajwa, G.S.; Litak, P.T.; Kelley, C.J.; Pai, R.

    1998-11-01

    A number of original proton-transfer fluors were prepared as shifters for green-emitting scintillating fibers of multi-meter lengths. Quantum efficiencies up to 0.52 are reported for the new fluors which showed emission maxima between 478 and 612 nm. None proved clearly superior to 3HF, the standard fluor for scintillating fibers whose light is measured with PM tubes. For the current goal of half-meter length waveshifting fibers with blue-green emission for use with blue-violet-emitting polystyrene tiles, a number of fluors related to TPBD and Bis-MSB were prepared bearing dialkylamino auxofluors. Some of these failed to fluoresce, and those that did were photochemically unstable. A proposal was made on some original conjugated polyenes for waveshifting fibers. In general, accurate predictions could be made on excitation and emission wavelengths, while light output, decay time, photochemical stability and radiation hardness are more difficult targets. {copyright} {ital 1998 American Institute of Physics.}

  15. Comparison of plastic scintillating fibres and capillaries filled with liquid scintillator

    NASA Astrophysics Data System (ADS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Flaminio, V.; Golovkin, S. V.; Gorin, A. M.; Kulichenko, A. V.; Kushnirenko, A. E.; Pyshev, A. I.; Manuilov, I.; Vasilchenko, V. G.

    1994-07-01

    A comparison is made between the light yield, attenuation length, time response and light propagation speed in plastic scintillating fibres (SCSF-38 and Kuraray-3HF) and quartz capillaries filled with liquid scintillator (LS) 1-methilnaphthalene (1MN) doped with new dyes R45 and R39. The inner diameter of capillaries and diameter of plastic fibres is 0.5 mm. The number of photoelectrons detected at the far end (2 m) was 2.9 for capillaries filled with 1MN + 3 g/1 R45 while it was 1.8 times smaller in the case of SCSF-38 and 3 times smaller in the case of Kuraray 3HF plastic fibres. Taking into account the quantum efficiency of the photodetector used these reduction factors became 3.0 and 2.0, respectively. Good attenuation length, high light output and also excellent radiation resistance of capillaries filled with LS (> 60 Mrad, measured elsewhere) show that they are a very promising alternative to plastic scintillating fibres for future applications in tracking detectors and calorimeters.

  16. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  17. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant‑4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant‑4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past

  18. PMT calibration of a scintillation detector using primary scintillation

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Fernandes, L. M. P.; Yahlali, N.; Pérez, J.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Ferrario, P.; Ferreira, A. L.; Gehman, V. M.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; Dos Santos, J. M. F.; Seguí, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J.; Monteiro, C. M. B.

    2015-02-01

    We have studied the calibration of PMTs in scintillation detectors, inducing single electron response on the PMT from primary scintillation produced by x-ray interaction. The results agree with those obtained by the commonly used single electron response (SER) method, which uses LED light pulses to induce the PMT SER. The use of the primary scintillation for PMT calibration will be convenient in situations where the PMT is already in situ, when it becomes difficult or even impossible to apply the SER method, e.g. in commercial sealed scintillator/PMT devices. Furthermore, we have experimentally investigated the possibility of fitting the high-charge tail of the PMT SER pulse-height distribution to an exponential function, inferring the PMT gain from the inverse of the exponent. The results of the exponential fit method agree with those obtained by the SER method for pulse-height distributions resulting from an average number of around 1.0 photoelectrons reaching the first dynode per light/scintillation pulse. The SER method has higher precision and, therefore, is used in a larger number of applications. Nevertheless, the exponential fit method will be useful in situations where the single photoelectron peak is under the background or noise peak and it may present an alternative, simple way, for relative gain calibration of PMT arrays as well as for monitoring the PMT gain variations.

  19. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  20. The Characterization of Scintillator Performance at Temperatures up to 400 Degrees Centigrade

    SciTech Connect

    Boatner, Lynn A; Neal, John S; Kolopus, James A; Ramey, Joanne Oxendine; Akkurt, Hatice

    2013-01-01

    The logging and characterization of geothermal wells requires improved scintillator systems that are capable of operation at temperatures significantly above those commonly encountered in the logging of most conventional oil and gas wells (e.g., temperatures nominally in the range of up to 150oC.) Unfortunately, most of the existing data on the performance of scintillators for radiation detection at elevated temperatures is fragmentary, uncorrelated, and generally limited to relatively low temperatures in most cases to temperatures well below 200oC. We have designed a system for characterizing scintillator performance at temperatures extending up to 400oC under inert atmospheric conditions, and this system is applied here to the determination of scintillator performance at elevated temperatures for a wide range of scintillators including, among others: bismuth germanate, cadmium tungstate, cesium iodide, cesium iodide (Tl), cesium iodide (Na), sodium iodide, sodium iodide (Tl), lutetium oxy-orthosilicate (Ce), zinc tungstate, yttrium aluminum perovskite (Ce), yttrium aluminum garnet (Ce), lutetium aluminum perovskite (Ce), and barium fluoride, strontium iodide(Eu). The results of these high-temperature scintillator performance tests are described in detail here. Comparisons of the relative elevated-temperature properties of the various scintillator materials have resulted in the identification of promising scintillator candidates for high-temperature use in geothermal and fossil-fuel well environments.

  1. BC404 scintillators as gamma locators studied via Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  2. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  3. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  4. FNAL-NICADD extruded scintillator

    SciTech Connect

    Beznosko, D.; Bross, A.; Dyshkant, A.; Pla-Dalmau, A.; Rykalin, V.; /Northern Illinois U.

    2005-09-01

    The possibility to produce a scintillator that satisfies the demands of physicists from different science areas has emerged with the installation of an extrusion line at Fermi National Accelerator Laboratory (FNAL). The extruder is the product of the fruitful collaboration between FNAL and Northern Illinois Center for Accelerator and Detector Development (NICADD) at Northern Illinois University (NIU). The results from the light output, light attenuation length and mechanical tolerance indicate that FNAL-NICADD scintillator is of high quality. Improvements in the extrusion die will yield better scintillator profiles and decrease the time needed for initial tuning. This paper will present the characteristics of the FNAL-NICADD scintillator based on the measurements performed. They include the response to MIPs from cosmic rays for individual extruded strips and irradiation studies where extruded samples were irradiated up to 1 Mrad. We will also discuss the results achieved with a new die design. The attractive perspective of using the extruded scintillator with MRS (Metal Resistive Semiconductor) photodetector readout will also be shown.

  5. Radioluminescence dosimetry by scintillating fiber optics: the open challenges

    NASA Astrophysics Data System (ADS)

    Veronese, Ivan; Cantone, Marie Claire; Chiodini, Norberto; De Mattia, Cristina; Fasoli, Mauro; Mones, Eleonora; Vedda, Anna

    2013-09-01

    In the last decade, the interest in scintillating fiber optics for ionizing radiation monitoring is constantly increasing. Among the fields of possible applications of these sensors, radiation therapy represents a driving force for the research and development of new devices. In fact, the small dimensions of fiber optics based detectors, together with their realtime response, make these systems extremely promising both in quality assurance measurements of intensity modulated radiotherapy beams, and in in-vivo dosimetry. On the other hand, two specific aspects might represent limiting factors: (i) the "stem effect", that is the spurious luminescence originating as a consequence of the irradiation of the light guide, and (ii) the "memory effect", that is the radioluminescence sensitivity increase during prolonged exposition to ionizing radiation, typical of many scintillating materials. These two issues, representing the main challenges to face for the effective use of scintillating fiber as dosimeters in radiotherapy, were studied considering amorphous silica matrices prepared by sol-gel method and doped with europium. The origin of the stem effect was investigated by means of spectral measurements of the doped fibers irradiated with Xrays and electrons of different energies, field sizes and orientations. New approaches for removing the stem effect on the basis of the radioluminescent spectral analysis are presented and discussed. Furthermore, the causes and phenomenology of the memory effect are described, considering also the effect of dose accumulation with different dose rates and energies of ionizing radiation.

  6. Study of Scintillator thickness optimization of lens-coupled X-ray imaging detectors

    NASA Astrophysics Data System (ADS)

    Xie, H.; Du, G.; Deng, B.; Chen, R.; Xiao, T.

    2016-03-01

    Lens-coupled X-ray in-direct imaging detectors are very popular for high-resolution X-ray imaging at the third generation synchrotron radiation facilities. This imaging system consists of a scintilator producing a visible-light image of X-ray beam, a microscope objective, a mirror reflecting at 90° and a CCD camera. When the thickness of the scintillator is matched with the numerical aperture (NA) of the microscope objective, the image quality of experimental results will be improved obviously. This paper used an imaging system at BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) to study the matching relation between the scintillator thickness and the NA of the microscope objective with a real sample. By use of the matching relation between the scintillator thickness and the NA of the microscope objective, the optimal imaging results have been obtained.

  7. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; O’Neal, S P; Seeley, Zachary; Drury, Owen; Haselhorst, L K; Rupert, B. L.; Sanner, Robert; Thelin, P; Fisher, S E; Hawrami, Rastgo; Shah, Kanai; Burger, Arnold; Ramey, Joanne Oxendine; Boatner, Lynn A

    2011-01-01

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of ~75,000 Ph/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  8. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect

    Cherepy, N J; Payne, S A; Sturm, B W; O'Neal, S P; Seeley, Z M; Drury, O B; Haselhorst, L K; Rupert, B L; Sanner, R D; Thelin, P A; Fisher, S E; Hawrami, R; Shah, K S; Burger, A; Ramey, J O; Boatner, L A

    2011-08-30

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  9. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.

    2011-09-01

    Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  10. Compton polarimeter as a focal plane detector for hard X-ray telescope

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.

    X-ray polarimetry is expected to provide unique opportunity to study the behavior of matter and radiation under extreme magnetic fields and extreme gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue for the last three decades; there is almost no progress in this field whereas there is a significant advance in the fields of X-ray spectroscopy, imaging and timing. Recently significant improvement in the sensitivity is expected in polarimetric measurements using GEM-based photoelectron tracking polarimeters coupled to soft X-ray telescopes. However they are sensitive in the soft X-ray regime. On the other hand mostly for the X-ray sources higher degree of polarisation at hard X-rays is expected because of the dominance of nonthermal X-ray emission mechanisms over the thermal counterpart. So polarisation measurement in hard X-ray can yield significant insights into such processes. Of late with the advent of high energy focussing telescopes (e.g. Nu STAR, ASTRO-H), sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array of scintillator detectors. We have carried out detailed Geant4 simulations to estimate the modulation factor for 100% polarized beam as well as polarimetric efficiency of this configuration. Polarimetric sensitivity of the instrument critically depends on low energy threshold in central plastic scatterer. We estimated the sensitivity for a range of plastic threshold energy. We also discuss the methodology to measure the threshold energy in plastic scatterer. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics and the experimental results for threshold measurements in plastic.

  11. Scintillation techniques and optical devices: summary report of the working group

    SciTech Connect

    Bross, A.; Ruchti, R.

    1986-02-01

    Use of optical fiber techniques particularly in particle tracking is discussed. Fundamental aspects of scintillating tracking detectors using the fiber-optic waveguide are described, including candidate core materials, fiber manufacture, properties of the scintillation materials and waveguides, attenuation length, and radiation resistance. The general consensus is expressed that most of the basic building blocks needed for fiber detector readout exist but require optimization. Attention is given to the imaging system components, including image intensifiers, electronic cameras, and digitizing systems. Also of concern is the ability of scintillating fiber detectors to handle high rates due to their granularity. Requirements for triggering are given. Also discussed are tracking, photodiode devices, and calorimetry. (LEW)

  12. SDC conceptual design: Scintillating fiber outer tracker

    SciTech Connect

    Adams, D.; Baumbaugh, A.; Bird, F.; SDC Collaboration

    1992-01-22

    The authors propose an all-scintillating fiber detector for the purpose of outer tracking for the SDC. The objectives of this tracking system are to: (1) provide a first level trigger for {vert_bar}{eta}{vert_bar} < 2.3 with sharp p{sub T} threshold with the ability to resolve individual beam crossings; (2) provide pattern recognition capability and momentum resolution which complements and extends the capabilities of the inner silicon tracking system; (3) provide three dimensional linkage with outer detection systems including the shower maximum detector, muon detectors, and calorimetry; (4) provide robust tracking and track-triggering at the highest luminosities expected at the SSC. The many attractive features of a fiber tracker include good position resolution, low occupancy, low mass in the active volume, and excellent resistance to radiation damage. An additional important feature, especially at the SSC, is the intrinsically prompt response time of a scintillating fiber. This property is exploited in the construction of a level 1 trigger sensitive to individual beam crossings.

  13. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  14. Quenching correction for volumetric scintillation dosimetry of proton beams

    PubMed Central

    Robertson, Daniel; Mirkovic, Dragan; Sahoo, Narayan; Beddar, Sam

    2013-01-01

    Purpose Volumetric scintillation dosimetry has the potential to provide fast, high-resolution, three-dimensional radiation dosimetry. However, scintillators exhibit a nonlinear response at the high linear energy transfer (LET) values characteristic of proton Bragg peaks. The purpose of this study was to develop a quenching correction method for volumetric scintillation dosimetry of proton beams. Methods Scintillation light from a miniature liquid scintillator detector was measured along the central axis of a 161.6-MeV proton pencil beam. Three-dimensional dose and LET distributions were calculated for 85.6-, 100.9-, 144.9-, and 161.6-MeV beams using a validated Monte Carlo model. LET values were also calculated using an analytical formula. A least-squares fit to the data established the empirical parameters of a quenching correction model. The light distribution in a tank of liquid scintillator was measured with a CCD camera at all four beam energies. The quenching model and LET data were used to correct the measured light distribution. Results The calculated and measured Bragg peak heights agreed within ±3% for all energies except 85.6 MeV, where the agreement was within ±10%. The quality of the quenching correction was poorer for sharp low-energy Bragg peaks because of blurring and detector size effects. The corrections performed using analytical LET values resulted in doses within 1% of those obtained using Monte Carlo LET values. Conclusion The proposed method can correct for quenching with sufficient accuracy for dosimetric purposes. The required LET values may be computed effectively using Monte Carlo or analytical methods. Future detectors should improve blurring correction methods and optimize the pixel size to improve accuracy for low-energy Bragg peaks. PMID:23257200

  15. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  16. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  17. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  18. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  19. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  20. Study of tile/fiber systems manufactured from Kharkov injection molded and Kuraray SCSN-81 scintillators

    NASA Astrophysics Data System (ADS)

    Nemashkalo, A.; Popov, V.; Rubashkin, A.; Sorokin, P.; Zatserklianiy, A.; Borisenko, A.; Senchishin, V.; Skrebtsov, O.; Bolotov, V.

    1998-12-01

    We present the measurements of light output, light yield uniformity, and recovery after radiation damage of the tile/fiber systems made from the Kharkov injection molded and Kuraray SCSN-81 scintillators. The tiles were trapezoidal in shape, 131×90×122 mm3, with a Kuraray Y11 multiclad WLS read-out. The results are compared with those obtained using the tile/fiber systems manufactured from the Kuraray SCSN-81 scintillator and tested under the same conditions.

  1. Auger recombination in sodium-iodide scintillators from first principles

    SciTech Connect

    McAllister, Andrew; Åberg, Daniel; Schleife, André; Kioupakis, Emmanouil

    2015-04-06

    Scintillator radiation detectors suffer from low energy resolution that has been attributed to non-linear light yield response to the energy of the incident gamma rays. Auger recombination is a key non-radiative recombination channel that scales with the third power of the excitation density and may play a role in the non-proportionality problem of scintillators. In this work, we study direct and phonon-assisted Auger recombination in NaI using first-principles calculations. Our results show that phonon-assisted Auger recombination, mediated primarily by short-range phonon scattering, dominates at room temperature. We discuss our findings in light of the much larger values obtained by numerical fits to z-scan experiments.

  2. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  3. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  4. Excitonic processes and their contribution to nonproportionality observed in the light yield of inorganic scintillators

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Koblov, Alexander

    2013-02-01

    Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the nonproportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator remains mainly excitonic, then nonproportionality can be minimised by inventing a scintillator material with linear radiative rate >107 s-1, linear quenching rate <106 s-1 and track radius ≥70 nm along with maintaining the rates of other nonlinear processes as discovered earlier. If one can increase the linear radiative rate to 109 s-1, then the nonproportionality can be eliminated at a track radius >20 nm.

  5. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  6. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  7. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  8. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  9. Gamma-ray astronomy using a high pressure gas scintillation drift chamber with a waveshifting fiber readout

    NASA Technical Reports Server (NTRS)

    Wilkerson, J.; Edberg, T. K.; Parsons, A.; Sadoulet, B.; Weiss, S.; Smith, G.

    1992-01-01

    We describe a balloon-borne hard X-ray telescope called SIGHT (Scintillation Imaging Gas-filled Hard X-ray Telescope). SIGHT is a high sensitivity, good energy resolution instrument that images in the 30 to 300 keV region. We discuss the development of a large area, 20 atmosphere, position sensitive xenon gas scintillation drift chamber which is the gamma-ray detector at the heart of the telescope package. Results of the development of the novel waveshifting fiber readout for this chamber are presented.

  10. Position Sensitive Detectors Mounted with Scintillators and Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Carvalhaes, Roberto P. M.; Bonifácio, Daniel A. B.; Moralles, Maurício

    2011-08-01

    This work presents the first results obtained in the "Assembly and characterization of position sensitive detectors composed of scintillators coupled to silicon photomultipliers" project. The development of new x and γ radiation detectors have found several technological applications, especially in medical physics, where γ detectors that can be used in high intensity magnetic field are of particular importance. The experimental setup consisted of coupling of two silicon photomultipliers (SiPM) to the small sides of a 3×3×100 mm3 scintillator and the coupling of one SiPM to one of the small sides of a 3×3×10 mm3 scintillator. We found that the detectors used in this study presented an energy resolution that is in agreement with those observed in scintillators of the same family coupled to conventional photomultipliers. Besides that, there is a strong correlation between the difference of the light intensity in both SiPMs of the long detector and the position of the γ source. The results confirm the great potential of application of such detectors.

  11. Event localization in bulk scintillator crystals using coded apertures

    NASA Astrophysics Data System (ADS)

    Ziock, K. P.; Braverman, J. B.; Fabris, L.; Harrison, M. J.; Hornback, D.; Newby, J.

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  12. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  13. Boron Doped Plastic Scintillator Efficiency

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Chouinard-Dussault, Pascale; Pecinovsky, Cory; Potter, Andrew; Remedes, Tyler; Dorgan, John; Greife, Uwe

    2013-04-01

    This talk will describe the progress made in an interdisciplinary development project aimed at cost-effective, neutron sensitive, plastic scintillator. Colorado School of Mines researchers with backgrounds in Physics, Chemistry, and Chemical Engineering have worked on the incorporation of ^10B in plastics through extrusion. First results on transparent samples using fluorescent spectroscopy and beta excitation will be presented.

  14. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  15. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  16. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant‑4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant‑4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past

  17. Scintillating lustre induced by radial fins.

    PubMed

    Takahashi, Kohske; Fukuda, Haruaki; Watanabe, Katsumi; Ueda, Kazuhiro

    2012-01-01

    Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect). We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0). Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks. PMID:23145270

  18. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  19. Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-08-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by the degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ∼130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs.

  20. Countering Beam Divergence Effects with Focused Segmented Scintillators for High DQE Megavoltage Active Matrix Imagers

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-01-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ~1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ~130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs. PMID:22854009

  1. Tungsten moderator of Venetian blinds- and honeycomb-type for the slow positron source on hard synchrotron radiation of SPring-8 storage ring

    NASA Astrophysics Data System (ADS)

    Plokhoi, V. V.; Kandiev, Ya. Z.; Samarin, S. I.; Malyshkin, G. N.; Baidin, G. V.; Litvinenko, I. A.; Nikitin, V. P.

    2001-09-01

    The paper considers designs of moderators where fast positron stopping medium consists of very fine tungsten strips separated by vacuum gaps and the strips are arranged into Venetian blinds- or honeycomb-type structures. Moderator efficiency is evaluated through Monte-Carlo simulations. According to the maximal estimate, the efficiency of conversion of fast positrons into slow ones in the Venetian blinds and honeycomb-type moderators is ˜5×10 -3 for the reasonable thickness of the tungsten foil. If such moderator is used, the intensity of slow positron source on the hard synchrotron of SPring-8 storage ring can reach the level of ˜5×10 10 e +/s.

  2. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  3. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  4. THE EFFECT OF CORONAL RADIATION ON A RESIDUAL INNER DISK IN THE LOW/HARD SPECTRAL STATE OF BLACK HOLE X-RAY BINARY SYSTEMS

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2011-01-01

    Thermal conduction between a cool accretion disk and a hot inner corona can result in either evaporation of the disk or condensation of the hot corona. At low mass accretion rates, evaporation dominates and can completely remove the inner disk. At higher mass accretion rates, condensation becomes more efficient in the very inner regions, so that part of the mass accretes via a weak (initially formed) inner disk which is separated from the outer disk by a fully evaporated region at mid radii. At still higher mass accretion rates, condensation dominates everywhere, so there is a continuous cool disk extending to the innermost stable circular orbit. We extend these calculations by including the effect of irradiation by the hot corona on the disk structure. The flux which is not reflected is reprocessed in the disk, adding to the intrinsic thermal emission from gravitational energy release. This increases the seed photons for Compton cooling of the hot corona, enhancing condensation of the hot flow, and reinforcing the residual inner disk rather than evaporating it. Our calculations confirm that a residual inner disk can coexist with a hard, coronally dominated spectrum over the range of 0.006< m-dot <0.016 (for {alpha} = 0.2). This provides an explanation for the weak thermal component seen recently in the low/hard state of black hole X-ray binary systems.

  5. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    . The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast

  6. A Tungsten Powder Epoxy Scintillating Fiber EMCAL for sPHENIX

    NASA Astrophysics Data System (ADS)

    Loggins, Vera

    2015-10-01

    The sPHENIX detector is a proposed new detector at the Relativistic Heavy Ion Collider (RHIC). The sPHENIX physics program focuses on jets and hard probes of the quark gluon plasma (QGP). The proposed design of the electromagnetic calorimeter (EMCAL), made of a tungsten powder and epoxy composite with embedded scintillating fibers, is designed to have a small Moliere radius and short radiation length, and will be located at a radius of about 90 cm from the interaction region. It will have an energy resolution 12 % /√{ E} and will be used in conjunction with a new hadronic calorimeter (HCAL) to provide a jet energy resolution σE / E = 120 % /√{ E} to resolve single photons and electrons, as well as photon jets, in the high multiplicity environment of central heavy ion collisions. The η and ϕ segmentation of the EMCAL is 0.024 x 0.024. Preliminary tests of the calorimeter design have already taken place. In this talk, I will focus on the process of building these prototype modules and the preparation of the modules for the test beam at Fermilab in 2016.

  7. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    NASA Astrophysics Data System (ADS)

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-08-01

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation-based technique for the rejection of surface alpha background in non-scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non-scintillating absorber. We present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  8. Signal pulse emulation for scintillation detectors using Geant4 Monte Carlo with light tracking simulation

    NASA Astrophysics Data System (ADS)

    Ogawara, R.; Ishikawa, M.

    2016-07-01

    The anode pulse of a photomultiplier tube (PMT) coupled with a scintillator is used for pulse shape discrimination (PSD) analysis. We have developed a novel emulation technique for the PMT anode pulse based on optical photon transport and a PMT response function. The photon transport was calculated using Geant4 Monte Carlo code and the response function with a BC408 organic scintillator. The obtained percentage RMS value of the difference between the measured and simulated pulse with suitable scintillation properties using GSO:Ce (0.4, 1.0, 1.5 mol%), LaBr3:Ce and BGO scintillators were 2.41%, 2.58%, 2.16%, 2.01%, and 3.32%, respectively. The proposed technique demonstrates high reproducibility of the measured pulse and can be applied to simulation studies of various radiation measurements.

  9. Use of Photocell Readouts in the Development of High Resolution Scintillator Systems

    SciTech Connect

    Warnick J. Kernan

    2007-11-30

    Photomultiplier-based scintillator spectrometers are the systems of choice for a multitude of X-ray and gamma radiation measurement applications. Despite widespread use, they have numerous shortcomings. The most serious is the relatively poor energy resolution that makes isotope identification problematic particularly in the case of trace quantities. Energy resolution in scintillator/photomultiplier tube (PMT) spectrometers is governed by a combination of the crystal intrinsic resolution that includes non-linearity effects, photomultiplier statistics, and the variability in the probability of a scintillation photon generating a photoelectron at the photocathode. It is evident that energy resolution in these systems is linked to both the physics of light generation in the scintillator, as well as the characteristics of the PMT. PMTs also present design problems especially in the case of handheld and portable instruments due to their considerable weight and volume. Additionally, PMTs require well-regulated high voltage and are vulnerable to magnetic fields.

  10. Comprehensive renal scintillation procedures in spinal cord injury: comparison with excretory urography

    SciTech Connect

    Lloyd, L.K.; Dubovsky, E.V.; Bueschen, A.J.; Witten, D.M.; Scott, J.W.; Kuhlemeier, K.; Stover, S.L.

    1981-07-01

    A /sup 131/iodine orthoiodohippurate comprehensive renal scintillation procedure was performed and compared to results of excretory urography in 200 spinal cord injury patients. No severe urographic abnormalities were undetected by the comprehensive renal scintillation procedure. Only 1.4 per cent of renal units had greater than minimal pyelocaliectasis or ureterectasis in the presence of a normal radionuclide examination. A relatively large number of abnormalities were detected on the renal scintillation procedure when the excretory urogram was normal. Serial followup will be required to determine the significance of these findings but present data suggest that a comprehensive renal scintillation procedure and a plain film of the kidneys, ureters and bladder may be used for screening upper urinary tract abnormalities in lieu of an excretory urogram. This is particularly advantageous for the spinal cord injury population, since there have been no toxic or allergic reactions reported, no bowel preparation or dehydration is required and there is relatively low radiation exposure.

  11. Wear of hard materials by hard particles

    SciTech Connect

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  12. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  13. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  14. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  15. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.; Saw, S. H.; Lee, S.

    2015-12-01

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  16. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    SciTech Connect

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.; Mahabadi, T. D.; Saw, S. H.; Lee, S.

    2015-12-15

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  17. Detecting scintillations in liquid helium

    NASA Astrophysics Data System (ADS)

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  18. Radiation damage of PbWO 4 crystals due to irradiation by 60Co gamma rays

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Bajgar, Robert; Kozma, Petr

    2002-09-01

    Radiation resistivity of large tungstate crystals PbWO 4 from three suppliers has been studied for doses 10 4 Gy (10 6 rad) and 10 5 Gy (10 7 rad). Radiation resistivity was examined by the measurement of optical transmission through tungstate crystals before and after 60Co gamma-ray irradiations. The absolute degradation of transmission for 10 4 and 10 5 Gy doses at 480 nm wavelength of the peak emission of PbWO 4 doped with La 2+, was found to be lower than 12.3% and 14.2%, respectively. The results have been also compared with radiation hardness measurements for a large volume CeF 3 scintillation crystal. Complete recovery of radiation damage was observed between 10 and 15 days after irradiations.

  19. Rad-Hard/HI-REL FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.

    1997-01-01

    The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.

  20. Optical characteristics of pure poly (vinyltoluene) for scintillation applications

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Kitamura, Hisashi; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2015-01-01

    Advanced refining techniques have enabled the application of high-purity aromatic ring polymers with favourable scintillation characteristics for radiation detection, without requiring doped fluorescent guest molecules. Here, we show the optical characteristics of pure poly (vinyltoluene) (PVT). It has a 285-nm excitation maximum and a 315-nm emission maximum. The effective refractive index is 1.66, which was derived from its emission spectrum. Light yields were determined by irradiation with 137Cs and 207Bi radioactive sources. The light attenuation length is an unexpectedly high 40.5±0.3 mm. These results indicate that thick samples of undoped PVT can be used as effective scintillation materials, and will stimulate future applications.

  1. Characterization and testing of EJ-309 and Stilbene scintillation detectors

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Couture, A.; Mosby, S.; Rusev, G.; Ullmann, J. L.; Walker, C. L.

    2015-09-01

    A new neutron detector array (NEUANCE) is under development at the Los Alamos Neutron Science Center (LANSCE). After completion, NEUANCE will be installed in the central cavity of the 3.6π Υ-ray detector array DANCE located at the Lujan Center of LANSCE. The detector system, with simultaneous neutron and -ray detection capability, will be used to study neutron-induced capture and session reactions. The response of a EJ-309 scintillation detector to Υ-ray and neutron radiation was measured using the standard Υ-ray and 252Cf sources. The light from the detector was collected using a Hamamatsu photomultiplier tube or a Silicon photomultiplier GEANT4 was used to understand the light output and the optical photon transport in the scintillation. The detector geometry and optimum parameters for the data acquisition system were determined based on the test results and the simulations.

  2. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  3. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  4. Laser pixelation of thick scintillators for medical imaging applications: x-ray studies

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Kudrolli, Haris; Marton, Zsolt; Singh, Bipin; Nagarkar, Vivek V.

    2013-09-01

    To achieve high spatial resolution required in nuclear imaging, scintillation light spread has to be controlled. This has been traditionally achieved by introducing structures in the bulk of scintillation materials; typically by mechanical pixelation of scintillators and fill the resultant inter-pixel gaps by reflecting materials. Mechanical pixelation however, is accompanied by various cost and complexity issues especially for hard, brittle and hygroscopic materials. For example LSO and LYSO, hard and brittle scintillators of interest to medical imaging community, are known to crack under thermal and mechanical stress; the material yield drops quickly with large arrays with high aspect ratio pixels and therefore the pixelation process cost increases. We are utilizing a novel technique named Laser Induced Optical Barriers (LIOB) for pixelation of scintillators that overcomes the issues associated with mechanical pixelation. In this technique, we can introduce optical barriers within the bulk of scintillator crystals to form pixelated arrays with small pixel size and large thickness. We applied LIOB to LYSO using a high-frequency solid-state laser. Arrays with different crystal thickness (5 to 20 mm thick), and pixel size (0.8×0.8 to 1.5×1.5 mm2) were fabricated and tested. The width of the optical barriers were controlled by fine-tuning key parameters such as lens focal spot size and laser energy density. Here we report on LIOB process, its optimization, and the optical crosstalk measurements using X-rays. There are many applications that can potentially benefit from LIOB including but not limited to clinical/pre-clinical PET and SPECT systems, and photon counting CT detectors.

  5. Scintillating Fibre Tracking at High Luminosity Colliders

    NASA Astrophysics Data System (ADS)

    Joram, C.; Haefeli, G.; Leverington, B.

    2015-08-01

    The combination of small diameter scintillating plastic fibres with arrays of SiPM photodetectors has led to a new class of SciFi trackers usable at high luminosity collider experiments. After a short review of the main principles and history of the scintillating fibre technology, we describe the challenges and developments of the large area Scintillating Fibre Tracker currently under development for the upgraded LHCb experiment.

  6. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering γ quanta in the GlueX experiment.

  7. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  8. Breakdown of QCD factorization in hard diffraction

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.

    2016-07-01

    Factorization of short- and long-distance interactions is severely broken in hard diffractive hadronic collisions. Interaction with the spectator partons leads to an interplay between soft and hard scales, which results in a leading twist behavior of the cross section, on the contrary to the higher twist predicted by factorization. This feature is explicitly demonstrated for diffractive radiation of abelian (Drell-Yan, gauge bosons, Higgs) and non-abelian (heavy flavors) particles.

  9. PLD of hard ceramic coatings

    NASA Astrophysics Data System (ADS)

    Perera, Yibran; Gottmann, Jens; Husmann, Andreas; Klotzbuecher, Thomas; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2001-06-01

    The deposition of different hard ceramics coatings as Al2O3, ZrO2, c-BN and DLC thin films by pulsed laser deposition (PLD) has been of increasing interest as alternative process compared to the latest progress in CVD and PVD deposition. For instance, in pulsed laser deposition, the properties of the resulting thin films are influenced by the composition, ionization state, density, kinetic and excitation energies of the particles of the vapor/plasma. In order to deposit hard ceramics with different properties and applications, various substrates as Pt/Ti/Si multilayer, glass (fused silica), steel, polymethylmethacrylate (PMMA), polycarbonate (PC), Si(100) and Si(111) are used. These thin films are deposited either by excimer laser radiation ((lambda) equals 248 nm) or by CO2 laser radiation ((lambda) equals 10.6 micrometers ). To characterize the structural, optical and mechanical properties of the hard ceramics thin films, different techniques as Raman spectroscopy, ellipsometry, FTIR spectroscopy and nanoindentation are used.

  10. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  11. Iterative Monte Carlo simulation with the Compton kinematics-based GEB in a plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Kim, Chankyu; Kim, Yewon; Moon, Myungkook; Cho, Gyuseong

    2015-09-01

    Plastic scintillators have been used for gamma ray detection in the fields of dosimetry and homeland security because of their desired characteristics such as a fast decay time, a low production cost, availability in a large-scale, and a tissue-equivalence. Gaussian energy broadening (GEB) in MCNP simulation is an effective treatment for tallies to calculate the broadened response function of a detector similarly to measured spectra. The full width at half maximum (FWHM) of a photopeak has been generally used to compute input parameters required for the GEB treatment. However, it is hard to find the photopeak in measured gamma spectra with plastic scintillators so that computation of the input parameters for the GEB has to be taken with another way. In this study, an iterative method for the GEB treated MCNP simulation to calculate the response function of a plastic scintillator is suggested. Instead of the photopeak, Compton maximum and Compton edge were used to estimate energy broadening in the measured spectra and to determine the GEB parameters. In a demonstration with a CsI(Tl) scintillator, the proposed iterative simulation showed the similar gamma spectra to the existing method using photopeaks. The proposed method was then applied to a polystyrene scintillator, and the simulation result were in agreement with the measured spectra with only a little iteration.

  12. A comparison of the 60Co gamma radiation hardness, breakdown characteristics and the effect of SiN x capping on InAlN and AlGaN HEMTs for space applications

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; O'Mahony, D.; Vitobello, F.; Muschitiello, M.; Costantino, A.; Barnes, A. R.; Parbrook, P. J.

    2016-02-01

    Electrical performance and stability of InAlN and AlGaN high electron mobility transistors (HEMTs) subjected 9.1 mrad of 60Co gamma radiation and off-state voltage step-stressing until breakdown are reported. Comparison with commercially available production-level AlGaN HEMT devices, which showed negligible drift in DC performance throughout all experiments, suggests degradation mechanisms must be managed and suppressed through development of advanced epitaxial and surface passivation techniques in order to fully exploit the robustness of the III-nitride material system. Of the research level devices without dielectric layer surface capping, InAlN HEMTs exhibited the greater stability compared with AlGaN under off-state bias stressing and gamma irradiation in terms of their DC characteristics, although AlGaN HEMTs had significantly higher breakdown voltages. The effect of plasma-enhanced chemical vapour deposition SiN x surface capping is explored, highlighting the sensitivity of InAlN HEMT performance to surface passivation techniques. InAlN-SiN x HEMTs suffered more from trap related degradation than AlGaN-SiN x devices in terms of radiation hardness and step-stress characteristics, attributed to an increased capturing of carriers in traps at the InAlN/SiN x interface.

  13. Performance optimization for hard X-ray/soft gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Kahn, Steven M.; Hailey, Charles J.; Ziock, Klaus P.

    1990-01-01

    This paper discusses the optimization of the performance of imaging scintillation detectors used in the hard X-ray/soft gamma-ray (20-300) keV region of the spectrum. In these devices, absorption of an incident gamma-ray within an alkali halide crystal induces a scintillation light distribution which is centroided by an imaging photomultiplier tube mounted to the crystal. The ultimate imaging resolution is strongly affected by the detailed propagation of the scintillation light within the crystal and at the interface between the crystal and the phototube face plate. A number of refined techniques for preparing the scintillation crystals so as to optimize the imaging resolution have been investigated. The results indicate very good agreement with relatively simple models of the light propagation. It is shown that it is possible to achieve resolution consistent with the most optimistic models.

  14. Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS

    SciTech Connect

    McCloy, John S.; Bliss, Mary; Miller, Brian W.; Wang, Zheming; Stave, Sean C.

    2015-01-01

    ZnS:Ag is a well-known extremely bright scintillator used in powder form for α-particle detection and, mixed with powdered LiF, for thermal neutron detection. Recently, we discovered some commercial bulk colorless and transparent, single-crystal and polycrystalline (chemical vapor-deposited) ZnS forms that scintillate in response to α-particles. The scintillation light transmits through the sample thickness (mm), challenging the commonly held assumption that ZnS is opaque to its own scintillation light. Individual α-particle events were imaged in space and time using a charged-particle camera originally developed for medical imaging applications. Photoluminescence (PL) and PL excitation show that scintillating bulk ZnS likely depends on different electronic defects than commercial ZnS powder scintillators. These defects, associated with copper and oxygen, are discussed in relation to PL results and extensive literature assessment. Commercial transparent ZnS is routinely produced by chemical vapor deposition to sizes larger than square meters, enabling potentially novel radiation detection applications requiring large, thick apertures.

  15. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masakazu; Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-01

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu3Al5O12:Ce3+. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  16. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    SciTech Connect

    Kobayashi, Masakazu Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-23

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu{sub 3}Al{sub 5}O{sub 12:}Ce{sup 3+}. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  17. TH-A-18C-01: Design Optimization of Segmented Scintillators for Megavoltage Cone- Beam CT

    SciTech Connect

    Liu, L; Antonuk, L; El-Mohri, Y; Zhao, Q; Jiang, H

    2014-06-15

    Purpose: Active matrix flat-panel imagers incorporating thick, segmented scintillators for megavoltage cone-beam CT (MV CBCT) imaging have demonstrated strong potential for facilitating soft-tissue visualization at low, clinically practical doses. In order to identify scintillator design parameters that optimize performance for this purpose, a modeling technique which includes both radiation and optical effects and which lends itself to computationally practical implementation has been developed and explored. Methods: A hybrid modeling technique, based on Monte Carlo event-by-event simulation of radiation transport and separate determination of optical effects, was devised as an alternative to computationally prohibitive event-by- event simulations of both radiation and optical transport. The technique was validated against empirical results from a previously reported 1.13 cm thick, 1.016 mm element-to-element pitch BGO scintillator prototype. Using this technique, the contrast-to-noise ratio (CNR) and spatial resolution performance of numerous scintillator designs, with thicknesses ranging from 0.5 to 6 cm and pitches ranging from 0.508 to 1.524 mm, were examined. Results: CNR and spatial resolution performance for the various scintillator designs demonstrate complex behavior as scintillator thickness and pitch are varied - exhibiting a clear trade-off between these two imaging metrics up to a thickness of ~3 cm. Based on these results, an optimization map highlighting those regions of design that provide a balance between these metrics was created. The map indicates that, for a given set of optical parameters, scintillator thickness and pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusion: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid modeling technique provides a practical way to gain insight as to how to optimize the performance of such

  18. The Do/ scintillating fiber tracker

    SciTech Connect

    Bross, A.; Gutierrez, G.; Grunendahl, S.; Lincoln, D.; Ramberg, E.; Ray, R.; Ruchti, R.; Warchol, J.; Wayne, M.; Choic, S.

    1998-11-01

    The Do/ detector is being upgraded in preparation for the next collider run at Fermilab. The Central Fiber Tracker discussed in this report is a major component of the Do/ upgrade. The expected Tevatron luminosity of 2{times}10{sup 32} cm{sup {minus}2} sec{sup {minus}1}, the 132ns bunch crossing time, and the Do/ detector constraints of a 2 Tesla solenoid and a 52 cm lever arm, make a scintillating fiber based tracker an optimal choice for the upgrade of the Do/ detector. {copyright} {ital 1998 American Institute of Physics.}

  19. Photodetectors for Scintillator Proportionality Measurement

    SciTech Connect

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, J.D.

    2010-10-18

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  20. Ordering of hard particles between hard walls

    NASA Astrophysics Data System (ADS)

    Chrzanowska, A.; Teixeira, P. I. C.; Ehrentraut, H.; Cleaver, D. J.

    2001-05-01

    The structure of a fluid of hard Gaussian overlap particles of elongation κ = 5, confined between two hard walls, has been calculated from density-functional theory and Monte Carlo simulations. By using the exact expression for the excluded volume kernel (Velasco E and Mederos L 1998 J. Chem. Phys. 109 2361) and solving the appropriate Euler-Lagrange equation entirely numerically, we have been able to extend our theoretical predictions into the nematic phase, which had up till now remained relatively unexplored due to the high computational cost. Simulation reveals a rich adsorption behaviour with increasing bulk density, which is described semi-quantitatively by the theory without any adjustable parameters.

  1. Multilayer scintillation spectrometer for charged pionium detection

    NASA Astrophysics Data System (ADS)

    Krasnov, V. A.; Karnyushina, L. V.; Kuznetsov, S. N.; Kurepin, A. B.; Livanov, A. N.; Pilyar, A. V.

    2013-01-01

    The design description and characteristics of a 14-layer scintillation spectrometer for meson recording are given. The results from testing the spectrometer, calibrating it with cosmic-ray particles, and using the particle beams at energies reaching 1 GeV are presented. The spectrometer design is based on flat scintillation plates glued with wavelength-shifting optic fibers.

  2. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  3. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  4. Production of CMS FPIX detector modules and development of novel radiation-hard silicon sensors for future upgrades of the LHC

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan

    The Compact Muon Solenoid (CMS) experiment currently taking data at the Large Hadron Collider (LHC) has the largest ever built all-silicon tracking system with a pixel detector as the innermost component. The pixel detector consists of three 53 cm long barrel layers (BPIX) at radial distances of r= 4.4, 7.3, and 10.2 cm from the interaction point complemented with two end-cap disks (FPIX) on each side of the interaction region covering radial distances from ˜6 cm to 15 cm. The development, production, and qualification of the silicon detector modules used for the construction of the CMS FPIX disks are described. The plan for the luminosity upgrade of the LHC foresees a phase I upgrade increasing the peak luminosity from 1034 cm.2s.1 (original design figure) to 2-3 x 1034 cm-2s-1 after about 5 years of operation, followed by phase II upgrade eventually reaching a value of 5x1034 cm-2 s-1 (the so-called "High Luminosity-LHC" or "HL-LHC"). At Phase I, the CMS pixel detector will be replaced by a new detector, which will have an additional fourth barrel layer at r=16 cm and two extra forward disks on each side with radial coverage of all disks increased to r =4.5-16.1 cm. Although the present non- n silicon pixel sensor technology meets the performance requirements, it is possible to achieve the same performance with the relatively new n-on-p technology, which would reduce the cost by ˜50%. The phase II upgrade, on the other hand, faces a challenge for the detector technology to be adopted for the innermost tracking layers (at r ˜ 4 cm) where the radiation fluence is expected to reach values close to 1016 neq /cm2, since the conventional planar silicon sensors are functional only up to a fluence of ˜1015 neq/cm2. The 3D silicon sensor technology is regarded as one of the most promising solutions for the radiation tolerance requirements of innermost pixel tracking layers at the HL-LHC. Improvements to the current n-on-n silicon pixel sensor design; and development

  5. Development of scintillation materials for PET scanners

    NASA Astrophysics Data System (ADS)

    Korzhik, Mikhail; Fedorov, Andrei; Annenkov, Alexander; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-02-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  6. Equitorial scintillations: Advances since ISEA-6

    NASA Astrophysics Data System (ADS)

    Basu, S.

    1985-01-01

    Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.

  7. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  8. Extruded scintillator for the Calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.

    2006-10-27

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R and D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  9. Hardness variability in commercial and hardened technologies

    SciTech Connect

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  10. Hardness variability in commercial and hardened technologies

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Winokur, P. S.; Meisenheimer, T. L.; Sexton, F. W.; Roeske, S. B.; Knoll, M. G.

    1994-01-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is 'built-in' through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  11. Direct Modeling of Scintillator Thickness for Optimal Light Output and Spatial Resolution

    SciTech Connect

    Mitchell, S. E.; Luttman, A.; Fowler, M.; Joyce, K. T.

    2013-06-01

    It is common in x-ray radiography to use scintillators (e.g., BGO or LSO) to convert x-rays to visible light, which is then recorded by an imaging system. The response of the scintillator depends fundamentally on its thickness, with respect to both its visible light emittance and its spatial resolution. This is important for optimizing light output, signal to noise ratio, or optical response time. Given that it is often cost-prohibitive to procure a variety of scintillator samples and empirically test the performance, it is essential to be able to model and accurately simulate the performance of a scintillator with respect to thickness and other properties, and a direct way of doing this is using Monte Carlo-based radiation transport codes. Such simulations can be expensive in terms of computational time, and the codes are not easily obtained. In this work we first show such simulations, and demonstrate that there is a natural trade-off between light output of a scintillator and its spatial resolution. We then derive a first-principles model that accurately approximates the light output, using straightforward calculations that can be performed quickly with any basic computing software. We compare the results to those obtained from Monte Carlo simulations and show that our simplified model can be used to analyze the tradeoff between emittance and resolution nearly as well as using a full-scale radiation transport code.

  12. Weak solar flares with a detectable flux of hard X rays: Specific features of microwave radiation in the corresponding active regions

    NASA Astrophysics Data System (ADS)

    Grigor'eva, I. Yu.; Livshits, M. A.

    2014-12-01

    The emission of very weak flares was registered at the Suzaku X-ray observatory in 2005-2009. The photon power spectrum in the 50-110 keV range for a number of these phenomena shows that some electrons accelerate to energies higher than 100 keV. The corresponding flares originate in active regions (ARs) with pronounced sunspots. As in the case of AR 10933 in January 2007 analyzed by us previously (Grigor'eva et al., 2013), the thoroughly studied weak flares in May 2007 are related to the emergence of a new magnetic field in the AR and to the currents that originate in this case. A comparison of the Suzaku data with the RATAN-600 microwave observations indicates that a new polarized source of microwave radiation develops in the AR (or the previously existing source intensifies) one-two days before a weak flare in the emerging flux regions. Arguments in favor of recent views that fields are force-free in the AR corona are put forward. The development of weak flares is related to the fact that the free energy of the currents that flow above the field neutral line at altitudes reaching several thousand kilometers is accumulated and subsequently released.

  13. Radiation hardness tests and characterization of the CLARO-CMOS, a low power and fast single-photon counting ASIC in 0.35 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2014-12-01

    The CLARO-CMOS is a prototype ASIC that allows fast photon counting with 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. This chip is capable of single-photon counting with multi-anode photomultipliers and finds applications also in the read-out of silicon photomultipliers and microchannel plates. The prototype is realized in AMS 0.35 micron CMOS technology. In the LHCb RICH environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade in Long Shutdown 2 (LS2), the ASIC must withstand a total fluence of about 6×1012 1 MeV neq /cm2 and a total ionizing dose of 400 krad. A systematic evaluation of the radiation effects on the CLARO-CMOS performance is therefore crucial to ensure long term stability of the electronics front-end. The results of multi-step irradiation tests with neutrons and X-rays up to the fluence of 1014 cm-2 and a dose of 4 Mrad, respectively, are presented, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step.

  14. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  15. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can

  16. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  17. Spectrometric characteristics of cadmium sulfide-based scintillators

    SciTech Connect

    Zdesenko, Y.G.; Nikolaiko, A.S.; Ryzhikov, V.D.; Silin, V.J.

    1985-11-01

    Results of measurements of the time and spectrometric characteristics of CdS(Te) scintillation crystals produced by advanced technology are presented. The possibility of using detectors based on cadmium sulfide for spectrometry of ionizing radiation at a temperature of 300/sup 0/K is shown. The energy resolution of the better specimens is 21% for the 622-keV /sup 137/Cs gamma line. Measurements made confirm the possibility of creating spectrometers based on CdS(Te) and allow it to be hoped that cadmium sulfide detectors can be produced that have the necessary parameters of studying /sup 116/Cd double beta decay.

  18. Plastic scintillation counters with an area of 2 sq m

    NASA Technical Reports Server (NTRS)

    Yegorov, T. A.; Yefimov, N. N.; Krasilnikov, D. D.; Sleptsov, I. Y.

    1975-01-01

    Two designs of plastic scintillation counters with an area of 2 sq m scanned in each case by a single photomultiplier of the FEU-49 type are described. The radial dependence of their light collection at the place of the path of the detected particle does not exceed 10% while the half width of the differential distribution of the pulse amplitudes from nonfiltered cosmic radiation at sea level is 90 to 95%, and 65%, the plastic thickness being 5 cm and 10 cm, respectively. The temperature coefficient of the counter is 0.32% per 1 C.

  19. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  20. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.