Science.gov

Sample records for radiation hard semiconductor

  1. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  2. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  3. 22nd RD50 Workshop on Radiation Hard Semiconductor Devices for High Luminosity Colliders

    SciTech Connect

    Seidel, Sally

    2013-05-06

    The 22nd RD50 Workshop on Radiation Hard Semiconductor Devices for High Luminosity Colliders was held on the campus of the University of New Mexico from June 3 to 5, 2013. This was the first North American meeting of the series going back to 2001. The sessions covered Material and Defect Characterization, Detector Characterization, Full Detector Systems, and New Structures. A half-day mini-workshop was allocated to radiation damage at LHC experiments. All talks are archived permanently available to the public at rd50.web.cern.ch. Financial support was used for room rental audiovisual equipment rental, and document preparation services.

  4. Development of radiation hard semiconductor sensors for charged particle tracking at very high luminosities

    NASA Astrophysics Data System (ADS)

    Betancourt, Christopher; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.; Wright, John

    2010-09-01

    The RD50 collaboration (sponsored by the European Organization for Nuclear Research CERN) has been exploring the development of radiation hard semiconductor devices for very high-luminosity colliders since 2002. The target fluence to qualify detectors set by the anticipated dose for the innermost tracking layers of the future upgrade of the CERN large hadron collider (LHC) is 1016 1 MeV neutron equivalent (neq) cm-2. This is much larger than typical fluences in space, but is mainly limited to displacement and total dose damage, without the single-event effects typical for the space environment. RD50 investigates radiation hardening from many angles, including: Search for alternative semiconductor to replace silicon, improvement of the intrinsic tolerance of the substrate material (p- vs. n-type, initial doping concentration, oxygen concentration), optimization of the readout geometry (collection of holes or electrons, surface treatment), novel detector designs (3D, edge-less, interconnects).

  5. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  6. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  7. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  8. MISTIC: Radiation hard ECRIS

    NASA Astrophysics Data System (ADS)

    Labrecque, F.; Lecesne, N.; Bricault, P.

    2008-10-01

    The ISAC RIB facility at TRIUMF utilizes up to 100 μA from the 500 MeV H- cyclotron to produce RIB using the isotopic separation on line (ISOL) method. In the moment, we are mainly using a hot surface ion source and a laser ion source to produce our RIB. A FEBIAD ion source has been recently tested at ISAC, but these ion sources are not suitable for gaseous elements like N, O, F, Ne, … , A new type of ion source is then necessary. By combining a high frequency electromagnetic wave and a magnetic confinement, the ECRIS [R. Geller, Electron Cyclotron Resonance Ion Source and ECR Plasmas, Institute of Physics Publishing, Bristol, 1996], [1] (electron cyclotron resonance ion source) can produce high energy electrons essential for efficient ionization of those elements. To this end, a prototype ECRIS called MISTIC (monocharged ion source for TRIUMF and ISAC complex) has been built at TRIUMF using a design similar to the one developed at GANIL [GANIL (Grand Accélérateur National d'Ions Lourds), www.ganil.fr], [2] The high level radiation caused by the proximity to the target prevented us to use a conventional ECRIS. To achieve a radiation hard ion source, we used coils instead of permanent magnets to produce the magnetic confinement. Each coil is supplied by 1000 A-15 V power supply. The RF generator cover a frequency range from 2 to 8 GHz giving us all the versatility we need to characterize the ionization of the following elements: He, Ne, Ar, Kr, Xe, C, O, N, F. Isotopes of these elements are involved in star thermonuclear cycles and, consequently, very important for researches in nuclear astrophysics. Measures of efficiency, emittance and ionization time will be performed for each of those elements. Preliminary tests show that MISTIC is very stable over a large range of frequency, magnetic field and pressure.

  9. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  10. Hard gap in epitaxial semiconductor-superconductor nanowires.

    PubMed

    Chang, W; Albrecht, S M; Jespersen, T S; Kuemmeth, F; Krogstrup, P; Nygård, J; Marcus, C M

    2015-03-01

    Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states--a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity. PMID:25581886

  11. Radiation Hardness Assurance (RHA) Guideline

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

  12. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  13. Automated radiation hard ASIC design tool

    NASA Technical Reports Server (NTRS)

    White, Mike; Bartholet, Bill; Baze, Mark

    1993-01-01

    A commercial based, foundry independent, compiler design tool (ChipCrafter) with custom radiation hardened library cells is described. A unique analysis approach allows low hardness risk for Application Specific IC's (ASIC's). Accomplishments, radiation test results, and applications are described.

  14. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  15. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  16. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  17. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  18. Development of radiation hard scintillators

    NASA Astrophysics Data System (ADS)

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyl trimethyl trisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made from monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetra phenyl butadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  19. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.; Rivard, M.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyltrimethyltrisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made form monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetraphenylbutadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  20. Hard proximity induced superconducting gap in semiconductor - superconductor epitaxial hybrids

    NASA Astrophysics Data System (ADS)

    Jespersen, Thomas; Krogstrup, Peter; Ziino, Nino; Albrecht, Sven; Chang, Willy; Madsen, Morten; Johnson, Erik; Kuemmeth, Ferdinand; Nygård, Jesper; Marcus, Charles

    2015-03-01

    We present molecular beam epitaxy grown InAs semiconductor nanowires capped with a shell of aluminum (superconductor). The hybrid wires are grown without breaking vacuum, resulting in an epitaxial interface between the two materials as demonstrated by detailed transmission electron microscopy and simulations. The domain matching at the interface is discussed. Incorporating the epitaxial nanowire hybrids in electrical devices we performed detailed tunneling spectroscopy of the proximity induced superconducting gap in the InAs core at 20 mK. We find the sub-gap conductance being at least a factor 200 smaller than the normal state value (gap hardness). This is a significant improvement compared to devices fabricated by conventional lithographic methods and metal evaporation showing no more than a factor of ~ 5 . The epitaxial hybrids seem to solve the soft gap problem associated with the use of nanowire hybrids for future applications in topological quantum information based on Majorana zero modes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  1. GaTe semiconductor for radiation detection

    DOEpatents

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  2. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  3. GaN as a radiation hard particle detector

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O'Shea, V.

    2007-06-01

    Semiconductor tracking detectors at experiments such as ATLAS and LHCb at the CERN Large Hadron Collider (LHC) will be subjected to intense levels of radiation. The proposed machine upgrade, the Super-LHC (SLHC), to 10 times the initial luminosity of the LHC will require detectors that are ultra-radiation hard. Much of the current research into finding a detector that will meet the requirements of the SLHC has focused on using silicon substrates with enhanced levels of oxygen, for example Czochralski silicon and diffusion oxygenated float zone silicon, and into novel detector structures such as 3D devices. Another avenue currently being investigated is the use of wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). Both SiC and GaN should be intrinsically more radiation hard than silicon. Pad and guard ring structures were fabricated on three epitaxial GaN wafers. The epitaxial GaN thickness was either 2.5 or 12 μm and the fabricated detectors were irradiated to various fluences with 24 GeV/c protons and 1 MeV neutrons. Detectors were characterised pre- and post-irradiation by performing current-voltage ( I- V) and charge collection efficiency (CCE) measurements. Devices fabricated on 12 μm epitaxial GaN irradiated to fluences of 1016 protons cm-2 and 1016 neutrons cm-2 show maximum CCE values of 26% and 20%, respectively, compared to a maximum CCE of 53% of the unirradiated device.

  4. Radiation hard avalanche photodiodes for CMS ECAL

    NASA Astrophysics Data System (ADS)

    Grahl, J.; Kronquist, I.; Rusack, R.; Singovski, A.; Kuznetsov, A.; Musienko, Y.; Reucroft, S.; Swain, J.; Deiters, K.; Ingram, Q.; Renker, D.; Sakhelashvili, T.

    2003-05-01

    The photo detectors of the CMS electromagnetic calorimeter have to operate in a rather hostile environment, in a strong magnetic field of 4 T and under unprecedented radiation levels. Avalanche Photo Diodes (APDs) have been chosen to detect the scintillation light of the 62,000 lead tungstate crystals in the barrel part of the calorimeter. After a 6 year long R&D work Hamamatsu Photonics produces APDs with a structure that is basically radiation hard. Only a few percent of the delivered APDs are weak due to defects at the surface caused by dust particles in the production process. Since a reliability of 99.9% is required, a method to detect weak APDs before they are built into the detector had to be developed. The described screening method is a combination of 60Co irradiations and annealing under bias of all APDs and irradiations with hadrons on a sampling basis.

  5. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  6. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  7. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  8. Implementing QML (Qualified Manufacturers List) for radiation hardness assurance

    SciTech Connect

    Winokur, P.S.; Sexton, F.W.; Fleetwood, D.M.; Terry, M.D.; Shaneyfelt, M.R.; Dressendorfer, P.V.; Schwank, J.R.

    1990-01-01

    Statistical process control (SPC) of technology parameters relevant to radiation hardness, test structure to Integrated Circuit (IC) correlation, and extrapolation from laboratory to threat scenarios are keys to implementing Qualified Manufacture's List (QML) for radiation hardness assurance in a cost-effective manner. Data from approximately 300 wafer lots fabricated in Sandia's 4/3-{mu}m and Complementry Metal Oxide Semiconductor (CMOS) IIIA (2-{mu}m) technologies are used to demonstrate approaches to, and highlight issues associated with, implementing QML for radiation-hardened CMOS in space applications. An approach is demonstrated to implement QML for signal-event upset SEU immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates. It is seen that the process capability indices, C{sub p} and C{sub pk}, for the manufacture of 400 k{Omega} feedback resistors required to provide SEU tolerance do not conform to 6{sigma}'' quality standards. For total-dose, {triangle}V{sub it} shifts measured on transistors are correlated with circuit response in the space environment. SPC is illustrated for {triangle}V{sub it}, and violations of SPC rules are interpreted in terms of continuous improvement. Finally, design validation for SEU, and quality conformance inspections for total-dose, are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, three-dimensional device-plus-circuit codes, and improved design simulators. 29 refs., 10 figs., 1 tab.

  9. High efficiency, radiation-hard solar cells

    SciTech Connect

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  10. Radiation hardness characteristics of Si-PIN radiation detectors

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    The Korea Atomic Energy Research Institute (KAERI) has fabricated Si-PIN radiation detectors with low leakage current, high resistivity (>11 kΩ cm) and low capacitance for high-energy physics and X-ray spectroscopy. Floating-zone (FZ) 6-in. diameter N-type silicon wafers, with <1 1 1> crystal orientation and 675 μm thick, were used in the detector fabrication. The active areas are 3 mm×3 mm, 5 mm×5 mm and 10 mm×10 mm. We used a double deep-diffused structure at the edge of the active area for protection from the surface leakage path. We also compared the electrical performance of the Si-PIN detector with anti-reflective coating (ARC). For a detector with an active area of 3 mm×3 mm, the leakage current is about 1.9 nA and 7.4 nA at a 100 V reverse bias voltage, and 4.6 pF and 4.4 pF capacitance for the detector with and without an ARC, respectively. In addition, to compare the energy resolution in terms of radiation hardness, we measured the energy spectra with 57Co and 133Ba before the irradiation. Using developed preamplifiers (KAERI-PA1) that have ultra-low noise and high sensitivity, and a 3 mm×3 mm Si-PIN radiation detector, we obtained energy resolutions with 122 keV of 57Co and 81 keV of 133Ba of 0.221 keV and 0.261 keV, respectively. After 10, 100, 103, 104 and 105 Gy irradiation, we tested the characteristics of the radiation hardness on the Si-PIN radiation detectors in terms of electrical and energy spectra performance changes. The fabricated Si-PIN radiation detectors are working well under high dose irradiation conditions.

  11. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  12. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  13. 1500 Gate standard cell compatible radiation hard gate array

    SciTech Connect

    Mills, B.D.; Shafer, B.D.; Melancon, E.P.

    1984-11-01

    The G1500 gate array combines Sandia Labs' 4/3..mu.. CMOS silicon gate radiation hard process with a novel gate isolated standard cell compatible design for quick turnaround time, low cost, and radiation hardness. This device is hard to 5 x 10/sup 5/ rads, utilizes a configuration that provides high packing density, and is supported on both the Daisy and Mentor workstations. This paper describes Sandia Labs' radiation hard 4/3..mu.. process, the G1500's unique design, and the complete design capabilities offered by the workstations.

  14. Geometric optimization for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Northum, J.; Guetersloh, S.

    The probability of a single event effect occurring is generally a function of the energy deposited in a sensitive volume, which is typically expressed as the absorbed dose in that volume. For short segments of high energy particle tracks, the dose due to a single event is proportional to the chord length through the sensitive volume. Thus, the distribution of dose in chord length is likely to relate to the probability of single event effects. For various geometries, a differential chord length distribution was generated and from this the dose distribution, frequency mean chord length, and dose mean chord length were calculated. In every case, the dose mean chord length was greater than the frequency mean chord length by a minimum of 26% and increased with the eccentricity of the volume. The large value of the dose mean chord length relative to the frequency mean chord length demonstrates the need to consider rare, long-chord-length crossings in radiation hardness testing, despite their relatively low probability of occurrence.

  15. Implementing QML for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Sexton, F. W.; Fleetwood, D. M.; Terry, M. D.; Shaneyfelt, M. R.

    1990-12-01

    The US government has proposed a qualified manufacturers list (QML) methodology to qualify integrated circuits for high reliability and radiation hardness. An approach to implementing QML for single-event upset (SEU) immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates is demonstrated. It is seen that the process capability indices, Cp and Cpk, for the manufacture of 400-k-ohm feedback resistors required to provide SEU tolerance do not conform to 6 sigma quality standards. For total-dose, interface trap charge, Delta Vit, shifts measured on transistors are correlated with circuit response in the space environment. Statistical process control (SPC) is illustrated for Delta Vit, and violations of SPC rules are interpreted in terms of continuous improvement. Design validation for SEU and quality conformance inspections for total-dose are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, 3-D device-plus-circuit codes, and improved design simulators.

  16. Development of a radiation-hard photomultiplier tube

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  17. A Radiation-Hard Analog Memory In The AVLSI-RA Process

    SciTech Connect

    Britton, C.L. Jr.; Wintenberg, A.L.; Read, K.F.; Simpson, M.L.; Young, G.R.; Clonts, L.G., Kennedy, E.J., Smith, R.S., Swann, B.K.; Musser, J.A.

    1995-12-31

    A radiation hardened analog memory for an Interpolating Pad Camber has been designed at Oak Ridge National Laboratory and fabricated by Harris Semiconductor in the AVLSI-RA CMOS process. The goal was to develop a rad-hard analog pipeline that would deliver approximately 9-bit performance, a readout settling time of 500ns following read enable, an input and output dynamic range of +/-2.25V, a corrected rms pedestal of approximately 5mV or less, and a power dissipation of less than 10mW/channel. The pre- and post-radiation measurements to 5MRad are presented.

  18. Silicon carbide semiconductor technology for high temperature and radiation environments

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.

    1993-01-01

    Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.

  19. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  20. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  1. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  2. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  3. Radiative recombination of hot carriers in narrow-gap semiconductors

    SciTech Connect

    Pavlov, N. V.; Zegrya, G. G.

    2012-01-15

    The mechanism of the radiative recombination of hot carriers in narrow-gap semiconductors is analyzed using the example of indium antimonide. It is shown that the CHCC Auger recombination process may lead to pronounced carrier heating at high excitation levels. The distribution functions and concentrations of hot carriers are determined. The radiative recombination rate of hot carriers and the radiation gain coefficient are calculated in terms of the Kane model. It is demonstrated that the radiative recombination of hot carriers will make a substantial contribution to the total radiative recombination rate at high carrier concentrations.

  4. Radiation Hardness Assurance (RHA) for Small Missions

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  5. Radiation-hard beam position detector for use in the accelerator dump lines

    SciTech Connect

    Pavel Degtiarenko; Danny Dotson; Arne Freyberger; Vladimir Popov

    2005-06-01

    A new method of beam position measurement suitable for monitoring high energy and high power charged particle beams in the vicinity of high power beam dumps is presented. We have found that a plate made of Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) has physical properties that make it suitable for such an application. CVD SiC material is a chemically inert, extremely radiation-hard, thermo-resistive semiconductor capable of withstanding working temperatures over 1500 C. It has good thermal conductivity comparable to that of Aluminum, which makes it possible to use it in high-current particle beams. High electrical resistivity of the material, and its semiconductor properties allow characterization of the position of a particle beam crossing such a plate by measuring the balance of electrical currents at the plate ends. The design of a test device, and first results are presented in the report.

  6. Curve Fitting Solar Cell Degradation Due to Hard Particle Radiation

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.; Cikoski, Rebecca; Mekadenaumporn, Danchai

    2003-01-01

    This paper investigates the suitability of the equation for accurately defining solar cell parameter degradation as a function of hard particle radiation. The paper also provides methods for determining the constants in the equation and compares results from this equation to those obtained by the more traditionally used.

  7. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  8. Radiation Hard 0.25 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2008-08-01

    To support space applications we have produced a test chip with our in house 0.25 micron BiCMOS- Technology. Then the chips were radiated and measured. During measurements no threshold voltage shift and no single event latchup (SEL) were obtained up to a level of 200 krad. As conclusion of the measurement we developed new radiation hard design rules and according to these rules we created a new radiation hard CMOS library. With this new library we produced a Leon3 chip with triple module redundancy. Single event upsets did occur. Therefore we upgrade the library to make the flip flops more resistant against single event upset (SEU) by adding two p-MOS transistors.

  9. Radiation hardness and mechanical durability of Kuraray optical fibers

    NASA Astrophysics Data System (ADS)

    Hara, K.; Hata, K.; Kim, S.; Mishina, M.; Sano, M.; Seiya, Y.; Takikawa, K.; Tanaka, M.; Yasuoka, K.

    1998-02-01

    The radiation hardness of Kuraray 3HF scintillating and clear optical fibers has been investigated using 60Co γ-rays in the dose range 0.4-500 krad. Significant initial degradation in the attenuation length was observed both for 3HF and clear fibers at a dose as small as 10 krad. The radiation hardness of both the scintillating and clear fibers is identical if it is expressed in terms of the ratio of the attenuation lengths after to before irradiation. The radiation damage of 3HF fibers was observed to recover substantially with a time scale of a few months. The attenuation length and mechanical durability against bending were measured for clear fibers by changing S parameter which characterizes the softness of the fibers.

  10. Radiation-hard/high-speed data transmission using optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Abi, B.; Fernando, W.; Kagan, H. P.; Kass, R. D.; Lebbai, M. R. M.; Moore, J. R.; Rizatdinova, F.; Skubic, P. L.; Smith, D. S.

    2009-12-01

    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We investigate the radiation-hardness of various components for possible application in the data transmission upgrade. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs from various sources using 24 GeV/c protons at CERN. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, especially for the GaAs devices. We have designed the ASICs for the opto-link applications and find that the degradation with radiation is acceptable.

  11. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  12. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    SciTech Connect

    Sun, Ke-Xun; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-09-21

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 1015 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 1012 protons/cm2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2x1012 protons/cm2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have demonstrated

  13. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  14. RD50 Collaboration overview: Development of new radiation hard detectors

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors.

  15. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  16. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  17. Radiation-hard active CMOS pixel sensors for HL-LHC detector upgrades

    NASA Astrophysics Data System (ADS)

    Backhaus, Malte

    2015-02-01

    The luminosity of the Large Hadron Collider (LHC) will be increased during the Long Shutdown of 2022 and 2023 (LS3) in order to increase the sensitivity of its experiments. A completely new inner detector for the ATLAS experiment needs to be developed to withstand the extremely harsh environment of the upgraded, so-called High-Luminosity LHC (HL-LHC). High radiation hardness as well as granularity is mandatory to cope with the requirements in terms of radiation damage as well as particle occupancy. A new silicon detector concept that uses commercial high voltage and/or high resistivity full complementary metal-oxide-semiconductor (CMOS) processes as active sensor for pixel and/or strip layers has risen high attention, because it potentially provides high radiation hardness and granularity and at the same time reduced price due to the commercial processing and possibly relaxed requirements for the hybridization technique. Results on the first prototypes characterized in a variety of laboratory as well as test beam environments are presented.

  18. X-ray studies of multilayer semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Shiwen

    X-ray scattering and absorption techniques utilizing synchrotron radiation have been used to study a variety of multilayer semiconductors. The angular-dependent x-ray scattering at grazing incidence angles (grazing incidence x-ray scattering, GIXS) provides structural information of interfaces in these materials, such as rms interfacial roughness, cross- and lateral-correlation lengths, etc. Long-range order structures in material are probed by large-angle scattering (x-ray diffraction), in which strain and lattice constant as well as crystallinity of the epilayers are measured. Local structural variations in materials including local bond length, coordination number, and local disorder are obtained quantitatively by examining the modulation in the x-ray absorption spectrum some 40 eV above the absorption edge (extended x-ray absorption fine structure, EXAFS). Materials studied in the present work are SiGe/Si heterostructures, MnAs/GaAs ferromagnetic-semiconductor films, solar cell films, ZnSe-based II-VI semiconductor thin films, InGaAs/GaAs and GaAs/AlAs superlattices. Results obtained have shown (i) evidence for strain-induced surface/interface morphology variations in SiGe/Si heterostructures, (ii) template-dependent microstructures in MnAs/GaAs, (iii) changes in interface structures for films of different formations in solar cell films, (iv) differences between samples prepared by different epitaxial growth methods in II-VI semiconductor films, (v) observation of lateral structural ordering in one of the InGaAs/GaAs superlattices, (vi) differences in interfacial microstructures between MBE-grown samples with different interrupts in GaAs/AlAs superlattices. Most of all, x- rays are found to be a very useful nondestructive tool for probing microscopic structures in various multilayer semiconductor materials.

  19. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  20. Radiation-hard electrical coil and method for its fabrication

    DOEpatents

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  1. Analysis of space radiation data of semiconductor memories

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.; Stauffer, C. A.

    1996-01-01

    This article presents an analysis of radiation effects for several select device types and technologies aboard the Combined Release and Radiation Effects Satellite (CRRES) satellite. These space-flight measurements covered a period of about 14 months of mission lifetime. Single Event Upset (SEU) data of the investigated devices from the Microelectronics Package (MEP) were processed and analyzed. Valid upset measurements were determined by correcting for invalid readings, hard failures, missing data tapes (thus voids in data), and periods over which devices were disabled from interrogation. The basic resolution time of the measurement system was confirmed to be 2 s. Lessons learned, important findings, and recommendations are presented.

  2. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    SciTech Connect

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  3. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  4. Terahertz radiation from coherent phonons excited in semiconductors

    NASA Astrophysics Data System (ADS)

    Tani, M.; Fukasawa, R.; Abe, H.; Matsuura, S.; Sakai, K.; Nakashima, S.

    1998-03-01

    Terahertz radiation emitted by coherent phonons in Te, PbTe, and CdTe has been investigated by using an ultrafast photoconductive sampling detector. Pronounced coherent radiation originating from the longitudinal optical (LO) phonon oscillations of infrared-active modes was observed for all samples, irrespective of the different crystal structures. In addition, spectral dips at the transverse optical (TO) phonon frequencies, which could not be explained by absorption in the emitting volume, were observed for all samples. The model calculations indicate that the emission rate of the radiation into the air to that into the dielectric (semiconductor) side is scaled by 1/{1+(nd2+κd2)nd3} (nd and κd are the real and imaginary part of the complex refractive index, respectively). Thus, the enhanced emission of radiation by the coherent LO phonons and the spectral dips at the TO phonon frequencies can be explained by the respective increase and reduction of the emission efficiency of the radiation to the air due to the small and large value of the dielectric constant |ɛd(ω)|=nd2+κd2 near the LO and TO phonon frequencies, respectively.

  5. The electromagnetic radiation from semiconductor minerals in orebody

    NASA Astrophysics Data System (ADS)

    Ozawa, M.; Nagahama, H.; Muto, J.; Nagase, T.

    2013-12-01

    In complex ore deposits composing semiconductor minerals, electromagnetic radiation in the radio frequency (30 kHz ~ 3 MHz) is induced by propagation of elastic waves [1]. Semiconductor minerals are divided into n- or p-type. When each p-type and n-type is joined, the resulting junction (p-n junction) has the rectifying property. Many natural orebodies show this property, but it has not been evaluated qualitatively. A lot of p-n junctions exist as which connect in parallel and in series in the orebody [2]. They can be regarded as a single p-n junction at large scale. Hence elucidating the electric property of micro p-n junction is required to understand the semiconductor properties of orebody. To discuss the electromagnetic emission from semiconductor minerals in the orebody associated with tectonic process, we measure the electric property of the semiconductor pyrite. Composition and electric properties of natural semiconductor minerals are heterogeneous due to the presence of impurities and defects. Therefore, it is needed to clarify the properties at each microscopic region. In this research, we apply electroetching method and SEM analysis to acquire composition characteristics and use an indentation probe to reveal microscopic electric properties. Sample of pyrite is from Waga-Sennin mine, Akita prefecture, Japan. The area of cross section is 1.4 cm2 with thickness of 0.38 mm2. In the electrolytic etching, the surface of samples showed etching figures and zonal structures with widths of about 10 -100 μm. According to the SEM analysis, Pb inclusions were observed to be precipitated parallel to crystallographic planes. The heterogeneous change in electric properties of each area was observed to be as etching figure. Thermal probing method clarified that the regions of n-p type differences were also coincidence well to etching figure patterns. P-type regions showed a higher solubility than n-type regions. At p-n junction regions, rectifying property was observed

  6. Stimulated Brillouin scattering of laser radiation in a piezoelectric semiconductor: Quantum effect

    SciTech Connect

    Uzma, Ch.; Zeba, I.; Shah, H. A.; Salimullah, M.

    2009-01-01

    Using quantum-hydrodynamic model, the phenomenon of the stimulated Brillouin scattering of a laser radiation in an unmagnetized piezoelectric semiconductor has been examined in detail. It is noticed that the Bohm potential in the electron dynamics of the semiconductor plasma enhances drastically the growth rate of the stimulated Brillouin scattering at higher values of the electron number density of the semiconductor plasma and the wave number of the electron-acoustic wave in the semiconductor.

  7. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  8. Super radiation hard vacuum phototriodes for the CMS endcap ECAL

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. I.; Kovalev, A. I.; Levchenko, L. A.; Lukianov, V. N.; Moroz, F. V.; Mamaeva, G. A.; Seliverstov, D. M.; Trautman, V. Yu.; Yakorev, D. O.

    2004-12-01

    The energy resolution σ/E of the electromagnetic calorimeter (ECAL) in the energy range of 50-500 GeV is defined mainly by two terms: stochastic α/√E and constant C. The photoreadout of the CMS Endcap ECAL consists of vacuum phototriodes (VPT), which are broadening a signal from np photoelectrons characterized by the excess noise factor F=np(σ/E)2. The technical specification of the CMS ECAL requires the value of F to be smaller than 4 in the CMS LHC environment during 10 years of detector operation. In this paper we present results of the VPT performance study in a magnetic field up to 4 T, in a gamma radiation field of 0-50 kGy and in a neutron fluence of 7×1015 n/cm2. The standard phototriodes FEU-188 with faceplates from UV glass used in CMS ECAL as well as VPTs with super radiation hard cerium-doped glasses were investigated at the 60Co gamma facility, a neutron generator and a nuclear reactor in the Petersburg Nuclear Physics Institute (PNPI). The dependence of the VPT gain and the excess noise factor in magnetic fields on the fine-mesh plane orientation has also been studied.

  9. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    PubMed Central

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-01-01

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate 137Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu2+, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu2+ dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100–700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0–5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu2+ material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu2+ exhibits strong radiation hardness and lends support for further investigations

  10. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  11. Radiation-tolerant optical links for the ATLAS semiconductor tracker

    NASA Astrophysics Data System (ADS)

    Matheson, John; Charlton, David G.; Chu, Ming-lee; Dowell, John D.; Galagedera, Senerath; Homer, Roger J.; Hou, Li-Shing; Jovanovic, Predrag; Kundu, Nikhil N.; Lee, Shih-chang; McMahon, Thomas J.; Macwaters, Craig; Mahout, Gilles; Morrissey, Martin; Rudge, Alan; Skubic, Bjorn J.; Teng, Ping-kun; Wastie, Roy; Weidberg, Anthony R.; Wilson, John A.

    2002-09-01

    The Large Hadron Collider (LHC), currently under construction at CERN, Geneva, will collide proton beams of energy 7 TeV. The high luminosity of the machine will lead to a severe radiation environment for detectors such as ATLAS. The ATLAS Semiconductor Tracker (SCT) must be able to tolerate a radiation field equivalent to an ionising dose of 10 Mrad (Si) and a neutron fluence of 2x1014cm-2 (1MeV,Si) over the 10 year lifetime of the experiment. The SCT is instrumented by silicon microstrip detectors and their front-end chips (ABCDs). Data is transferred from, and control signals to, the ABCDs using multimode optical links carrying light at 840 nm. The incoming timing, trigger and control (TTC) link uses biphase mark encoding to send 40 Mbit/s control signals along with a 40 MHz clock down a single fibre. Optical signals are received by a p-i-n diode and decoded by DORIC chips. Data in electrical form from the ABCDs is used to moderate two VCSELs by means of a VCSEL driver chip (VDC). Each detector module carries 12 ABCDs and is served by two optical fibres for data readout and one for TTC signals. There are 4088 such modules within the SCT. The system performance specifications and architecture are described, followed by test results on individual components and complete links. The optical fibre, active optical components, chips, packaging and interconnects have all been qualified to the necessary radiation levels. This has involved studies of total dose effects, single event upset and ageing at elevated temperatures and details of these studies are presented.

  12. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The

  13. Radiation-tolerant 50MHz bulk CMOS VLSI circuits utilizing radiation-hard structure NMOS transistors

    SciTech Connect

    Hatano, H.; Takatsuka

    1986-10-01

    A radiation-tolerant, high speed, bulk CMOS VLSI circuit design, utilizing a new NMOS structure, has been investigated, based on ..gamma..-ray irradiation experimental results for 2 ..mu..m shift registers. By utilizing 60-bit clocked gate and transfer gate static shift register circuits, the usefulness of radiation-hard NMOS structure and circuit design parameter optimization has been confirmed experimentally, showing 50 MHZ operation CMOS circuits at 5 V supply voltage after 1 x 10/sup 5/ rads (Si) irradiation. The limitations of dynamic circuits in radiation-tolerant circuit designs have also been shown, using 120-bit dynamic shift register circuits. Based on the above results, radiation-tolerant, high-performance, bulk CMOS VLSI circuit designs are discussed.

  14. Total-dose radiation effects data for semiconductor devices, volume 1. [radiation resistance of components for the Galileo Project

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.

  15. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  16. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

    SciTech Connect

    Kukushkin, V. A.

    2015-01-15

    The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime.

  17. Total-dose radiation effects data for semiconductor devices (1989 supplement)

    NASA Technical Reports Server (NTRS)

    Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.

    1990-01-01

    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.

  18. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  19. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  20. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  1. Comparison of the radiation hardness of various VLSI technologies for defense applications

    SciTech Connect

    Gibbon, C.F.

    1985-01-01

    In this review the radiation hardness of various potential very large scale (VLSI) IC technologies is evaluated. IC scaling produces several countervailing trends. Reducing vertical dimensions tends to increase total dose hardness, while reducing lateral feature sizes may increase susceptibility to transient radiation effects. It is concluded that during the next decade at least, silicon complimentary MOS (CMOS), perhaps on an insulating substrate (SOI) will be the technology of choice for VLSI in defense systems.

  2. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons.

    PubMed

    Medvid, Artur; Onufrijevs, Pavels; Mychko, Alexander

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  3. On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo

    2016-07-01

    While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.

  4. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    SciTech Connect

    Cerjan, C.J.; Sigmon, T.W.

    2000-02-15

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  5. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  6. The effect of heavy metal contamination in SIMOX on radiation hardness of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ipri, Alfred C.; Jastrzebski, L.; Peters, D.

    1989-12-01

    It is shown that heavy-metal contamination introduced during implantation of oxygen into silicon results in a reduction of SIMOX (separation by implanted oxygen) oxide radiation hardness. Radiation-induced back-channel leakage currents in MOS transistors processed in SIMOX films containing various levels of heavy metals, as measured by surface photovoltage (SPV), are a strong function of heavy metal concentration. It is concluded that SPV measurements of as-implanted SIMOX wafers can be used as a rapid nondestructive quality control inspection technique to predict the radiation hardness of the SIMOX oxide prior to processing.

  7. High performance compound semiconductor SPAD arrays

    NASA Astrophysics Data System (ADS)

    Harmon, Eric S.; Naydenkov, Mikhail; Bowling, Jared

    2016-05-01

    Aggregated compound semiconductor single photon avalanche diode (SPAD) arrays are emerging as a viable alternative to the silicon photomultiplier (SiPM). Compound semiconductors have the potential to surpass SiPM performance, potentially achieving orders of magnitude lower dark count rates and improved radiation hardness. New planar processing techniques have been developed to enable compound semiconductor SPAD devices to be produced with pixel pitches of 11 - 25 microns, with thousands of SPADs per array.

  8. Radiation hardness by design for mixed signal infrared readout circuit applications

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Gates, James; Dobyns, David; Pauls, Greg; Wall, Bruce

    2013-09-01

    Readout integrated circuits (ROICs) to support space-based infrared detection applications often have severe radiation tolerance requirements. Radiation hardness-by-design (RHBD) significantly enhances the radiation tolerance of commercially available CMOS and custom radiation hardened fabrication techniques are not required. The combination of application specific design techniques, enclosed gate architecture nFETs and intrinsic thin oxide radiation hardness of 180 nm process node commercial CMOS allows realization of high performance mixed signal circuits. Black Forest Engineering has used RHBD techniques to develop ROICs with integrated A/D conversion that operate over a wide range of temperatures (40K-300K) to support infrared detection. ROIC radiation tolerance capability for 256x256 LWIR area arrays and 1x128 thermopile linear arrays is presented. The use of 130 nm CMOS for future ROIC RHBD applications is discussed.

  9. A radiation-hard, low-background multiplexer design for spacecraft imager applications

    NASA Astrophysics Data System (ADS)

    Staller, Craig; Ramirez, Luis; Niblack, Curtiss; Blessinger, Michael; Kleinhans, William

    1992-07-01

    A possible multiplexer design for the focal plane for the Cassini Visible and Infrared Mapping Spectrometer (VIMS) is reviewed. The instrument's requirements for the multiplexed array are summarized. The VIMS instrument has a modest radiation-hardness requirement due to the trajectory and planetary environments in which the instrument will be required to operate. The total ionizing dose hardness requirement is a few tens of kilorads. A thin-gate oxide of a few hundred angstroms thickness is to be used. Field hardness is to be achieved by guard bands or hardened dielectric isolation. The design is argued to meet the low-noise and radiation-hardness required for imaging at Saturn. The design is versatile enough to provide double-correlated and double-uncorrelated sampling, which is accomplished in the signal processing electronics outside the focal plane.

  10. Ultrashort pulsed laser tools for testing of semiconductor elements hardness to single event effects, caused by cosmic heavy charged particles

    NASA Astrophysics Data System (ADS)

    Gordienko, Alexandra V.; Mavritskii, Oleg B.; Egorov, Andrey N.; Pechenkin, Alexander A.; Savchenkov, Dmitriy V.

    2015-03-01

    The installations for laser testing of microelectronic elements (first of all - integrated circuits) of devices for space applications for hardness to local radiation effects from heavy charged particles are presented. The possibility of a focused pulsed laser radiation application to the study of local radiation effects, caused by single heavy charged particles, is explained. The fundamentals of an approach to the construction of test sets, based on the picosecond and femtosecond lasers and systems for focusing their radiation, are considered. The main technical requirements for the basic modules of sets for laser testing (laser wavelength and pulse duration and repetition rate, spatial beam parameters and minimal spot size, speed of object movement and so on) are substantiated. All worked out sets have a full-featured software for the operational management of all modules of the laser test facility, including the positioning of the object, to provide feedback from the measurement results of the reaction of the object on the laser excitation. The parameters of developed laser hardware and software systems and their foreign counterparts are compared. Further improvement directions for laser testing tools are briefly outlined. The discussion is also presented of described hardware technical and operational characteristics, allowing to use it for a variety of scientific research studies, requiring selective (with submicron spatial resolution) object excitation by ultrashort laser pulses and recording responses to this effect with the exact timing of the moment of excitation, as well as to perform a variety of high precision technological operations.

  11. Radiation hardness of Efratom M-100 rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    English, T. C.; Vorwerk, H.; Rudie, N. J.

    1983-01-01

    The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily; the total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.

  12. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  13. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  14. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber.

    PubMed

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Lee, Seung Ho; Han, Won-Taek

    2016-02-22

    We have investigated gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber. Radiation-induced attenuation (RIA) of the optical fiber was measured under intermittent gamma-ray irradiations with dose rate of ~10 kGy/h. No radiation hardening effect on the RIA by the gamma-ray pre-dose was found when the exposed fiber was bleached for long periods of time (27~47 days) at room-temperature. Photo-bleaching scheme upon 980 nm LD pumping has proven to be an effective deterrent to the RIA, particularly by suppressing the incipient RIA due to room-temperature unstable self-trapped hole defects (STHs). Large temperature dependence of the RIA of the optical fiber together with the photo-bleaching effect are worthy of note for reinforcing its radiation hard characteristics. PMID:26907044

  15. Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1985-01-01

    Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months.

  16. Present status and prospects of R&D of radiation-resistant semiconductor devices at JAEA

    NASA Astrophysics Data System (ADS)

    Itoh, H.

    2013-05-01

    Research and development of radiation resistant semiconductor devices have been performed at Japan Atomic Energy Agency (JAEA) for their application to electronic system used in harsh environments like space, accelerator and nuclear facilities. Such devices are also indispensable for robots and equipment necessary for decommissioning of the damaged reactors at Fukushima Daiichi Nuclear Power Plants. For this purpose, we have fabricated transistors based on a wide band-gap semiconductor SiC and examined their radiation degradation. As a result, SiC-based transistors exhibited no significant degradation up to 1MGy, indicating their excellent radiation resistance. Recent our R&Ds of radiation resistant devices based on SiC are summarized and reviewed.

  17. FPIX2: A radiation-hard pixel readout chip for BTeV

    SciTech Connect

    David C. Christian et al.

    2000-12-11

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results of initial tests of prototype 0.25{micro} CMOS devices are presented, as are plans for the balance of the development effort.

  18. Radiation Hard Sensors for the BeamCal of the ILC

    NASA Astrophysics Data System (ADS)

    Grah, C.

    2008-06-01

    BeamCal is an electromagnetic sampling calorimeter in the very forward region of the detectors at the ILC. BeamCal will be hit by a large fraction of electron-positron pairs stemming from beamstrahlung. The sensors used for BeamCal have to withstand very high levels of total ionizing dose. We report on the investigations of radiation hard sensor materials for BeamCal of the FCAL collaboration. Artificial diamond, radiation hard silicon, SiC and GaAs sensors are under consideration. Static measurements of the current-voltage characteristics, response to minimum ionizing particles and test beam measurements are part of our investigations.

  19. Study of radiation hardness of pure CsI crystals for Belle-II calorimeter

    NASA Astrophysics Data System (ADS)

    Boyarintsev, A.; Boyarintseva, Y.; Gektin, A.; Shiran, N.; Shlyakhturov, V.; Taranyuk, V.; Timoshenko, N.; Bobrov, A.; Garmash, A.; Golkovski, M.; Kuzmin, A.; Matvienko, D.; Savrovski, P.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Krumshtein, Z. V.; Nozdrin, A. A.; Olshevsky, A. G.

    2016-03-01

    A study of the radiation hardness of pure CsI crystals 30 cm long was performed with a uniformly absorbed dose of up to 14.3 krad. This study was initiated by the proposed upgrade of the end cap calorimeter of the Belle-II detector, using pure CsI crystals. A set of 14 crystals of truncated pyramid shape used in this study was produced at the Institute for Scintillation Materials NAS from 14 different ingots grown with variations of the growing technology. Interrelationship of crystal scintillation characteristics, radiation hardness and the growing technology was observed.

  20. Semiconductor multiple-electrode detectors for measuring ionizing radiation at room temperature

    NASA Astrophysics Data System (ADS)

    Lingren, Clinton L.; Apotovsky, Boris A.; Butler, Jack F.; Conwell, Richard L.; Doty, F. Patrick; Friesenhahn, Stan J.; Oganesyan, A.; Pi, Bo; Zhao, S.

    1997-07-01

    Researchers at Digirad Corporation have developed an innovative method for eliminating the effects of hole trapping in radiation detectors made from compound semiconductors such as CdTe or CdZnTe. The technique involves no additional electronics. Working devices have been manufactured in a variety of configurations including imaging arrays. This paper presents results from some simple structures.

  1. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  2. Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation.

    PubMed

    Rack, Alexander; García-Moreno, Francisco; Helfen, Lukas; Mukherjee, Manas; Jiménez, Catalina; Rack, Tatjana; Cloetens, Peter; Banhart, John

    2013-11-20

    Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample. The hard x-rays that pass through the sample either create an image on the first detector or keep on propagating until they are captured by a second x-ray detector located further downstream. In this way, a process can be imaged simultaneously in a hierarchical manner within a single exposure and a projection of the complete object with moderate resolution as well as a subregion with high resolution are obtained. As a proof-of-concept experiment, image sequences of an evolving liquid-metal foam are shown, employing frame rates of 1000  images/s (1.2 μm pixel size) and 15,000  images/s (18.1 μm pixel size) for the first and second detector, respectively. PMID:24513767

  3. Radiation-hard silicon gate bulk CMOS cell family

    SciTech Connect

    Gibbon, C. F.; Habing, D. H.; Flores, R. S.

    1980-01-01

    A radiation-hardened bulk silicon gate CMOS technology and a topologically simple, high-performance dual-port cell family utilizing this process have been demonstrated. Additional circuits, including a random logic circuit containing 4800 transistors on a 236 x 236 mil die, are presently being designed and processed. Finally, a joint design-process effort is underway to redesign the cell family in reduced design rules; this results in a factor of 2.5 cell size reduction and a factor of 3 decrease in chip interconnect area. Cell performance is correspondingly improved.

  4. Radiation hardness of n-GaN schottky diodes

    SciTech Connect

    Lebedev, A. A. Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V.; Makarov, Yu. N.; Usikov, A. S.; Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D.; Kozlovski, V. V.

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  5. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  6. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2015-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.

  7. Irradiation facility at the IBR-2 reactor for investigation of material radiation hardness

    NASA Astrophysics Data System (ADS)

    Bulavin, M.; Cheplakov, A.; Kukhtin, V.; Kulagin, E.; Kulikov, S.; Shabalin, E.; Verkhoglyadov, A.

    2015-01-01

    Description of the irradiation facility and available parameters of the neutron and gamma exposures including the maximal integrated doses are presented in the paper. The research capabilities for radiation hardness tests of materials in high intensity beam of fast neutrons at the IBR-2 reactor of the Joint Institute for Nuclear Research in Dubna (Russia) are outlined.

  8. Irradiation facility at the IBR-2 reactor for investigating material radiation hardness

    NASA Astrophysics Data System (ADS)

    Bulavin, M. V.; Verkhoglyadov, A. E.; Kulikov, S. A.; Kulagin, E. N.; Kukhtin, V. V.; Cheplakov, A. P.; Shabalin, E. P.

    2015-03-01

    A description of the irradiation facility and available parameters of neutron and gamma exposures, including the maximum integrated doses, are presented in the paper. The research capabilities for radiation hardness tests of materials in a high-intensity beam of fast neutrons at the IBR-2 reactor of the Joint Institute for Nuclear Research in Dubna (Russia) are outlined.

  9. Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2010-08-01

    To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].

  10. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  11. Radiation-hard power electronics for the ATLAS New Small Wheel

    NASA Astrophysics Data System (ADS)

    Ameel, J.; Amidei, D.; Baccaro, S.; Citterio, M.; Cova, P.; Delmonte, N.; Sekhon Edgar, K.; Edgar, R.; Fiore, S.; Lanza, A.; Latorre, S.; Lazzaroni, M.; Yang, Y.

    2015-01-01

    The New Small Wheel (NSW) is an upgrade for the ATLAS detector to provide enhanced triggering and reconstruction of muons in the forward region. The large LV power demands of the NSW necessitate a point-of-load architecture with on-detector power conversion. The radiation load and magnetic field of this environment, while significant, are nevertheless still in the range where commercial-off-the-shelf power devices may suffice. We present studies on the radiation-hardness and magnetic-field tolerance of several candidate buck converters and linear regulators. Device survival and performance are characterized when exposed to gamma radiation, neutrons, protons and magnetic fields.

  12. Impact of Laser Radiation on Microhardness of a Semiconductor

    SciTech Connect

    Medvid', A.; Onufrijevs, P.; Chiradze, G.; Muktupavela, F.

    2011-12-23

    It was found that strongly absorbed Nd:YAG laser radiation leads to a non-monotonous dependence of microhardness of p- and n-type Si crystals on laser radiation. This dependence is characterized by two maxima for p-Si and one maximum for n-Si crystals. In both cases the increase of microhardness at higher laser intensity is explained by formation of mechanically compressed layer at the irradiated surface due to concentration of the interstitial atoms of Si at the surface in temperature gradient field. The decrease of the microhardness is explained by formation of nano-cones as a result of plastic deformation of the mechanically stressed layer. The additional maximum at lower laser intensity for p-Si crystal is explained by p-n type inversion of Si conductivity.

  13. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  14. Impact of radiation hardness and operating temperatures of silicon carbide electronics on space power system mass

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1999-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kWe, 1 MWe, and 10 MWe) for near term technology (i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  15. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  16. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  17. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  18. Radiation effects in III-V semiconductors and heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Shatalov, Alexei

    The electron, gamma and neutron radiation degradation of III-V semiconductors and heterojunction bipolar transistors (HBTs) is investigated in this thesis. Particular attention is paid to InP and InGaAs materials and InP/InGaAs abrupt single HBTs (SHBTs). Complete process sequences for fabrication of InP/ InGaAs HBTs are developed and subsequently employed to produce the devices, which are then electrically characterized and irradiated with the different types of radiation. A comprehensive analytical HBT model is developed and radiation damage calculations are performed to model the observed radiation-induced degradation of SHBTs. The most pronounced radiation effects found in SHBTs include reduction of the common-emitter DC current gain, shift of the collector-emitter (CE) offset voltage and increase of the emitter, base and collector parasitic resistances. Quantitative analysis performed using the developed model demonstrates that increase of the neutral bulk and base-emitter (BE) space charge region (SCR) components of the base current are responsible for the observed current gain degradation. The rise of the neutral bulk recombination is attributed to decrease in a Shockley-Read-Hall (SRH) carrier lifetime, while the SCR current increase is caused by rising SCR SRH recombination and activation of a tunneling-recombination mechanism. On the material level these effects are explained by displacement defects produced in a semiconductor by the incident radiation. The second primary change of the SHBT characteristics, CE offset voltage shift, is induced by degradation of the base- collector (BC) junction. The observed rise of the BC current is brought on by diffusion and recombination currents which increase as more defects are introduced in a semiconductor. Finally, the resistance degradation is attributed to deterioration of low-doped layers of a transistor, and to degradation of the device metal contacts.

  19. Effect of gate oxide thickness on the radiation hardness of silicon-gate CMOS

    SciTech Connect

    Nordstrom, T.V.; Gibbon, C.F.

    1981-01-01

    Significant improvements have been made in the radiation hardness of silicon-gate CMOS by reducing the gate oxide thickness. The device studied is an 8-bit arithmetic logic unit designed with Sandia's Expanded Linear Array (ELA) standard cells. Devices with gate oxide thicknesses of 400, 570 (standard), and 700 A were fabricated. Irradiations were done at a dose rate of 2 x 10/sup 6/ rads (Si) per hour. N- and P-channel maximum threshold shifts were reduced by 0.3 and 1.2 volts, respectively, for the thinnest oxide. Approximately, a linear relationship is found for threshold shift versus thickness. The functional radiation hardness of the full integrated circuit was also measured.

  20. FPIX2: a radiation-hard pixel readout chip for BTeV

    NASA Astrophysics Data System (ADS)

    Christian, D. C.; Appel, J. A.; Cancelo, G.; Hoff, J.; Kwan, S.; Mekkaoui, A.; Yarema, R.; Wester, W.; Zimmermann, S.

    2001-11-01

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment [A. Kulyavtsev, et al., Proposal for an Experiment to Measure Mixing, CP Violation and Rare Decays in Charm and Beauty Particle Decays at the Fermilab Collider (2000), http://www-btev.fnal.gov/public_documents/btev_proposal/]. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results (including the effects of irradiation to ˜33 Mrad) of initial tests of prototype 0.25 μm CMOS devices are presented, as are plans for the balance of the development effort.

  1. Drift of Electrons and Atoms in the Laser Radiation Field and Its Influence on the Optical Properties of Semiconductors

    NASA Astrophysics Data System (ADS)

    Krupa, N. N.; Korostil', A. M.; Skirta, Yu. B.

    2005-08-01

    We experimentally study the influence of the laser-induced drift (LID) of dopant electrons and atoms on the optical properties of semiconductors. It is shown that the LID of electrons results in a dramatic change in the refractive index in the region of laser-radiation output from semiconductor crystals, impairement of the total internal reflection in semiconductors, and the occurrence of astigmatism during self-defocusing of the laser radiation in anisotropic semiconductors. This effect influences the breaking of semiconductors by nanosecond and picosecond laser pulses. The LID of dopant atoms, caused by the electrostatic interaction between the ions of these atoms and the space charge of drifting electrons, changes differently the luminescence spectra on the input and output surfaces of crystals and also results in the appearance of a dark spot on the output surface of some ZnSe crystals after irradiation by a continuous-wave CO2 laser.

  2. Total-dose radiation effects data for semiconductor devices. 1985 Supplement. Volume 2, part B

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 (Parts A and B) provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done steady-state 2.5-MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose. All data were generated in support of NASA space programs by the JPL Radiation Effects and Testing Group (514).

  3. FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

    2007-01-01

    We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

  4. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.

  5. HTLT oxygenated silicon detectors: radiation hardness and long-term stability

    NASA Astrophysics Data System (ADS)

    Li, Z.; Dezillie, B.; Bruzzi, M.; Chen, W.; Eremin, V.; Verbitskaya, E.; Weilhammer, P.

    2001-04-01

    Silicon detectors fabricated by BNLs high-temperature, long time (HTLT) oxidation technology have been characterized using various techniques for material/detector properties and radiation hardness with respect to gamma, proton and neutron irradiation. It has been found that a uniform oxygen distribution with a concentration of 4×10 17/cm 3 has been achieved in high-resistivity FZ silicon with our HTLT technology. With the standard HTLT technology, the original high resistivity of FZ silicon will be retained. However, the controlled introduction of thermal donors (TD) with a concentration higher than the original shallow doping impurity can be achieved with a process slightly altered from the standard HTLT technology (HTLT-TD). Detectors made by both technologies (HTLT and HTLT-TD) have been found to be advantageous in radiation hardness to gamma and proton irradiation, in terms of detector full depletion voltage degradation, as compared to the control samples. In fact, these detectors are insensitive to gamma irradiation up to 600 Mrad and more tolerant by at least a factor of two to proton irradiation and the following reverse annealing. However, there is little improvement in radiation hardness to neutron irradiation, which has been attributed to the nature of neutron-induced damage that is dominated by extended defects or defect clusters. Microscopic measurements (I-DLTS) have also been made on control and HTLT samples and will be compared and presented.

  6. The ESA RADGLASS activity: a radiation study of non rad-hard glasses

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Bézy, Jean-Loup; Costantino, Alessandra; Vink, Ramon; Deep, Atul; Ahmad, Munadi; Amorim, Emmanuel; Miranda, Micael D.; Meynart, Roland

    2015-10-01

    Only a small set of radiation hardened optical glasses are currently offered in the market, thus drastically limiting the optical design choices available to the engineers at the early phases of an instrument development. Furthermore, availability of those glasses cannot be easily guaranteed for the long term horizon of future space instrument developments. Radiation tests on conventional glasses on the other hand have shown significant sensitivity to high radiation levels but such levels are not necessarily representative of typical low Earth (LEO) orbits. We have conducted irradiation campaigns on several different types of conventional, non-radiation hard glasses, selected from the wider pool of the Schott "new" arsenic and lead free series (N-*) and characterized their spectral transmission properties before and after ionizing dose deposition. We report our first findings here.

  7. Characterization and modeling of radiation effects NASA/MSFC semiconductor devices

    NASA Technical Reports Server (NTRS)

    Kerns, D. V., Jr.; Cook, K. B., Jr.

    1978-01-01

    A literature review of the near-Earth trapped radiation of the Van Allen Belts, the radiation within the solar system resulting from the solar wind, and the cosmic radiation levels of deep space showed that a reasonable simulation of space radiation, particularly the Earth orbital environment, could be simulated in the laboratory by proton bombardment. A 3 MeV proton accelerator was used to irradiate CMOS integrated circuits fabricated from three different processes. The drain current and output voltage for three inverters was recorded as the input voltage was swept from zero to ten volts after each successive irradiation. Device parameters were extracted. Possible damage mechanisms are discussed and recommendations for improved radiation hardness are suggested.

  8. Method and apparatus for electron-only radiation detectors from semiconductor materials

    SciTech Connect

    Lund, James C.

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  9. Satellite project "CORONAS-PHOTON" for study of solar hard radiation

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.; Cor-Phot Team

    "CORONAS-PHOTON" is the Russian mission for study of the solar hard electromagnetic radiation in the very wide energy range from Extreme UV up to high-energy gamma - radiation. GOAL OF PROJECT: The investigation of energy accumulation and its transformation into energy of accelerated particles processes during solar flares; the study of the acceleration mechanisms, propagation and interaction of fast particles in the solar atmosphere; the study of the solar activity correlation with physical-chemical processes in the Earth upper atmosphere. SCIENTIFIC PAYLOAD CAPABILITY Radiation / Energy region / Detector type: Full solar disk X- radiation / 2keV - 2000MeV / Prop. counter; NaI(Tl); Full solar disk X- and γ-radiation / NaI(Tl)/CsI(Na) phoswich; Full solar disk X- and γ-radiation and solar neutrons / 20 - 300MeV / YalO_3(Ce); CsI(Tl); Hard X-ray polarization in large flares / 20 - 150keV / p-terphenyl scatterer and CsI(Na) absorbers; Full solar disk EUV-radiation monitoring / 6 spectral windows in <10 - 130nm / Filtered photodiodes; Solar images in narrow spectral bands and monochromatic emission lines of hot plasma / Emission of HeII, SiXI, FeXXI, FeXXIII, MgXII ions / Multi-layer and Bregg spherical crystal quartz mirrors with CCDs; Additionally, the temporal and energy spectra of electrons (0.2-14MeV), protons (1-61MeV) and nuclei (Z<26, 2-50MeV/nuclon) at the satellite orbit will be registrated by several instruments. MAIN CHARACTERISTICS OF SPACECRAFT: Spacecraft weight: 1900 kg; Orbit type: Circular; Scientific payload weight: 540 kg; Height: 500 km; Orientation to the Sun [arc min]: better 5; Inclination: 82.5 degree; Instability of orientation [deg/s]: less 0.005; Solar - synchronous orbit is under study. Launching date of "CORONAS-PHOTON" spacecraft is 2006.

  10. Results of radiation hardness tests and performance tests of the HS9008RH flash ADC

    SciTech Connect

    Nutter, S.; Tarle, G. . Physics Dept.); Crawley, H.B.; McKay, R.; Meyer, W.T.; Rosenberg, E.I.; Thomas, W.D. . Dept. of Physics and Astronomy Ames Lab., IA )

    1994-08-01

    Results from tests characterizing the performance and radiation hardness of the HS9008RH flash analog to digital converter (FADC) are presented. These tests were performed primarily to evaluate the suitability of this device for use in the GEM Central Tracker at the SSC experiment. Basic performance characteristics and susceptibility of these characteristics to radiation were examined. Performance test results indicate that the device integral nonlinearity is sampling rate dependent and worsens rapidly above rate of 15 megasamples per second (MSPS). No degradation in performance of the device was observed after its exposure of up to 81 Mrad of 1.25 MeV [gamma] radiation from a [sup 60]Co source. Exposure of the device to a reactor fast neutron fluence (E > 100keV) of 5 [times] 10[sup 14]/cm[sup 2] resulted in no significant observed performance degradation as well.

  11. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  12. On the nature of the sources of hard pulse X-ray radiation

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1978-01-01

    Besides the identified sources of cosmic pulse X-ray radiation with globular clusters NGC 6624, NGC 1851 and MXB 1730-335 several new identifications were made. The source in Norma was probably identified with globular cluster NGC 5927, the source in Aquila with globular cluster NGC 6838 (M71), and the source in Puppis with globular cluster NGC 2298. Gamma pulses discovered by the Vela satellites and X-ray pulses thoroughly measured by the SAS-3, Ariel-5, and ANS satellites are thought to be the same phenomenon. The sources of such a radiation must be some kind of peculiarity at the central part of globular clusters; it is most probably a massive black hole. The sources of hard pulse radiation which cannot be identified with globular clusters are considered to be a new kind of galactic object, invisible globular clusters, which are naked nuclei of globular clusters.

  13. Radiation Hardness Tests of SiPMs for the JLab Hall D Barrel Calorimeter

    SciTech Connect

    Yi Qiang, Carl Zorn, Fernando Barbosa, Elton Smith

    2013-01-01

    We report on the measurement of the neutron radiation hardness of silicon photomultipliers (SiPMs) manufactured by Hamamatsu Corporation in Japan and SensL in Ireland. Samples from both companies were irradiated by neutrons created by a 1 GeV electron beam hitting a thin lead target at Jefferson Lab Hall A. More tests regarding the temperature dependence of the neutron radiation damage and self-annealing were performed on Hamamatsu SiPMs using a calibrated Am–Be neutron source from the Jefferson Lab Radiation Control group. As the result of irradiation both dark current and dark rate increase linearly as a function of the 1 MeV equivalent neutron fluence and a temperature dependent self-annealing effect is observed

  14. Development of radiation-hard optical links for the CMS tracker at CERN

    SciTech Connect

    Vasey, F.; Arbet-Engels, V.; Cervelli, G.; Gill, K.; Grabit, R.; Mommaert, C.; Stefanini, G.; Batten, J.; Troska, J.

    1998-06-01

    A radiation-hard optical link is under development for readout and control of the tracking detector in the future CMS experiment at the CERN Large Hadron Collider. The authors present the optical system architecture based on edge-emitting InGaAsP laser-diode transmitters operating at a wavelength of 1.3 {micro}m, single mode fiber ribbons, multi-way connectors and InGaAsP in photodiode receivers. They report on radiation hardness tests of lasers, photodiodes, fibers and connectors. Increases of laser threshold and pin leakage currents with hadron fluence have been observed together with decreases in laser slope-efficiency and photodiode responsivity. Short lengths of single-mode optical fiber and multi-way connectors have been found to be little affected by radiation damage. They analyze the analog and digital performance of prototype optical links transmitting data generated at a 40 MSample/s rate. Distortion, settling time, bandwidth, noise, dynamic range and bit-error-rate results are discussed.

  15. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation.

    PubMed

    Beckhoff, Burkhard; Fliegauf, Rolf; Kolbe, Michael; Müller, Matthias; Weser, Jan; Ulm, Gerhard

    2007-10-15

    Total reflection X-ray fluorescence (TXRF) analysis is a well-established method to monitor lowest level contamination on semiconductor surfaces. Even light elements on a wafer surface can be excited effectively when using high-flux synchrotron radiation in the soft X-ray range. To meet current industrial requirements in nondestructive semiconductor analysis, the Physikalisch-Technische Bundesanstalt (PTB) operates dedicated instrumentation for analyzing light element contamination on wafer pieces as well as on 200- and 300-mm silicon wafer surfaces. This instrumentation is also suited for grazing incidence X-ray fluorescence analysis and conventional energy-dispersive X-ray fluorescence analysis of buried and surface nanolayered structures, respectively. The most prominent features are a high-vacuum load-lock combined with an equipment front end module and a UHV irradiation chamber with an electrostatic chuck mounted on an eight-axis manipulator. Here, the entire surface of a 200- or a 300-mm wafer can be scanned by monochromatized radiation provided by the plane grating monochromator beamline for undulator radiation in the PTB laboratory at the electron storage ring BESSY II. This beamline provides high spectral purity and high photon flux in the range of 0.078-1.86 keV. In addition, absolutely calibrated photodiodes and Si(Li) detectors are used to monitor the exciting radiant power respectively the fluorescence radiation. Furthermore, the footprint of the excitation radiation at the wafer surface is well-known due to beam profile recordings by a CCD during special operation conditions at BESSY II that allow for drastically reduced electron beam currents. Thus, all the requirements of completely reference-free quantitation of TXRF analysis are fulfilled and are to be presented in the present work. The perspectives to arrange for reference-free quantitation using X-ray tube-based, table-top TXRF analysis are also addressed. PMID:17880182

  16. The impact of morphology upon the radiation hardness of ZnO layers.

    PubMed

    Burlacu, A; Ursaki, V V; Skuratov, V A; Lincot, D; Pauporte, T; Elbelghiti, H; Rusu, E V; Tiginyanu, I M

    2008-05-28

    It is shown that ZnO nanorods and nanodots grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe(23+) irradiation at a dose of 1.5 × 10(14) cm(-2) in ZnO nanorods is nearly identical to that induced by a dose of 6 × 10(12) cm(-2) in bulk layers. The damage introduced by irradiation is shown to change the nature of electronic transitions responsible for luminescence. The change of excitonic luminescence to the luminescence related to the tailing of the density of states caused by potential fluctuations occurs at an irradiation dose around 1 × 10(14) cm(-2) and 5 × 10(12) cm(-2) in nanorods and bulk layers, respectively. More than one order of magnitude enhancement of radiation hardness of ZnO nanorods grown by MOCVD as compared to bulk layers is also confirmed by the analysis of the near-bandgap photoluminescence band broadening and the behavior of resonant Raman scattering lines. The resonant Raman scattering analysis demonstrates that ZnO nanostructures are more radiation-hard as compared to nanostructured GaN layers. High energy heavy ion irradiation followed by thermal annealing is shown to be a way for the improvement of the quality of ZnO nanorods grown by electrodeposition and chemical bath deposition. PMID:21730593

  17. Comparison of radiation damage parameter values for the widely used semiconductor gamma detector materials in wide energy range

    NASA Astrophysics Data System (ADS)

    Korkut, Turgay; Korkut, Hatun

    2014-04-01

    Number of displaced atoms (NDA) values for 3 different semiconductor detector materials (Ge, Si, and GaAs) was reviewed at 26 different primary energies emitted from 9 radiation sources (241Am, 133Ba, 109Cd, 57Co, 60Co, 137Cs, 152Eu, 55Fe and 153Gd) widely used in the literature. FLUKA Monte Carlo code was used to simulate interactions between X-gamma rays and semiconductor detector materials. Germanium has the highest average NDA value in the studied three semiconductors.

  18. Radiation hardness tests of GaAs amplifiers operated in liquid argon in the ATLAS calorimeter

    NASA Astrophysics Data System (ADS)

    Ban, J.; Brettel, H.; Cheplakov, A.; Cwienk, W.; Fent, J.; Golikov, V.; Golubyh, S.; Jakobs, K.; Kukhtin, V.; Kulagin, E.; Kurchaninov, L.; Ladygin, E.; Luschikov, V.; Oberlack, H.; Obudovsky, V.; Schacht, P.; Shalyugin, A.; Stiegler, U.; Zweimüller, T.

    2008-09-01

    Highly integrated Gallium Arsenide (GaAs) chips of preamplifiers and summing amplifiers have been exposed to high fluence of fast neutrons and γ-dose at the IBR-2 reactor in Dubna. A stable performance of the electronics has been demonstrated up to a fluence of 5×1014 n cm-2 and a γ-dose of 55 kGy. The radiation hardness tests confirm the applicability of the preamplifiers for more than 10 years operation in the ATLAS hadronic end-cap calorimeter at LHC.

  19. Radiation hardness of plastic scintillating fiber against fast neutron and [gamma]-ray irradiation

    SciTech Connect

    Murakami, Akira; Yoshinaka, Hideki; Goto, Minehiko . Dept. of Physics)

    1993-08-01

    In future collider experiments, where a background radiation level is estimated to be very high, e.g. around 10[sup 2] [approximately] 10[sup 5] Gy/yr and 10[sup 11] [approximately] 10[sup 14] n/cm[sup 2]/yr at SSC, the detectors operating around the collision point in the experiments will encounter a considerable amount of radiation. Therefore, the detectors, especially the calorimeter, are required to be resistive against high radiation levels. From this point of view, it is of great importance to study the effects of radiation damage on the performance of the detectors. The authors report preliminary results of measurements of radiation hardness of the plastic scintillating fiber Kuraray SCSF-81 against irradiation with fast neutrons and [sup 60]Co [gamma]-rays in the region of the neutron fluence from 1 [times] 10[sup 11] to 5 [times] 10[sup 13] n/cm[sup 2] and the integrated [gamma]-ray dose from 890 to 10[sup 5] Gy, respectively. Deterioration of both intrinsic light yield and light transmittance of the SCSF-81 has been studied.

  20. Study of radiation hardness of Gd2SiO5 scintillator for heavy ion beam

    NASA Astrophysics Data System (ADS)

    Kawade, K.; Fukatsu, K.; Itow, Y.; Masuda, K.; Murakami, T.; Sako, T.; Suzuki, K.; Suzuki, T.; Taki, K.

    2011-09-01

    Gd2SiO5 (GSO) scintillator has very excellent radiation resistance, a fast decay time and a large light yield. Because of these features, GSO scintillator is a suitable material for high radiation environment experiments such as those encountered at high energy accelerators. The radiation hardness of GSO has been measured with Carbon ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC). During two nights of irradiation the GSO received a total radiation dose of 7 × 105 Gy and no decrease of light yield was observed. On the other hand an increase of light yield by 25% was observed. The increase is proportional to the total dose, increasing at a rate of 0.025%/Gy and saturating at around 1 kGy. Recovery to the initial light yield was also observed during the day between two nights of radiation exposure. The recovery was observed to have a slow exponential time constant of approximately 1.5 × 104 seconds together with a faster component. In case of the LHCf experiment, a very forward region experiment on LHC (pseudo-rapidity η > 8.4), the irradiation dose is expected to be approximately 100 Gy for 10 nb-1 of data taking at (s)1/2 = 14TeV. The expected increase in light yield of less than a few percent will not affect the LHCf measurement.

  1. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    SciTech Connect

    Wang, C. Wang, F.; Cao, J. C.

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  2. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.

    PubMed

    Wang, C; Wang, F; Cao, J C

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation. PMID:25273189

  3. A PCI Express optical link based on low-cost transceivers qualified for radiation hardness

    NASA Astrophysics Data System (ADS)

    Triossi, A.; Barrientos, D.; Bellato, M.; Bortolato, D.; Isocrate, R.; Rampazzo, G.; Ventura, S.

    2013-02-01

    In this paper we want to demonstrate that an optical physical medium is compatible with the second generation of PCI Express. The benefit introduced by the optical decoupling of a PCI Express endpoint is twofold: it allows for a geographical detachment of the device and it remains compliant with the usual PCI accesses to the legacy I/O and memory spaces. We propose two boards that can bridge the PCI Express protocol over optical fiber. The first is a simple optical translator while the second is a more robust switch developed for connecting up to four devices to a single host. Such adapters are already working in the control and data acquisition system of a particle detector at CERN and hence they had been qualified for radiation hardness. The positive outcomes of the radiation tests of four types of off-the-shelf transceivers are finally reported.

  4. Foreign technology assessment: Environmental evaluation of a radiation-hard oscillator/divider

    NASA Astrophysics Data System (ADS)

    Dvorack, M. A.

    1993-03-01

    Salford Electrical Instruments, Ltd., and the General Electric Company's Hirst Research Center, under contract to the United Kingdom's (UK) Ministry of Defence, developed a radiation-hard, leadless chip-carrier-packaged oscillator/divider. Two preproduction clocks brought to Sandia National Laboratories (SNL) by a potential SNL customer underwent mechanical and thermal environmental evaluation. Because of the subsequent failure of one device and the deteriorating condition of another device, the devices were not subjected to radiation tests. The specifics of the environmental evaluation performed on these two clocks and the postmortem analysis of one unit, which ultimately failed, are described. Clock startup time versus temperature studies were also performed and compared to an SNL-designed clock having the same fundamental frequency.

  5. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Astrophysics Data System (ADS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-10-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  6. Development of radiation hard electron monitor RADEM for ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Desorgher, Laurent; Goncalves, Patricia; Pinto, Costa; Marques, Arlindo; Maehlum, Gunnar; Meier, Dirk

    2015-04-01

    Future mission of ESA to Jupiter - JUICE - will be equipped with a new radiation monitoring instrument RADEM. The main purpose is characterizing of the highly dynamic and hazardous although rather weakly known particle environment of the giant planet. RADEM performance must be tailored with numerous constraints and severe risks put on the instrument and its detection system. The first objective is precise spectroscopy of electrons and protons over more than two energy orders i.e. up to 40 MeV and 250 MeV respectively. It requires an exact identification of particles and supreme suppression of the background. Measurements should in addition provide dynamic maps of particle directionality and be very accurate even for extremely high particle fluxes. Further goals cover detection of heavy ions with their LET and determination of the radiation dose and dose rate absorbed by the spacecraft. Constrains and risks are given by limitations put on the monitor mass, volume and power and by radiation damage hazards imposed on its materials, electronic components and detection sensors. Additional challenge is in required instrument operational longevity. The design of RADEM is supported by extensive modeling and Monte Carlo simulations based on present knowledge of the Jupiter radiation environment. Deeper level of optimization requires taking into account the whole spacecraft with all its modules and structures. For entire detection system of RADEM the Si-sensors equipped with structures minimizing radiation damage are chosen. They have individual design features in accordance to their specific functionality such as pitch angle measurements with the directionality detector or energy spectroscopy with the telescope. Detected signals are processed using specially designed low power, radiation hard ASIC responsible for both analogue and digital branches. Initial results based on the previous ASIC version as well as data from studies of the detector radiation damage already exist

  7. The radiation hardness of silica optical fiber used in the LED-fiber monitor of BLM and BESIII EMC

    NASA Astrophysics Data System (ADS)

    Xue, Zhen; Hu, Tao; Fang, Jian; Xu, Zi-Zong; Wang, Xiao-Lian; Lü, Jun-Guang; Zhou, Li; Cai, Xiao; Yu, Bo-Xiang; Wang, Zhi-Gang; Sun, Li-Jun; Sun, Xi-Lei; Zhang, Ai-Wu

    2012-02-01

    LED-fiber system has been used to monitor BLM and BESIII EMC. A radiation hard silica optical fiber is essential for its stability and reliability. Three types of silica optical fibers, silicone-clad silica optical fiber with high OH - content (SeCS), silica-clad silica optical fiber with low OH - content (SCSL) and silica-clad silica opical fiber with high OH - content (SCSH) were studied. In the experiment, 12 groups of fiber samples were irradiated by 60Co and 3 groups of fiber samples were irradiated by BEPCII background radiation. Radiation hardness: the radiation hardness of SCSH is best and meets the radiation hardness requirement for LED-fiber monitor of BLM and BESIII EMC. The transmission of SeCS and SCSH decreased to around 80% under the 60Co-irradiation of 5 Gy and 10 Gy, respectively. The radiation hardness of SeCS is worst because of its silicone cladding. Recovery characteristics: 60Co-irradiated by the same doses, there were both more annealable and more permanent color centers formed in SeCS than SCSL, and for the same kind of fibers, as long as the irradiated doses are under a certain amount (for example, less than 5 Gy for SeCS), the higher the doses, both the more annealable and the more permanent color centers are formed.

  8. A high frame rate, 16 million pixels, radiation hard CMOS sensor

    NASA Astrophysics Data System (ADS)

    Guerrini, N.; Turchetta, R.; Van Hoften, G.; Henderson, R.; McMullan, G.; Faruqi, A. R.

    2011-03-01

    CMOS sensors provide the possibility of designing detectors for a large variety of applications with all the benefits and flexibility of the widely used CMOS process. In this paper we describe a novel CMOS sensor designed for transmission electron microscopy. The overall design consists of a large 61 × 63 mm2 silicon area containing 16 million pixels arranged in a 4K × 4K array, with radiation hard geometry. All this is combined with a very fast readout, the possibility of region of interest (ROI) readout, pixel binning with consequent frame rate increase and a dynamic range close to 12 bits. The high frame rate has been achieved using 32 parallel analogue outputs each one operating at up to 20 MHz. Binning of pixels can be controlled externally and the flexibility of the design allows several possibilities, such as 2 × 2 or 4 × 4 binning. Other binning configurations where the number of rows and the number of columns are not equal, such as 2 × 1 or 2 × 4, are also possible. Having control of the CMOS design allowed us to optimise the pixel design, in particular with regard to its radiation hardness, and to make optimum choices in the design of other regions of the final sensor. An early prototype was also designed with a variety of geometries in order to optimise the readout structure and these are presented. The sensor was manufactured in a 0.35 μm standard CMOS process.

  9. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  10. Radiation hardness of a 180 nm SOI monolithic active pixel sensor

    NASA Astrophysics Data System (ADS)

    Fernandez-Perez, S.; Backhaus, M.; Pernegger, H.; Hemperek, T.; Kishishita, T.; Krüger, H.; Wermes, N.

    2015-10-01

    The use of Silicon-on-Insulator (SOI) technology as a particle detector in a high radiation environment is, at present, limited mostly by radiation effects on the transistor characteristics, back gate effect, and mutual coupling between the Buried Oxide (BOX) and the sensor. We have fabricated and tested a new 0.18 μm SOI CMOS monolithic pixel sensor using the XFAB process. In contrast to the most commonly used SOI technologies, this particular technology uses partially depleted SOI transistors, offering a double well structure, which shields the thin gate oxide transistors from the BOX. In addition, an increased distance between transistors and a thicker BOX than has been previously used offers promising solutions to the performance limitations mentioned above. The process further allows the use of high voltages (up to 200 V), which are used to partially deplete the substrate. Thus, the newly fabricated device in the XFAB process is especially interesting for applications in extremely high radiation environments, such as LHC experiments. A four stage validation programme of the technology and the fabricated monolithic pixel sensor has been performed and its results are shown in this paper. The first targets radiation hardness of the transistor characteristics up to 700 Mrad, the second investigates the existence of the back gate effect, the third one targets the coupling between the BOX and the sensor, and the fourth investigates the characterization of charge collection in the sensor diode below the BOX.

  11. The Si/CdTe semiconductor detector for hard X-ray imager (HXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Hagino, Kouichi; Nakano, Toshio; Sato, Goro; Takeda, Shin-ichiro; Odaka, Hirokazu; Watanabe, Shin; Nakazawa, Kazuhiro; Kokubun, Motohide; Takahashi, Tadayuki; HXI/SGD Team

    2012-12-01

    The hard X-ray imager (HXI) is the focal plane detector onboard ASTRO-H to be launched in 2014. By combining with the hard X-ray telescope, the HXI will realize the focusing imaging in the energy range from 5 up to 80 keV. The sensitivity of the HXI for an isolated point source will be two orders of magnitude better compared with previous missions. The hybrid structure composed of four layers of double-sided silicon strip detectors (DSSD) and one layer of cadmium telluride double-sided strip detector (CdTe-DSD) enables high detection efficiency in the hard X-ray band. The DSSD and CdTe-DSD for ASTRO-H have been developed, and their spectral and imaging performances were evaluated. By using two-strip events for the reconstructions of spectra and images, energy resolution of 1.0 keV at 13.9 keV and 2.0 keV at 59.5 keV, and sub-strip spatial resolution were achieved.

  12. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    SciTech Connect

    Qureshi, S.

    1991-01-01

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine.

  13. Crystal growth in LiGaSe2 for semiconductor radiation detection applications

    NASA Astrophysics Data System (ADS)

    Stowe, A. C.; Woodward, J.; Tupitsyn, E.; Rowe, E.; Wiggins, B.; Matei, L.; Bhattacharya, P.; Burger, A.

    2013-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. Materials such as LiGaSe2 have been synthesized for non-linear optical applications; however, when the crystal is grown enriched in the 6Li isotope, it is possible to imagine a radiation detector. A nuclear reaction occurs with 6Li, which can be detected within the semiconductor crystal. As such, high quality crystals are required, which have few defects which prohibit charge collection. One of the primary challenges in growing a high quality crystal is the reactivity of lithium metal. Vacuum purified lithium metal was therefore reacted with gallium to form LiGa as an intermediate to LiGaSe2 synthesis. Vertical and horizontal Bridgman growth was then conducted to determine the optimal growth conditions. Vertical Bridgman growth resulted in more pure crystals. Annealing in lithium metal vapor reduced crystal defects and improved optical and electrical properties of the subsequent LiGaSe2 crystal.

  14. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    NASA Astrophysics Data System (ADS)

    Liu, J.; Barbero, M.; Bilbao De Mendizabal, J.; Breugnon, P.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.

    2016-03-01

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm-2s-1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R&D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given.

  15. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs. PMID:9571621

  16. Harmonic modulation of radiation of an external-feedback semiconductor laser

    SciTech Connect

    Sukharev, Aleksandr G; Napartovich, A P

    2007-02-28

    The appearance of the harmonic modulation regime at the Hopf bifurcation point is described analytically for a delayed-feedback semiconductor laser. The second-order delay differential equation with complex coefficients is derived. The frequency of oscillations appearing at the Hopf bifurcation point is determined by the solution of two relatively simple transcendental equations, from which the bifurcation point itself is found. These equations contain dependences on all the control parameters of the problem. The exact upper and lower limits of the oscillation frequency are found. A comparison with numerical results shows that the modulation frequency is preserved almost constant in a broad range of feedback phases. A procedure is proposed for determining the parameters of the laser providing the presence of bifurcations with a passage to oscillations with the specified frequency. The results obtained in the paper are of interest for WDM communication systems. (control of laser radiation parameters)

  17. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  18. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  19. A radiation hard dipole magnet coils using aluminum clad copper conductors

    SciTech Connect

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm/sup 2/, no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs.

  20. Development of radiation hard edgeless detectors with current terminating structure on p-type silicon

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Ruggiero, G.

    2011-12-01

    The development of edgeless Si detectors was stimulated by the tasks of the total pp cross-section study in the TOTEM experiment at the Large Hadron Collider at CERN. For this, the dead region at the detector diced side should be reduced below 50 μm. This requirement is successfully realized in edgeless Si detectors with current terminating structure (CTS), which are now operating at LHC. The development of the experiment and future LHC upgrade need the elaboration of radiation hard version of edgeless Si detectors. The current investigation represents an extension in understanding on edgeless detectors operation and development of a new issue - edgeless detectors with CTS on p-type Si.

  1. Development of radiation hard CMOS active pixel sensors for HL-LHC

    NASA Astrophysics Data System (ADS)

    Pernegger, Heinz

    2016-07-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  2. High-frequency detection of the formation and stabilization of a radiation-induced defect cluster in semiconductor structures

    SciTech Connect

    Puzanov, A. S.; Obolenskiy, S. V. Kozlov, V. A.; Volkova, E. V.; Paveliev, D. G.

    2015-12-15

    The processes of the formation and stabilization of a radiation-induced defect cluster upon the arrival of a fast neutron to the space-charge region of a semiconductor diode are analyzed. The current pulse formed by secondary electrons is calculated and the spectrum of the signal generated by the diode (detector) under the action of an instantaneous neutron flux of the fission spectrum is determined. The possibility of experimental detection of the picosecond radiation-induced transition processes is discussed.

  3. Optimization of radiation hardness and charge collection of edgeless silicon pixel sensors for photon science

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tartarotti Maimone, D.; Pennicard, D.; Sarajlic, M.; Graafsma, H.

    2014-12-01

    Recent progress in active-edge technology of silicon sensors enables the development of large-area tiled silicon pixel detectors with small dead space between modules by utilizing edgeless sensors. Such technology has been proven in successful productions of ATLAS and Medipix-based silicon pixel sensors by a few foundries. However, the drawbacks of edgeless sensors are poor radiation hardness for ionizing radiation and non-uniform charge collection by edge pixels. In this work, the radiation hardness of edgeless sensors with different polarities has been investigated using Synopsys TCAD with X-ray radiation-damage parameters implemented. Results show that if no conventional guard ring is present, none of the current designs are able to achieve a high breakdown voltage (typically < 30 V) after irradiation to a dose of ~ 10 MGy. In addition, a charge-collection model has been developed and was used to calculate the charges collected by the edge pixels of edgeless sensors when illuminated with X-rays. The model takes into account the electric field distribution inside the pixel sensor, the absorption of X-rays, drift and diffusion of electrons and holes, charge sharing effects, and threshold settings in ASICs. It is found that the non-uniform charge collection of edge pixels is caused by the strong bending of the electric field and the non-uniformity depends on bias voltage, sensor thickness and distance from active edge to the last pixel (``edge space"). In particular, the last few pixels close to the active edge of the sensor are not sensitive to low-energy X-rays ( < 10 keV), especially for sensors with thicker Si and smaller edge space. The results from the model calculation have been compared to measurements and good agreement was obtained. The model can be used to optimize the edge design. From the edge optimization, it is found that in order to guarantee the sensitivity of the last few pixels to low-energy X-rays, the edge space should be kept at least 50% of

  4. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  5. Radiation hard fiber optic thermo-hygrometers for relative humidity detection in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Berruti, G.; Consales, M.; Giordano, M.; Buontempo, S.; Breglio, G.; Makovec, A.; Petagna, P.; Cusano, A.

    2014-05-01

    This work investigates the performances and the radiation hardness capability of optical thermo-hygrometers based on Fiber Bragg Gratings (FBG) technology for humidity monitoring in the Compact Muon Solenoid experiment (CMS) at CERN, in Geneva. Extensive characterizations in terms of sensitivity, repeatability and accuracy on 80 specially produced polyimide-coated FBG sensors and 80 commercial temperature FBG sensors are presented. Progressive irradiation campaigns with γ- ionizing radiations were also performed. Results showed that the sensors sensitivity is unchanged after each radiation exposure; while the wavelength peak exhibits a radiation-induced shift. The saturation properties of this shift are discussed.

  6. High Speed, Radiation Hard CMOS Pixel Sensors for Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad

    CMOS monolithic active pixel sensors are currently being established as the technology of choice for new generation digital imaging systems in Transmission Electron Microscopy (TEM). A careful sensor design that couples μm-level pixel pitches with high frame rate readout and radiation hardness to very high electron doses enables the fabrication of direct electron detectors that are quickly revolutionizing high-resolution TEM imaging in material science and molecular biology. This paper will review the principal characteristics of this novel technology and its advantages over conventional, optically-coupled cameras, and retrace the sensor development driven by the Transmission Electron Aberration corrected Microscope (TEAM) project at the LBNL National Center for Electron Microscopy (NCEM), illustrating in particular the imaging capabilities enabled by single electron detection at high frame rate. Further, the presentation will report on the translation of the TEAM technology to a finer feature size process, resulting in a sensor with higher spatial resolution and superior radiation tolerance currently serving as the baseline for a commercial camera system.

  7. Radiation hardness of SiC subjected to alternating irradiation and annealing

    SciTech Connect

    Ivanov, A. M. Strokan, N. B.; Lebedev, A. A.

    2008-12-15

    Effect of the cycle 'introduction of defects, annealing, and repeated introduction of defects' on the SiC properties has been studied by means of nuclear spectrometry for an example of degradation of characteristics of a p-n nuclear radiation detector. The defects were introduced by irradiation with 8-MeV protons in two equal fluences of 3 x 10 14 cm{sup -2}. The total fluence of 6 x 10{sup 14} cm{sup -2} corresponded to an introduction of 2.4 x 10 17 cm{sup -3} primary knocked-out atoms. The annealing was made in two stages, each 1 h long, at temperatures of 600 and 700 {sup o}C. The detectors were tested with 5.4-MeV {alpha} particles, with the charge collection efficiency and specific features of the amplitude spectrum determined. The measurements were performed in the temperature range of 20-250 deg. C. It was shown that the effect of the first irradiation and the subsequent annealing does not significantly change the radiation hardness of SiC. The effective concentration of centers introduced in the course of the second irradiation (at the same fluence) is higher by a factor of 1.2. The nonequivalence of the fluences can also be attributed to the effect of the high total proton fluence of 6 x 10{sup 14} cm{sup -2}.

  8. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  9. PASSIVATION OF SEMICONDUCTOR SURFACES FOR IMPROVED RADIATION DETECTORS: X-RAY PHOTOEMISSION ANALYSIS

    SciTech Connect

    Nelson, A; Conway, A; Reinhardt, C; Ferreira, J; Nikolic, R; Payne, S

    2007-12-10

    Surface passivation of device-grade radiation detector materials was investigated using x-ray photoelectron spectroscopy in combination with transport property measurements before and after various chemical treatments. Specifically Br-MeOH (2% Br), KOH with NH{sub 4}F/H{sub 2}O{sub 2} and NH{sub 4}OH solutions were used to etch, reduce and oxidize the surface of Cd{sub (1-x)}Zn{sub x}Te semiconductor crystals. Scanning electron microscopy was used to evaluate the resultant microscopic surface morphology. Angle-resolved high-resolution photoemission measurements on the valence band electronic structure and core lines were used to evaluate the surface chemistry of the chemically treated surfaces. Metal overlayers were then deposited on these chemically treated surfaces and the I-V characteristics measured. The measurements were correlated to understand the effect of interface chemistry on the electronic structure at these interfaces with the goal of optimizing the Schottky barrier height for improved radiation detector devices.

  10. A metal-oxide-semiconductor radiation dosimeter with a thick and defect-rich oxide layer

    NASA Astrophysics Data System (ADS)

    Liu, Hongrui; Yang, Yuhao; Zhang, Jinwen

    2016-04-01

    Enhancing the density of defects in the oxide layer is the main factor in improving the sensitivity of a metal-oxide-semiconductor (MOS) radiation dosimeter. This paper reports a novel MOS dosimeter with a very thick and defect-rich oxide layer fabricated by MEMS technology. The category of defects in SiO2 and their possible effect on the radiation dose sensing was analyzed. Then, we proposed combining deep-reactive-ion etching, thermal oxidation and low pressure chemical vapor deposition to realize an oxide layer containing multiple and large interfaces which can increase defects significantly. The trench-and-beam structure of silicon was considered in detail. The fabrication process was developed for obtaining a thick and compact MEMS-made SiO2. Our devices were irradiated by γ-rays of 60Co at 2 Gy per minute for 2 h and a thermally stimulated current (TSC) method was used to determine the readout of the dosimeters. Results show that there is a peak current of about 450 nA, indicating a total TSC charge of 158 μC and sensitivity of 1.1 μC mm-3·Gy, which is 40 times the sensitivity of previous MOS dosimeters.

  11. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  12. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  13. Tests of Radiation-Hard Silicon Microstrip Sensors for CMS in S-LHC

    SciTech Connect

    Luukka, Panja; Maenpaa, Teppo; Tuovinen, Esa; Spiegel, Lenny; Flight, Robert; /Rochester U.

    2011-02-21

    The tests are to study the performance of various silicon microstrip sensors that are sufficiently radiation-hard to be considered as candidates for the CMS outer (R > 25cm) tracker in the second phase of the currently envisioned S-LHC upgrade. The main goal of the beam test is to test Float Zone (FZ) and Magnetic Czochralski (MCz) silicon sensors that have been procured from Hamamatsu by the CMS collaboration as possible replacements for the CMS outer tracker for phase 2 operations. The detectors under test (DUT) will be isntalled in a cold box that contains 10 slots for modules based on CMS Tracker hybrids. Slots 1-4 and 7-10 are occupied by reference planes and slots 5 and 6 are reserved for DUTs. The box is cooled by Peltier elements in thermal contact with the top and bottom aluminum baseplates and is typically operated at around -25 C. A PCI based version of the CMS DAQ is used to read out the 10 slots based on triggers provided by beam scintillation counters. Given the low rate of beam particles the hybrid APVs will be operated in Peak mode, which maximizes the signal-to-noise performance of the readout chips. The internal clock operates at the LHC frequency of 40 MHz.

  14. Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.

    2012-01-01

    We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.

  15. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  16. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  17. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  18. Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.

    2014-06-01

    The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.

  19. Non-radiative relaxation and rectification behavior of metal/semiconductor tetrapod heterostructures

    SciTech Connect

    Kanta Haldar, Krishna; Kundu, Simanta; Patra, Amitava

    2014-02-10

    The metal-semiconductor hetero-structures have recently emerged as functional materials for their potential applications in the areas of photonic, optoelectronic, and other fields. Here, we discuss the structural characterization of Au/CdSe tetrapod hetero-structures by using high-resolution transmission electron microscope, high angle annular dark field-scanning transmission electron microscopic, and X-ray diffraction. The blue shifting of the plasmonic band and red shifting of the excitonic band suggest a strong surface plasmon-exciton interaction between Au and CdSe in Au/CdSe tetrapod heterostructure. A significant photoluminescence quenching (83.4%) of CdSe nanorod (NR) is observed in the presence of Au nanoparticle in Au/CdSe tetrapod heterostructure. The radiative and nonradiative decay rates of CdSe nanorods are found to be modified in Au/CdSe tetrapod structures and the nonradiative rate changes from 1.91 × 10{sup 7} s{sup −1} to 9.33 × 10{sup 9} s{sup −1} for CdSe NR to Au/CdSe tetrapod structure, respectively. Current-voltage characteristics of Au/CdSe heterostructure exhibit the rectification property with a threshold voltage of about 0.85 V and the rectifying ratio is 140 which can open up avenues for developing challenging devices.

  20. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  1. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  2. Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.

    1994-01-01

    In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.

  3. Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.

    1991-01-01

    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.

  4. Influence of gamma radiation on morphology structure, electrochemical corrosion behavior and hardness of Ni-Cr based alloys

    NASA Astrophysics Data System (ADS)

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-Fallalb, Abeer A.

    This study evaluates the effects of gamma radiation on structure, electrochemical corrosion behavior and Vickers hardness of commercial dental Nikkeli-Kromi-Polttosekoitus [Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn)] alloy. The corrosion rate of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) alloy with 0.5 M HCl is increased with increasing the exposure rate of gamma radiation. The corrosion resistance of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) is varied and reaches a minimum value at 30 KGy. The corrosion potential value also is varied and reaches its highest value at 30 KGy. The Vickers hardness value of Ni65.2Cr22.5Mo9.5X2.8 (X=Nb, Si, Fe and Mn) alloy is decreased by increasing the gamma radiation dose. Also it is obvious from our results that the effects of gamma radiation at the surface are much higher as compared with deeper parts and the structure of the alloy is changed due to its exposure to gamma radiation.

  5. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  6. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2. PMID:25089414

  7. The low Earth orbit radiation environment and its impact on the prompt background of hard x-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Fioretti, V.; Bulgarelli, A.; Malaguti, G.; Bianchin, V.; Trifoglio, M.; Gianotti, F.

    2012-07-01

    The background minimization is a science-driven necessity in order to reach deep sensitivity levels in the hard X-ray band, one of the key scientific requirements for hard X-ray telescopes (e.g. NuSTAR, ASTRO-H). It requires a careful modeling of the radiation environment and new concepts of shielding systems. We exploit the Bologna Geant4 Multi-Mission Simulator (BoGEMMS) features to evaluate the impact of the Low Earth Orbit (LEO) radiation environment on the prompt background level for a hybrid Si/CdTe soft and hard X-ray detection assembly and a combined active and passive shielding system. For each class of particles, the spectral distribution of the background flux is simulated, exploring the effect of different materials (plastic vs inorganic active scintillator) and configurations (passive absorbers enclosing or surrounded by the active shielding) on the background count rate. While protons are efficiently removed by the active shielding, an external passive shielding causes the albedo electrons and positrons to be the primary source of background. Albedo neutrons are instead weakly interactive with the active shielding, and they cause an intense background level below 10 keV via elastic scattering. The best shielding configuration in terms of background and active shielding count rates is given by an inorganic scintillator placed inside the passive layers, with the addition of passive material to absorb the intense fluorescence lines of the active shielding and avoid escape peaks on the CdTe detector.

  8. The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films [review article

    NASA Astrophysics Data System (ADS)

    Lamberti, C.

    2004-05-01

    In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Å) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10 14 atoms/cm 2. Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  10. RADECS Short Course Section 4 Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian

    2003-01-01

    Contents include the following: Introduction. Programmatic aspects of RHA. RHA componens: requirements and specifications; mission radiation environment; and parts selection and radiation tolerance. Analysis at the function/subsystem/system level: TID/DD; SEE. Conclusion.

  11. Effects of quenching, irradiation, and annealing processes on the radiation hardness of silica fiber cladding materials (I)

    NASA Astrophysics Data System (ADS)

    Wen, Jianxiang; Gong, Renxiang; Xiao, Zhongyin; Luo, Wenyun; Wu, Wenkai; Luo, Yanhua; Peng, Gang-ding; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun

    2016-07-01

    Silica optical fiber cladding materials were experimentally treated by a series of processes. The treatments involved quenching, irradiation, followed by annealing and subsequent re-irradiation, and they were conducted in order to improve the radiation hardness. The microstructural properties of the treated materials were subsequently investigated. Following the treatment of the optical fiber cladding materials, the results from the electron spin resonance (ESR) analysis demonstrated that there was a significant decrease in the radiation-induced defect structures. The ESR signals became significantly weaker when the samples were annealed at 1000 °C in combination with re-irradiation. In addition, the microstructure changes within the silica optical fiber cladding material were also analyzed using Raman spectroscopy. The experimental results demonstrate that the Sisbnd Osbnd Si bending vibrations at ω3 = 800-820 cm-1 and ω4 = 1000-1200 cm-1 (with longitudinal optical (LO) and transverse optical (TO) splitting bands) were relatively unaffected by the quenching, irradiation, and annealing treatments. In particular, the annealing process resulted in the disappearance of the defect centers; however, the LO and TO modes at the ω3 and ω4 bands were relatively unchanged. With the additional support of the ESR test results, we can conclude that the combined treatment processes can significantly enhance the radiation hardness properties of the optical fiber cladding materials.

  12. Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

    PubMed

    Suzuki, Motohiro

    2014-11-01

    X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning

  13. Enhanced Total Ionizing Dose Hardness of Deep Sub-Micron Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors by Applying Larger Back-Gate Voltage Stress

    NASA Astrophysics Data System (ADS)

    Zheng, Qi-Wen; Cui, Jiang-Wei; Yu, Xue-Feng; Guo, Qi; Zhou, Hang; Ren, Di-Yuan

    2014-12-01

    The larger back-gate voltage stress is applied on 130 nm partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors isolated by shallow trench isolation. The experimental results show that the back-gate sub-threshold hump of the device is eliminated by stress. This observed behavior is caused by the high electric field in the oxide near the bottom corner of the silicon island. The total ionizing dose hardness of devices with pre back-gate stress is enhanced by the interface states induced by stress.

  14. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  15. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  16. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines. PMID:26724009

  17. Radiation Hardness Assurance Issues Associated with COTS in JPL Flight Systems: The Challenge of Europa

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.

    1999-01-01

    With the decreasing availability of radiation hardened electronics and the new NASA paradigm of faster, more aggressive and less expensive space missions, there has been an increasing emphasis on using high performance commercial microelectronic parts and circuits in NASA spacecraft.

  18. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  19. A Radiation-Hard Silicon Drift Detector Array for Extraterrestrial Element Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Chen, Wei; De Geronimo, Gianluigi; Keister, Jeff; Li, Shaouri; Li, Zhen; Siddons, David P.; Smith, Graham

    2011-01-01

    Measurement of x-rays from the surface of objects can tell us about the chemical composition Absorption of radiation causes characteristic fluorescence from material being irradiated. By measuring the spectrum of the radiation and identifying lines in the spectrum, the emitting element (s) can be identified. This technique works for any object that has no absorbing atmosphere and significant surface irradiation : Our Moon, the icy moons of Jupiter, the moons of Mars, the planet Mercury, Asteroids and Comets

  20. Radiation-hard analog-to-digital converters for space and strategic applications

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Dantas, A. R. V.

    1985-01-01

    During the course of the Jet Propulsion Laboratory's program to study radiation-hardened analog-to-digital converters (ADCs), numerous milestones have been reached in manufacturers' awareness and technology development and transfer, as well as in user awareness of these developments. The testing of ADCs has also continued with twenty different ADCs from seven manufacturers, all tested for total radiation dose and three tested for neutron effects. Results from these tests are reported.

  1. Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter.

    PubMed

    Soubra, M; Cygler, J; Mackay, G

    1994-04-01

    A new type of direct reading semiconductor dosimeter has been investigated as a radiation detector for photon and electron therapy beams of various energies. The operation of this device is based on the measurement of the threshold voltage shift in a custom-built metal oxide-silicon semiconductor field effect transistor (MOSFET). This voltage is a linear function of absorbed dose. The extent of the linearity region is dependent on the voltage controlled operation during irradiation. Operating two MOSFETS at two different biases simultaneously during irradiation will result in sensitivity (V/Gy) reproducibility better than +/- 3% over a range in dose of 100 Gy and at a dose per fraction greater than 20 x 10(-2) Gy. The modes of operation give this device many advantages, such as continuous monitoring during irradiation, immediate reading, and permanent storage of total dose after irradiation. The availability and ease of use of these MOSFET detectors make them very promising in clinical dosimetry. PMID:8058024

  2. Low-mass, intrinsically-hard high temperature radiator. Final report, Phase I

    SciTech Connect

    1990-07-15

    This paper reports on the investigation of layered ceramic/metal composites in the design of low-mass hardened radiators for space heat rejection systems. The investigation is part of the Strategic Defence Initiative. This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. Composite materials evaluations were performed on combinations of refractory metals and ceramic powders. Fabrication experiments were performed to demonstrate weldability. Two titanium/titanium diboride composite tubes were successfully fabricated into potassium heat pipes and operated at temperatures in excess of 700C. Testing and analysis for composite tubes are described in the report. The study has verified the feasibility of using layered composites for forming thin-walled, light weight heat pipe tubes for use in hardened space radiators.

  3. Total-dose radiation effects data for semiconductor devices, volume 2

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Total ionizing dose radiation test data on integrated circuits are analyzed. Tests were performed with the electron accelerator (Dynamitron) that provides a steady state 2.5 MeV electron beam. Some radiation exposures were made with a Cobalt-60 gamma ray source. The results obtained with the Cobalt-60 source are considered an approximate measure of the radiation damage that would be incurred by an equivalent dose of electrons.

  4. Generation of hard x rays from transition radiation using high-density foils and moderate-energy electrons

    SciTech Connect

    Piestrup, M.A. ); Moran, M.J. ); Boyers, D.G.; Pincus, C.I. ); Kephart, J.O. ); Gearhart, R.A. ); Maruyama, X.K. )

    1991-03-01

    In experiments using targets consisting of many thin metal foils, we have demonstrated that a narrow, forward-directed cone of transition radiation in the 8- to 60-keV spectral range can be generated by electron beams with moderate energies (between 100 and 500 MeV). The theory suggests that high-density, moderate-atomic-number metals are the optimum foil materials and that the foil thickness can be chosen to maximize photon production within a desired spectral range. The three targets used in the experiments consisted of 10 foils of 1-{mu}m-thick gold, 40 foils of 8.5-{mu}m stainless steel, and 20 foils of 7.9-{mu}m copper. The efficiency with which hard x rays are generated, and the fact that the requisite electron-beam energies are lower by a factor of 5 to 10, make such a radiation source an attractive alternative to synchrotron radiation for applications such as medical imaging, spectroscopy, and microscopy.

  5. Improvement of the radiation hardness of a directly converting high resolution intra-oral X-ray imaging sensor

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos; Pyyhtiä, Jouni; Schulman, Tom

    2003-11-01

    The radiation tolerance of a directly converting digital intra-oral X-ray imaging sensor reported in Spartiotis et al. [Nucl. Instr. and Meth. A 501 (2003) 594] has been tested using a typical dental X-ray beam spectrum. Radiation induced degradation in the performance of the sensor which consists of CMOS signal readout circuits bump bonded to a high resistivity silicon pixel detector was observed already before a dose (in air) of 1 krad. Both increase in the leakage current of the pixel detector manufactured by Sintef, Norway and signal leakage to ground from the gate of the pixel input MOSFETs of the readout circuit were observed and measured. The sensitive part of the CMOS circuit was identified as the protection diode of the gate of the input MOSFET. After removing the gate protection diode no signal leakage was observed up to a dose of 5 krad (air) which approximately corresponds to 125.000 typical dental X-ray exposures. The radiation hardness of the silicon pixel detector was improved by using a modified oxidation process supplied by Colibrys, Switzerland. The improved pixel detectors showed no increase in the leakage current at dental doses.

  6. Radiation hard polyimide-coated FBG optical sensors for relative humidity monitoring in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Makovec, A.; Berruti, G.; Consales, M.; Giordano, M.; Petagna, P.; Buontempo, S.; Breglio, G.; Szillasi, Z.; Beni, N.; Cusano, A.

    2014-03-01

    This work investigates the performance and the radiation hardness capability of optical thermo-hygrometers based on Fibre Bragg Gratings (FBG) for humidity monitoring in the Compact Muon Solenoid (CMS), one of the four experiments running at CERN in Geneva. A thorough campaign of characterization was performed on 80 specially produced Polyimide-coated RH FBG sensors and 80 commercial temperature FBG sensors. Sensitivity, repeatability and accuracy were studied on the whole batch, putting in evidence the limits of the sensors, but also showing that they can be used in very dry conditions. In order to extract the humidity measurements from the sensor readings, commercial temperature FBG sensors were characterized in the range of interest. Irradiation campaigns with ionizing radiation (γ-rays from a Co60 source) at incremental absorbed doses (up to 210 kGy for the T sensors and up to 90 kGy for the RH sensors) were performed on sample of T and RH-Sensors. The results show that the sensitivity of the sensors is unchanged up to the level attained of the absorbed dose, while the natural wavelength peak of each sensor exhibits a radiation-induced shift (signal offset). The saturation properties of this shift are discussed.

  7. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  8. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  9. Irradiate-anneal screening of total dose effects in semiconductor devices. [radiation hardening of spacecraft components of Mariner spacecraft

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.

  10. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.

    PubMed

    Kafi, M; Salar Elahi, A; Ghoranneviss, M; Ghanbari, M R; Salem, M K

    2016-09-01

    In a tokamak with a toroidal electric field, electrons that exceed the critical velocity are freely accelerated and can reach very high energies. These so-called `runaway electrons' can cause severe damage to the vacuum vessel and are a dangerous source of hard X-rays. Here the effect of toroidal electric and magnetic field changes on the characteristics of runaway electrons is reported. A possible technique for runaways diagnosis is the detection of hard X-ray radiation; for this purpose, a scintillator (NaI) was used. Because of the high loop voltage at the beginning of a plasma, this investigation was carried out on toroidal electric field changes in the first 5 ms interval from the beginning of the plasma. In addition, the toroidal magnetic field was monitored for the whole discharge time. The results indicate that with increasing toroidal electric field the mean energy of runaway electrons rises, and also an increase in the toroidal magnetic field can result in a decrease in intensity of magnetohydrodynamic oscillations which means that for both conditions more of these high-energy electrons will be generated. PMID:27577779

  11. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  12. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project.

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-02-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with the AMS H35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  13. A self-biased neutron detector based on an SiC semiconductor for a harsh environment.

    PubMed

    Ha, Jang Ho; Kang, Sang Mook; Park, Se Hwan; Kim, Han Soo; Lee, Nam Ho; Song, Tae-Yung

    2009-01-01

    Neutron detector based on radiation-hard semiconductor materials like SiC, diamond and AlN has recently emerged as an attractive device for an in-core reactor neutron flux monitoring, a spent fuel characterization, and a home land security application. For the purpose of field measurement activity, a radiation detector having a low-power consumption, a mechanical stability and a radiation hardness is required. Our research was focused on the development of a radiation-resistive neutron semiconductor detector based on a wide band-gap SiC semiconductor. And also it will be operated at a zero-biased voltage using a strong internal electric field. The charge collection efficiency (CCE) was over 80% when the biased voltage was zero. When the biased voltage was applied above 20V, the charge collection efficiency reached 100%. PMID:19362006

  14. Radiation hardness test of the Philips Digital Photon Counter with proton beam

    NASA Astrophysics Data System (ADS)

    Barnyakov, M. Yu.; Frach, T.; Kononov, S. A.; Kuyanov, I. A.; Prisekin, V. G.

    2016-07-01

    The Philips Digital Photon Counter (DPC) is a silicon photomultiplier combining Geiger-mode avalanche photodiodes (G-APD) and dedicated readout electronics in the same chip. The DPC is a promising photon sensor for future RICH detectors. A known issue of G-APD is its sensitivity to radiation damage. Two DPC sensors were tested using 800 MeV/c protons. An increase of dark counting rate with proton fluence up to 4 ·1011cm-2 has been measured.

  15. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  16. X-rays and hard ultraviolet radiation from the first galaxies: ionization bubbles and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Benson, Andrew

    2011-11-01

    The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard ultraviolet (UV) radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual H II, He II and He III regions around early galaxies with first stars and/or quasi-stellar object populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at z˜ 10-20, contributing relatively modest increases to IGM ionization and heating up to ˜103-105 K in IGM temperatures. We also calculate the 21-cm signal expected from a number of scenarios with metal-free starbursts and quasars in varying combinations and masses at these redshifts. The peak values for the spin temperature reach ˜104-105 K in such cases. The maximum values for the 21-cm brightness temperature are around 30-40 mK in emission, while the net values of the 21-cm absorption signal range from ˜a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21-cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifests. This difference is time-dependent and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore 'blur' the 21-cm signature of the percolation of ionized bubbles around early haloes (depending on whether a cosmic X-ray or UV background is built up first) and affect the interpretation of 21-cm data constraints on reionization.

  17. Performance of Multilayer Monochromators for Hard X-Ray Imaging with Coherent Synchrotron Radiation

    SciTech Connect

    Dietsch, R.; Holz, T.; Kraemer, M.; Weissbach, D.; Rack, A.; Weitkamp, T.; Morawe, Ch.; Cloetens, P.; Ziegler, E.; Riotte, M.; Rack, T.; Siewert, F.

    2011-09-09

    We present a study in which multilayers of different periodicity (from 2.5 to 5.5 nm), composition (W/Si, Mo/Si, Pd/B{sub 4}C, Ru/B{sub 4}C), and numbers of layers have been compared. Particularly, we chose mirrors with similar intrinsic quality (roughness and reflectivity) to study their performance (flatness and coherence of the outgoing beam) as monochromators in synchrotron radiography. The results indicate that material composition is the dominating factor for the performance. This is important to consider for future developments in synchrotron-based hard x-ray imaging methods. In these techniques, multilayer monochromators are popular because of their good tradeoff between spectral bandwidth and photon flux density of the outgoing beam, but sufficient homogeneity and preservation of the coherent properties of the reflected beam are major concerns. The experimental results we collected may help scientists and engineers specify multilayer monochromators and can contribute to better exploitation of the advantages of multilayer monochromators in microtomography and other full-field imaging techniques.

  18. Proton radiation hardness of single-nanowire transistors using robust organic gate nanodielectrics

    SciTech Connect

    Ju, Sanghyun; Lee, Kangho; Janes, David B.; Dwivedi, Ramesh C.; Baffour-Awuah, Habibah; Wilkins, R.; Yoon, Myung-Han; Facchetti, Antonio; Mark, Tobin J.

    2006-08-14

    In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60 nm SiO{sub 2} gate insulator. A total-radiation dose study was performed using 10 MeV protons at doses of 5.71 and 285 krad(Si). The threshold voltage (V{sub th}) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, V{sub th} parameters of the SiO{sub 2}-based ZnO NW-FETs display average shifts of {approx}-4.0 and {approx}-10.9 V for 5.71 and 285 krad(Si) H{sup +} irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H{sup +} irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H{sup +} irradiation are significantly lower than those for the corresponding SiO{sub 2} gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays.

  19. Generation of radicals in hard biological tissues under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  20. Design of a radiation-hard optical fiber Bragg grating temperature sensor

    NASA Astrophysics Data System (ADS)

    Gusarov, Andrei I.; Starodubov, Dmitry S.; Berghmans, Francis; Deparis, Olivier; Defosse, Yves; Fernandez, Alberto F.; Decreton, Marc C.; Megret, Patrice; Blondel, Michel

    1999-12-01

    Optical fiber sensors (OFSs) offer numerous advantages, which include immunity to electromagnetic interference, intrinsic safety, small size, a possibly high sensitivity, multiplexing capabilities, and the possibility of remote interrogation. However, OFSs have a relatively low penetration in the commercial market, which is still dominated by standard electromechanical sensors. Nuclear environments are an example where particular OFSs might have a distinct superiority in the competition, but the feasibility of using OFSs in radiation environments still needs to be assessed. In the present paper we report on irradiation experiments performed to provide a sound basis for the design of a fiber Bragg grating based sensor capable to operate even under high total dose exposure.

  1. Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications

    NASA Astrophysics Data System (ADS)

    Mu, Yifei; Zhao, Ce Zhou; Qi, Yanfei; Lam, Sang; Zhao, Chun; Lu, Qifeng; Cai, Yutao; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2016-04-01

    The construction of a turnkey real-time and on-site radiation response testing system for semiconductor devices is reported. Components of an on-site radiation response probe station, which contains a 1.11 GBq Cs137 gamma (γ)-ray source, and equipment of a real-time measurement system are described in detail for the construction of the whole system. The real-time measurement system includes a conventional capacitance-voltage (C-V) and stress module, a pulse C-V and stress module, a conventional current-voltage (I-V) and stress module, a pulse I-V and stress module, a DC on-the-fly (OTF) module and a pulse OTF module. Electrical characteristics of MOS capacitors or MOSFET devices are measured by each module integrated in the probe station under continuous γ-ray exposure and the measurement results are presented. The dose rates of different gate dielectrics are calculated by a novel calculation model based on the Cs137 γ-ray source placed in the probe station. For the sake of operators' safety, an equivalent dose rate of 70 nSv/h at a given operation distance is indicated by a dose attenuation model in the experimental environment. HfO2 thin films formed by atomic layer deposition are employed to investigate the radiation response of the high-κ material by using the conventional C-V and pulse C-V modules. The irradiation exposure of the sample is carried out with a dose rate of 0.175 rad/s and ±1 V bias in the radiation response testing system. Analysis of flat-band voltage shifts (ΔVFB) of the MOS capacitors suggests that the on-site and real-time/pulse measurements detect more serious degradation of the HfO2 thin films compared with the off-site irradiation and conventional measurement techniques.

  2. Understanding the role of buried interface charges in a metal-oxide-semiconductor stack of Ti/Al{sub 2}O{sub 3}/Si using hard x-ray photoelectron spectroscopy

    SciTech Connect

    Church, J. R.; Opila, R. L.; Weiland, C.

    2015-04-27

    Hard X-ray photoelectron spectroscopy (HAXPES) analyses were carried out on metal-oxide-semiconductor (MOS) samples consisting of Si, thick and thin Al{sub 2}O{sub 3}, and a Ti metal cap. Using Si 1s and C 1s core levels for an energy reference, the Al 1s and Si 1s spectra were analyzed to reveal information about the location and roles of charges throughout the MOS layers. With different oxide thicknesses (2 nm and 23 nm), the depth sensitivity of HAXPES is exploited to probe different regions in the MOS structure. Post Ti deposition results indicated unexpected band alignment values between the thin and thick films, which are explained by the behavior of mobile charge within the Al{sub 2}O{sub 3} layer.

  3. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  4. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  5. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    NASA Astrophysics Data System (ADS)

    Miucci, A.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; La Rosa, A.; Muenstermann, D.; George, M.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J. C.; Liu, J.; Barbero, M.; Rozanov, A.; HV-CMOS Collaboration

    2014-05-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown.

  6. The determination of minority carrier lifetimes in direct band-gap semiconductors by monitoring intensity-modulated luminescence radiation

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1985-01-01

    When an extrinsic, direct band-gap semiconductor sample is irradiated by photons of an energy higher than the energy of the band gap between valence and conduction bands, excess electron-hole pairs are generated which, while diffusing through the sample, produce luminescence via radiative recombination. If, furthermore, the intensity of the impinging beam of photons is modulated sinusoidally, the luminescence radiation escaping from the sample will be phase shifted with respect to the original photon beam in a characteristic way. It will be shown that by measuring the phase shift at different modulation frequencies, the Shockley-Read-Hall lifetime of minority carriers may be ascertained. The method is nondestructive inasmuch as there is no need to fabricate p-n junctions or Ohmic contacts, nor is it necessary to remove already existing Ohmic contacts of angle lap the surface, etc., procedures often needed when determining lifetimes with the scanning electron microscope (in which case a p-n junction must be present).

  7. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  8. Design of Si-photonic structures to evaluate their radiation hardness dependence on design parameters

    NASA Astrophysics Data System (ADS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Pezzullo, G.; Seif El Nasr-Storey, S.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-01-01

    Particle detectors for future experiments at the HL-LHC will require new optical data transmitters that can provide high data rates and be resistant against high levels of radiation. Furthermore, new design paths for future optical readout systems for HL-LHC could be opened if there was a possibility to integrate the optical components with their driving electronics and possibly also the silicon particle sensors themselves. All these functionalities could potentially be combined in the silicon photonics technology which currently receives a lot of attention for conventional optical link systems. Silicon photonic test chips were designed in order to assess the suitability of this technology for deployment in high-energy physics experiments. The chips contain custom-designed Mach-Zehnder modulators, pre-designed ``building-block'' modulators, photodiodes and various other passive test structures. The simulation and design flow of the custom designed Mach-Zehnder modulators and some first measurement results of the chips are presented.

  9. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  10. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  11. Change in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.

    1977-01-01

    The variations of the thermoelectronic work function of titanium dioxide, submitted to an ultraviolet or visible and infrared radiation, in the presence of oxygen, are studied by the vibrating condenser method. It is shown that during the ultraviolet irradiation, a desorption of a first species of oxygen simultaneously occurs with the adsorption of a second species of oxygen and that this phenomenon is found for any structure of TiO2 (anatase or rutile) any texture, oxygen pressure, radiation intensity, and nature of introduced dopes.

  12. Investigation of temperature dependence of semiconductor detectors used in medicine for radiation measurements

    NASA Astrophysics Data System (ADS)

    Ozleyis Altunkok, Simay; Tuncel, Nina; Ucar, Nazim

    2015-07-01

    In this study, the temperature dependence of p-type semiconductor diodes that are a part of in-vivo dosimetry system was assessed in Co-60 photon energy. The collimator and gantry angle on zero degree, SSD 100 cm, field size 20x20 cm2 was selected. The IBA EDP-5, EDP-10 and EDP-20 diode types that included in this study have different thickness of build-up material so the depth of measurements at water equivalent phantom by FC65-p ion chamber was selected at 5, 10 and 20 mm. Along the process the room and phantom temperature was measured and recorded (19°C). The special water filled PMMA phantom was used for diode set-up on its surface and a thermometer for determine phantom temperature was employed. Each type of diodes irradiated separately for one minute and the signal to dose sensitivity and calibration was performed at room temperature (19°C) by OmniPro-InViDos software with DPD-12 electrometer. Examination was repeated from 33°C to 20°C temperatures. The temperature correction factors were found from slope of the linear drawings for each diode types. The obtained correction factor for EDP-5 and EDP-10 was 0.29 %°C/cGy and 0.30 %°C/cGy respectively, that higher than recommended factor (%0.25°C/cGy). While the more fluctuation for EDP-20 was realized.

  13. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (< 5 W) Thermal Instrument (TI) concept for measuring possible warm thermal anomalies on Europa s cold surface caused by recent (< 10,000 years) eruptive activity. Regions of anomalously high heat flow will be identified by thermal mapping using a nadir pointing, push-broom filter radiometer that provides far-IR imagery in two broad band spectral wavelength regions, 8-20 m and 20-100 m, for surface temperature measurements with better than a 2 K accuracy and a spatial resolution of 250 m/pixel obtained from a 100 Km orbit. The temperature accuracy permits a search for elevated temperatures when combined with albedo information. The spatial resolution is sufficient to resolve Europa's larger cracks and ridge axial valleys. In order to accomplish the thermal mapping, the TI uses sensitive thermopile arrays that are readout by a custom designed low-noise Multi-Channel Digitizer (MCD) ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  14. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  15. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mellado, B.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Solvyanov, O.

    2015-06-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs but a breakdown in the light transfer between base and fluor dopants is observed. For doses of 8 MGy to 80 MGy, structural damage leads to hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss as dose is increased.

  16. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  17. Variation in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.

    1977-01-01

    The study of the variation of thermoelectronic work function potential of TiO2 in the presence of isobutane shows that this gas is not adsorbed on this solid, in either the presence or the absence of ultraviolet radiation. These results, as well as those obtained in a previous work, lead to the mechanism of the photo-oxidation of isobutane at room temperature, in which excited atomic oxygen is the active species.

  18. Total-dose radiation effects data for semiconductor devices, volume 3

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-01-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  19. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    PubMed Central

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Alonso-Mori, R.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Bergmann, U.

    2013-01-01

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of \\documentclass[12pt]{minimal}\\begin{document}$\\frac{E}{\\Delta E} \\sim 10\\,000$\\end{document}EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments. PMID:23742527

  20. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  1. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  2. Radiative recombination model of degenerate semiconductor and photoluminescence properties of 3C-SiC by P and N doping

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Fang, Xiao-Yong; Li, Ya-Qin; Yin, Ai-Cha; Jin, Hai-Bo; Yuan, Jie; Cao, Mao-Sheng

    2012-08-01

    Based on radiative recombination theory, we have established a recombination model that can be used to calculate photoluminescence (PL) intensity for degenerate semiconductors. Using this model and density functional theory, we calculated photoluminescence excitation (PLE) and PL spectra of intrinsic 3C-SiC, P-doped SiC and N-doped SiC. The violet or near ultraviolet PLE peaks were found to be observed in PLE spectra for Sin-1PCn and SinNCn-1 (n = 4, 8, 12, and 16). Compared to intrinsic 3C-SiC, doped 3C-SiC exhibits higher PL peaks which for P-doped SiC are in the indigo spectral region, near the 3C-SiC's peak, and for N-doped SiC appear in the green. The phenomena are studied through analyses of band structure, carrier concentration, and absorption. For doped 3C-SiC, the PL properties are mainly improved by the band-gap transformation from indirect to direct and the increase in carrier concentration near the Fermi level.

  3. Time dependence of FEL-induced surface photovoltage on semiconductor interfaces measured with synchroton radiation photoemission spectroscopy

    SciTech Connect

    Marsi, M.; Delboulbe, A.; Garzella, D.

    1995-12-31

    During the last year, the first surface science experiments simultaneously using a Free Electron Laser (FEL) and Synchrotron Radiation (SR) have been performed on SuperACO at LURE (Orsay, France). These {open_quotes}two color{close_quotes} experiments studied the surface photovoltage (SPV) induced on semiconductor surfaces and interfaces by the SuperACO FEL, a storage ring FEL delivering 350 nm photons which am naturally synchronized with the SR; the SPV was measured by synchrotron radiation core-level photoemission spectroscopy on the high-resolution SU3 undulator beamline. We will describe the experimental setup, which allowed us to convey the FEL light onto the samples sitting in the SU3 experimental station by means of a series of mirrors, and show the results we obtained for prototypical systems such as Ag/GaAs(110) and Si(111) 2 x 1. The dependence of the SPV was studied in function of various parameters, changing sample doping and photon flux; but our efforts were mainly devoted to studying its dependence on the time delay between the FEL pump and the SR probe. On SuperACO, such delay can be varied between 1 and 120 ns, the limits being given by the time duration of a SR pulse and by the interval between two consecutive positron bunches, respectively. The results show a clear temporal dependence of the amount of SPV on cleaved Si surfaces, where as the Ag/GaAs(110) does not show any difference on the ns time scale. We will discuss these results in terms of the role of surface recombination in the dynamics of the photoinduced electron-hole pairs. These studies follow the evolution of the density of electrostatic charge at surfaces and interfaces on a nanosecond time scale, and might pave the way for a new series of experiments: for example, one might explore what are the physical mechanisms limiting the time response of Schottky diodes.

  4. A model for radiation-induced off-state leakage current in N-channel metal-oxide-semiconductor transistors with shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Sihao; Pei, Yunpeng; Huang, Ru; Wang, Wenhua; Liu, Wen; Xue, Shoubin; An, Xia; Tian, Jingquan; Wang, Yangyuan

    2010-01-01

    A radiation-induced leakage current model in deep submicron bulk silicon N-channel metal-oxide-semiconductor field effect transistor (NMOSFET) is proposed in this paper for circuit simulations. The model takes into account the impact of the substrate doping concentration, the angle of shallow trench isolation (STI) region, and the junction depth of source/drain, which can predict the off-state leakage current of the NMOSFET with STI region irradiated at different radiation doses. The model is verified by comparing with the experimental results. The model can be easily implemented into the circuit simulator to evaluate the impact of total ionizing dose effect on the performance of circuit.

  5. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    SciTech Connect

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold; Berding, Martha; Burger, Arnold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  6. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  7. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  8. Accompanying of parameters of color, gloss and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bardi, Marcelo Augusto Gonçalves; Machado, Luci Diva Brocardo

    2012-09-01

    In the search for alternatives to traditional paint systems solvent-based, the curing process of polymer coatings by ultraviolet light (UV) has been widely studied and discussed, especially because of their high content of solids and null emission of VOC. In UV-curing technology, organic solvents are replaced by reactive diluents, such as monomers. This paper aims to investigate variations on color, gloss and hardness of print inks cured by different UV radiation doses. The ratio pigment/clear coating was kept constant. The clear coating presented higher average values for König hardness than pigmented ones, indicating that UV-light absorption has been reduced by the presence of pigments. Besides, they have indicated a slight variation in function of cure degree for the studied radiation doses range. The gloss loss related to UV light exposition allows inferring that some degradation occurred at the surface of print ink films.

  9. Comparisons of exact results for the virtual photon contribution to single hard bremsstrahlung in radiative return for e{sup +}e{sup -} annihilation

    SciTech Connect

    Jadach, S.; Ward, B.F.L.; Yost, S.A.

    2006-04-01

    We compare fully differential exact results for the virtual photon correction to single hard photon bremsstrahlung obtained using independent calculations, both for e{sup +}e{sup -} annihilation at high-energy colliders and for radiative return applications. The results are compared using Monte Carlo evaluations of the matrix elements as well as by direct analytical evaluation of certain critical limits. Special attention is given to the issues of numerical stability and the treatment of finite-mass corrections. It is found that agreement on the order of 10{sup -5} or better is obtained over most of the range of hard photon energies, at CMS energies relevant to both high-energy collisions and radiative return experiments.

  10. Semiconductor Reliability--Another Field for Physicists.

    ERIC Educational Resources Information Center

    Derman, Samuel; Anderson, Wallace T.

    1994-01-01

    Stresses that an important industrial area is product reliability, especially for semiconductors. Suggests that physics students would benefit from training in semiconductors: the many modes of failure, radiation effects, and electrical contact problems. (MVL)