Science.gov

Sample records for radiation induced crystallinity

  1. Tryptophan Cluster Protects Human ?D-Crystallin from Ultraviolet Radiation-Induced Photoaggregation In Vitro

    PubMed Central

    Schafheimer, Nathaniel; King, Jonathan

    2013-01-01

    Exposure to ultraviolet radiation (UVR) is a significant risk factor for age-related cataract, a disease of the human lens and the most prevalent cause of blindness in the world. Cataract pathology involves protein misfolding and aggregation of the primary proteins of the lens, the crystallins. Human ?D-crystallin (H?D-Crys) is a major ?-crystallin in the nucleus of the human lens. We report here analysis of UVR-induced damage to H?D-Crys in vitro. Irradiation of solutions of recombinant H?D-Crys with UVA/UVB light produced a rise in solution turbidity due to polymerization of the monomeric crystallins into higher molecular weight aggregates. A significant fraction of this polymerized protein was covalently linked. Photoaggregation of H?D-Crys required oxygen and its rate was protein concentration and UVR dose dependent. To investigate the potential roles of individual tryptophan residues in photoaggregation, triple W:F mutants of H?D-Crys were irradiated. Surprisingly, despite reducing UVR absorbing capacity, multiple W:F H?D-Crys mutant proteins photoaggregated more quickly and extensively than wild type. The results reported here are consistent with previous studies that postulated that an energy transfer mechanism between the highly conserved pairs of tryptophan residues in H?D-Crys could be protective against UVR-induced photodamage. PMID:23683003

  2. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiations

    NASA Astrophysics Data System (ADS)

    ?uba, Václav; Pavelková, Tereza; Bárta, Jan; Gbur, Tomáš; Vlk, Martin; Zavadilová, Alena; Indrei, Jakub; Do?ekalová, Zuzana; Pospíšil, Milan; Mú?ka, Viliam

    2012-09-01

    Results on preparation of nickel, zinc, yttrium, aluminum and cobalt oxides, zinc peroxide and hydroxide, yttrium and lutetium aluminum garnets and cobalt(II) aluminate via irradiation of aqueous solutions containing soluble metal salts and radical scavengers (formate anion or propan-2-ol) are summarized in this paper. Various physico-chemical and structural properties of prepared compounds (e.g. crystallinity, specific surface area, particle size) are also reported. All used variants of radiation method are rather convenient and simple, and yield nano-scale powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particle size (ranging in tens of nm). Generally, accelerated electrons, gamma, and UV radiation yield materials with comparable properties and structural characteristics, but UV-radiation seems to be the most convenient for preparation of intricate compounds such as synthetic garnets and spinels, while ionizing radiation is better for preparation of compounds doped with foreign ions. Among discussed compounds, only zinc oxide, peroxide and hydroxide were prepared directly via irradiation. For preparation of other crystalline oxidic compounds, mild heat treatment of amorphous or weakly crystalline solid phase was necessary.

  3. Tyrosine/Cysteine Cluster Sensitizing Human ?D-Crystallin to Ultraviolet Radiation-Induced Photoaggregation in Vitro

    E-print Network

    Schafheimer, Steven Nathaniel

    Ultraviolet radiation (UVR) exposure is a major risk factor for age-related cataract, a protein-aggregation disease of the human lens often involving the major proteins of the lens, the crystallins. ?D-Crystallin (H?D-Crys) ...

  4. Tryptophan Cluster Protects Human ?D-Crystallin from Ultraviolet Radiation-Induced Photoaggregation

    E-print Network

    Schafheimer, Steven Nathaniel

    Exposure to ultraviolet radiation (UVR) is a significant risk factor for age-related cataract, a disease of the human lens and the most prevalent cause of blindness in the world. Cataract pathology involves protein misfolding ...

  5. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  6. Intense and energetic radiation from crystalline undulators

    NASA Astrophysics Data System (ADS)

    Uggerhøj, U. I.; Wistisen, T. N.

    2015-07-01

    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator (Wistisen et al., 2014), the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In the present paper we show how the radiation spectra can be tuned, using electrons and positrons of energies from 100 MeV up to 20 GeV. The latter energy is relevant for possible experiments at the FACET facility at Stanford Linear Accelerator Center (SLAC), whereas 100 MeV has been chosen to show the potentialities connected to using crystalline undulators as radiation targets for Nuclear Waste Transmutation (NWT). Energies in the few hundred MeV range are relevant for the facilities at the MAinzer MIcrotron (MAMI). For the 20 GeV case we show explicitly that quantum corrections to the emission spectrum become very significant, an effect that may be observed in the near future using the FACET beam at SLAC.

  7. UV-radiation Induced Disruption of Dry-Cavities in Human ?D-crystallin Results in Decreased Stability and Faster Unfolding

    E-print Network

    Xia, Zhen

    Age-onset cataracts are believed to be expedited by the accumulation of UV-damaged human ?D-crystallins in the eye lens. Here we show with molecular dynamics simulations that the stability of ?D-crystallin is greatly reduced ...

  8. Inducing magnetism onto the surface of a topological crystalline insulator

    E-print Network

    Assaf, Badih A.

    Inducing magnetism onto a topological crystalline insulator (TCI) has been predicted to result in several novel quantum electromagnetic effects. This is a consequence of the highly strain-sensitive band topology of such ...

  9. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    SciTech Connect

    Tang, Ming; Kossoy, Anna; Jarvinen, G. D.; Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Brinkman, Kyle; Fox, Kevin M.; Amoroso, Jake; Marra, James C.

    2014-02-03

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (~1–5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  10. Tal Carmon Radiation pressure induced

    E-print Network

    Tal Carmon Radiation pressure induced vibrations Tal Carmon RP induced vibrations RP induced #12;Tal Carmon Radiation pressure induced vibrations Tal Carmon RP induced vibrations · First proposed radiation pressure to be the reason. Who is interested in radiation pressure? #12;Tal Carmon Radiation

  11. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  12. Radiation-Induced Attenuation In Integrated Optical Materials

    NASA Astrophysics Data System (ADS)

    Evans, Bruce D.

    1990-01-01

    Three materials commonly employed in opto-electronic intregrated circuits were evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommnications windows near 850, 1300 and 1550 nm was <0.1 dB/cm.

  13. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  14. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    PubMed

    Liu, Yi; Wang, Chao; Wei, Yujie; Zhu, Leyi; Li, Dongguo; Jiang, J Samuel; Markovic, Nenad M; Stamenkovic, Vojislav R; Sun, Shouheng

    2011-04-13

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials. PMID:21355537

  15. Radiation-induced schwannomas

    SciTech Connect

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  16. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend themselves to prolonged study, many tend to eliminate or rearrange the target chromosome until it is too small for further rearrangement. The observed frequency of induced instability by low and high linear-energy-transfer radiations greatly exceeds that observed for nuclear gene mutations at similar doses; hence, mutation of a gene or gene family is unlikely to be the initiating mechanism. Once initiated however, there is evidence in the GM10115 model system that it can be perpetuated over time by dicentric chromosome formation followed by bridge breakage fusion cycles (Marder and Morgan 1993), as well as recombinational events involving interstitial telomere like repeat sequences (Day et al. 1998). There is also increasing evidence that inflammatory type reactions (Lorimore et al. 2001, Lorimore and Wright 2003), presumably involving reactive oxygen and nitrogen species as well as cytokines and chemokines might be involved in driving the ustable phenotype (Liaikis et al. 2007, Hei et al. 2008). To this end there is very convincing evidence for such reactions being involved in another non-targeted effect associated with ionizing radiation, the bystander effect (Hei et al. 2008). Clearly the link between induced instability and bystander effects suggests common processes and inflammatory type reactions will likely be the subject of future investigation.

  17. Shear-induced conformation change in ?-crystalline nylon6

    NASA Astrophysics Data System (ADS)

    Arabnejad, Saeid; Manzhos, Sergei; He, Chaobin; Shim, V. P. W.

    2014-12-01

    A study of shear deformation of ?-crystalline nylon6 is undertaken, using dispersion-corrected density functional theory. The shear stress-strain relationship and shear strength for interlayer shear deformation are computed. A conformation change induced by shear is identified along twinning deformation, whereby the conformation of chains, specifically the location of non-H-bonded hydrogen atoms, changes continuously. This paves a way for the modulation of properties of this group of materials by small shear deformation, if the non-H-bonded hydrogens are chemically substituted to form non-equivalent conformations when deformed.

  18. Orientation dependence of shock-induced melting in crystalline aluminum

    NASA Astrophysics Data System (ADS)

    Oleynik, Ivan; Budzevich, Mikalai; Zhakhovsky, Vasily; White, Carter

    2012-02-01

    The complete evolution of metastable states during shock-induced solid-liquid phase transitions in crystalline aluminum was observed in moving window molecular dynamics simulations. The orientation-dependent transition pathways towards orientation-independent final equilibrium states include both ``cold melting'' followed by resolidification in [110]- and [111]-oriented shock waves, and crystal overheating followed by melting in [100] shock waves. Such orientation-dependent dynamics of solid-liquid phase transitions takes place within an extended zone up to hundreds of nanometers behind the shock front, which makes it accessible for experimental observation.

  19. Induced seismicity in crystalline basement: Understanding the reasons

    NASA Astrophysics Data System (ADS)

    Schumacher, Sandra

    2014-05-01

    In recent years, cases of induced seismicity have been reported for geothermal wells in aseismic regions. The use of geothermal energy naturally influences the reservoir as heat and water are withdrawn. However, most geothermal plants reinject the water so that pressure levels within the reservoir remain more or less stable. Despite this and despite low injection pressures, some of these reinjecting plants experience induced seismicity. One example is the well Unterhaching Gt2, close to Munich, Germany. Here, the reservoir is an approximately 500 m thick karstified limestone layer of the Upper Jurassic, in which extraction and reinjection take place. Flow rates of more than 100 l/s have been established with reinjection pressures below 10 bar. Nevertheless, induced seismicity occurs. Most of the events are below 1.0 but some reach up to 2.4 on the Richter scale. Due to their location, they can without any doubt be attributed to the reinjection process. However, the origin of the quakes is not within the reservoir but located in the crystalline basement. As the reinjection well cuts through a steeply inclined fault, a hydraulic connection between reservoir, borehole and basement is given if a hydraulically open fault is assumed. So far, it was impossible to find a correlation between the occurrence of induced seismicity and operating parameters of the geothermal plant like flow rate, injection pressure, or temperature. Therefore, thermo-hydraulic-mechanical numerical models of the subsurface have been developed to understand the interaction between different parameters and to possibly identify critical thresholds for the initiation of induced seismicity. Due to the large scale of the model, several kilometers in each direction, an equivalent porosity approach has been chosen for the hydraulic modeling of the karstic limestone layer. Flow within in the fault is also described by Darcy's law as the fault is not assumed to be a surface but a volume. This assumption is based on the analysis of seismic data of this region, which indicate a zone of damaged rock several tens of meters in diameter. Because of this approach to model the hydraulics, the pore pressure within the fault will most likely be the determining factor for the onset of induced seismicity. Therefore, it is of high interest to analyse the influence of the operating parameters of the geothermal plant on this parameter.

  20. Errors inducing radiation overdoses.

    PubMed

    Grammaticos, Philip C

    2013-01-01

    There is no doubt that equipments exposing radiation and used for therapeutic purposes should be often checked for possibly administering radiation overdoses to the patients. Technologists, radiation safety officers, radiologists, medical physicists, healthcare providers and administration should take proper care on this issue. "We must be beneficial and not harmful to the patients", according to the Hippocratic doctrine. Cases of radiation overdose are often reported. A series of cases of radiation overdoses have recently been reported. Doctors who were responsible, received heavy punishments. It is much better to prevent than to treat an error or a disease. A Personal Smart Card or Score Card has been suggested for every patient undergoing therapeutic and/or diagnostic procedures by the use of radiation. Taxonomy may also help. PMID:24251304

  1. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  2. Specific phosphorylation of ?A-crystallin is required for the ?A-crystallin-induced protection of astrocytes against staurosporine and C2-ceramide toxicity.

    PubMed

    Li, Rongyu; Zhu, Zhihui; Reiser, Georg

    2012-05-01

    We previously reported that ?A-crystallin and protease-activated receptor are involved in protection of astrocytes against C2-ceramide- and staurosporine-induced cell death (Li et al., 2009). Here, we investigated the molecular mechanism of ?A-crystallin-mediated cytoprotection. We found that the expression of mutants mimicking specific phosphorylation of ?A-crystallin increases the protection of astrocytes. However, the expression of mutants mimicking unphosphorylation of ?A-crystallin results in loss of protection. These data revealed that the phosphorylation of ?A-crystallin at Ser122 and Ser148 is required for protection. Furthermore, we explored the mechanism of cytoprotection of astrocytes by ?A-crystallin. Application of specific inhibitors of p38 and ERK abrogates the protection of astrocytes by over-expression of ?A-crystallin. Thus, p38 and ERK contribute to protective processes by ?A-crystallin. This is comparable to our previous results which demonstrated that p38 and ERK regulated protease-activated receptor-2 (PAR-2)/?B-crystallin-mediated cytoprotection. Furthermore, we found that PAR-2 activation increases the expression of ?A-crystallin. Thus, endogenous ?A-crystallin protects astrocytes via mechanisms, which regulate the expression and/or phosphorylation status of ?A-crystallin. PMID:22414529

  3. Acousto-optic diffraction of multicolour Ar-laser radiation in crystalline quartz

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Voronko, A. I.; Kuznetsov, P. I.; Tikhomirov, S. A.; Shkerdin, G. N.; Bulyuk, A. N.

    2015-10-01

    We have studied acousto-optic Bragg diffraction of multicolour radiation, generated by an Ar laser in the blue-green region of the spectrum, on an acoustic wave propagating in crystalline quartz. It is shown that crystalline quartz significantly exceeds commonly used paratellurite in terms of phase matching of optical beams with a single acoustic wave. We have performed experiments on pulse modulation of Ar-laser radiation. It is shown that distortions introduced into optical pulses are substantially less when use is made of a quartz crystal rather than paratellurite.

  4. Protection of Retina by ?B Crystallin in Sodium Iodate Induced Retinal Degeneration

    PubMed Central

    Zhou, Peng; Kannan, Ram; Spee, Christine; Sreekumar, Parameswaran G.; Dou, Guorui; Hinton, David R.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD and ?B crystallin expression is increased in RPE and associated drusen in AMD. The purpose of this study was to investigate the role of ?B crystallin in sodium iodate (NaIO3)-induced retinal degeneration, a model of AMD in which the primary site of pathology is the RPE. Dose dependent effects of intravenous NaIO3 (20-70 mg/kg) on development of retinal degeneration (fundus photography) and RPE and retinal neuronal loss (histology) were determined in wild type and ?B crystallin knockout mice. Absence of ?B crystallin augmented retinal degeneration in low dose (20 mg/kg) NaIO3-treated mice and increased retinal cell apoptosis which was mainly localized to the RPE layer. Generation of reactive oxygen species (ROS) was observed with NaIO3 in mouse and human RPE which increased further after ?B crystallin knockout or siRNA knockdown, respectively. NaIO3 upregulated AKT phosphorylation and peroxisome proliferator–activator receptor–? (PPAR?) which was suppressed after ?B crystallin siRNA knockdown. Further, PPAR? ligand inhibited NaIO3-induced ROS generation. Our data suggest that ?B crystallin plays a critical role in protection of NaIO3-induced oxidative stress and retinal degeneration in part through upregulation of AKT phosphorylation and PPAR? expression. PMID:24874187

  5. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  6. [Investigation of the mechanisms of crystallin aggregation induced by pulsed laser UV irradiation at 308 nm].

    PubMed

    Soustov, L V; Chelnokov, E V; Sapogova, N V; Bitiurin, N M; Nemov, V V; Sergeev, Iu V; Ostrovski?, M A

    2008-01-01

    The results of the investigations of photoaggregation of the main eye lens proteins alpha-, beta- and gamma-crystallins and the model protein carbonic anhydrase in response to pulsed irradiation by a XeCI laser at 308 nm in the wide range of pulse energy densities (w) and pulse repetition rates (F) have been reviewed. A nonlinear dependence of aggregation efficiency on the values of w, F, and the concentration of protein solution was found. A theoretical model that qualitatively describes the experimental results was developed. The aggregation of N-amino-arm truncated beta A3-crystallin was analyzed. It was found that the loss of the N-amino-arm as a result of mutation or eye lens aging increases the probability of UV-induced beta-crystallin aggregation, thereby increasing the predisposition of eye lens to senile cataract. The influence of some short-chain peptides on the aggregation efficiency of beta-crystallin and beta-crystallin in solution with alpha-crystallin was investigated. Based on the results obtained, a combination of peptides (called "a new preparation") was found that most effectively delays the crystallin aggregation. The preparation has been probed on experimental animals. The trials showed that the preparation increases the delay in the development of UV-induced cataract in rats. The possibility of designing a drug for the prophylaxis of the development of cataract in humans based on this preparation is discussed. PMID:18819273

  7. O-GlcNAcylation of ?B-crystallin regulates its stress-induced translocation and cytoprotection.

    PubMed

    Krishnamoorthy, Vigneshwaran; Donofrio, Anthony J; Martin, Jody L

    2013-07-01

    Under normal conditions, the ubiquitously expressed ?B-crystallin functions as a chaperone. ?B-crystallin has been implicated in a variety of pathologies, consistent with a build-up of protein aggregates, such as neuromuscular disorders, myofibrillar myopathies, and cardiomyopathies. ?B-crystallins' cardioprotection is partially attributed to its translocation and binding to cytoskeletal elements in response to stress. The triggers for this translocation are not clearly understood. In the heart, ?B-crystallin undergoes at least three significant post-translational modifications: phosphorylation at ser-45 and 59 and O-GlcNAcylation (O-linked attachment of the monosaccharide ?-N-acetyl-glucosamine) at thr-170. Whether phosphorylation status drives translocation remains controversial. Therefore, we evaluated the role of ?B-crystallins' O-GlcNAcylation in its stress-induced translocation and cytoprotection in cardiomyocytes under stress. Immunoblotting and precipitation experiments with anti-O-GlcNAc antibody (CTD110.6) and glycoprotein staining (Pro-Q Emerald) both demonstrate robust stress-induced O-GlcNAcylation of ?B-crystallin. A non-O-GlcNAcylatable ?B-crystallin mutant (?B-T170A) showed diminished translocation in response to heat shock and robust phosphorylation at both ser-45 and ser-59. Cell survival assays show a loss of overexpression-associated cytoprotection with the non-glycosylatable mutant to multiple stresses. While ectopic expression of wild-type ?B-crystallin strongly stabilized ZsProSensor, a fusion protein rapidly degraded by the proteasome, the non-O-GlcNAcylatable version did not. Therefore, we believe the O-GlcNAcylation of ?B-crystallin is a dynamic and important regulator of both its localization and function. PMID:23543138

  8. Crystalline polymorphism induced by charge regulation in ionic membranes

    PubMed Central

    Leung, Cheuk-Yui; Palmer, Liam C.; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I.; Olvera de la Cruz, Monica; Bedzyk, Michael J.

    2013-01-01

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (–1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal–rectangular-C–rectangular-P–rectangular-C–hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups. PMID:24065818

  9. Flow-Induced Orientational Defects in Liquid Crystalline Polymers

    NASA Astrophysics Data System (ADS)

    Feng, Jimmy; Leal, L. Gary

    1997-11-01

    Liquid-crystalline polymers (LCPs) hold great potential as high-performance materials but their processing has been hampered by the difficulty of controlling molecular orientation. In particular, orientational defect lines called disclinations tend to form during molding, which disrupt molecular order and severely compromise the strength of the finished article. In this talk we describe a numerical simulation which for the first time elucidates the flow mechanism for the generation of disclinations in an LCP. The Doi theory is used to model the evolution of the LCP configuration in an eccentric cylinder geometry. The rotational flow in the wide gap causes the preferred molecular orientation, represented by the "director", to vary periodically, a phenomenon known as "director tumbling". This generates a tumbling domain whose boundary consists of a pair of half-strength disclinations. The structure of the domain is consistent with experimental observations.

  10. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE

    SciTech Connect

    Bistolfi, Alessandro; Turell, Mary Beth; Lee, Ying-Lung; Bellare, Anuj

    2009-09-02

    Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

  11. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method.

    PubMed

    Ramadhar, Timothy R; Zheng, Shao Liang; Chen, Yu Sheng; Clardy, Jon

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal-organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination. PMID:25537388

  12. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method

    PubMed Central

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng; Clardy, Jon

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination. PMID:25537388

  13. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    DOE PAGESBeta

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; Clardy, Jon

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore »times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  14. Shock induced radiation from minerals

    NASA Technical Reports Server (NTRS)

    Schmitt, D.; Svendsen, B.; Ahrens, T. J.

    1985-01-01

    Schmitt and Ahrens (1983) have concluded that the type of optical emission produced during shock compression was dependent upon phase changes taking place during shock compression. The present study is concerned with new observations of shock-induced optical radiation from Al2O3, MgO, NaCl, KCl, x-cut and fused SiO2, and LiF at various pressures up to 75 GPa. The experimental setup used in the study is similar to that employed by Schmitt and Ahrens. An Image Converter Camera with a three-frame plug-in unit was added to take two or three exposures of the radiation field during shock wave propagation through the sample, taking into account exposure times in the range from 50 to 500 nsec. The greybody emissions observed in LiF, which undergoes no phase transition, imply that localized heating and perhaps melting occurs in this material during shock deformation.

  15. EFFECT OF LASER INDUCED CRYSTALLINITY MODIFICATION ON BIODEGRADATION PROFILE OF POLY(L-LACTIC ACID)

    E-print Network

    Yao, Y. Lawrence

    EFFECT OF LASER INDUCED CRYSTALLINITY MODIFICATION ON BIODEGRADATION PROFILE OF POLY(L-LACTIC ACID(L-lactic acid) (PLLA) is promising in drug delivery applications, while its induction period of biodegradation attention due to their biocompatibility and biodegradability. Being biodegradable, poly(L-lactic acid) (PLLA

  16. Crack propagation induced heating in crystalline energetic materials W. Holmes,a)

    E-print Network

    Fayer, Michael D.

    Crack propagation induced heating in crystalline energetic materials W. Holmes,a) R. S. Francis in the vicinity of a propagating crack in a molecular crystal. In the model, energy from a moving crack tip is released as phonons in proximity to the crack. Initially the phonons and the molecular vibrations

  17. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method

    SciTech Connect

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng

    2015-01-01

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.

  18. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    PubMed

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10?km) from the injection wells and head increases at the hypocenters were likely relatively small (?70-150?m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2?×?10(-17) ?m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455?m(3) /d into the basal aquifer with no underlying basal seal over 10?years resulted in probable brittle failure to depths of about 0.6?km below the injection reservoir. Including a permeable (kz ?=?10(-13) ?m(2) ) Precambrian normal fault, located 20?m from the injection well, increased the depth of the failure region below the reservoir to 3?km. For a large permeability contrast between a Precambrian thrust fault (10(-12) ?m(2) ) and the surrounding crystalline basement (10(-18) ?m(2) ), the failure region can extend laterally 10?km away from the injection well. PMID:23745958

  19. Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures

    SciTech Connect

    Kompaniiets, M. Begun, E.; Porrati, F.; Huth, M.; Dobrovolskiy, O. V.; Neetzel, C.; Ensinger, W.

    2014-08-21

    We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements up to three pairs of Pt-based voltage leads were attached at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2–12??m. Up to 30% resistance drops with respect to the normal-state value have been observed for the crystalline Co and Cu nanowires when sweeping the temperature below T{sub c} of the inducer (5.2?K). By contrast, relative R(T) drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1??m at 2.4?K, attesting to a long-range proximity effect in the Co nanowire. Moreover, this long-range proximity effect is insusceptible to magnetic fields up to 11?T, which is indicative of spin-triplet pairing. At the same time, proximity-induced superconductivity in the nanogranular Co nanowire is strongly suppressed due to the dominating Cooper pair scattering caused by its intrinsic microstructure.

  20. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.

  1. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  2. Radiation-induced moyamoya syndrome

    SciTech Connect

    Desai, Snehal S.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%. Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.

  3. Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation

    SciTech Connect

    Chiu, Po-Kai Chiang, Donyau; Lee, Chao-Te; Lin, Yu-Wei; Hsiao, Chien-Nan

    2015-09-15

    This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectively reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.

  4. Control over the crystal phase, crystallinity, morphology of AgVO3 via protein inducing process.

    PubMed

    Chen, Tao; Shao, Mingwang; Xu, Hongyan; Wen, Chunye; Lee, Shuit-Tong

    2012-01-15

    A facile and bio-inspired route for the preparation of pure and highly crystalline metastable ?-AgVO(3) is presented. Three kinds of proteins (bovine hemoglobin, bovine serum albumin, and lysozyme) were employed as inducer, which had substantial effects on the nucleation and growth of ?-AgVO(3). Moreover, the amount of proteins also played a key role over the morphology and crystalline of products. The VO(3)(-)/protein complex acted as a driver to induce the formation of metastable phase, which was confirmed by resonance Rayleigh scattering and UV-vis absorption spectra. The results indicated that tailoring an interaction between protein and inorganic molecules was the key in bio-inspired selective synthesis of metastable phase, which may find applications in the design of other new functional inorganic materials. PMID:22014392

  5. Milling induces disorder in crystalline griseofulvin and order in its amorphous counterpart

    SciTech Connect

    Otte, Andrew; Zhang, Yan; Carvajal, M. Teresa; Pinal, Rodolfo

    2012-04-02

    This study investigates two apparently similar thermal signatures, shaped as bimodal exotherms, observed when either the crystalline or the amorphous from of the drug are subjected to milling. Crystalline griseofulvin was cryomilled and the (quenched-melt) amorphous form was subjected to either cryomilling or grinding. The thermal and surface properties of the resulting samples were analyzed using differential scanning calorimetry (DSC) and surface energy analysis. After milling, both the crystalline and the amorphous material revealed visually similar bimodal exothermic events when the heating rate was 20 C min{sup -1}. Under different heating rates, the pair of DSC peaks for the bimodal exotherm of each material behaved entirely different from each other. The two peaks of the bimodal event, as well as the glass transition, can be kinetically resolved for the ground amorphous form using standard mode DSC. In contrast, similar analysis was unable to resolve the bimodal exotherm or a glass transition in the case of the cryomilled crystals. Furthermore, cryomilled crystals do not exhibit a glass transition even when analyzed using modulated DSC. Synchrotron sourced X-ray analysis revealed that grinding the amorphous material results in the nucleation and growth of the crystalline form. Milling thus induces disorder in the crystals of griseofulvin but induces order in the amorphous form of the drug. The surface of the two milled systems consistently exhibited different energetics under a wide range of relative humidity conditions. These findings suggest that cryomilling induces both bulk and surface disorder, specifically, a certain level of dislocations on the crystal. In contrast, grinding the amorphous material lowers the activation energy for crystal formation, inducing nuclei formation and growth throughout the amorphous matrix.

  6. Medium-induced multi-photon radiation

    E-print Network

    Hao Ma; Carlos A. Salgado; Konrad Tywoniuk

    2011-05-29

    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

  7. Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2015-07-01

    We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of ? = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.

  8. CT of radiation-induced hepatic injury

    SciTech Connect

    Jeffrey, R.B. Jr.; Moss, A.A.; Quivey, J.M.; Federle, M.P.; Wara, W.M.

    1980-09-01

    The CT findings in three patients with radiation-induced hepatic injury are discussed. In each patient a sharply defined band of low density was identified within the liver in an area of prior radiation. The low density bands resolved on follow-up examination. Computed tomography is useful in the diagnosis and follow-up of patients with suspected radiation hepatitis and in differentiating radiation change from metastatic disease.

  9. Radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  10. Study of molecular mechanisms of UV-induced aggregation of crystallins and possibility of maintaining eye lens transparency

    NASA Astrophysics Data System (ADS)

    Soustov, L. V.; Chelnokov, E. V.; Bityurin, N. M.; Kiselev, A. L.; Nemov, V. V.; Sergeev, Yu. V.; Ostrovsky, M. A.

    2006-03-01

    The effect of D-pantethine and L-carnosine on the rate of UV-induced (XeC1 laser ? = 308 nm) aggregation of a mixture of ?L-crystallin and ?-crystallin is studied. We also demonstrate that the suggested by us combination of short-chain peptides shows better protective properties with respect to UV-induced aggregation than known anti-cataract agents.

  11. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    SciTech Connect

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; Clardy, Jon

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.

  12. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  13. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  14. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  15. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  16. Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence

    SciTech Connect

    Nguyen, Hieu T. Macdonald, Daniel; Baker-Finch, Simeon C.

    2014-03-17

    The radiative recombination coefficient B(T) in crystalline silicon is determined for the temperature range 90–363?K, and in particular from 270 to 350?K with an interval of 10?K, where only sparse data are available at present. The band-band absorption coefficient established recently by Nguyen et al. [J. Appl. Phys. 115, 043710 (2014)] via photoluminescence spectrum measurements is employed to compute the values of B(T) at various temperatures. The results agree very well with literature data from Trupke et al. [J. Appl. Phys. 94, 4930 (2003).] We present a polynomial parameterization describing the temperature dependence of the product of B(T) and the square of the intrinsic carrier density. We also find that B(T) saturates at a near constant value at room temperature and above for silicon samples with relatively low free carrier densities.

  17. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  18. Practical Radiation Damage-Induced Phasing.

    PubMed

    Zubieta, Chloe; Nanao, Max H

    2016-01-01

    Although crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or "RIP." Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP. PMID:26227045

  19. Molten sodium-induced graphitization towards highly crystalline and hierarchical porous graphene frameworks

    NASA Astrophysics Data System (ADS)

    Wang, Huanwen; Zhang, Yu; Wu, Xing-Long; Fan, Haosen; Luo, Zhong-Zhen; Madhavi, Srinivasan; Yan, Qingyu

    2015-09-01

    Mass production of high quality graphene platelets has attracted considerable interest for potential applications in various fields. Nevertheless, in literature, the graphite oxide (GO)-derived graphene is always lacking high crystallinity and hierarchical porosity. Herein, we report a new molten sodium-induced graphitization for mass-fabricating highly crystalline and porous graphene sheets. The 3D graphene hydrogels (GHs) obtained from GO by the hydrothermal self-assembly are directly annealed in molten sodium at 800 °C. As a result, the D band intensity in Raman spectroscopy is reduced significantly, while 2D band intensity is increased prominently, which is a typical characteristic of highly crystalline graphene. More importantly, the resulting Na-GFs-800 sample exhibits increased surface area and narrow mesopore size distribution (?3.6 nm). The excellent supercapacitive performance of Na-GFs-800 has been demonstrated in an organic symmetric system. Meanwhile, the possible interaction mechanism between molten sodium and GHs has been proposed in the text.

  20. Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum.

    PubMed

    Budzevich, Mikalai M; Zhakhovsky, Vasily V; White, Carter T; Oleynik, Ivan I

    2012-09-21

    The evolution of orientation-dependent metastable states during shock-induced solid-liquid phase transitions in crystalline Al is followed using moving window molecular dynamics simulations. The orientation-dependent transition pathways towards an orientation-independent final state Hugoniot include both "cold melting" followed by recrystallization in [110]- and [111]-oriented shock waves and crystal overheating followed by melting in [100] shock waves. The orientation-dependent dynamics take place within a zone that can extend up to hundreds of nanometers behind the shock front. PMID:23005960

  1. Degenerate crystalline silicon films by aluminum-induced crystallization of boron-doped amorphous silicon

    NASA Astrophysics Data System (ADS)

    Hwang, J. D.; Luo, L. C.; Hsueh, T. J.; Hwang, S. B.

    2012-10-01

    Degenerate p-type crystalline silicon film with a hole concentration of 4 × 1021 cm-3 was investigated using aluminum-induced crystallization (AIC) of boron-doped amorphous silicon (a-Si). The AIC mechanism is different from that in the undoped AIC-Si. Boron atoms accumulate at Al layer forming a boron bump and segregate the Al atoms into Si layer, resulting to the formation of AlSi alloy. The degeneracy is not attributed to boron doping but instead to the AlSi alloy. Observations show that Al and Si layer transfer occurs not at original interface of Al and Si, but at the boron bump.

  2. Evolution of Shock-Induced Orientation-Dependent Metastable States in Crystalline Aluminum

    NASA Astrophysics Data System (ADS)

    Budzevich, Mikalai M.; Zhakhovsky, Vasily V.; White, Carter T.; Oleynik, Ivan I.

    2012-09-01

    The evolution of orientation-dependent metastable states during shock-induced solid-liquid phase transitions in crystalline Al is followed using moving window molecular dynamics simulations. The orientation-dependent transition pathways towards an orientation-independent final state Hugoniot include both “cold melting” followed by recrystallization in [110]- and [111]-oriented shock waves and crystal overheating followed by melting in [100] shock waves. The orientation-dependent dynamics take place within a zone that can extend up to hundreds of nanometers behind the shock front.

  3. Critical considerations for the qualitative and quantitative determination of process-induced disorder in crystalline solids.

    PubMed

    Newman, Ann; Zografi, George

    2014-09-01

    Solid-state instabilities in crystalline solids arise during processing primarily because a certain level of structural disorder has been introduced into the crystal. Many physical instabilities appear to be associated with the recrystallization of molecules from these disordered regions, while chemical instabilities arise from sufficient molecular mobility to allow solid-state chemical reactivity. In this Commentary we discuss the various forms of structural disorder, processing which can produce disorder, the quantitative analysis of process-induced order, and strategies to limit disorder and its effects. PMID:24623166

  4. Formation kinetics of copper-related light-induced degradation in crystalline silicon

    SciTech Connect

    Lindroos, J. Savin, H.

    2014-12-21

    Light-induced degradation (LID) is a deleterious effect in crystalline silicon, which is considered to originate from recombination-active boron-oxygen complexes and/or copper-related defects. Although LID in both cases appears as a fast initial decay followed by a second slower degradation, we show that the time constant of copper-related degradation increases with increasing boron concentration in contrast to boron-oxygen LID. Temperature-dependent analysis reveals that the defect formation is limited by copper diffusion. Finally, interface defect density measurements confirm that copper-related LID is dominated by recombination in the wafer bulk.

  5. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  6. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Cumpston, Amy; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m?3, 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. PMID:22431001

  7. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  8. Triptolide Mitigates Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Yang, Shanmin; Zhang, Mei; Chen, Chun; Cao, Yongbin; Tian, Yeping; Guo, Yangsong; Zhang, Bingrong; Wang, Xiaohui; Yin, Liangjie; Zhang, Zhenhuan; O'Dell, Walter; Okunieff, Paul; Zhang, Lurong

    2015-11-01

    Triptolide (TPL) may mitigate radiation-induced late pulmonary side effects through its inhibition of global pro-inflammatory cytokines. In this study, we evaluated the effect of TPL in C57BL/6 mice, the animals were exposed to radiation with vehicle (15 Gy), radiation with TPL (0.25 mg/kg i.v., twice weekly for 1, 2 and 3 months), radiation and celecoxib (CLX) (30 mg/kg) and sham irradiation. Cultured supernatant of irradiated RAW 264.7 and MLE-15 cells and lung lysate in different groups were enzyme-linked immunosorbent assays at 33 h. Respiratory rate, pulmonary compliance and pulmonary density were measured at 5 months in all groups. The groups exposed to radiation with vehicle and radiation with TPL exhibited significant differences in respiratory rate and pulmonary compliance (480 ± 75/min vs. 378 ± 76/min; 0.6 ± 0.1 ml/cm H2O/p kg vs. 0.9 ± 0.2 ml/cm H2O/p kg). Seventeen cytokines were significantly reduced in the lung lysate of the radiation exposure with TPL group at 5 months compared to that of the radiation with vehicle group, including profibrotic cytokines implicated in pulmonary fibrosis, such as IL-1?, TGF- ?1 and IL-13. The radiation exposure with TPL mice exhibited a 41% reduction of pulmonary density and a 25% reduction of hydroxyproline in the lung, compared to that of radiation with vehicle mice. The trichrome-stained area of fibrotic foci and pathological scaling in sections of the mice treated with radiation and TPL mice were significantly less than those of the radiation with vehicle-treated group. In addition, the radiation with TPL-treated mice exhibited a trend of improved survival rate compared to that of the radiation with vehicle-treated mice at 5 months (83% vs. 53%). Three radiation-induced profibrotic cytokines in the radiation with vehicle-treated group were significantly reduced by TPL treatment, and this partly contributed to the trend of improved survival rate and pulmonary density and function and the decreased severity of pulmonary fibrosis at 5 months. Our findings indicate that TPL could be a potential new agent to mitigate radiation-induced pulmonary fibrosis. PMID:26488756

  9. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  10. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  11. Mesoscale modeling of strain induced solid state amorphization in crystalline materials

    NASA Astrophysics Data System (ADS)

    Lei, Lei

    Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.

  12. Radiation effects and annealing kinetics in crystalline silicates, phosphates and complex Nb-Ta-Ti oxides. FInal Report

    SciTech Connect

    Ewing, R.C.

    1987-08-10

    Interaction of heavy particles (alpha-recoil nuclei, fission fragments, implanted ions) with ceramics is complex because they have a wide range of structure types, complex compositions and chemical bonding is variable. Radiation damage can produce diverse results, but most commonly, crystalline periodic materials become either polycrystalline or aperiodic (metamict state). We studied the transition from crystalline to aperiodic state in natural materials that have been damaged by alpha recoil nuclei in the U and Th decay series and in synthetic, analogous structure types which have been amorphized by ion implantation. Transition from crystalline to aperiodic was followed by analysis of XRD, high resolution TEM, and EXAFS/XANE spectroscopy. Use of these techniques with increasing dose provided data on an increasing finer scale as the damage process progressed.

  13. Radiation-Induced Effects in Pyrochlore and Nanoscale Materials Engineering

    SciTech Connect

    Lian, Jie; Weber, William J.; Jiang, Weilin; Wang, Lumin; Boatner, Lynn A.; Ewing, Rodney C.

    2006-06-19

    Pyrochlore materials, A2B2O7, encompass a wide range of compositions and are technological important for energy and environment issues, for example, used as ionic conductor in solid oxide fuel cells and nuclear waste forms for the storage of actinides, particularly Pu. Here, the recent progresses in understanding ion beam irradiation-induced phenomena in pyrochlore compounds are briefly reviewed with the focus of ion beam-induced crystalline-to-amorphous and pyrochlore to fluorite structural transitions. Systematic ion irradiation studies of lanthanide pyrochlores in which B = Ti, Zr, and Sn have suggested that the radiation response of pyrochlore compounds is highly dependent on compositional changes. Both ionic size and the cation electronic configurations (e.g., bond-types) affect the structural distortion from the ideal fluorite structure and the response behavior of pyrochlore-structure types to ion beam irradiation. Ion beam-induced pyrochlore-to-fluorite structural transition occurs in all irradiated pyrochlore compositions, and the independent kinetics of cation and anion disordering processes were discussed. Numerous novel nanostructures have been created by utilizing the ion beam-induced amorphization, order-disorder transition and phase decomposition, such as amorphous and disordered nano-domains, perfectly latticed matched two-dimensional nanolayer, self-organized ripple structure, metallic nanoparticles and nanowires. The potential application of energetic particle irradiation for nano-engineering pyrochlore structured compounds is highlighted.

  14. Crystalline silica-induced leukotrieneB4-dependent inflammation promotes lung tumor growth

    PubMed Central

    Satpathy, Shuchismita R.; Jala, Venkatakrishna R.; Bodduluri, Sobha R.; Krishnan, Elangovan; Hegde, Bindu; Hoyle, Gary; Fraig, Mostafa; Luster, Andrew D.; Haribabu, Bodduluri

    2015-01-01

    Chronic exposure to crystalline silica (CS) causes silicosis, an irreversible lung inflammatory disease that may eventually lead to lung cancer. In this study, we demonstrate that in K-rasLA1 mice, CS exposure markedly enhances the lung tumor burden and genetic deletion of leukotriene B4 receptor1 (BLT1?/?) attenuates this increase. Pulmonary neutrophilic inflammation induced by CS is significantly reduced in BLT1?/?K-rasLA1 mice. CS exposure induces LTB4 production by mast cells and macrophages independent of inflammasome activation. In an air pouch model, CS-induced neutrophil recruitment is dependent on LTB4 production by mast cells and BLT1 expression on neutrophils. In an implantable lung tumor model, CS exposure results in rapid tumor growth and decrease survival that is attenuated in the absence of BLT1. These results suggest that LTB4/BLT1 axis sets the pace of CS-induced sterile inflammation that promotes lung cancer progression. This knowledge will facilitate development of immunotherapeutic strategies to fight silicosis and lung cancer. PMID:25923988

  15. Light-induced deformation of polymer networks containing azobenzene chromophores and liquid crystalline mesogens.

    PubMed

    Petrova, Tatiana; Toshchevikov, Vladimir; Saphiannikova, Marina

    2015-05-01

    Two-component polymer networks containing liquid crystalline (LC) mesogens and azobenzene chromophores belong to a class of smart materials which combine uniquely the orientation order of liquid crystals and light-induced deformation of photosensitive polymers. In the present study we develop a theory of light-induced deformation of azobenzene-containing LC networks. It is shown that preferential reorientation of chromophores perpendicular to the polarization direction of the light E leads to the reorientation of the mesogens due to LC interactions between the components. Reorientation of the chromophores and mesogens results in the light-induced deformation of the polymer network. The sign of deformation (expansion/contraction with respect to the vector E) depends on the orientation distribution of the mesogens and chromophores inside the network strands. The magnitude of deformation increases with increase of the volume fraction of chromophores and the strength of LC interactions between the components. The influence of the dilution of azobenzene-containing networks by the bent cis-isomers of the chromophores on the light-induced deformation is discussed. PMID:25805596

  16. Influence of excipients in comilling on mitigating milling-induced amorphization or structural disorder of crystalline pharmaceutical actives.

    PubMed

    Balani, Prashant N; Ng, Wai Kiong; Tan, Reginald B H; Chan, Sui Yung

    2010-05-01

    The feasibility of using excipients to suppress the amorphization or structural disorder of crystalline salbutamol sulphate (SS) during milling was investigated. SS was subjected to ball-milling in the presence of alpha-lactose monohydrate (LAC), adipic acid (AA), magnesium stearate (MgSt), or polyvinyl pyrrolidone (PVP). X-ray powder diffraction, dynamic vapor sorption (DVS), high sensitivity differential scanning calorimetry (HSDSC) were used to analyze the crystallinity of the milled mixtures. Comilling with crystalline excipients, LAC, AA, and MgSt proved effective in reducing the amorphization of SS. LAC, AA, or MgSt acting as seed crystals to induce recrystallization of amorphous SS formed by milling. During comilling, both SS and LAC turned predominantly amorphous after 45 min but transformed back to a highly crystalline state after 60 min. Amorphous content was below the detection limits of DVS (0.5%) and HSDSC (5%). Comilled and physical mixtures of SS and ALM were stored under normal and elevated humidity conditions. This was found to prevent subsequent changes in crystallinity and morphology of comilled SS:LAC as compared to significant changes in milled SS and physical mixture. These results demonstrate a promising application of comilling with crystalline excipients in mitigating milling induced amorphization of pharmaceutical actives. PMID:19902526

  17. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  18. Imaging Radiation-Induced Normal Tissue Injury

    PubMed Central

    Robbins, Mike E.; Brunso-Bechtold, Judy K.; Peiffer, Ann M.; Tsien, Christina I.; Bailey, Janet E.; Marks, Lawrence B.

    2013-01-01

    Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them. PMID:22348250

  19. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  20. Radiation-induced hydrogen transfer in metals

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.

    2015-11-01

    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.

  1. Light-induced point defect reactions of residual iron in crystalline silicon after aluminum gettering

    NASA Astrophysics Data System (ADS)

    Abdelbarey, D.; Kveder, V.; Schröter, W.; Seibt, M.

    2010-08-01

    Deep level transient spectroscopy is used to study light-induced reactions of residual iron impurities after aluminum gettering (AlG) in crystalline silicon. White-light illumination at room temperature leads to the formation of a defect which is associated with a donor level at 0.33 eV above the valence band. This defect is stable up to about 175 °C where it dissociates reversibly in case of small iron concentrations and irreversibly for high iron concentrations. Since marker experiments using gold and platinum diffusion show a high vacancy concentration after AlG a tentative identification of the new defect as the metastable iron-vacancy pair is proposed.

  2. Quercetin inhibits radiation-induced skin fibrosis.

    PubMed

    Horton, Jason A; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-08-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-? (TGF-?). Western blotting of proteins involved in fibroblast contractility and TGF-? signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-? in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-?, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  3. Quercetin Inhibits Radiation-Induced Skin Fibrosis

    PubMed Central

    Horton, Jason A.; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-01-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-? (TGF-?). Western blotting of proteins involved in fibroblast contractility and TGF-? signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-? in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-?, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  4. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  5. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  6. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  7. Cataracts induced by microwave and ionizing radiation

    SciTech Connect

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-11-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references.

  8. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  9. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  10. CRYSTALLINE-TO-AMORPHOUS TRANSFORMATION OF INTERMETALLIC COMPOUNDS IN THE ZR-FE-M SYSTEM INDUCED BY IRRADIATION

    E-print Network

    Motta, Arthur T.

    CRYSTALLINE-TO-AMORPHOUS TRANSFORMATION OF INTERMETALLIC COMPOUNDS IN THE ZR-FE-M SYSTEM INDUCED, the damage accumulation mechanisms in the intermetallic compound, and the annealing mechanisms available, Argonne National Laboratory, Argonne, IL 60439, USA. ABSTRACT The binary and ternary intermetallic

  11. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects. PMID:22833841

  12. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  13. PH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility Than Crystalline Polymorphs

    SciTech Connect

    Rodriguez-Spong, B.; Acciacca, A.; Fleisher, D.; Rodriguez-Hornedo, N.

    2009-05-27

    Birefringent spherical vesicles of ritonavir (RTV) are formed by increasing the pH of aqueous solutions from 1 to 3 or to 7 and by addition of water to ethanol solutions at room temperature. Increasing the pH creates supersaturation levels of 30--400. Upon this change in pH, the solutions become translucent, implying that some kind of RTV assembly was formed. Small spherical vesicles of narrow size distribution are detectable only after a few hours by optical microscopy. The vesicles show similar X-ray diffraction patterns and differential scanning calorimetry (DSC) behavior to amorphous RTV prepared by melt-quenching crystalline RTV. Examination by polarized optical microscopy suggests that these are lyotropic liquid crystalline (LLC) assemblies. Small-angle X-ray scattering and synchrotron X-ray diffraction further support the presence of orientational order that is associated with a nematic structure. RTV self-organizes into various phases as a result of the supersaturation created in aqueous solutions. The LLC vesicles do not fuse but slowly transform to the polymorphs of RTV (in days), Form I and finally Form II. Amorphous RTV in aqueous suspension also undergoes a transformation to a mesophase of similar morphology. Transformation pathways are consistent with measured dissolution rates and solubilities: amorphous > LLC >> Form I > Form II. The dissolution and solubility of LLC is slightly lower than that of the amorphous phase and about 20 times higher than that of Form II. RTV also self-assembles at the air/water interface as indicated by the decrease in surface tension of aqueous solutions. This behavior is similar to that of amphiphilic molecules that induce LLC formation.

  14. Ionizing Radiation-induced Diseases in Korea

    PubMed Central

    Jeong, Meeseon; Moon, Kieun; Jo, Min-Heui; Kang, Seong-Kyu

    2010-01-01

    Radiation risk has become well known through epidemiological studies of clinically or occupationally exposed populations, animal experiments, and in vitro studies; however, the study of radiation related or induced disease has been limited in Korea. This study is to find the level of occupational radiation exposure for various kinds of accidents, compensated occupational diseases, related studies, and estimations on future occupational disease risks. Research data of related institutions were additionally investigated. About 67% of 62,553 radiation workers had no exposure or less than 1.2 mSv per year. The 5 reported cases on radiation accident patients in Korea occurred during nondestructive testing. According to the recent rapid increase in the number of workers exposed to radiation, a higher social recognition of cancer, and an increasing cancer mortality rate, it is expected that occupational disease compensation will rapidly increase as well. Therefore, it is important to develop scientific and objective decision methods, such as probability of causation and screening dose in the establishment of an exposure and health surveillance system. PMID:21258594

  15. Calculation of radiation-induced stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1994-09-01

    A numerical calculation based on point defect kinetics under stress was carried out to evaluate radiation-induced stress relaxation in a solution-annealed 316 stainless steel at low and medium temperatures (60 and 300°C). The calculation shows that the stress relaxation relative to the initial stress is almost independent of the initial stress under irradiation. At 1 × 10 -6 dpa/s, stress relaxation at 60°C is greater than that at 300°C and the stress almost disappears in a month of continuous irradiation. Even with a low damage rate of 1 × 10 -8 dpa/s, the stress relaxation at 60°C is considerable and exceeding that at 300°C and 1 × 10 -6 dpa/s during the first several months of irradiation. The results indicate the importance of the radiation-induced stress relaxation in experimental fusion reactors.

  16. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  17. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  18. The effect of dose rate on the crystalline lamellar thickness distribution in gamma-radiation of UHMWPE

    NASA Astrophysics Data System (ADS)

    Stephens, C. P.; Benson, R. S.; Esther Martinez-Pardo, Ma.; Barker, E. D.; Walker, J. B.; Stephens, T. P.

    2005-07-01

    This study develops a connection between radiation integral dose, dose rate and crystallite thickness. Samples are irradiated at an integral dose of 75 and 150 kGy and at a dose rate of 0.25 and 2.9 kGy/h. The degree of crystallinity and lamellar thickness distributions are determined from DSC. DSC shows the existence of two discrete crystalline lamellar distributions that are highly effected by irradiation protocol. It is also shown that the depth of the material from the surface also plays a role in the lamellar distribution. SAXS is then used to confirm the approximate range of lamellar thicknesses and the existence of two discrete crystallites.

  19. Site specific oxidation of amino acid residues in rat lens ?-crystallin induced by low-dose ?-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from ?-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose ?-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble ?E and ?F-crystallin were determined by one-shot analysis. The oxidation sites in rat ?E and ?F-crystallin resemble those previously identified in ?C and ?D-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. PMID:26385181

  20. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  1. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Nishiyama, Naoki; Yoshino, Seiji; Ujiro, Takumi; Watanabe, Shin; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2015-08-01

    We examined the sequential effects of salt-mist stress followed by high-system-voltage stress on the power loss of crystalline silicon photovoltaic (PV) modules to determine whether a crucial failure as potential-induced degradation (PID) is accelerated by material-property changes caused by the long-term effects of a less harmful stress such as salt-mist spraying. Degradation profiles confirmed in this study show that PID is accelerated by certain types of salt-mist preconditioning. For the acceleration of PID, the contribution of sodium ions liberated from the front glass of the PV module seems to be excluded. Therefore, we consider that the sodium ions penetrating into the PV modules from the ambient environment may also cause degradation according to the proposed mechanisms of PID, as the sodium ions existing in the front glass cause PID. Furthermore, this type of degradation may indicate the wear-out phenomenon after a long-term exposure in the field (especially near the coast).

  2. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  3. Assessing the changes in the biomechanical properties of the crystalline lens induced by cold cataract with air-pulse OCE

    NASA Astrophysics Data System (ADS)

    Wu, C.; Singh, M.; Liu, C.-H.; Han, Z.; Li, J.; Raghunathan, R.; Larin, K. V.

    2015-11-01

    A cataract is the increase in opacity of the crystalline lens that can pathologically degrade visual acuity. In this study, we utilized a phase-sensitive optical coherence elastography (OCE) system to study the effects of a cold cataract on the biomechanical properties of the porcine crystalline lens in vitro. The cold cataract was induced by placing the whole lens in a low temperature environment until the lens was obviously clouded. Air-pulse OCE measurements were conducted on 6 lenses before and after cold cataract induction. A low amplitude displacement (? 10 µm) was induced by a focused air-pulse and the temporal deformation profiles from the surface and within the lenses were analyzed. The results demonstrated that the stiffness of the porcine lens increased after induction of the cold cataract, and it demonstrated the feasibility of OCE to assess the biomechanical changes in the lens due to cataract.

  4. Cathodoluminescence of radiation-induced zircon

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Nishido, H.; Kayama, M.; Noumi, Y.

    2013-12-01

    Zircon occurs as a common accessory mineral in igneous, metamorphic and sedimentary rocks, and maintains much information on thermal history, metamorphic process and natural radiation dose accumulated in the mineral. U-Pb zircon dating (e.g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) image has been used for identification of internal zones and domains having different chemical compositions and/or structures with a high spatial resolution. The CL of zircon is derived from various types of emission centers, which are derived from impurities such as rare earth elements (REE) and structural defects. In fact, the CL features of zircon are closely related to metamorphic process and radiation from contained radionuclides as well as geochemical condition of its formation. Most zircon has yellow emission, which seems to be assigned to UO2 centers or radiation-induced defect during metamictization of the lattice by alpha particles from the decay of U and Th. In this study, the radiation effects on zircon CL have been studied for He+ ion-implanted samples annealed at various temperatures to clarify radiation-induced defect centers involved with the yellow CL emission in zircon. Single crystals of zircon from Malawi (MZ), Takidani granodiorite (TZ) and Kurobegawa granite (KZ) were selected for He+ ion implantation experiments. The polished plates of the samples were implanted by He+ ion 4.0 MeV corresponding to energy of alpha particle from 238 U and 232Th. CL spectra in the range from 300 to 800 nm with 1 nm step were measured by a scanning electron microscopy-cathodoluminescence (SEM-CL). CL spectra of untreated and annealed zircon show emission bands at ~370 nm assigned to intrinsic defect centers and at ~480, ~580 and ~760 nm to trivalent Dy impurity centers (Cesbron et al., 1995; Gaft et al, 2005). CL emissions in the yellow-region were observed in untreated zircon. The TZ and KZ indicate youngest formation ages of 1.93-1.20 Ma and 1.7-0.9 Ma, respectively (Harayama,1994; Harayama et al., 2010) in the world. In this case, it is hardly to detect yellow CL emissions derived from radiation-induced defect center, suggesting low radiation dose of alpha radiation from 238U and 232Th on them. CL spectra of MZ, TZ and KZ showed an increase in the intensities of yellow emissions with an increase in radiation dose of He+ ion implantation, though He+ ion implantation reduces the intensities of their impurity centers. CL intensity in the yellow region depends on radiation dose of He+ ion implantation. Therefore, if the component of yellow emission could be deconvoluted from the CL spectra in zircon, its intensity will be used for an indicator to evaluate total exposure doses on it during geological age.

  5. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  6. Mechanism of Radiation-Induced Doping

    NASA Astrophysics Data System (ADS)

    Koizumi, Hitoshi; Dougauchi, Hiroshi; Yamano, Tadaomi; Ichikawa, Tsuneki

    2003-11-01

    Poly(3-octylthiophene) was irradiated with X-rays in atmospheres of CH3Br, SF6, and N2O gases. The electrical conductivity was increased after the irradiations. The electrical conductivity was also increased by irradiating the gases near the polymer film without irradiating the film itself. This result indicates that dopants were generated upon irradiation in the gas phase and the polymer was doped through reactions of the dopants with the polymer. The radiation-induced doping effects were also observed for poly(3-octylthiophene) coated with solid 1,2,5,6,9,10-hexabromocyclododecane.

  7. Crystalline silicon growth in the aluminium-induced glass texturing process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Law, Felix; Widenborg, Per I.; Aberle, Armin G.

    2012-12-01

    Aluminium-induced texturing (AIT) is a method to texture glass surfaces by utilising the reaction between aluminium (Al) and glass at high temperature (above 500 °C) and a subsequent wet-chemical treatment that removes the reaction products. In this work, we studied the solid state reaction between a sputtered Al layer and a borosilicate glass sheet during AIT annealing. Raman spectroscopy showed that crystalline silicon (c-Si) is formed during the AIT process. An optical microscope was used to visualise the evolution of the c-Si growth. Plan-view scanning electron microscopy (SEM) investigations performed on samples after completed AIT reaction showed that separate c-Si clusters formed at the glass surface. Atomic force microscopy revealed that the c-Si clusters grew upwards and were on top of the glass surface. Cross-sectional SEM examination showed that the c-Si layer is not uniform and that crater-shaped nodules are embedded into the glass. The widths and depths of the nodules are in the micrometre range. Energy-dispersive X-ray spectroscopy showed that the nodules consist mainly of aluminium oxide (Al2O3). X-ray diffraction analysis showed that the c-Si grains are preferentially (111) oriented. The activation energy of the reaction between Al and borosilicate glass is 3.0±0.2 eV based on in-situ XRD analysis of the c-Si growth. Finally, a phenomenological model of the AIT process is proposed and we suggest that the topology of the glass texture strongly depends on the size, depth and lateral separation of the Al2O3 nodules embedded in the glass.

  8. Radiation induced micrencephaly in guinea pigs

    SciTech Connect

    Wagner, L.K.; Johnston, D.A.; Felleman, D.J.

    1991-01-01

    A brain weight deficit of about 70 mg was induced at doses of approximately 75-mGy and a deficit of 60 mg was induced at 100 mGy. This confirms the effects projected and observed by Wanner and Edwards. Although the data do not demonstrate a clear dose-response relationship between the 75-mGy and 100-mGy groups, the data are statistically consistent with a dose-response effect because of the overlapping confidence intervals. The lack of a statistically significant observation is most likely related to the small difference in doses and the limited numbers of animals examined. There are several factors that can influence the brain weight of guinea pig pups, such as caging and housing conditions, the sex of the animal, and litter size. These should be taken into account for accurate analysis. Dam weight did not appear to have a significant effect. The confirmation of a micrencephalic effect induced x rays at doses of 75-mGy during this late embryonic stage of development is consistent with the findings of small head size induced in those exposed prior to the eight week of conception at Hiroshima. This implies a mechanism for micrencephaly different from those previously suggested and lends credence to a causal relation between radiation and small head size in humans at low doses as reported by Miller and Mulvihill. 16 refs., 13 tabs.

  9. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates.

    PubMed

    Guo, Wei; Jägle, Eric A; Choi, Pyuck-Pa; Yao, Jiahao; Kostka, Aleksander; Schneider, Jochen M; Raabe, Dierk

    2014-07-18

    Deformation of ductile crystalline-amorphous nanolaminates is not well understood due to the complex interplay of interface mechanics, shear banding, and deformation-driven chemical mixing. Here we present indentation experiments on 10 nm nanocrystalline Cu-100 nm amorphous CuZr model multilayers to study these mechanisms down to the atomic scale. By using correlative atom probe tomography and transmission electron microscopy we find that crystallographic slip bands in the Cu layers coincide with noncrystallographic shear bands in the amorphous CuZr layers. Dislocations from the crystalline layers drag Cu atoms across the interface into the CuZr layers. Also, crystalline Cu blocks are sheared into the CuZr layers. In these sheared and thus Cu enriched zones the initially amorphous CuZr layer is rendered into an amorphous plus crystalline nanocomposite. PMID:25083653

  10. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators

    E-print Network

    Fu, Liang

    Topological crystalline insulators in IV–VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge ...

  11. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  12. Modeling of radiation induced defects in space solar cells

    NASA Astrophysics Data System (ADS)

    Walters, Robert J.; Messenger, Scott; Warner, Jeffrey H.; Cress, Cory D.; Gonzalez, Maria; Maximenko, Serguei

    2011-02-01

    The radiation response mechanisms operative in space solar cells are described. The effects of electron and proton radiation-induced defects on the cell performance are identified and methods for modeling the radiation response are presented. The space radiation environment is described, and a methodology for modeling the response of a solace cell to exposure to the space radiation environment is presented. It is shown how this model an be used to predict on orbit performance, and examples from space experiments are shown.

  13. The Formation of Crystalline Dust in AGB Winds from Binary Induced Spiral Shocks

    E-print Network

    R. G. Edgar; J. Nordhaus; E. Blackman; A. Frank

    2007-09-14

    As stars evolve along the Asymptotic Giant Branch, strong winds are driven from the outer envelope. These winds form a shell, which may ultimately become a planetary nebula. Many planetary nebulae are highly asymmetric, hinting at the presence of a binary companion. Some post-Asymptotic Giant Branch objects are surrounded by torii of crystalline dust, but there is no generally accepted mechanism for annealing the amorphous grains in the wind to crystals. In this Letter, we show that the shaping of the wind by a binary companion is likely to lead to the formation of crystalline dust in the orbital plane of the binary.

  14. Effect of Laser Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid)

    E-print Network

    Yao, Y. Lawrence

    (L-Lactic Acid) Shan-Ting Hsu, Huade Tan, Y. Lawrence Yao Department of Mechanical Engineering, Columbia University, New York, NY 10027 Abstract Poly(L-lactic acid) (PLLA) is of interest in drug delivery: poly(L-lactic acid); laser treatment; biodegradation; crystallinity; drug delivery #12;2 1

  15. Molecular dynamics studies of ultrafast laser-induced phase and structural change in crystalline silicon

    E-print Network

    Xu, Xianfan

    the equilibrium melting temperature by several hundred degrees. After the melted layer was solidified, some melted 2012 Keywords: Molecular dynamics simulation Ultrafast laser Melting Resolidification a b s t r a c to model the crystalline silicon. The temperature development in silicon when heated by an ultrafast laser

  16. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  17. Effects of ELL-associated factor 2 on ultraviolet radiation-induced cataract formation in mice.

    PubMed

    Jiang, Yanhua; Fu, Rongrong; Zhao, Jiangyue; Wu, Di; Qiao, Guang; Li, Ruoxi; Zhang, Jinsong

    2015-11-01

    ELL-associated factor 2 (Eaf2) has an important role in crystalline lens development and maturation; however, its role in ultraviolet radiation (UV)-induced cataract formation has remained elusive. The present study compared UV-induced cell apoptosis, activation of caspase-3 and caspase-9 and changes in protein expression levels of B-cell lymphoma 2 (bcl-2), bcl-2-associated X protein (bax) and phosphorylated extracellular signal-regulated kinase in wild-type and Eaf2-knockout mice. The results showed that Eaf2 knockout can reduce UV-induced apoptosis in crystalline lenses and mitigate the formation of cataracts. Further functional studies indicated that Eaf2 can induce the activation of caspase-3 and caspase-9, increase the protein expression of the pro-apoptotic protein bax and inhibit the expression of the anti-apoptotic protein bcl-2; thereby, Eaf2 promotes cell apoptosis and is implicated in the formation and development of cataracts. The present study laid a theoretical foundation for the development of drugs for cataract treatment. PMID:26328919

  18. Alpha-decay-induced fracturing in zircon - The transition from the crystalline to the metamict state

    NASA Technical Reports Server (NTRS)

    Chakoumakos, Bryan C.; Murakami, Takashi; Lumpkin, Gregory R.; Ewing, Rodney C.

    1987-01-01

    Zonation due to alpha-decay damage in a natural single crystal of zircon from Sri Lanka is discussed. The zones vary in thickness on a scale from one to hundreds of microns. The uranium and thorium concentrations vary from zone to zone such that the alpha decay dose is between 0.2 x 10 to the 16th and 0.8 x 10 to the 16th alpha-events per milligram. The transition from the crystalline to the aperiodic metamict state occurs over this dose range. At doses greater than 0.8 x 10 to the 16th alpha events/mg there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

  19. Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers.

    PubMed

    Stoychev, Georgi V; Okhrimenko, Denis V; Appelhans, Dietmar; Voit, Brigitte

    2016-01-01

    Quantum dots (QDs) and especially quantum dot arrays have been attracting tremendous attention due to their potential applications in various high-tech devices, including QD lasers, solar cells, single photon emitters, QD memories, etc. Here, a dendrimer-based approach for the controlled synthesis of ultra-thin amorphous cadmium hydroxide nanofibers was developed. The fragmentation of the obtained nanofibers in crystalline nanoparticle chains under the irradiation with electron beam was observed in both ambient and cryo-conditions. Based on the experimental results, a model for the formation of amorphous nanofibers, as well as their transformation in crystalline nanoparticle chains is proposed. We foresee that these properties of the nanofibers, combined with the possibility to convert cadmium hydroxide into CdX (X=O, S, Se, Te), could result in a new method for the preparation of 2D and 3D QDs-arrays with numerous potential applications in high performance devices. PMID:26397918

  20. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    NASA Astrophysics Data System (ADS)

    Pillai, C. K. S.; Sundaresan, Neethu; Radhakrishnan Pillai, M.; Thomas, T.; Thomas, T. J.

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physico-chemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li--DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  1. Transcriptional regulation of crystallin, redox, and apoptotic genes by C-Phycocyanin in the selenite-induced cataractogenic rat model

    PubMed Central

    Kumari, Rasiah Pratheepa; Ramkumar, Srinivasagan; Thankappan, Bency; Natarajaseenivasan, Kalimuthusamy; Balaji, Sadhasivam

    2015-01-01

    Purpose This study was designed to examine the constrictive potential of C-Phycocyanin (C-PC) in regulating changes imposed on gene expression in the selenite-induced cataract model. Methods Wistar rat pups were divided into three groups of eight each. On P10, Group I received an intraperitoneal injection of normal saline. Groups II and III received a subcutaneous injection of sodium selenite (19 ?mol/kg bodyweight); Group III also received an intraperitoneal injection of C-PC (200 mg/kg bodyweight) on P9–14. Total RNA was isolated on P16, and the relative abundance of mRNA of the crystallin structural genes, redox components, and apoptotic cascade were ascertained with real-time PCR with reference to the internal control ?-actin. Results Real-time PCR analysis showed the crystallin genes (?A-, ?B1-, ?D-) and redox cycle components (Cat, SOD-1, Gpx) were downregulated, the apoptotic components were upregulated, and antiapoptotic Bcl-2 was downregulated in Group II. Treatment with 200 mg/kg bodyweight C-PC (Group III) transcriptionally regulated the instability of the expression of these genes, thus ensuring C-PC is a prospective anticataractogenic agent that probably delays the onset and progression of cataractogenesis induced by sodium selenite. Conclusions C-PC treatment possibly prevented cataractogenesis triggered by sodium selenite, by regulating the lens crystallin, redox genes, and apoptotic cascade mRNA expression and thus maintains lens transparency. C-PC may be developed as a potential antioxidant compound applied in the future to prevent and treat age-related cataract. PMID:25593511

  2. Optimized absorption of solar radiations in nano-structured thin films of crystalline silicon via a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mayer, Alexandre; Muller, Jérôme; Herman, Aline; Deparis, Olivier

    2015-08-01

    We developed a genetic algorithm to achieve optimal absorption of solar radiation in nano-structured thin films of crystalline silicon (c-Si) for applications in photovoltaics. The device includes on the front side a periodic array of inverted pyramids, with conformal passivation layer (a-Si:H or AlOx) and anti-reflection coating (SiNx). The device also includes on the back side a passivation layer (a-Si:H) and a flat reflector (ITO and Ag). The geometrical parameters of the inverted pyramids as well as the thickness of the different layers must be adjusted in order to maximize the absorption of solar radiations in the c-Si. The genetic algorithm enables the determination of optimal solutions that lead to high performances by evaluating only a reduced number of parameter combinations. The results achieved by the genetic algorithm for a 40?m thick c-Si lead to short-circuit currents of 37 mA/cm2 when a-Si:H is used for the front-side passivation and 39.1 mA/cm2 when transparent AlOx is used instead.

  3. Ionizing radiation induces myofibroblast differentiation via lactate dehydrogenase.

    PubMed

    Judge, J L; Owens, K M; Pollock, S J; Woeller, C F; Thatcher, T H; Williams, J P; Phipps, R P; Sime, P J; Kottmann, R M

    2015-10-15

    Pulmonary fibrosis is a common and dose-limiting side-effect of ionizing radiation used to treat cancers of the thoracic region. Few effective therapies are available for this disease. Pulmonary fibrosis is characterized by an accumulation of myofibroblasts and excess deposition of extracellular matrix proteins. Although prior studies have reported that ionizing radiation induces fibroblast to myofibroblast differentiation and collagen production, the mechanism remains unclear. Transforming growth factor-? (TGF-?) is a key profibrotic cytokine that drives myofibroblast differentiation and extracellular matrix production. However, its activation and precise role in radiation-induced fibrosis are poorly understood. Recently, we reported that lactate activates latent TGF-? through a pH-dependent mechanism. Here, we wanted to test the hypothesis that ionizing radiation leads to excessive lactate production via expression of the enzyme lactate dehydrogenase-A (LDHA) to promote myofibroblast differentiation. We found that LDHA expression is increased in human and animal lung tissue exposed to ionizing radiation. We demonstrate that ionizing radiation induces LDHA, lactate production, and extracellular acidification in primary human lung fibroblasts in a dose-dependent manner. We also demonstrate that genetic and pharmacologic inhibition of LDHA protects against radiation-induced myofibroblast differentiation. Furthermore, LDHA inhibition protects from radiation-induced activation of TGF-?. We propose a profibrotic feed forward loop, in which radiation induces LDHA expression and lactate production, which can lead to further activation of TGF-? to drive the fibrotic process. These studies support the concept of LDHA as an important therapeutic target in radiation-induced pulmonary fibrosis. PMID:26254422

  4. Radiation-pressure-induced regenerative mechanical oscillations in

    E-print Network

    Radiation-pressure-induced regenerative mechanical oscillations in optical microcavities Hossein depth Amplitude of the mechanical oscillation Regenerative oscillation linewidth Natural mechanical-optical-oscillator ³ Regenerative optomechanical oscillation -- Supports high-Q optical and mechanical modes. -- Provides strong

  5. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  6. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  7. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  8. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  9. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect

    Bozzola, A. Kowalczewski, P.; Andreani, L. C.

    2014-03-07

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  10. Temperature induced mobility and recombination of atomic oxygen in crystalline Kr and Xe. I. Experiment

    E-print Network

    Apkarian, V. Ara

    thermoluminescence.The recombination follows first order kinetics, from which it is inferred that atomic mobilities in studies of photodissocia- tion2 and exciton induced dissociation of 0 precursors.3'4 Thermoluminescence

  11. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets

    NASA Astrophysics Data System (ADS)

    Jian Zhang, Affa; Zhu, Hongyang; Wu, Xiaoxin; Cui, Hang; Li, Dongmei; Jiang, Junru; Gao, Chunxiao; Wang, Qiushi; Cui, Qiliang

    2015-06-01

    Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of ~500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma --> Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of ~500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma --> Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02131f

  12. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (?, ?, and ?) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the ?-glycine and ?-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of ?-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for ?-glycine. The estimated half-lives of ?-glycine and ?-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar ?-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700?cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in glycine crystals. Combining this finding with the fact that this form has the highest solubility among the other glycine polymorphs, we suggest that ?-glycine is the one most likely to have produced the first peptides on primitive Earth. PMID:23249407

  13. Current-induced metastable states in single-crystalline VO2 nanoplatelets

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Budai, J. D.; Strelcov, E.; Tischler, J. Z.; Kolmakov, A.; Kalinin, S. V.

    2012-02-01

    The metal-insulator transition (MIT) in VO2 occurs close to ambient temperature, Tc = 68 ^oC, which can be reduced by doping. The phase transition results in a few orders of magnitude change of electrical conductivity and is accompanied by a change of the lattice from tetragonal to monoclinic, which is associated with lattice expansion of ˜1% along the tetragonal c-axis of the metallic phase. We observed that, in suspended single-crystalline VO2 nanoplatelets (NPls) carrying a sufficiently strong electrical current, Joule heating leads to formation of metal-semiconductor domains, which are self-organized in chains providing a path for the current flow. This results in NPl bending depending on the current strength, which can be used for electrically controlled actuator action. The observed domain structures should be interpreted as distinct metastable states in freestanding and end-clamped quasi-1D VO2 samples. We analyze the stability conditions for the heterophase domains patterns and main prerequisites for the realization of current-controlled nanoactuators based on the proposed concept.

  14. Formation of crystalline ?-Al2O3 induced by variable substrate biasing during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prenzel, M.; Kortmann, A.; von Keudell, A.; Nahif, F.; Schneider, J. M.; Shihab, M.; Brinkmann, R. P.

    2013-02-01

    Reactive magnetron sputtering is a widely used technique to deposit various materials such as oxides and nitrides with a superior control of morphology and stoichiometry. The adjustment of the film properties at a given substrate temperature is believed to be affected by the average energy per incorporated atom during film growth, which is controlled by the ion-to-neutral ratio in the film forming growth flux and the energy of the incident ions. This concept is tested for alumina growth in an rf-magnetron discharge by keeping , the average energy of the incident ions Eions, and the ion-to-neutral flux ratio constant, but varying only the energy distribution of the incident ions (ion energy distribution-IED). The influence of the IED on film growth is monitored by observing the transition of the films between x-ray amorphous Al2O3 to ?-Al2O3. The results reveal that the substrate temperature necessary for the transition to ?-crystalline films can be lowered by almost 100 °C, when the maximum energy of the incident ions is kept at 100 eV, while maintaining the energy per incorporated atom at 11 eV. This result is compared with TRIM calculations for the collision cascades of impacting ions.

  15. Impurity induced crystallinity and optical emissions in ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Acharya, B. S.

    2015-01-01

    We report the growth of ZnO nanocrystallites doped with impurities such as B, N and S by green chemistry route using ultrasound. The effect of intrinsic defects and impurity doping on the structural and optical properties of ZnO nanostructures has been studied and discussed. Characterization studies carried out using x-ray diffraction (XRD) reveal the change in lattice parameters and crystallinity of ZnO in the presence of dopant. This has been explained on the basis of the dopant substitution at regular anion and interstitial sites. Study on surface morphology by field emission scanning electron microscopy (FESEM) shows a change from particle-like structure to aligned nanorods nucleated at definite sites. Elemental analysis such as x-ray photon electron spectroscopy (XPS) has been carried out to ascertain the dopant configuration in ZnO. This has been corroborated by the results obtained from FTIR and Raman studies. UV-vis light absorption and PL studies show an expansion of the band gap which has been explained on the basis of Moss-Burstein shift in the electronic band gap of ZnO by impurity incorporation. The optical emissions corresponding to excitonic transition and defect centres present in the band gap of ZnO is found to shift towards lower/higher wavelength sides. New PL bands observed have been assigned to the transitions related to the impurity states present in the band gap of ZnO along with intrinsic defects.

  16. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Tang, Evelyn; Fu, Liang

    2014-12-01

    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-Bardeen-Cooper-Schrieffer behaviour. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and provides a starting point for realizing novel correlated states of matter.

  17. Formation and annihilation of intrinsic defects induced by electronic excitation in high-purity crystalline SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2013-04-14

    Formation and thermal annihilation of intrinsic defects in {alpha}-quartz were examined using high-purity samples, while minimizing the contributions of reactions involving metallic impurities. Electronic excitation with {sup 60}Co {gamma}-rays was employed to avoid radiation-induced amorphization. The results clearly show that formation of oxygen vacancies (Si-Si bonds) as a result of decomposition of regular Si-O-Si bonds (Frenkel process) is the dominant intrinsic defect process. Compared with amorphous SiO{sub 2}, in {alpha}-quartz, the formation yield of Si-Si bonds is an order of magnitude smaller, the 7.6 eV optical absorption band is less broadened, and their thermal annihilation is complete at a lower temperature, around the {alpha}-{beta} quartz transition. In contrast, radiation-induced interstitial oxygen atoms practically do not form interstitial oxygen molecules.

  18. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  19. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    NASA Astrophysics Data System (ADS)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1-5 W/cm2). For both types of nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  20. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets.

    PubMed

    Zhang, Jian; Zhu, Hongyang; Wu, Xiaoxin; Cui, Hang; Li, Dongmei; Jiang, Junru; Gao, Chunxiao; Wang, Qiushi; Cui, Qiliang

    2015-06-28

    Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma ? Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. PMID:26269801

  1. Radiation-Induced Heart Disease: Pathologic Abnormalities and Putative Mechanisms

    PubMed Central

    Taunk, Neil K.; Haffty, Bruce G.; Kostis, John B.; Goyal, Sharad

    2015-01-01

    Breast cancer is a common diagnosis in women. Breast radiation has become critical in managing patients who receive breast conserving surgery, or have certain high-risk features after mastectomy. Most patients have an excellent prognosis, therefore understanding the late effects of radiation to the chest is important. Radiation-induced heart disease (RIHD) comprises a spectrum of cardiac pathology including myocardial fibrosis and cardiomyopathy, coronary artery disease, valvular disease, pericardial disease, and arrhythmias. Tissue fibrosis is a common mediator in RIHD. Multiple pathways converge with both acute and chronic cellular, molecular, and genetic changes to result in fibrosis. In this article, we review the pathophysiology of cardiac disease related to radiation therapy to the chest. Our understanding of these mechanisms has improved substantially, but much work remains to further refine radiation delivery techniques and develop therapeutics to battle late effects of radiation. PMID:25741474

  2. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury

    PubMed Central

    Cotrim, Ana P.; Hyodo, Fuminori; Baum, Bruce J.; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing. PMID:20413641

  3. Crystalline Silica

    Cancer.gov

    An abundant natural material, crystalline silica is found in stone, soil, and sand. It is also found in concrete, brick, mortar, and other construction materials. Crystalline silica comes in several forms, with quartz being the most common. Quartz dust is respirable crystalline silica, which means it can be taken in by breathing.

  4. Dynamics of negative bias thermal stress-induced threshold voltage shifts in indium zinc oxide transistors: impact of the crystalline structure on the activation energy barrier

    NASA Astrophysics Data System (ADS)

    Oh, Seungha; Yang, Bong Seob; Kim, Yoon Jang; Choi, Yu Jin; Kim, Un Ki; Han, Sang Jin; Lee, Hong Woo; Kim, Hyuk Jin; Kim, Sungmin; Kyeong Jeong, Jae; Kim, Hyeong Joon

    2014-04-01

    The kinetics of the negative bias thermal stress (NBTS)-induced Vth variations of indium zinc oxide (IZO) transistors with different crystallographic qualities were examined based on the stretched-exponential formalism. A poly-crystalline IZO device had a 0.64 eV lower activation barrier energy than an amorphous IZO device under NBTS conditions. This was attributed to the difference in the migration energy barrier between poly-crystalline and amorphous IZO films. For the recovery process, however, the activation energy barriers (˜0.75 eV) were independent of the crystal structure. A plausible microscopic mechanism to account for the experimental results is proposed.

  5. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  6. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  7. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  8. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  9. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  10. Radiation induced lipid peroxidation in liposomes

    NASA Astrophysics Data System (ADS)

    Kale, R. K.; Sitasawad, Sandhya L.

    Liposomes prepared from L-?-lecithin were irradiated to different doses of radiation (0-660 Gy) at the dose rate 1.109 Gy s -1. Lipid peroxidation was found to increase with radiation dose up to 330 Gy and decrease with dose beyond 330 Gy. This suggests that in low dose region (0-330 Gy) most of the energy deposited into liposomes is translated into damage. On the other hand energy deposited in higher dose region (396-660 Gy) may not have completely translated into damage and some part of it might have dissipated to recombination process of free radicals resulting into formation of relatively stable and unreactive molecular products. Observation with different concentrations of liposomes, inhibition of peroxidation by catalase, enhancement by Fe 2+-ions and inverse dose rate effect indicate indirectly the occurence of recombination processes. The decrease in lipid peroxidation might also be due to the avoidance of propagation step.

  11. Radiation induced growth of micro crystallites

    SciTech Connect

    Meisel, D.

    1991-01-01

    Generation of colloidal particles during the radiolysis of aqueous solutions was already observed in the early days of radiation chemistry. Systematic studies using radiation chemistry techniques as synthetic tools in the preparation of colloidal particles, primarily metallic particles, were begun approximately a decade ago in conjunction since they were found to catalyze multi-electron redox processes. A large number of metallic colloidal particles were then synthesized, including silver, gold, platinum, iridium, nickel, cadmium, and others. More recently, attention has turned to semiconductor colloidal particles. The stimulus to these studies is the observation of quantum size effects in small semiconductor particles that exhibit hybrid properties between those of the molecular species and the solid state bulk material. In the following we discuss our own observations on the evolution of semiconductor particles whose growth has been initiated by pulse radiolysis. 13 refs., 2 figs.

  12. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  13. Radiation recall dermatitis induced by trastuzumab.

    PubMed

    Moon, Dochang; Koo, Ja Seung; Suh, Chang-Ok; Yoon, Chang Yun; Bae, Jaehyun; Lee, Soohyeon

    2016-01-01

    We report a case of radiation recall dermatitis caused by trastuzumab. A 55-year-old woman with metastatic breast cancer received palliative first-line trastuzumab/paclitaxel and a salvage partial mastectomy with lymph node dissection was subsequently performed. In spite of the palliative setting, the pathology report indicated that no residual carcinoma was present, and then she underwent locoregional radiotherapy to ensure a definitive response. After radiotherapy, she has maintained trastuzumab monotherapy. Nine days after the fifth cycle of trastuzumab monotherapy, dermatitis in previously irradiated skin developed, with fever. Radiation recall dermatitis triggered by trastuzumab is extremely rare. A high fever developed abruptly with a skin rash. This may be the first case of this sort to be reported. PMID:23543400

  14. Charge-induced instability and macroscopic quantum nucleation phenomena at a crystalline 4He facet

    NASA Astrophysics Data System (ADS)

    Burmistrov, S. N.

    2012-06-01

    The existence of a charge-induced instability is well known for the 4He crystal surface in the rough state. Much less is known about the charge-induced instability at the 4He crystal surface in the smooth well-faceted state below the roughening transition temperature. To meet the lack, we examine here the latter case. As long as the electric field normal to the crystal facet is below the critical value the same as for the rough surface, the crystal faceting remains absolutely stable. Above the critical field, unlike the absolutely unstable state of the rough surface, the crystal facet crosses over to the metastable state separated from the crushed state with a potential barrier proportional to the square of the linear facet step energy. The onset and development of the instability at the charged crystal facet has much in common with the nucleation kinetics of first-order phase transitions. Depending on the temperature, the electric breaking strength is determined either by thermal activation at high temperatures or by quantum tunneling at sufficiently low temperatures.

  15. Radiation induced heart disease in hypertensive rats

    SciTech Connect

    Lauk, S.; Trott, K.R.

    1988-01-01

    Spontaneously hypertensive Wistar rats were given single doses of X rays to their heart. Irradiation decreased the blood pressure before any myocardial radiation damage was apparent. Male rats, which were more hypertensive than female rats, had a shorter survival time after local heart irradiation than female rats. Antihypertensive treatment with hydralazine did not increase the survival time. It is considered that myocardial hypertrophy is the cause of the increased susceptibility of spontaneously hypertensive rats to local heart irradiation.

  16. DECOHERENCE EFFECTS OF MOTION-INDUCED RADIATION

    SciTech Connect

    P. NETO; D. DALVIT

    2000-12-01

    The radiation pressure coupling with vacuum fluctuations gives rise to energy damping and decoherence of an oscillating particle. Both effects result from the emission of pairs of photons, a quantum effect related to the fluctuations of the Casimir force. We discuss different alternative methods for the computation of the decoherence time scale. We take the example of a spherical perfectly-reflecting particle, and consider the zero and high temperature limits. We also present short general reviews on decoherence and dynamical Casimir effect.

  17. Radiation Induced Nanocrystal Formation in Metallic Glasses 

    E-print Network

    Carter, Jesse

    2010-01-14

    The irradiation of metallic glasses to induce nanocrystallization was studied in two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility was described using a model based on localized excess free volume due to displace...

  18. The effect of thermal treatment of radiation-induced EPR signals of different polymorphic forms of trehalose.

    PubMed

    Šari?, Iva; Joki?, Milan; Rakvin, Boris; Kveder, Marina; Maltar-Strme?ki, Nadica

    2014-01-01

    Electron paramagnetic resonance (EPR) signals induced by ?-radiation in different polymorphic forms of trehalose were studied with dosimetry applications in view. Dose response of trehalose in terms of the concentration of induced paramagnetic centers was studied in the dose range from 0.5 to 50 kGy. The dependences of the dose responses of anhydrous ?-crystalline trehalose (TRE(?)) and glassy trehalose (TRE(g)) on dose are linear up to 15 kGy, whereas the linearity of the dependence for trehalose dihydrate (TRE(h)) is limited to about 10 kGy. At doses above 15 kGy, the dependences get saturated for all three forms. The relative radiation sensitivities pointed to the following order of decreasing concentrations of radiation-induced paramagnetic centers in the forms: TRE(g)>TRE(?)>TRE(h). The results showed that at all three trehalose polymorphic forms are suitable for dosimetry, especially for retrospective dose measurements. Also, thermal stability and decay kinetics of the EPR signals of the different forms of trehalose were studied in isothermal annealing experiments. The kinetic parameters, which had been derived by fitting the Arrhenius function to the measured decay rate constants, indicated that the fading of the EPR signals varied from one polymorphic form of trehalose to another. This emphasizes the impact of the molecular packing in the vicinity of the radiation-induced paramagnetic centers on their stability. PMID:24246553

  19. Radiation-induced sarcoma following radiotherapy for testicular tumor

    SciTech Connect

    Lynch, D.F. Jr.; Herr, H.W.

    1981-12-01

    We report 4 cases of soft tissue sarcoma following radiation therapy for testicular tumor. The tumors included leiomyosarcoma, fibroxanthosarcoma, reticulum cell sarcoma and spindle cell sarcoma. Each malignancy arose within the irradiated area after a long latent period (mean 12 years) and each was histologically proved. Total radiation doses ranged from 3,500 to 9,000 rad. Three patients died as a result of the second neoplasm. Radiation-induced sarcomas are rare but must be considered in the differential diagnosis of new tumor growth in patients treated previously with radiotherapy. Full evaluation of such new tumor growth, including tissue diagnosis, is necessary before additional therapy is prescribed.

  20. Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide

    SciTech Connect

    Guo Junjie; Zhang Ling; Fujita, Takeshi; Chen Mingwei; Goto, Takashi

    2010-02-01

    We report polarized and resonant Raman scattering of single-crystal boron carbide (B{sub 4}C) at high pressures. Significant intensity enhancements of 270 and 1086 cm{sup -1} Raman bands of B{sub 4}C have been observed at quasihydrostatic pressures higher than approx20 GPa. The pressure-induced intensity change of the 1086 cm{sup -1} band is mainly due to the resonance between excitation energy and electronic transition, whereas the intensity change of 270 cm{sup -1} band is caused by the depolarization effect. Importantly, the first-order phase transition has not been found at high quasihydrostatic pressures and all the Raman intensity changes along with the corresponding high-pressure lattice distortion can be recovered during unloading.

  1. Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide

    NASA Astrophysics Data System (ADS)

    Guo, Junjie; Zhang, Ling; Fujita, Takeshi; Goto, Takashi; Chen, Mingwei

    2010-02-01

    We report polarized and resonant Raman scattering of single-crystal boron carbide (B4C) at high pressures. Significant intensity enhancements of 270 and 1086cm-1 Raman bands of B4C have been observed at quasihydrostatic pressures higher than ˜20GPa . The pressure-induced intensity change of the 1086cm-1 band is mainly due to the resonance between excitation energy and electronic transition, whereas the intensity change of 270cm-1 band is caused by the depolarization effect. Importantly, the first-order phase transition has not been found at high quasihydrostatic pressures and all the Raman intensity changes along with the corresponding high-pressure lattice distortion can be recovered during unloading.

  2. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  3. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable microcancers, arresting preneoplastic lesions, or correcting abnormal environments which predispose to high risk of malignant transformation.

  4. Simulation of radiation-induced defects

    E-print Network

    Timo Peltola

    2015-09-29

    Mainly due to their outstanding performance the position sensitive silicon detectors are widely used in the tracking systems of High Energy Physics experiments such as the ALICE, ATLAS, CMS and LHCb at LHC, the world's largest particle physics accelerator at CERN, Geneva. The foreseen upgrade of the LHC to its high luminosity (HL) phase (HL-LHC scheduled for 2023), will enable the use of maximal physics potential of the facility. After 10 years of operation the expected fluence will expose the tracking systems at HL-LHC to a radiation environment that is beyond the capacity of the present system design. Thus, for the required upgrade of the all-silicon central trackers extensive measurements and simulation studies for silicon sensors of different designs and materials with sufficient radiation tolerance have been initiated within the RD50 Collaboration. Supplementing measurements, simulations are in vital role for e.g. device structure optimization or predicting the electric fields and trapping in the silicon sensors. The main objective of the device simulations in the RD50 Collaboration is to develop an approach to model and predict the performance of the irradiated silicon detectors using professional software. The first successfully developed quantitative models for radiation damage, based on two effective midgap levels, are able to reproduce the experimentally observed detector characteristics like leakage current, full depletion voltage and charge collection efficiency (CCE). Recent implementations of additional traps at the SiO$_2$/Si interface or close to it have expanded the scope of the experimentally agreeing simulations to such surface properties as the interstrip resistance and capacitance, and the position dependency of CCE for strip sensors irradiated up to $\\sim$$1.5\\times10^{15}$ n$_{\\textrm{eq}}\\textrm{cm}^{-2}$.

  5. Relationship between cross-linking conditions of ethylene vinyl acetate and potential induced degradation for crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Jonai, Sachiko; Hara, Kohjiro; Tsutsui, Yuji; Nakahama, Hidenari; Masuda, Atsushi

    2015-08-01

    In this study, we investigated the relationship in crystalline silicon (c-Si) photovoltaic (PV) modules between the cross-linking level of copolymer of ethylene and vinyl acetate (EVA) as the encapsulant and the degree of degradation due to potential induced degradation (PID) phenomenon. We used three methods for the determination of cross-linking level of EVA: xylene method, which is one of the solvent extraction methods (SEM), curing degree by differential scanning calorimetry (DSC), and viscoelastic properties by dynamic mechanical analysis (DMA). The results indicate that degradation of PV modules by PID test depends on the cross-linking level of EVA. The PV modules encapsulated by EVA with higher cross-linking level show lower degradation degree due to PID phenomenon. Also we showed that EVA with higher cross-linking level tended to be higher volume resistivity. This tendency is similar to that for electrical resistance value during the PID test. The PID test was also done by changing thickness of EVA between front cover glass and c-Si with the same cross-linking level. The PV modules encapsulated by thicker EVA between front cover glass and c-Si cell show lower degradation by PID. From these results, the PV modules encapsulated by EVA with higher cross-linking level, higher volume resistivity and increased thickness would be tolerant of PID phenomenon.

  6. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Grant, Nicholas; Lennon, Alison

    2014-12-01

    Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO2) was investigated. The anodic SiO2 was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3-5 ? cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 ?/? emitter and a LIA anodic SiO2 formed on the p-type surface was increased by two orders of magnitude to 150 ?s. Capacitance-voltage measurements demonstrated a very low positive charge density of 3.4 × 1011 cm-2 and a moderate density of interface states of 6 × 1011 eV-1 cm-2. This corresponded to a silicon surface recombination velocity of 62 cm s-1, which is comparable with values reported for other anodic SiO2 films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10-10 and 1.6 × 10-9 A cm-2 at 1 and -1 V, respectively, was measured for LIA SiO2 suggesting its potential application as insulation layer in IBC solar cells and a barrier for potential induced degradation.

  7. Paclitaxel-carboplatin induced radiation recall colitis.

    PubMed

    Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet

    2004-01-01

    Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy. PMID:15237594

  8. Radiation-induced endometriosis in Macaca mulatta

    SciTech Connect

    Fanton, J.W.; Golden, J.G. )

    1991-05-01

    Female rhesus monkeys received whole-body doses of ionizing radiation in the form of single-energy protons, mixed-energy protons, X rays, and electrons. Endometriosis developed in 53% of the monkeys during a 17-year period after exposure. Incidence rates for endometriosis related to radiation type were: single-energy protons, 54%; mixed-energy protons, 73%; X rays, 71%; and electrons, 57%. The incidence of endometriosis in nonirradiated control monkeys was 26%. Monkeys exposed to single-energy protons, mixed-energy protons, and X rays developed endometriosis at a significantly higher rate than control monkeys (chi 2, P less than 0.05). Severity of endometriosis was staged as massive, moderate, and minimal. The incidence of these stages were 65, 16, and 19%, respectively. Observations of clinical disease included weight loss in 43% of the monkeys, anorexia in 35%, space-occupying masses detected by abdominal palpation in 55%, abnormal ovarian/uterine anatomy on rectal examination in 89%, and radiographic evidence of abdominal masses in 38%. Pathological lesions were endometrial cyst formation in 69% of the monkeys, adhesions of the colon in 66%, urinary bladder in 50%, ovaries in 86%, and ureters in 44%, focal nodules of endometrial tissue throughout the omentum in 59%, and metastasis in 9%. Clinical management of endometriosis consisted of debulking surgery and bilateral salpingo-oophorectomy combined in some cases with total abdominal hysterectomy. Postoperative survival rates at 1 and 5 years for monkeys recovering from surgery were 48 and 36%, respectively.

  9. [Radiation induced sarcoma of the shoulder girdle].

    PubMed

    Steinke, N M; Ostgaard, S E; Jensen, O M; Nordentoft, A M; Sneppen, O

    1991-06-01

    A well-known complication after irradiation of tissue is development of postradiation sarcomas, and the shoulder girdle is in this connexion a frequent location, because it relatively often is exposured to x-rays. During the period 1956 to 1989 121 patients with sarcomas located to the shoulder girdle were referred to the Sarcoma centre in Arhus. Of these, six were postradiation sarcomas. The indication for the initial irradiation was in two cases cancer of the breast, in one malignant lymfogranulomatosis, in one a metastasis from malignant melanoma and finally two cases of peritendinitis humeroscapularis. In average 15 years (7-26 years) elapsed from irradiation to the diagnosis of the sarcomas. There were four bone sarcomas, two located in the clavicles and 2 in the humeri. Of these, three were osteogenic sarcomas and one a malignant fibrous histiocytoma. There were two soft tissue sarcomas, both located subcutaneously with involvement of deep fascia and muscle. Both tumors were extraskeletal osteogenic sarcomas. Three patients died of tumor on an average after 11 months. Two died without tumor from other causes, and one patient is alive without tumor 11 years after the treatment. If a patients presents with pain at the side of prior radiation, the diagnosis postradiation sarcoma must be considered and the patient referred to the Sarcoma centre. Radiation therapy should not be used in patients with benign lesions. PMID:2058030

  10. Pressure- and temperature-induced transformations in crystalline polymers of C{sub 60}

    SciTech Connect

    Meletov, K. P.; Kourouklis, G. A.

    2012-10-15

    The great advantage of the C{sub 60} molecule is its potential for polymerization, due to which the molecule can be the building block of new all carbon materials. In addition, it contains, both sp{sup 2} and sp{sup 3} hybridized carbon atoms, which allows synthesizing new carbon materials with desired physicochemical properties using both types of carbon bonding. The one- and two-dimensional polymeric phases of C{sub 60} are prototype materials of this sort. Their properties, especially polymerization under pressure and room temperature via covalent bonding between molecules belonging to adjacent polymeric chains or polymeric layers, can be used for further development of new materials. The present review focuses on the study of the pressure-induced polymerization and thermodynamic stability of these materials and their recovered new phases by in-situ high-pressure Raman and X-ray diffraction studies. The phonon spectra show that the fullerene molecular cage in the high-pressure phases is preserved, while these polymers decompose under heat treatment into the initial fullerene C{sub 60} monomer.

  11. Stimulation of respiration in rat thymocytes induced by ionizing radiation

    SciTech Connect

    Gudz, T.I.; Pandelova, I.G.; Novgorodov, S.A. )

    1994-04-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O[sub 2] uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La[sup 3+] and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation. 43 refs., 2 figs., 3 tabs.

  12. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    PubMed Central

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-?, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-?1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  13. SENSITIVITY TO RADIATION-INDUCED CANCER IN HEMOCHROMATOSIS

    EPA Science Inventory

    Determination of dose-response relationships for radiation-induced cancer in segments of the population with high susceptibility is critical for understanding the risks of low dose and low dose rates to humans. Clean-up levels for radionuclides will depend upon the fraction of t...

  14. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  15. Radiation-induced basal cell carcinoma

    PubMed Central

    Zargari, Omid

    2015-01-01

    Background: The treatment of tinea capitis using radiotherapy was introduced at the beginning of the twentieth century. A variety of cancers including basal cell carcinoma (BCC) are seen years after this treatment. Objective: We sought to determine the clinical characteristics of BCCs among irradiated patients. Methods: The clinical records of all patients with BCC in a clinic in north of Iran were reviewed. Results: Of the 58 cases of BCC, 29 had positive history for radiotherapy in their childhood. Multiple BCCs were seen in 79.3% and 10.3% of patients with history and without history of radiotherapy, respectively. Conclusions: X-ray radiation is still a major etiologic factor in developing BCC in northern Iran. Patients with positive history for radiotherapy have higher rate of recurrence. PMID:26114066

  16. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    SciTech Connect

    Isildar, M.; Bakale, G.

    1983-01-01

    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 ..gamma..-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains. (ACR)

  17. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  18. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  19. p38 and Src-ERK1/2 pathways regulate crystalline silica-induced chemokine release in pulmonary epithelial cells.

    PubMed

    Øvrevik, Johan; Låg, Marit; Schwarze, Per; Refsnes, Magne

    2004-10-01

    Crystalline silica has been shown to trigger pulmonary inflammation both in vivo and in vitro, but the underlying molecular mechanisms remain unclear. In the present study we focus on the intracellular signaling pathways regulating chemokine release from lung epithelial cells after crystalline silica exposure. Our results show that silica particles induced a concentration- and time-dependent increase in interleukin (IL)-8 release from the human epithelial lung cell line A549. The IL-8 induction was significantly attenuated by inhibitors of the mitogen-activated protein kinases (MAPKs), p38 (SB202190) and extracellular signal-regulated kinase (ERK)-1 and -2 (PD98059), as well as a general protein tyrosine kinase (PTK) inhibitor (genistein). However, IL-8 induction was most efficiently inhibited by the Src family kinase (SFK) inhibitor, PP2, suggesting a crucial role of SFKs in regulating silica-induced IL-8 release from A549 cells. Silica exposure induced phosphorylation of the MAPKs p38 and ERK1/2, but not JNK or ERK5. Silica also induced a significant phosphorylation of SFKs. Moreover, PP2 inhibited silica-induced phospho-ERK1/2 to near-control levels, whereas phospho-p38 was not significantly reduced by the SFK inhibitor. Our results suggest the presence of two separate signaling pathways which are important in the regulation of silica-induced IL-8 release from A549 cells; one involving SFK-dependent activation of ERK1/2, and the other activation of p38, at least partly independent of SFKs. Experiments with primary type 2 (T2) cells from rat lungs suggest that crystalline silica-induced release of macrophage inflammatory protein (MIP)-2 is regulated through similar mechanisms. PMID:15240896

  20. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  1. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  2. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  3. Radiation-induced swelling of stainless steel.

    PubMed

    Shewmon, P G

    1971-09-10

    Significant swelling (1 to 10 percent due to small voids have been found in stainless steel when it is exposed to fast neutron doses less than expected in commercial fast breeder reactors. The main features of this new effect are: (i) the voids are formed by the precipitation of a small fraction of the radiation-produced vacancies; (ii) the voids form primarily in the temperature range 400 degrees to 600 degrees C (750 degrees to 1100 degrees F); and (iii) the volume increases with dose (fluence) at a rate between linear and parabolic. The limited temperature range of void formation can be explained, but the effects of fluence, microstructure, and composition are determined by a competition between several kinetic processes that are not well understood. This swelling does not affect the feasibility or safety of the breeder reactor,but will have a significant impact on the core design and economics of the breeder.Preliminary results indicate that one cannot eliminate the effect,but cold-working,heat treatment, or small changes in composition can reduce the swelling by a factor of 2 or more. Testing is hampered by the fact that several years in EBR-II are required to accumulate the fluence expected in demonstration plants. Heavyion accelerators,which allow damage rates corresponding to much higher fluxes than those found in EBR-II,hold great promise for short-term tests that will indicate the relative effect of the important variables. PMID:17796573

  4. Modeling radiation-induced mixing at interfaces between low solubility metals

    E-print Network

    Zhang, Liang, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    This thesis studies radiation-induced mixing at interfaces between low solubility metals using molecular dynamics (MD) computer simulations. It provides original contributions on the fundamental mechanisms of radiation-induced ...

  5. Cosmic-ray induced radiation in low-orbit space objects

    SciTech Connect

    Sandmeier, H.A.

    1980-09-01

    The induced radiation whole body dose received by astronauts in earth orbit is calculated. The induced radiation results from the interaction of primary cosmic rays with the mass of the satellite or space station. (ACR)

  6. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for ?-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a ?-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, ?-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  7. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  8. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  9. Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

    SciTech Connect

    Puerto, D.; Siegel, J.; Gawelda, W.; Galvan-Sosa, M.; Solis, J.; Ehrentraut, L.; Bonse, J.

    2010-05-15

    We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps-20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used (16 J/cm{sup 2}). The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material.

  10. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  11. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  12. Nature of Radiation-Induced Defects in Quartz

    E-print Network

    Bu Wang; Yingtian Yu; Isabella Pignatelli; Gaurav N. Sant; Mathieu Bauchy

    2015-04-10

    Although quartz ($\\rm \\alpha$-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage have not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics (MD) simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si--O connectivity defects, e.g., small Si--O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on $E^{\\prime}$ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  13. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  14. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration into the irradiated lung.

  15. Vulcanization of polybutadiene latex induced by 60Co ? radiation

    NASA Astrophysics Data System (ADS)

    Liu, Yuguang; Huang, Yudong; Zhang, Chengwu; Hou, Jing; Zhang, Xuequan

    2008-06-01

    Polybutadiene latex (PBL) vulcanization induced by 60Co radiation and the influence of dose on crosslinking were investigated. Morphology and particle size distribution were examined by AFM and a particle size analyzer. The casting films were characterized for their swelling and mechanical properties as a function of dose. The particle size, swelling and tensile properties decreased with dose, while gel fraction and storage modulus increased. The PBL fits well with the Charlesby-Pinner equation in the radiation dose, up to 200 kGy.

  16. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  17. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ?1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  18. Mitochondrial Function and Nuclear Factor-KBMediated Signaling in Radiation-Induced Bystander Effects

    E-print Network

    , New York Abstract Although radiation-induced bystander effects have been well described over the past of radiation-induced bystander effects and that mitochondria- dependent NF-KB/iNOS/NO and NF-KB/COX-2 Radiation-induced bystander effect is defined as the induction of biological effects in cells

  19. Mini-review Radiation-induced bystander effect: Early process and rapid assessment

    E-print Network

    Yu, Peter K.N.

    Mini-review Radiation-induced bystander effect: Early process and rapid assessment Hongzhi Wang September 2013 Accepted 26 September 2013 Keywords: Radiation-induced bystander effect Rapid assessment Early process a b s t r a c t Radiation-induced bystander effect (RIBE) is a biological process that has

  20. Kinetics and Mechanism of Lipid Mesophase Structural Changes Induced by Pressure and X-Radiation Damage

    NASA Astrophysics Data System (ADS)

    Cheng, Anchi

    1995-01-01

    The kinetics and mechanism of structural changes occurring in phase transformations in liquid crystalline phases of hydrated lipids were studied using synchrotron -based time-resolved x-ray diffraction. Pressure-induced phase transitions. An experimental arrangement for studying hydrated lipid phase transitions under pressures up to 1800 bar and at temperatures up to 90^circC was developed. It was capable of performing both transient (pressure-jump) and stationary (pressure oscillation) relaxation kinetic measurements. The observables included x-ray diffraction and in-sample pressure and temperature. The setup was evaluated and used for studying the chain order/disorder transition in the lamellar phases of hydrated lipids. The lamellar gel (L_{beta '})-to-lamellar liquid crystalline (L_alpha) transition in hydrated 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine was studied by constructing its pressure-temperature phase diagram in the range of 1 to 1200 bar and 65 to 90 ^ circC and using large amplitude (400 to 1300 bars) pressure-jumps. The phase diagram provided the phase boundary locations as well as the equilibrium thermomechanical properties of the material. The P-jumps showed that the limiting transit time of the L_{beta '}-to-L_alpha transition was ca. 1 s, while that of the reverse transition was <=q50 ms. Also observed was that the lipid responded rapidly to the P-jump in the L_{beta'} phase up to the rate-determining L_{ beta'}-to-Lalpha transition. Analysis of the structure response spectra for the main transition of hydrated 1,2-dimyristoyl-sn-glycero -3-phosphocholine and monoelaidin shows that the transition mechanism is consistent with the Avrami-Kolmogorov model with an effective growth dimensionality of ca. 1. A layer -by-layer transition mechanism was proposed. Results of the thermal response have been evaluated. X-Radiation damage induced structural and phase changes. The use of intense synchrotron x-radiation is limited by sample radiation damage. We found that x-ray damage effects dramatic changes in structure and mesophase behavior of hydrated lipid. Damage severity is sensitive to lipid headgroup identity and to lipid hydration. These results have improved our understanding of this undesirable process and have served to alert the community to the nature and severity of the problem.

  1. Single-crystalline Bi2Sr2CaCu2O8+x detectors for direct detection of microwave radiation

    NASA Astrophysics Data System (ADS)

    Li, M.; Winkler, D.; Yurgens, A.

    2015-04-01

    We test radiation detectors made from single-crystalline Bi2Sr2CaCu2O8+x flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4 ×12 ?m2 large rectangles embedded in thin-film log-spiral antennas. The SiO2 layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ˜300 V/W and a noise equivalent power of 30 nW/ ?{Hz } has been deduced at 70 K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-?m) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors.

  2. The radiation-induced changes in rectal mucosa: Hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer

    SciTech Connect

    Starzewski, Jacek J.; Pajak, Jacek T.; Pawelczyk, Iwona; Lange, Dariusz; Golka, Dariusz . E-mail: dargolka@wp.pl; Brzeziska, Monika; Lorenc, Zbigniew

    2006-03-01

    Purpose: The purpose of the study was the qualitative and quantitative evaluation of acute radiation-induced rectal changes in patients who underwent preoperative radiotherapy according to two different irradiation protocols. Patients and Methods: Sixty-eight patients with rectal adenocarcinoma underwent preoperative radiotherapy; 44 and 24 patients underwent hyperfractionated and hypofractionated protocol, respectively. Fifteen patients treated with surgery alone served as a control group. Five basic histopathologic features (meganucleosis, inflammatory infiltrations, eosinophils, mucus secretion, and erosions) and two additional features (mitotic figures and architectural glandular abnormalities) of radiation-induced changes were qualified and quantified. Results: Acute radiation-induced reactions were found in 66 patients. The most common were eosinophilic and plasma-cell inflammatory infiltrations (65 patients), erosions, and decreased mucus secretion (54 patients). Meganucleosis and mitotic figures were more common in patients who underwent hyperfractionated radiotherapy. The least common were the glandular architectural distortions, especially in patients treated with hypofractionated radiotherapy. Statistically significant differences in morphologic parameters studied between groups treated with different irradiation protocols were found. Conclusion: The system of assessment is a valuable tool in the evaluation of radiation-induced changes in the rectal mucosa. A greater intensity of regenerative changes was found in patients treated with hyperfractionated radiotherapy.

  3. Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings

    E-print Network

    B. Allen; R. R. Caldwell; E. P. S. Shellard; A. Stebbins; S. Veeraraghavan

    1994-07-14

    We report on a current investigation of the anisotropy pattern induced by cosmic strings on the cosmic microwave background radiation (MBR). We have numerically evolved a network of cosmic strings from a redshift of $Z = 100$ to the present and calculated the anisotropies which they induce. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBE-DMR experiment. We have obtained a preliminary estimate of the string mass-per-unit-length $\\mu$ in the cosmic string scenario.

  4. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  5. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy ?-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose ?-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  6. Frequency and characteristics of docetaxel-induced radiation recall phenomenon

    SciTech Connect

    Mizumoto, Masashi . E-mail: mizumoto1717@hotmail.com; Harada, Hideyuki; Asakura, Hirofumi; Zenda, Sadamoto; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo

    2006-11-15

    Purpose: The aim of this study was to investigate the frequency and characteristics of a docetaxel-induced radiation recall phenomenon. Methods and Materials: Past histories of radiotherapy and radiation recall phenomenon (RRP) were analyzed in 461 patients who were administered docetaxel at our hospital between September 2002 and November 2005. Results: Of the 461 patients, 171 underwent radiotherapy before starting docetaxel. RRP was noted in 3 patients (1.8%). The 3 cases show that RRP tends to develop in patients treated with lower-energy photon beams of {<=}6 MV and in patients with marked acute phase reactions during radiotherapy. Conclusions: The incidence of RRP induced by docetaxel was 1.8%, making it a comparatively rare condition. However, docetaxel is increasingly being used for patients with head and neck tumors, and caution regarding development of RRP is warranted after use of docetaxel after high-dose radiotherapy with photon beams of {<=}6 MV.

  7. Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Ting; Pan, Hsiao-An; Wu, Nae-Lih; Chen, Geroge Zheng

    2015-01-01

    This is the first investigation on electrically conducting polymers-based supercapacitor electrodes over a wide temperature range, from -18 °C to 60 °C. A high-performance supercapacitor electrode material consisting of TiC nanocube core and conformal crystalline polypyrrole (PPy)/poly-vinyl-alcohol (PVA) lamellar shell has been synthesized by heterogeneous nucleation-induced interfacial crystallization. PPy is induced to crystallize on the negatively charged TiC nanocube surfaces via strong interfacial interactions. In this organic-inorganic hybrid nanocomposite, the long chain PVA enables enhanced cycle life due to improved mechanical properties, and the TiC nanocube not only contributes to electron conduction, but also dictates the PPy morphology/crystallinity for maximizing the charging-discharging performance. The crystalline PPy/PAV layer on the TiC nanocube offers unprecedented high capacity (>350 F g-1-PPy at 300 mV s-1 with ?V = 1.6 V) and cycling stability in a temperature range from -18 °C to 60 °C. The presented hybrid-filler and interfacial crystallization strategies can be applied to the exploration of new-generation high-power conducting polymer-based supercapacitor materials.

  8. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    PubMed

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. PMID:26571344

  9. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  10. Radiation induced heart disease: Pathogenesis, management and review literature.

    PubMed

    Madan, R; Benson, R; Sharma, D N; Julka, P K; Rath, G K

    2015-12-01

    Radiation therapy (RT) is a very important part of multimodality cancer therapy. Addition of RT improves survival in many cancers, but there are some accompaniments of radiation. One of them is radiation induced heart disease (RIHD). RT for mediastinal lymphoma, breast, lung and oesophageal cancer is associated with the development of RIHD. The problem can be intensified with the addition of chemotherapy. Therapeutic modalities for RIHD are the same as in the non-irradiated population. However, surgery may be difficult in the irradiated patients. The long latent period is the reason why RIHD is not extensively studied. Survival of cancer patients has improved over past few decades, so RIHD is a growing concern especially in younger patients. In this review article, we have discussed the pathogenesis, clinical manifestation and management of RIHD along with impact of chemotherapeutic agents. PMID:26296945

  11. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  12. Nature of Radiation-Induced Defects in Quartz

    E-print Network

    Wang, Bu; Pignatelli, Isabella; Sant, Gaurav N; Bauchy, Mathieu

    2015-01-01

    Although quartz ($\\rm \\alpha$-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage have not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics (MD) simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si--O connectivity defects, e.g., small Si--O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on $E^{\\prime}$ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependenc...

  13. Environmental applications of radiation-induced defects in clay minerals

    NASA Astrophysics Data System (ADS)

    Allard, T.

    2011-12-01

    Radiation effects on clay minerals have been studied over the last 35 years, providing a wealth of information on environmental and geological processes. They have been applied to the reconstruction of past radioelement migrations in the geosphere, the dating of clay minerals from soils or the evolution of the physico-chemical properties under irradiation. All known radiation-induced point defects in clay minerals are detected using Electron Paramagnetic Resonance Spectroscopy. They mostly consist in electron holes located on oxygen atoms of the structure, and can be differentiated through their nature and their thermal stability. For instance, several are associated to a ? orbital on a Si-O bond. One defect, namely the A-center, is stable over geological periods at ambiant temperature. These point defects are produced mainly by ionizing radiations. By contrast to point defects, it was shown that electron or heavy ion irradiation easily produces amorphization in smectites. Two main applications of radiation-induced defects in clay minerals are derived : (i) the use of defects as tracers of past radioactivity. In geosystems where the age of the clay can be constrained, migrations of radioelements can be reconstructed in natural analogues of the far field of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to laterites of the Amazon basin. (ii) The influence of radiation on clay mineral properties that remains poorly documented, although it is an important issue in various domains such as the safety assessment of the high level nuclear waste repositories. In case of a leakage of transuranic elements from the radioactive wasteform, alpha recoil nuclei would amorphize smectite after a period much lower than the disposal lifetime. By contrast, amorphisation from ionizing radiation is unlikely over 1 million years. Furthermore, it was shown that amorphization greatly enhances the dissolution kinetics of smectite, a result that must be taken into account in the safety assessment of engineered barriers.

  14. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis.

    PubMed

    Shim, Grace; Ricoul, Michelle; Hempel, William M; Azzam, Edouard I; Sabatier, Laure

    2014-01-31

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  15. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  16. Residual stress induced crystalline to amorphous phase transformation in Nb{sub 2}O{sub 5} quantum dots

    SciTech Connect

    Dhawan, Sahil; Vedeshwar, Agnikumar G.; Dhawan, Tanuj

    2014-07-28

    Nb{sub 2}O{sub 5} quantum dots (QDs) were grown using a simple technique of vacuum thermal evaporation. QDs were found to be crystalline in nature by selected area electron diffraction (SAED) in TEM. Samples with thickness up to 20?nm did not show any significant residual strain. Residual stress effect on band gap of crystalline Nb{sub 2}O{sub 5} was studied for films thicker than 20?nm. Residual strain was determined using SAED of the films with reference to powder X-ray diffraction (XRD). Films thicker than 45?nm become amorphous as analyzed by both SAED and XRD. The optical absorption of films in the range 25–60?nm indicates significantly varying optical band gap of films. The varying band gap with film thickness scales linearly very well with the variation of residual stress with film thickness. The residual stress dependence of band gap of crystalline films yields stress free band gap as 3.37 eV with pressure coefficient of band gap (?E{sub g}/?P){sub T}?=??29.3?meV/GPa. From this study, the crystalline to amorphous transformation in tetragonal form of M-Nb{sub 2}O{sub 5} has been determined to be at about 14?GPa. Both pressure coefficient of band gap and crystalline to amorphous transition for tetragonal M-Nb{sub 2}O{sub 5} have been determined for the first time in the literature.

  17. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-?1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for the radioprotection of hematopoietic cells against the cell killing effects of radiation, and for improving survival in irradiated animals. Preliminary data suggest similar antioxidant protective effects for animals exposed to potentially lethal doses of proton radiation. Studies were also performed to determine whether dietary antioxidants could affect the incidence rates of malignancies in CBA mice exposed to 300 cGy proton (1 GeV/n) radiation or 50 cGy iron ion (1 GeV/n) radiation [9]. Two antioxidant formulations were utilized in these studies; an AOX formulation containing the mixture of antioxidant agents developed from our previous studies and an antioxidant dietary formulation containing the soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI). BBI was evaluated in the form of BBI Concentrate (BBIC), which is the form of BBI utilized in human trials. BBIC has been utilized in human trials since 1992, as described [10]. The major finding in the long-term animal studies was that there was a reduced risk of malignant lymphoma in mice exposed to space radiations and maintained on diets containing the antioxidant formulations. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types, arising from both epithelial and connective tissue cells, observed in the animals exposed to space radiation. REFERENCES [1] Guan J. et al (2004) Radiation Research 162, 572-579. [2] Wan X.S. et al (2005) Radiation Research 163, 364-368. [3] Wan X.S. et al (2005) Radiation Research 163, 232-240. [4] Guan J. et al (2006) Radiation Research 165, 373-378. [5] Wan X.S. et al (2006) International Journal of Radiation Oncology, Biology, Physics 64, 1475-1481. [6] Kennedy A.R. et al (2006) Radiation Research 166, 327-332. [7] Kennedy A.R. et al (2007) Radiation & Environmental Biophysics 46(2), 201-3. [8]Wambi, C., Sanzari, J., Wan, X.S., Nuth, M., Davis, J., Ko, Y.-H., Sayers, C.M., Baran, M., Ware, J.H. and Kennedy, A

  18. Quantification of anti-aggregation activity of UV-irradiated ?-crystallin.

    PubMed

    Borzova, Vera A; Markossian, Kira A; Muranov, Konstantin O; Polyansky, Nikolay B; Kleymenov, Sergey Yu; Kurganov, Boris I

    2015-02-01

    Ultraviolet radiation is a risk factor for cataractogenesis. It is believed that enhanced rates of lens opacification and cataract formation are the results of gradual loss of chaperone-like efficiency of ?-crystallin upon exposure to UV light. To characterize chaperone-like activity of ?-crystallin damaged by UV irradiation, a test system based on dithiothreitol-induced aggregation of holo-?-lactalbumin from bovine milk was used. The adsorption capacity of ?-crystallin (AC0) with respect to the target protein (?-lactalbumin) was used as a measure of anti-aggregation activity of ?-crystallin. The data on SDS-PAGE testify that UV irradiation of ?-crystallin results in covalent cross-linking of subunits in ?-crystallin oligomers. The dependence of AC0 value on the irradiation dose was compared with the UV-induced diminution of the portion of native ?-crystallin estimated from the data on differential scanning calorimetry. On the basis of such comparison a conclusion has been made that the loss in chaperone-like activity is mainly due to UV-induced denaturation of ?-crystallin subunits. Cross-linking of remaining native subunits leads to an additional decrease in anti-aggregation activity. PMID:25445690

  19. Ion induced structural modification and nano-crystalline formation of Zr-Al-Ni-Cu metallic glasses

    NASA Astrophysics Data System (ADS)

    Nagata, S.; Sasase, M.; Takahiro, K.; Tsuchiya, B.; Inouye, A.; Yamamoto, S.; Shikama, T.

    2009-05-01

    The effect of the ion implantation on the phase transformation was studied for glassy and crystalline Zr55Al10Ni5Cu30 alloys, using Au+ ions with 500 keV. For the glassy metal surface, nano-crystalline precipitates were effectively formed in the amorphous matrix by 500 keV Au ion irradiation at a fluence of the about 1016 cm-2. On the contrary, the long range ordering in the partly crystalline alloy was lost by the irradiation under the same condition. Moreover, the precipitation during the heat treatment near the crystallizing temperature was effectively suppressed in the ion implanted area. In the irradiated surface, the XPS valence band structure was drastically changed, while shifts of the binding energy were found in the core level electrons of Au 4f and Cu 2p, indicating a strong interaction between the implanted Au atoms and constituent atoms of the Zr-based alloy.

  20. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff

    PubMed Central

    Bitarafan Rajabi, Ahmad; Noohi, Feridoun; Hashemi, Hassan; Haghjoo, Majid; Miraftab, Mohammad; Yaghoobi, Nahid; Rastgou, Fereydon; Malek, Hadi; Faghihi, Hoshang; Firouzabadi, Hassan; Asgari, Soheila; Rezvan, Farhad; Khosravi, Hamidreza; Soroush, Sara; Khabazkhoob, Mehdi

    2015-01-01

    Background: The use of ionizing radiation has led to advances in medical diagnosis and treatment. Objectives: The purpose of this study was to determine the risk of radiation cataractogenesis in the interventionists and staff performing various procedures in different interventional laboratories. Patients and Methods: This cohort study included 81 interventional cardiology staff. According to the working site, they were classified into 5 groups. The control group comprised 14 professional nurses who did not work in the interventional sites. Participants were assigned for lens assessment by two independent trained ophthalmologists blinded to the study. Results: The electrophysiology laboratory staff received higher doses of ionizing radiation (17.2 ± 11.9 mSv; P < 0.001). There was a significant positive correlation between the years of working experience and effective dose in the lens (P < 0.001). In general, our findings showed that the incidence of lens opacity was 79% (95% CI, 69.9-88.1) in participants with exposure (the case group) and our findings showed that the incidence of lenses opacity was 7.1% (95% CI:2.3-22.6) with the relative risk (RR) of 11.06 (P < 0.001). Conclusions: We believe that the risk of radiation-induced cataract in cardiology interventionists and staff depends on their work site. As the radiation dose increases, the prevalence of posterior eye changes increases. PMID:25789258

  1. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature cells during genome reprogramming by the oncogene c-myc and three additional transcription factors. These and other data reveal the need for generalisation of current model of GI. One can expect that different early events of both DNA damaging and non-damaging origins merge in a single late pathway. To search for a deeper view we propose to redefine GI as genome destabilisation manifested in erosion of genome states and altered transitions between states. This changing view on GI may help to integrate the inducing factors of various origins in the single basic model of GI.

  2. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    SciTech Connect

    Black, G.; Matzinger, E.; Gange, R.W.

    1985-11-01

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areas were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.

  3. Radiation induced bystander effects: Implications for low dose radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Suzuki, M.; Randers-Pehrson, G.; Waldren, C.; Hei, T.

    Current model used in radiation risk assessment is based on the dogma that the DNA of the nucleus is the main target for radiation-induced genotoxicity and, as fewer cells are directly damaged at low doses, the deleterious effects of radiation proportionally decline. Using a precision microbeam to target an exact fraction of cells in a population and irradiated their nuclei with exactly one alpha particle each, we found that the frequencies of induced mutations and chromosomal changes in populations where some known fractions of nuclei were hit are consistent with non- hit cells contributing significantly to the response. In fact, irradiation of 10% of a mammalian cell population with a single alpha particle per cell results in a mutant yield similar to that observed when all of the cells in the population are irradiated. This effect was significantly eliminated in cells pretreated with gap junction inhibitor or in cells carrying a dominant negative connexin 43 vector. The data imply that the relevant target for radiation mutagenesis is larger than an individual cell and suggest a need to reconsider the validity of the linear extrapolation in making risk estimate for low dose radiation exposure.

  4. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  5. Charge gradient-induced on-surface growth of ultralarge single-crystalline Ag nanomembranes for long surface plasmon propagation.

    PubMed

    Qin, Haili; Xiong, Xiong; Wu, Dongmin; Zhang, Feng; Wang, Dong; Liu, Xia; Yang, Wensheng; Jin, Jian

    2015-02-01

    A facile strategy for the fabrication of ultralarge (edge length >50 ?m), single-crystalline Ag nanomembranes is reported in this work. The Ag nanomembrane with an atomically smooth surface demonstrates a much longer surface plasmonic propagation length as compared to vacuum-deposited polycrystalline Ag film, representing superior plasmonic properties. PMID:25531809

  6. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    SciTech Connect

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  7. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  8. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  9. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGESBeta

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore »that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  10. G2-chromosome aberrations induced by high-LET radiations

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    We report measurements of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to ?-rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for ?-rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/?m silicon (2.7) or 80 keV/?m carbon (2.7) and then decreased with LET (1.5 at 440 keV/?m). RBE for chromatid-type break peaked at 55 keV/?m (2.4) then decreased rapidly with LET. The RBE of 440 keV/?m iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.

  11. Radiation-induced cerebral meningioma: a recognizable entity

    SciTech Connect

    Rubinstein, A.B.; Shalit, M.N.; Cohen, M.L.; Zandbank, U.; Reichenthal, E.

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the era prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.

  12. Thermal instability of a fluid layer induced by radiation

    SciTech Connect

    Yang, W.M. )

    1990-01-01

    In this paper the thermal instability of a fluid layer above a solid boundary induced by incident radiative heat to the upper free surface is studied numerically. Eddington approximation is adopted for the equation of transfer, and the pseudospectral method is used to solve the linearized perturbed equations. The effects of Planck number, optical thickness, Biot number, emissivity of the lower plate, and transmissivity of the upper surface on the transition are analyzed for gray and nonscattering fluids. In general, decreasing the temperature difference between the lower plate and the upper surface by increasing the Planck number and the optical thickness, and by decreasing the emissivity and the transmissivity at fixed Biot number, delays the onset of instability. Biot number plays a unique role for nonradiating fluids, and dual roles for radiating fluids on the occurrence of instability.

  13. Treatment of radiation- and chemotherapy-induced stomatitis

    SciTech Connect

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. )

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  14. Inner-shell electron excitation effect on the structural change in amorphous and crystalline GaAs with brilliant X-ray irradiation using synchrotron radiation

    SciTech Connect

    Sato, Fumio; Saito, Nobuo; Kusano, Junichi; Takizawa, Kuniharu; Kawado, Seiji; Kato, Takanori; Sugiyama, Hiroshi; Kagoshima, Yasushi; Ando, Masami

    1998-09-01

    Amorphous layers of gallium arsenide (a-GaAs) formed by heavy implantation of silicon ions and crystalline gallium arsenide (c-GaAs) were irradiated with monochromatized X-rays using brilliant synchrotron radiation. Infrared absorption measurements at low temperature for a-GaAs specimens showed that X-rays having an energy larger than the K-binding energy of As atoms created a much larger fraction of Si-Ga and Si-As bondings than in the as-implanted state. On the other hand, from photoluminescence measurements, it was confirmed that X-rays having a smaller energy than either of the K binding energies, enhanced the relaxation of the a-GaAs network, and created some defects in c-Ga-As. The mechanism for these structural changes is discussed from the viewpoint of relaxation processes after inner-shell electron excitation by X-rays.

  15. Debris and Radiation-Induced Damage Effects on EUV Nanolithography Source Collector Mirror Optics Performance

    E-print Network

    Harilal, S. S.

    Debris and Radiation-Induced Damage Effects on EUV Nanolithography Source Collector Mirror Optics-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL

  16. Effect of estrogen on radiation-induced cataractogenesis.

    PubMed

    Dynlacht, Joseph R; Tyree, Craig; Valluri, Shailaja; DesRosiers, Colleen; Caperell-Grant, Andrea; Mendonca, Marc S; Timmerman, Robert; Bigsby, Robert M

    2006-01-01

    Cataractogenesis is a widely reported late effect that is observed in patients receiving total-body irradiation (TBI) prior to bone marrow transplantation or radiotherapy for ocular or head and neck cancers. Recent studies indicate that estrogens may protect against age-related and drug-induced cataracts. Moreover, other reports suggest that estrogen possesses antioxidant properties. Since the effect of estrogen on radiation cataractogenesis is unknown, we wished to determine whether estrogen modulates radiation-induced opacification of the lens. Intact or ovariectomized Sprague-Dawley rats were treated with either 17-beta-estradiol or an empty silastic capsule. The right orbit was then irradiated with either 10 or 15 Gy of (60)Co gamma rays using a Leksell Gamma Knife, and lenses were examined at various times postirradiation with a slit lamp or evaluated for light transmission. We found that for ovariectomized rats irradiated with 15 Gy, the lens opacity and the incidence of cataract formation in the estradiol-treated group were significantly increased compared to the control group at the end of the 25-week period of observation. Cataract incidence was also high in irradiated eyes of ovary-intact animals at 25 weeks postirradiation but was greatly reduced in the ovariectomized control group, with less than half of irradiated eyes showing evidence of cataractogenesis. Thus, after irradiation with 15 Gy of gamma rays, estrogen increased the incidence of cataract formation. We also observed that although the incidence of cataract formation in rats irradiated with 10 Gy and receiving continuous estrogen treatment was not altered compared to rats in the control group that did not receive estrogen, the latent period for posterior subcapsular cataract formation decreased and the severity of the anterior cataract increased. Taken together, our data suggest that estrogen accelerates progression of radiation-induced opacification. PMID:16392957

  17. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-?1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-?1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new strategy for enhancing the assessment of the curative effects and safety of clinical radiotherapy, as well as reducing adverse effects. PMID:25401336

  18. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  19. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  20. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  1. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  2. Kick Velocity Induced by Magnetic Dipole and Quadrupole Radiation

    NASA Astrophysics Data System (ADS)

    Kojima, Yasufumi; Kato, Yugo E.

    2011-02-01

    We examine the recoil velocity induced by the superposition of magnetic dipole and quadrupole radiation from a pulsar/magnetar born with rapid rotation. The resultant velocity depends on not the magnitude, but rather the ratio of the two moments and their geometrical configuration. The model does not necessarily lead to high spatial velocity for a magnetar with a strong magnetic field, which is consistent with the recent observational upper bound. The maximum velocity predicted with this model is slightly smaller than that of observed fast-moving pulsars.

  3. Management of radiation-induced accelerated carotid atherosclerosis

    SciTech Connect

    Loftus, C.M.; Biller, J.; Hart, M.N.; Cornell, S.H.; Hiratzka, L.F.

    1987-07-01

    Patients with long survival following cervical irradiation are at risk for accelerated carotid atherosclerosis. The neurologic presentation in these patients mimics naturally occurring atheromatous disease, but patients often present at younger ages and with less concurrent coronary or systemic vascular disease. Hypercholesterolemia also contributes to this accelerated arteriosclerosis. Angiographic findings in this disorder include disproportionate involvement of the distal common carotid artery and unusually long carotid lesions. Pathologic findings include destruction of the internal elastic lamina and replacement of the normal intima and media with fibrous tissue. This article describes two surgical patients with radiation-induced accelerated carotid atherosclerosis who typify the presentation and characteristics of this disease.

  4. X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma

    SciTech Connect

    Takizawa, T.; Matsui, T.; Maeda, Y.; Okabe, S.; Mochizuki, M.; Tanaka, A.; Kawaguchi, K.; Fukayama, M.; Funata, N.; Koike, M.

    1989-01-01

    A serially xenotransplantable strain of undifferentiated embryonal rhabdomyosarcoma originating from the nasal cavity of a 42-year-old woman has been established in our laboratory. After radiotherapy for the tumor donor, distinct rhabdomyoblastic differentiation of the undifferentiated sarcoma cells appeared in the primary lesion, and it is a reasonable assumption that X-irradiation has a certain potentiality to induce morphologic differentiation of tumor cells. To study this possibility, tissue fragments of undifferentiated embryonal rhabdomyosarcoma that had grown to more than 10 mm after being transplanted to nude mice were selectively irradiated in situ. The degree of rhabdomyoblastic differentiation according to radiation dose was evaluated by light and electron microscopy and by immunostainability for myoglobin, creatine phosphokinase-MM, and desmin. Distinct morphologic differentiation of undifferentiated sarcoma cells could be induced by repeated X-irradiations at several-week intervals.

  5. Radiatively Induced Breaking of Conformal Symmetry in a Superpotential

    E-print Network

    Arbuzov, A B

    2015-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  6. Method and apparatus for characterization of electric field-induced aggregation in pre-crystalline protein solutions

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi

    2015-01-01

    The article presents a method and an apparatus for the characterization of protein aggregation under an applied internal electric field. The method is based on a forward light scattering technique that is highly sensitive to aggregates in pre-crystalline protein solutions. Transparent conductive films are used as electrodes for a planar thin sample cell, which enables precise measurement of the forward light scattering at small angles through the electrodes. Evaluation of the protein aggregation under applied electric fields was demonstrated for a model lysozyme protein. In situ measurements of crystallizing lysozyme solutions under a low applied voltage revealed that the forward static light scattering profiles changed with time into power law profiles. This indicates the formation of lysozyme fractal clusters under applied electric fields in the pre-crystalline state. The method and the apparatus presented here can sensitively evaluate the promotion process in protein crystallization under an applied electric field.

  7. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere. PMID:24143867

  8. Pressure-induced superconducting state in crystalline boron nanowires Liling Sun,1,*, Takahiro Matsuoka,2 Yasuyuki Tamari,2 Katsuya Shimizu,2,*, Jifa Tian,1 Yuan Tian,1 Chendong Zhang,1

    E-print Network

    Gao, Hongjun

    Pressure-induced superconducting state in crystalline boron nanowires Liling Sun,1,*, Takahiro February 2009; published 16 April 2009 We report high-pressure induced superconductivity in boron nanowires-B , these BNWs show a semiconductor- metal transition at much lower pressure than bulk -r-B. Also, we found

  9. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, ?. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to ?. PMID:26450679

  10. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A. )

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine.

  11. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  12. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-05-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation.

  13. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Kurtz, S.

    2013-08-01

    The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

  14. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; Van Bardeleben, H. J.

    2015-08-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  15. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  16. Prevention and Management of Radiation-induced Late Gastrointestinal Toxicity.

    PubMed

    Teo, M T W; Sebag-Montefiore, D; Donnellan, C F

    2015-11-01

    In the UK, about 90 000 cancer survivors will suffer from pelvic radiation disease (PRD) due to their curative treatment including radiotherapy. The National Cancer Survivorship Initiative aims to improve the understanding and management of PRD by the oncology community. This overview covers the prevention, investigation and treatment for late radiation-induced gastrointestinal symptoms in PRD. Multiple pharmacological and nutritional interventions have been studied, as prophylaxis for acute gastrointestinal toxicity (aiming to prevent late consequential effects), although predominantly only small randomised controlled trials have been conducted. These have produced mixed results, although promising signals for some agents have been observed. Evidence for the pharmacological prevention of late gastrointestinal toxicity is scarce. Even fewer randomised controlled trials have investigated the late gastrointestinal toxicity profile of advanced radiotherapy technologies. There are nationally agreed algorithms for the investigation and management of PRD, but a lack of awareness means patients still do not get referred appropriately. This overview outlines the management of radiation proctopathy and diarrhoea, and signposts other accessible resources. Finally, we provide recommendations for the management of late gastrointestinal symptoms in PRD and research in this field, especially the need for high-quality clinical trials. PMID:26129746

  17. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  18. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  19. Radiation-induced defects in clay minerals: A review

    NASA Astrophysics Data System (ADS)

    Allard, Th.; Balan, E.; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S.

    2012-04-01

    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagnetic Resonance Spectroscopy has shown the presence of defects produced by natural or artificial radiations. These defects consist mostly of electron holes located on oxygen atoms of the structure. The various radiation-induced defects are differentiated through their nature and their thermal stability. Most of them are associated with a ? orbital on a Si-O bond. The most abundant defect in clay minerals is oriented perpendicular to the silicate layer. Thermal annealing indicates this defect in kaolinite (A-center) to be stable over geological periods at ambient temperature. Besides, electron or heavy ion irradiation easily leads to an amorphization in smectites, depending on the type of interlayer cation. The amorphization dose exhibits a bell-shaped variation as a function of temperature, with a decreasing part that indicates the influence of thermal dehydroxylation. Two main applications of the knowledge of radiation-induced defects in clay minerals are derived: (i) The use of defects as tracers of past radioactivity. In geological systems where the age of the clay can be constrained, ancient migrations of radioelements can be reconstructed in natural analogues of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to fault gouges or laterites of the Amazon basin. (ii) The influence of irradiation over physico-chemical properties of clay minerals. An environmental application concerns the performance assessment of the engineered barrier of nuclear waste disposals. In case of a leakage of transuranic elements from the radioactive waste form, alpha recoil nuclei can amorphize smectite after periods of the order of 1000 years according to a worst case scenario, whereas amorphization from ionizing radiation is unlikely. As amorphization greatly enhances the dissolution kinetics of smectite, the sensitivity of the smectites must be taken into account in the prediction of the long term behavior of engineered barriers.

  20. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. PMID:26520372

  1. A Case of Radiation-Induced Osteosarcoma after the Treatment of Pineoblastoma

    PubMed Central

    Hong, Noah; Yoo, Heon; Shin, Sang Hoon; Gwak, Ho Shin

    2015-01-01

    Radiation therapy has an important role in postoperative treatment of neoplasms originated from central nervous system, but may induce secondary malignancies like as sarcomas, gliomas, and meningiomas. The prognosis of radiation-induced osteosarcomas is known as poor, because they has aggressive nature invasive locally and intractable to multiple treatment strategies like as surgical resection, chemotherapy, and so on. We report a case of radiation-induced osteosarcoma developed from skull after 7 years of craniospinal radiotherapy for pineoblastoma. PMID:26605276

  2. Connecting radiation-induced bystander effects and senescence to improve radiation response prediction.

    PubMed

    Poleszczuk, Jan; Krzywon, Aleksandra; Forys, Urszula; Widel, Maria

    2015-05-01

    For the last two decades radiation-induced bystander effects (RIBEs) have attracted significant attention due to their possible implications for radiotherapy. However, despite extensive research, the molecular pathways associated with RIBEs are still not completely known. In the current study we investigated the role of senescence in the bystander response. Irradiated (2, 4, 6 and 8 Gy) human colorectal carcinoma cells (HCT116) with p53(+/+) (wild-type) or p53(-/-) (knockout) gene were co-incubated with nonirradiated cells of the same type. Clonogenic and senescence assays were used for both irradiated and co-incubated bystander cell populations. We also performed additional measurements on the number of remaining cells after the whole co-incubation period. For radiation doses larger than 2 Gy we observed much larger fractions of senescent cells in p53-positive populations compared to their p53-negative counterparts (15.81% vs. 3.63% in the irradiated population; 2.89% vs. 1.05% in the bystander population; 8 Gy; P < 0.05). Statistically significant differences between cell lines in the clonogenic cell surviving fraction were observed for doses higher than 4 Gy (1.61% for p53(+/+) vs. 0.19% for p53(-/-) in irradiated population; 3.57% for +/+ vs. 50.39% for -/- in bystander population; 8 Gy; P < 0.05). Our main finding was that the number of senescent cells in the irradiated population correlated strongly with the clonogenic cell surviving fraction (R = -0.98, P < 0.001) and the number of senescent cells (R = 0.97, P < 0.001) in the bystander population. We also extended the standard linear-quadratic radiation response model by incorporating the influence of the signals released by the senescent cells, which accurately described the radiation response in the bystander population. Our findings suggest that radiation-induced senescence might be a key player in RIBE, i.e., the strength of RIBE depends on the amount of radiation-induced senescence. PMID:25844948

  3. Single-crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} detectors for direct detection of microwave radiation

    SciTech Connect

    Li, M. Winkler, D.; Yurgens, A.

    2015-04-13

    We test radiation detectors made from single-crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4×12??m{sup 2} large rectangles embedded in thin-film log-spiral antennas. The SiO{sub 2} layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ?300 V/W and a noise equivalent power of 30 nW/?(Hz) has been deduced at 70?K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-?m) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors.

  4. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  5. Effects of contrast medium on radiation-induced chromosome aberrations

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in in vitro experiments with diagnostic x rays and /sup 60/Co gamma rays. Chromosome and chromatid aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co gamma rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  6. Chemoprevention of ultraviolet radiation-induced skin cancer.

    PubMed Central

    Ley, R D; Reeve, V E

    1997-01-01

    The use of chemical and physical sunscreening agents has increased dramatically during the last two to three decades as an effective means of preventing sunbum. The use of high sunprotection factor sunscreens has also been widely promoted for the prevention of skin cancer, including melanoma. Whereas sunscreens are undoubtedly effective in preventing sunbum, their efficacy in preventing skin cancer, especially melanoma, is currently under considerable debate. Sunscreens have been shown to prevent the induction of DNA damage that presumably results from the direct effects of ultraviolet radiation (UVR) on DNA. DNA damage has been identified as an initiator of skin cancer formation. However, both laboratory and epidemiological studies indicate that sunscreens may not block the initiation or promotion of melanoma formation. These studies suggest that the action spectrum for erythema induction is different than the action spectrum for the induction of melanoma. Indeed, recent reports on the wavelength dependency for the induction of melanoma in a fish model indicate that the efficacy of ultraviolet A wavelengths (320-400 nm) to induce melanoma is orders of magnitude higher than would be predicted from the induction of erythema in man or nonmelanoma skin tumors in mice. Other strategies for the chemoprevention of skin cancer have also been reported. Low levels and degree of unsaturation of dietary fats protect against UVR-induced skin cancer in mice humens. Compounds with antioxidant activity, including green tea extracts (polyphenols), have been reported to inhibit UVR-induced skin carcinogenesis. PMID:9255591

  7. Multi-wavelength emission through self-induced second-order wave-mixing processes from a Nd3+ doped crystalline powder random laser

    PubMed Central

    Moura, André L.; Jerez, Vladimir; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2015-01-01

    Random lasers (RLs) based on neodymium ions (Nd3+) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd3+ RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd3+ doped YAl3(BO3)4 monocrystals excited at 806?nm, in resonance with the Nd3+ transition 4I9/2???4F5/2. Besides the observation of the RL emission at 1062?nm, self-converted second-harmonic at 531?nm, and self-sum-frequency generated emission at 459?nm due to the RL and the excitation laser at 806?nm, are reported. Additionally, second-harmonic of the excitation laser at 403?nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd3+ doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium. PMID:26334517

  8. Multi-wavelength emission through self-induced second-order wave-mixing processes from a Nd3+ doped crystalline powder random laser.

    PubMed

    Moura, André L; Jerez, Vladimir; Maia, Lauro J Q; Gomes, Anderson S L; de Araújo, Cid B

    2015-01-01

    Random lasers (RLs) based on neodymium ions (Nd(3+)) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd(3+) RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd(3+) doped YAl3(BO3)4 monocrystals excited at 806?nm, in resonance with the Nd(3+) transition (4)I9/2???(4)F5/2. Besides the observation of the RL emission at 1062?nm, self-converted second-harmonic at 531?nm, and self-sum-frequency generated emission at 459?nm due to the RL and the excitation laser at 806?nm, are reported. Additionally, second-harmonic of the excitation laser at 403?nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd(3+) doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium. PMID:26334517

  9. Multi-wavelength emission through self-induced second-order wave-mixing processes from a Nd3+ doped crystalline powder random laser

    NASA Astrophysics Data System (ADS)

    Moura, André L.; Jerez, Vladimir; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2015-09-01

    Random lasers (RLs) based on neodymium ions (Nd3+) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd3+ RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd3+ doped YAl3(BO3)4 monocrystals excited at 806?nm, in resonance with the Nd3+ transition 4I9/2???4F5/2. Besides the observation of the RL emission at 1062?nm, self-converted second-harmonic at 531?nm, and self-sum-frequency generated emission at 459?nm due to the RL and the excitation laser at 806?nm, are reported. Additionally, second-harmonic of the excitation laser at 403?nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd3+ doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium.

  10. Grain alignment induced by radiative torques: effects of internal relaxation of energy and complex radiation fields

    E-print Network

    Thiem Hoang; Alex Lazarian

    2008-12-24

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns grain axis of maximum moment of inertia with respect to grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of maximum moment of inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of maximum moment of inertia with angular momentum, and both axis of maximum moment of inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For the alignment without high-J attractors, beside the earlier studied attractors with low angular momentum (low-J attractors), there appears new low-J attractors. The former and later cases correspond to the alignment with long axes perpendicular and parallel to the angular momentum, respectively. In addition, we study the alignment of grains in the presence of strong internal relaxation, but induced not by a radiation beam as in earlier studies, instead, induced by a complex radiation field, that can be decomposed into dipole and quadrupole components. We find that in this situation, the parameter space $q^{max}$, for the existence of high-$J$ attractors is more extended, which entails higher degrees of polarization expected. Our obtained results are useful for modeling polarization arising from aligned grains in molecular clouds and accretion disks.

  11. Motion-induced radiation from electrons moving in Maxwell's fish-eye.

    PubMed

    Liu, Yangjie; Ang, L K

    2013-01-01

    In ?erenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang et al., we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of ?erenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation. PMID:24166002

  12. Motion-induced radiation from electrons moving in Maxwell's fish-eye

    E-print Network

    Liu, Yangjie

    2013-01-01

    In \\u{C}erenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang {\\itshape et al.}, we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of \\u{C}erenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation.

  13. Motion-induced radiation from electrons moving in Maxwell's fish-eye

    PubMed Central

    Liu, Yangjie; Ang, L. K.

    2013-01-01

    In ?erenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang et al., we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of ?erenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation. PMID:24166002

  14. Ion implantation induced phase transformation and enhanced crystallinity of as deposited copper oxide thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bind, Umesh Chandra; Dutta, Raj Kumar; Sekhon, Gurpreet Kaur; Yadav, Kanhaiya Lal; Krishna, J. B. M.; Menon, Ranjini; Nabhiraj, P. Y.

    2015-08-01

    Copper oxide thin film of about 260-280 nm thickness was deposited using pulsed laser deposition (PLD) on glass substrate at 350 °C and post depositional sample treatment was performed by ion implantation with 50 keV N5+ ion beam with varying particle fluence. Amorphous copper oxide thin film deposited at 80 mTorr partial pressure of oxygen was transformed to cubic Cu2O phase (20.2 nm) when implanted at 1 × 1016 particles/cm2. While mixed Cu2O and CuO phases in the thin film deposited at 100 mTorr oxygen pressure was transformed to single phase of Cu2O (23.5 nm), with enhanced crystallinity when implanted with 2.5 × 1015 particles/cm2. The phase transformation and improved crystallinity is attributed to thermal effect owing to stopping of incident ion beam. Implantation with higher particle fluence led to transformation to CuO phase with reduced crystallite sized and the increased electrical conductivity.

  15. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  16. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  17. Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians.

    PubMed

    Yoon, Minchul; Yang, Ho-Yeon; Lee, Seung-Sik; Kim, Dong-Ho; Kim, Gwang-Hoon; Choi, Jong-il

    2013-08-15

    In this study, thioredoxin h (Trxh) was isolated and characterized from the fresh water green alga Spirogyra varians, which was one amongst the pool of proteins induced upon gamma radiation treatment. cDNA clones encoding S. varians thioredoxin h were isolated from a pre-constructed S. varians cDNA library. Trxh had a molecular mass of 13.5kDa and contained the canonical WCGPC active site. Recombinant Trxh showed the disulfide reduction activity, and exhibited insulin reduction activity. Also, Trxh had higher 5,5'-dithiobis(2-nitrobenzoic acid) reduction activity with Arabidopsis thioredoxin reductase (TR) than with Escherichia coli TR. Specific expression of the Trxh gene was further analyzed at mRNA and protein levels and was found to increase by gamma irradiation upto the absorbed dose of 3kGy, suggesting that Trxh may have potential functions in protection of biomolecules from gamma irradiation. PMID:23830452

  18. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  19. Radiation induces turbulence in particle-laden fluids

    SciTech Connect

    Zamansky, Rémi; Coletti, Filippo; Massot, Marc; Mani, Ali

    2014-07-15

    When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.

  20. Radiation-induced microstructural change in ceramic materials

    NASA Astrophysics Data System (ADS)

    Kinoshita, C.

    1992-09-01

    What is the characteristic difference between radiation-induced microstructural changes in ceramic and metallic materials? A review is given of the current state of knowledge regarding this question. Elementary properties, which are indispensable for describing the displacement process, are described for ionic and covalent crystals. The structure of cascade damage and its stability are described in terms of the effects of deposited energy density and electronic excitation as well as the characteristics of ceramic materials. The characteristic behavior of the nucleation and growth process of defect clusters in various ceramic materials irradiated with electrons, ions and neutrons, which have been observed mainly through transmission electron microscopy, is also reviewed. This review also considers the effects of irradiation which is concurrent with an applied electric field, transmutation-produced gases and atmosphere, though little definitive work has been done.

  1. Kinetic Monte Carlo simulations of radiation induced segregation and precipitation

    NASA Astrophysics Data System (ADS)

    Soisson, Frédéric

    2006-03-01

    Kinetics of radiation induced segregation and precipitation in binary alloys are studied by Monte Carlo simulations. The simulations are based on a simple atomic model of diffusion under electron irradiation, which takes into account the creation of point defects, the recombination of close vacancy-interstitial pairs and the point defect annihilation at sinks. They can reproduce the coupling between point defect fluxes towards sinks and atomic fluxes, which controls the segregation tendency. In pure metals and ideal solid solutions, the Monte Carlo results are found to be in very good agreement with classical models based on rate equations. In alloys with an unmixing tendency, we show how the interaction between the point defect distribution, the solute segregation and the precipitation driving force can generate complex microstructural evolutions, which depend on the very details of atomic-scale diffusion properties.

  2. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  3. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  4. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  5. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  6. Prediction of charge-induced molecular alignment: residual dipolar couplings at pH 3 and alignment in surfactant liquid crystalline phases.

    PubMed

    Zweckstetter, Markus

    2006-01-01

    Recently we reported that the alignment tensor of a biological macromolecule, which was dissolved in a dilute suspension of highly negatively charged filamentous phage at close to neutral pH, can be predicted from the molecule's 3D charge distribution and shape (Zweckstetter et al. 2004). Here it is demonstrated that this approach is also applicable to alignment of proteins in liquid crystalline phases formed by filamentous phage at low pH. Residual dipolar couplings (RDCs) predicted by our simple electrostatic model for the B1 domain of protein G in fd phage at pH 3 fit very well with the experimental values. The sign of charge-shape predicted one-bond (1)H-(15)N dipolar couplings for the B1 domain of protein G (GB1) was inverted at pH 3 compared to neutral pH, in agreement with experimental observations. Our predictions indicate that this is a feature specific for GB1. In addition, it is shown that RDCs induced in the protein ubiquitin by the presence of a positively charged surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide can be predicted accurately by a simple electrostatic alignment model. This shows that steric and electrostatic interactions dominate weak alignment of biomolecules for a wide range of pH values both in filamentous phage and in surfactant liquid crystalline phases. PMID:16249916

  7. Heterogeneous shock-induced thermal radiation in minerals

    NASA Technical Reports Server (NTRS)

    Kondo, K.-I.; Ahrens, T. J.

    1983-01-01

    A 500-channel optical imaging intensifying and spectral digital recording system is used for recording the shock-induced radiation emitted from 406 to 821 nm from transparent minerals during the time interval that a shock wave propagates through the sample. The initial results obtained for single crystals of gypsum, calcite and halite in the 30 to 40 GPa (300 to 400 kbar) pressure range reveal grey-body emission spectra corresponding to temperatures in the 3000 to 4000 K range and emissivities ranging from 0.003 to 0.02. With gypsum and calcite, distinctive line spectra are superimposed on the thermal radiation. The observed color temperatures are greater than the Hugoniot temperature by a factor of 2 to 10; this is calculable on the basis of continuum thermodynamics and equation of state models for the shock states achieved in the three minerals. These observed high temperatures are thought to be real. It is concluded that a large number of closed spaced high temperature shear-band regions are being detected immediately behind the shock front.

  8. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  9. Radiation-induced tumor neoantigens: imaging and therapeutic implications

    PubMed Central

    Corso, Christopher D; Ali, Arif N; Diaz, Roberto

    2011-01-01

    Exposure of tumor cells to ionizing radiation (IR) is widely known to induce a number of cellular changes. One way that IR can affect tumor cells is through the development of neoantigens which are new molecules that tumor cells express at the cell membrane following some insult or change to the cell. There have been numerous reports in the literature of changes in both tumor and tumor vasculature cell surface molecule expression following treatment with IR. The usefulness of neoantigens for imaging and therapeutic applications lies in the fact that they are differentially expressed on the surface of irradiated tumor cells to a greater extent than on normal tissues. This differential expression provides a mechanism by which tumor cells can be “marked” by radiation for further targeting. Drug delivery vehicles or imaging agents conjugated to ligands that recognize and interact with the neoantigens can help to improve tumor-specific targeting and reduce systemic toxicity with cancer drugs. This article provides a review of the molecules that have been reported to be expressed on the surface of tumor cells in response to IR either in vivo or in vitro. Additionally, we provide a discussion of some of the methods used in the identification of these antigens and applications for their use in drug delivery and imaging. PMID:21969260

  10. Radiation induced effects on mechanical properties of nanoporous gold foams

    SciTech Connect

    Caro, M. E-mail: efu@pku.edu.cn; Fu, E. G. E-mail: efu@pku.edu.cn; Wang, Y. Q.; Martinez, E.; Caro, A.; Mook, W. M.; Sheehan, C.; Baldwin, J. K.

    2014-06-09

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  11. Radiation induced effects on mechanical properties of nanoporous gold foams

    NASA Astrophysics Data System (ADS)

    Caro, M.; Mook, W. M.; Fu, E. G.; Wang, Y. Q.; Sheehan, C.; Martinez, E.; Baldwin, J. K.; Caro, A.

    2014-06-01

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  12. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  13. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    NASA Technical Reports Server (NTRS)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  14. Radiation-induced tumors in transplanted ovaries. [Mice

    SciTech Connect

    Covelli, V.; Di Majo, V.; Bassani, B.; Metalli, P.; Silini, G.

    1982-04-01

    A comparison was made of tumor induction in the ovaries of whole-body-irradiation mice (250-kV X rays, doses of 0.25-4.00 Gy) or in ovaries irradiated in vivo and then transplanted intramuscularly into castrated syngeneic hosts. The form of the dose-induction relationships was similar in the two cases, showing a steeply rising branch at doses up to 0.75 Gy followed by a maximum and an elevated plateau up to 4.00 Gy. A higher incidence of tumors in transplanted organs was apparent for doses up to the maximum, which was attributed to castration-induced hormonal imbalance. Specific death rate analysis of mice dying with ovarian tumors showed that in this system radiation acts essentially by decreasing tumor latency. Ovarian tumors were classified in various histological types and their development in time was followed by serial sacrifice. Separate analysis of death rate of animals carrying different tumor classes allowed further resolution of the various components of the tumor induction phenomenon. It was thus possible to show that the overall death rate analysis masks a true effect of induction of granulosa cell tumors in whole-body-irradiation animals. The transplantation technique offers little advantage for the study of radiation induction of ovarian tumor.

  15. Radiation-induced sarcomas of the head and neck

    PubMed Central

    Thiagarajan, Anuradha; Iyer, N Gopalakrishna

    2014-01-01

    With improved outcomes associated with radiotherapy, radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. They exhibit no subsite predilection within the head and neck and can arise in any irradiated tissue of mesenchymal origin. Common histologic subtypes of RIS parallel their de novo counterparts and include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma/sarcoma nitricoxide synthase, and fibrosarcoma. While imaging features of RIS are not pathognomonic, large size, extensive local invasion with bony destruction, marked enhancement within a prior radiotherapy field, and an appropriate latency period are suggestive of a diagnosis of RIS. RIS development may be influenced by factors such as radiation dose, age at initial exposure, exposure to chemotherapeutic agents and genetic tendency. Precise pathogenetic mechanisms of RIS are poorly understood and both directly mutagenizing effects of radiotherapy as well as changes in microenvironments are thought to play a role. Management of RIS is challenging, entailing surgery in irradiated tissue and a limited scope for further radiotherapy and chemotherapy. RIS is associated with significantly poorer outcomes than stage-matched sarcomas that arise independent of irradiation and surgical resection with clear margins seems to offer the best chance for cure. PMID:25493233

  16. Snai2 Expression Enhances Ultraviolet Radiation-Induced Skin Carcinogenesis

    PubMed Central

    Newkirk, Kimberly M.; Parent, Allison E.; Fossey, Stacey L.; Choi, Changsun; Chandler, Heather L.; Rajala-Schultz, Päivi J.; Kusewitt, Donna F.

    2007-01-01

    Snai2, encoded by the SNAI2 gene, has been shown to modulate epithelial-mesenchymal transformation (EMT), the conversion of sessile epithelial cells attached to adjacent cells and to the basement membrane into dissociated and motile fibroblastic cells. EMT occurs during development, wound healing, and carcinoma progression. Using Snai2-null mice (Snai2lacZ), we evaluated the role of Snai2 in UV radiation (UVR)-induced skin carcinogenesis. In chronically UVR-exposed nontumor-bearing skin from Snai2-null mice, inflammation and epidermal proliferation were decreased compared with wild-type (+/+) skin. Snai2-null mice had a consistently lower tumor burden than +/+ mice. In addition, null mice developed fewer aggressive spindle cell tumors, believed to arise from squamous cell carcinomas that have undergone EMT, than +/+ mice; however, the difference in tumor type distribution between the two genotypes was not statistically significant. No metastases were observed in either the +/+ or Snai2-null mice. Using quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry, we showed that the spindle cell tumors in the Snai2-null mice demonstrated impaired EMT, as shown by decreased vimentin and increased cadherin 1 expression. This study confirms a role for Snai2 in EMT, but demonstrates that Snai2 expression is not required for the development or progression of UVR-induced skin tumors. PMID:17916597

  17. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. PMID:26686168

  18. Molecular-dynamics simulations of stacking-fault-induced dislocation annihilation in prestrained ultrathin single-crystalline copper films

    SciTech Connect

    Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios

    2009-05-01

    We report results of large-scale molecular-dynamics simulations of dynamic deformation under biaxial tensile strain of prestrained single-crystalline nanometer-scale-thick face-centered cubic (fcc) copper films. Our results show that stacking faults, which are abundantly present in fcc metals, may play a significant role in the dissociation, cross slip, and eventual annihilation of dislocations in small-volume structures of fcc metals. The underlying mechanisms are mediated by interactions within and between extended dislocations that lead to annihilation of Shockley partial dislocations or formation of perfect dislocations. Our findings demonstrate dislocation starvation in small-volume structures with ultrathin film geometry, governed by a mechanism other than dislocation escape to free surfaces, and underline the significant role of geometry in determining the mechanical response of metallic small-volume structures.

  19. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  20. Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway

    E-print Network

    Brenner, David Jonathan

    Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway 25, 2005 (received for review June 30, 2005) The radiation-induced bystander effect is defined but are in close proximity to cells that are.'' Although these bystander effects have been demonstrated

  1. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    E-print Network

    Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning Robert Granat, Kiri-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors" machine learning algorithms. I. INTRODUCTION AND OBJECTIVES Onboard data analysis is a powerful capability

  2. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  3. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  4. Industrialization of radiation-induced emulsion polymerization ----technological process and its advantages

    NASA Astrophysics Data System (ADS)

    Zhicheng, Zhang; Manwei, Zhang

    1993-07-01

    A technological process for industrialization of radiation induced emulsion polymerization was introduced briefly. A batch process rather than continuous one was adopted in the industrial-scale production. The advantages of radiation induced emulsion polymerization were described in comparison with chemical initiated process.

  5. Regular PaperJ. Radiat. Res., 51, 657664 (2010) Adaptive Response in Zebrafish Embryos Induced Using

    E-print Network

    Yu, Peter K.N.

    2010-01-01

    Regular PaperJ. Radiat. Res., 51, 657­664 (2010) Adaptive Response in Zebrafish Embryos Induced/Protons/Adaptive response/Danio rerio/Zebrafish embryos. In the studies reported here, a high-linear-energy-transfer (high-LET)-radiation dose was used to induce adaptive response in zebrafish embryos in vivo. Microbeam protons were used

  6. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    E-print Network

    Yu, Peter K.N.

    Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos Zebrafish embryos CO CORM-3 a b s t r a c t In the present work, the influence of a low concentration) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE

  7. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving chemotherapy alone, surgery alone, and surgery plus chemotherapy was 17.3% and 17.3%, 56.6% and 50.3%, and 71.0% and 68.3%, respectively (p < 0.0001, log-rank test). Conclusion: The type of treatment for R-OS was the most significant factor for cause-specific and overall survival. Patients who develop R-OS should be aggressively treated, because the outcome is not as dismal as once thought.

  8. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    PubMed Central

    Jin, Jie; Wang, Yu; Wang, Jin; Xu, Yang; Chen, Shilei; Wang, Junping; Ran, Xinze; Su, Yongping

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3-/-) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3-/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3-/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. PMID:24309719

  9. Transcriptional modulation induced by ionizing radiation: p53 remains a central player

    E-print Network

    Shamir, Ron

    Review Transcriptional modulation induced by ionizing radiation: p53 remains a central player June 2011 Accepted 25 June 2011 Available online - Keywords: DNA damage response Ionizing radiation analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) e our novel

  10. Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation

    E-print Network

    Cao, Wenwu

    Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation Feng Qin,1 Ultrabroadband radiation from Yb2O3 at ambient and low air pressures was investigated under the excitation to environmental air pressure in the way that the integrated radiation intensity decreases linearly with increasing

  11. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by ?-radiation-induced oxidative stress.

    PubMed

    Kang, Kyoung Ah; Lee, In Kyung; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kim, Sang Young; Shin, Taekyun; Kim, Bum Joon; Lee, Nam Ho; Hyun, Jin Won

    2011-04-01

    The radioprotective effect of geraniin, a tannin compound isolated from Nymphaea tetragona Georgi var. (Nymphaeaceae), against ?-radiation-induced damage was investigated in Chinese hamster lung fibroblast (V79-4) cells. Geraniin recovered cell viability detected by MTT test and colony formation assay, which was compromised by ?-radiation, and reduced the ?-radiation-induced apoptosis by the inhibition of loss of the mitochondrial membrane potential. Geraniin protected cellular components (lipid membrane, cellular protein, and DNA) damaged by ?-radiation, which was detected by lipid peroxidation, protein carbonyl formation, and comet assay. Geraniin significantly reduced the level of intracellular reactive oxygen species generated by ?-radiation, which was detected using spectrofluorometer, flow cytometer, and confocal microscope after 2',7'-dichlorodihydrofluorescein diacetate staining. Geraniin normalized the superoxide dismutase and catalase activities, which were decreased by ?-radiation. These results suggest that geraniin protects cells against radiation-induced oxidative stress via enhancing of antioxidant enzyme activities and attenuating of cellular damage. PMID:20680428

  12. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  13. Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D.

    PubMed

    Malaviya, Rama; Gow, Andrew J; Francis, Mary; Abramova, Elena V; Laskin, Jeffrey D; Laskin, Debra L

    2015-03-01

    Reactive nitrogen species (RNS) generated after exposure to radiation have been implicated in lung injury. Surfactant protein D (SP-D) is a pulmonary collectin that suppresses inducible nitric oxide synthase (iNOS)-mediated RNS production. Herein, we analyzed the role of iNOS and SP-D in radiation-induced lung injury. Exposure of wild-type (WT) mice to ?-radiation (8 Gy) caused acute lung injury and inflammation, as measured by increases in bronchoalveolar lavage (BAL) protein and cell content at 24?h. Radiation also caused alterations in SP-D structure at 24 h and 4 weeks post exposure. These responses were blunted in iNOS(-/-) mice. Conversely, loss of iNOS had no effect on radiation-induced expression of phospho-H2A.X or tumor necrosis factor (TNF)-?. Additionally, at 24 h post radiation, cyclooxygenase expression and BAL lipocalin-2 levels were increased in iNOS(-/-) mice, and heme oxygenase (HO)-1(+) and Ym1(+) macrophages were evident. Loss of SP-D resulted in increased numbers of enlarged HO-1(+) macrophages in the lung following radiation, along with upregulation of TNF-?, CCL2, and CXCL2, whereas expression of phospho-H2A.X was diminished. To determine if RNS play a role in the altered sensitivity of SP-D(-/-) mice to radiation, iNOS(-/-)/SP-D(-/-) mice were used. Radiation-induced injury, oxidative stress, and tissue repair were generally similar in iNOS(-/-)/SP-D(-/-) and SP-D(-/-) mice. In contrast, TNF-?, CCL2, and CXCL2 expression was attenuated. These data indicate that although iNOS is involved in radiation-induced injury and altered SP-D structure, in the absence of SP-D, it functions to promote proinflammatory signaling. Thus, multiple inflammatory pathways contribute to the pathogenic response to radiation. PMID:25552309

  14. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ? grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  15. Effect of Epicatechin against Radiation-Induced Oral Mucositis: In Vitro and In Vivo Study

    PubMed Central

    Kang, Sung Un; Kim, Jang Hee; Oh, Young-Taek; Park, Keun Hyung; Kim, Chul-Ho

    2013-01-01

    Purpose Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC), a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo. Experimental Design The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed. Results EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells. Conclusions This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis. PMID:23874895

  16. Role of PECAM-1 in radiation-induced liver inflammation

    PubMed Central

    Malik, Ihtzaz Ahmed; Stange, Ina; Martius, Gesa; Cameron, Silke; Rave-Fränk, Margret; Hess, Clemens Friedrich; Ellenrieder, Volker; Wolff, Hendrik Andreas

    2015-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is known to play an important role in hepatic inflammation. Therefore, we investigated the role of PECAM-1 in wild-type (WT) and knock-out (KO)-mice after single-dose liver irradiation (25 Gy). Both, at mRNA and protein level, a time-dependent decrease in hepatic PECAM-1, corresponding to an increase in intercellular cell adhesion molecule-1 (ICAM-1) (6 hrs) was detected in WT-mice after irradiation. Immunohistologically, an increased number of neutrophil granulocytes (NG) (but not of mononuclear phagocytes) was observed in the liver of WT and PECAM-1-KO mice at 6 hrs after irradiation. The number of recruited NG was higher and prolonged until 24 hrs in KO compared to WT-mice. Correspondingly, a significant induction of hepatic tumour necrosis factor (TNF)-? and CXC-chemokines (KC/CXCL1 interleukin-8/CXCL8) was detected together with an elevation of serum liver transaminases (6–24 hrs) in WT and KO-mice. Likewise, phosphorylation of signal transducer and activator of transcription-3 (STAT-3) was observed in both animal groups after irradiation. The level of all investigated proteins as well as of the liver transaminases was significantly higher in KO than WT-mice. In the cell-line U937, irradiation led to a reduction in PECAM-1 in parallel to an increased ICAM-1 expression. TNF-?-blockage by anti-TNF-? prevented this change in both proteins in cell culture. Radiation-induced stress conditions induce a transient accumulation of granulocytes within the liver by down-regulation/absence of PECAM-1. It suggests that reduction/lack in PECAM-1 may lead to greater and prolonged inflammation which can be prevented by anti-TNF?. PMID:26177067

  17. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  18. Radiation-induced mouse liver neoplasms and hepatocyte survival

    SciTech Connect

    Di Majo, V.; Coppola, M.; Rebessi, S.; Bassani, B.; Alati, T.; Saran, A.; Bangrazi, C.; Covelli, V.

    1986-10-01

    Transplantation of hepatocytes from CBA/Cne mice into the fat pads of isogeneic recipients has been used for the quantitative in vivo study of cell survival and risk of transformation after x-ray irradiation (1-7 Gy). A survival curve for liver cells was generated in vivo with a D0 of 3.08 Gy and an extrapolation number not significantly different from 1. Data on liver tumor incidence in whole-body irradiated CBA/Cne and C57BL/Cne X C/sub 3/H/HeCne (BC3F1) mice are also reported. A statistical analysis of trend in both cases proved a significant induction of tumors by x-rays mainly for doses above 2 Gy. The risk of transformation per surviving cell was estimated for both mouse strains. For CBA mice the data points suggested the presence of a linear component in the dose-effect curve at low doses, whereas for BC3F1 mice a quadratic expression appeared to provide a better description of the points from 1 to 6 Gy. The data of this study suggested that liver tumors can be induced by radiation in mouse strains with either a high or low spontaneous hepatoma incidence.

  19. Does oxygen enhance the radiation-induced inactivation of penicillinase

    SciTech Connect

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-04-01

    The radiation-induced inactivation of penicillinase (..beta..-lactamase, EC 3.5.2.6) in dilute aqueous solutions buffered with phosphate was studied by examining enzyme radiosensitivity in the presence of various gases (He, O/sub 2/, H/sub 2/, N/sub 2/O and N/sub 2/O + O/sub 2/). The introduction of either N/sub 2/O or O/sub 2/ was found to reduce the radiodamage. On the other hand, H/sub 2/ or N/sub 2/O + O/sub 2/ gas mixture enhanced the radiosensitivity. In the presence of formate and oxygen no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is more than twofold higher than that of OH radicals; therefore, in 50 mM phosphate buffer, where more than half the free radicals are H atoms, the H radicals are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute to enzyme inactivation. Oxygen affected the radiosensitivity in two ways: (1) it protected by converting e/sub aq//sup -/ and H into harmless O/sub 2/-radicals; and (2) it increased inactivation by enhancing the damage brought about by OH radicals (OER = 2.6). In oxygenated buffer the protection effect of oxygen exceeded that of sensitization, thus giving rise to a moderate overall protection effect.

  20. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  1. Radiation induced spent nuclear fuel dissolution under deep repository conditions.

    PubMed

    Jonsson, Mats; Nielsen, Fredrik; Roth, Olivia; Ekeroth, Ella; Nilsson, Sara; Hossain, Mohammad Mohsin

    2007-10-15

    The dynamics of spent nuclear fuel dissolution in groundwater is an important part of the safety assessment of a deep geological repository for high level nuclear waste. In this paperwe discussthe most important elementary processes and parameters involved in radiation induced oxidative dissolution of spent nuclear fuel. Based on these processes, we also present a new approach for simulation of spent nuclear fuel dissolution under deep repository conditions. This approach accounts for the effects of fuel age, burn up, noble metal nanoparticle contents, aqueous H2 and HCO3- concentration, water chemistry, and combinations thereof. The results clearly indicate that solutes consuming H202 and combined effects of noble metal nanoparticles and H2 have significant impact on the rate of spent nuclear fuel dissolution. Using data from the two possible repository sites in Sweden, we have employed the new approach to estimate the maximum rate of spent nuclear fuel dissolution. This estimate indicates that H2 produced from radiolysis of groundwater alone will be sufficient to inhibit the dissolution completely for spent nuclear fuel older than 100 years. PMID:17993152

  2. Single-crystalline organic-inorganic layered cobalt hydroxide nanofibers: facile synthesis, characterization, and reversible water-induced structural conversion.

    PubMed

    Guo, Xiaodi; Wang, Lianying; Yue, Shuang; Wang, Dongyang; Lu, Yanluo; Song, Yufei; He, Jing

    2014-12-15

    New pink organic-inorganic layered cobalt hydroxide nanofibers intercalated with benzoate ions [Co(OH)(C6H5COO)·H2O] have been synthesized by using cobalt nitrate and sodium benzoate as reactants in water with no addition of organic solvent or surfactant. The high-purity nanofibers are single-crystalline in nature and very uniform in size with a diameter of about 100 nm and variable lengths over a wide range from 200 ?m down to 2 ?m by simply adjusting reactant concentrations. The as-synthesized products are well-characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), fast Fourier transforms (FFT), X-ray diffraction (XRD), energy dispersive X-ray spectra (EDX), X-ray photoelectron spectra (XPS), elemental analysis (EA), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), and UV-vis diffuse reflectance spectra (UV-vis). Our results demonstrate that the structure consists of octahedral cobalt layers and the benzoate anions, which are arranged in a bilayer due to the ?-? stacking of small aromatics. The carboxylate groups of benzoate anions are coordinated to Co(II) ions in a strong bridging mode, which is the driving force for the anisotropic growth of nanofibers. When NaOH is added during the synthesis, green irregular shaped platelets are obtained, in which the carboxylate groups of benzoate anions are coordinated to the Co(II) ions in a unidentate fashion. Interestingly, the nanofibers exhibit a reversible transformation of the coordination geometry of the Co(II) ions between octahedral and pseudotetrahedral with a concomitant color change between pink and blue, which involves the loss and reuptake of unusual weakly coordinated water molecules without destroying the structure. This work offers a facile, cost-effective, and green strategy to rationally design and synthesize functional nanomaterials for future applications in catalysis, magnetism, gas storage or separation, and sensing technology. PMID:25423999

  3. Radiation-induced metastable ordered phase in gallium nitride

    SciTech Connect

    Ishimaru, Manabu

    2010-05-10

    Energetic particle irradiation is one of the useful ways for realizing metastable phases far from the equilibrium state. In the present study, we performed electron-beam-irradiation into gallium nitride (GaN) with a wurtzite structure and examined its structural changes using transmission electron microscopy. It was found that superlattice Bragg reflections appear in the electron diffraction patterns of the irradiated GaN. This suggests that the wurtzite GaN transforms to another crystalline structure with atomic ordering.

  4. Curcumin Sensitizes Hepatocellular Carcinoma Cells to Radiation via Suppression of Radiation-Induced NF-?B Activity

    PubMed Central

    Hsu, Fei-Ting; Liu, Yu-Chang; Liu, Tsu-Te; Hwang, Jeng-Jong

    2015-01-01

    The effects and possible underlying mechanism of curcumin combined with radiation in human hepatocellular carcinoma (HCC) cells in vitro were evaluated. The effects of curcumin, radiation, and combination of both on cell viability, apoptosis, NF-?B activation, and expressions of NF-?B downstream effector proteins were investigated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), NF-?B reporter gene, mitochondrial membrane potential (MMP), electrophoretic mobility shift (EMSA), and Western blot assays in Huh7-NF-?B-luc2, Hep3B, and HepG2 cells. Effect of I kappa B alpha mutant (I?B?M) vector, a specific inhibitor of NF-?B activation, on radiation-induced loss of MMP was also evaluated. Results show that curcumin not only significantly enhances radiation-induced cytotoxicity and depletion of MMP but inhibits radiation-induced NF-?B activity and expressions of NF-?B downstream proteins in HCC cells. I?B?M vector also shows similar effects. In conclusion, we suggest that curcumin augments anticancer effects of radiation via the suppression of NF-?B activation. PMID:26539482

  5. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ?40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  6. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    PubMed Central

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing ? hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. PMID:26019540

  7. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  8. Radiation-induced epigenetic bystander effects demonstrated in Arabidopsis thaliana.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shuyan; Xu, Shaoxin; Wu, Lijun; Wu, Yuejin; Bian, Po

    2015-05-01

    Radiation-induced bystander effects (RIBE) in vivo in the higher plant Arabidopsis thaliana ( A. thaliana ) have been well demonstrated in terms of effects on development and genetics. However, there is not yet robust evidence regarding RIBE-mediated epigenetic changes in plants. To address this, in the current work the roots of A. thaliana seedlings were locally irradiated with 10 Gy of ? particles, after which DNA methylation in bystander aerial plants were detected using the methylation-sensitive amplification polymorphism (MSAP) and bisulfite sequencing PCR (BSP). Results showed that irradiation of the roots led to long-distance changes in DNA methylation patterns at some CCGG sites over the whole genome, specifically from hemi-methylation to non-methylation, and the methylation ratios, mainly at CG sites, strongly indicating the existence of RIBE-mediated epigenetic changes in higher plants. Root irradiation also influenced expressions of DNA methylation-related MET1, DRM2 and SUVH4 genes and demethylation-related DML3 gene in bystander aerial plants, suggesting a modulation of RIBE to the methylation machinery in plants. In addition, the multicopy P35S:GUS in A. thaliana line L5-1, which is silenced epigenetically by DNA methylation and histone modification, was transcriptionally activated through the RIBE. The transcriptional activation could be significantly inhibited by the treatment with reactive oxygen species (ROS) scavenger dimethyl sulfoxide (DMSO), indicative of a pivotal role of ROS in RIBE-mediated epigenetic changes. Time course analyses showed that the bystander signaling molecule(s) for transcriptional activation of multicopy P35S:GUS, although of unknown chemical nature, were generated in the root cells within 24 h postirradiation. PMID:25938771

  9. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    SciTech Connect

    Friedmann, P.S.; Gilchrest, B.A.

    1987-10-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of /sup 14/C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfold differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms.

  10. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  11. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    SciTech Connect

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  12. Irradiated Esophageal Cells are Protected from Radiation-Induced Recombination by MnSOD Gene Therapy

    E-print Network

    Niu, Yunyun

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene ...

  13. The protective effects of trace elements against side effects induced by ionizing radiation

    PubMed Central

    2015-01-01

    Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation. PMID:26157675

  14. Obtaining Solutions to Radiation-And Plasma Induced FAilure Modes From Physics

    NASA Technical Reports Server (NTRS)

    Frederickson, A.

    1998-01-01

    A number of performance-limiting spacecraft problems will be qualitatively discussed: Spacecraft Charging, Deep Dielectric Charging, Solar Cell Arcing, Antenna Sparking, High Voltage Power Shorts, Radiation-induced Defects in Semiconductors, and Degradation of Electronic Devices.

  15. Poly lactic acid based foams prepared via thermally induced phase separation (TIPS): A method to tune the crystallinity

    NASA Astrophysics Data System (ADS)

    Pavia, Francesco Carf?; La Carrubba, Vincenzo; Brucato, Valerio

    2012-07-01

    Blends of Poly-L-Lactic Acid (PLLA) with two Poly-Lactic Acid (PLA) in different proportions (90/10 and 70/30) were utilized in order to produce biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced via thermally induced phase separation (TIPS) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection). Moreover a DSC analysis was carried out on the as-obtained scaffold in order to obtain information about theirs thermal properties (enthalpy of melt and crystallization). The results showed that is possible to prepare scaffolds of PLLA/PLA via TIPS. Moreover, the PLA seems to influences the TIPS process in terms of demixing temperatures. The data confirm that the morphology and the mechanical properties of the scaffold can be tuned, starting from PLLA blends and using PLA with different molecular weights.

  16. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  17. Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films

    SciTech Connect

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago; Barnaby, Hugh; Kozicki, Michael N.; Holbert, Keith; Poweleit, Christian; Butt, Darryl P.

    2014-01-28

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changes occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.

  18. Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Ailavajhala, Mahesh S.; Gonzalez-Velo, Yago; Poweleit, Christian; Barnaby, Hugh; Kozicki, Michael N.; Holbert, Keith; Butt, Darryl P.; Mitkova, Maria

    2014-01-01

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changes occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.

  19. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  20. Sodium bicarbonate induces crystalline wax generation, activates host-resistance, and increases imazalil level in rind wounds of oranges, improving the control of green mold during storage.

    PubMed

    Dore, Antonio; Molinu, Maria Giovanna; Venditti, Tullio; D'Hallewin, Guy

    2010-06-23

    Imazalil (IMZ) was quantified in the flavedo and albedo (Citrus fruits outer and inner tissue of the exocarp) of wounded and unwounded Valencia L. Olinda oranges following a 2 min immersion at 25 degrees C in 50, 100, or 250 microg mL(-1) of the fungicide mixture with or without 3% sodium bicarbonate (SBC). The addition of SBC significantly reduced the decay incidence throughout 30 d of storage at 10 degrees C with 95% RH and 6 d of simulated marketing period at 25 degrees C and 75% RH. In unwounded oranges, IMZ uptake was not changed by the coapplication of SBC, and the fungicide was predominantly recovered in the flavedo. To the contrary, in the albedo of wounded fruit, the residue level increased by about 6-fold when the fungicide was applied with SBC. When SBC was coapplied to wounded fruit, the phytoalexin scoparone was induced in the albedo and the accumulation was not affected by IMZ. When fruit was treated with SBC, scanning electron microscopy observations evidenced a production of crystalline wax patches with branched stripes and the magnitude was positively correlated to the salt concentration in the mixture. The generation as fast as 24 h post-treatment, and the different morphology of the new wax suggests a displacement of intracuticular waxes which can affect the fungicide sorption and diffusion coefficient into the rind. PMID:20486661

  1. IONIZATION-INDUCED TRAPPING IN LASER-PLASMA ACCELERATORS AND SYNCHROTRON RADIATION FROM THE

    E-print Network

    Geddes, Cameron Guy Robinson

    IONIZATION-INDUCED TRAPPING IN LASER-PLASMA ACCELERATORS AND SYNCHROTRON RADIATION FROM Abstract Ionization injection into a laser wakefield accelerator is studied by multi-dimensional particle for radiation sources, beam quality still needs to be improved, especially the energy spread [4, 5, 6] and trans

  2. Transcriptional modulation induced by ionizing radiation: p53 remains a central player

    E-print Network

    Shamir, Ron

    Review Transcriptional modulation induced by ionizing radiation: p53 remains a central player analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) e our novel June 2011 Accepted 25 June 2011 Available online 7 July 2011 Keywords: DNA damage response Ionizing

  3. Mutation Research 504 (2002) 91100 Bystander effects in radiation-induced genomic instability

    E-print Network

    2002-01-01

    Mutation Research 504 (2002) 91­100 Bystander effects in radiation-induced genomic instability that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate reserved. Keywords: Bystander effects; Genomic instability; Ionizing radiation 1. Introduction Exposure

  4. Genomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1

    E-print Network

    Genomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1 and Tom K-particle microbeam, it is possible to demonstrate, unequivocally, the presence of a bystander effect with many-particles; microbeam; bystander effects; gene amplification; allelic imbalance Introduction Many concepts in radiation

  5. Spatial distribution of RF radiation induced by cascade shower in lunar regolith

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.; Filonenko, V. A.

    2009-06-01

    The results of calculation of the radiation pattern of an electron-photon shower induced by an ultrahigh-energy particle on the Moon’s surface are reported. It is found that the inclusion of dielectric characteristics of the lunar regolith radically changes the rf radiation intensity distribution at the vacuum-regolith interface.

  6. Enhanced connement discharges in DIII-D with neon and argon induced radiation

    E-print Network

    California at San Diego, University of

    Enhanced con®nement discharges in DIII-D with neon and argon induced radiation G.L. Jackson a,*, M in the DIII-D tokamak with neon and argon gas pung. These radiating mantle enhanced con®nement discharges have current ¯attop (1400 ms), argon injection (Fig. 1(b)) was started at t 1500 ms during the L-mode phase

  7. Radiation Induced Non-targeted Response: Mechanism and Potential Clinical Implications

    PubMed Central

    Hei, Tom K.; Zhou, Hongning; Chai, Yunfei; Ponnaiya, Brian; Ivanov, Vladimir N.

    2012-01-01

    Generations of students in radiation biology have been taught that heritable biological effects require direct damage to DNA. Radiation-induced non-targeted/bystander effects represent a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the biological consequences of exposure to low doses of radiation. Although radiation induced bystander effects have been well documented in a variety of biological systems, including 3D human tissue samples and whole organisms, the mechanism is not known. There is recent evidence that the NF-?B-dependent gene expression of interleukin 8, interleukin 6, cyclooxygenase-2, tumor necrosis factor and interleukin 33 in directly irradiated cells produced the cytokines and prostaglandin E2 with autocrine/paracrine functions, which further activated signaling pathways and induced NF-?B-dependent gene expression in bystander cells. The observations that heritable DNA alterations can be propagated to cells many generations after radiation exposure and that bystander cells exhibit genomic instability in ways similar to directly hit cells indicate that the low dose radiation response is a complex interplay of various modulating factors. The potential implication of the non-targeted response in radiation induced secondary cancer is discussed. A better understanding of the mechanism of the non-targeted effects will be invaluable to assess its clinical relevance and ways in which the bystander phenomenon can be manipulated to increase therapeutic gain in radiotherapy. PMID:21143185

  8. Curvature-induced radiation of surface plasmon polaritons propagating around bends

    SciTech Connect

    Hasegawa, Keisuke; Noeckel, Jens U.; Deutsch, Miriam

    2007-06-15

    We present a theoretical study of the curvature-induced radiation of surface plasmon polaritons propagating around bends at metal-dielectric interfaces. We explain qualitatively how the curvature leads to distortion of the phase front, causing the fields to radiate energy away from the metal-dielectric interface. We then quantify, both analytically and numerically, radiation losses and energy transmission efficiencies of surface plasmon polaritons propagating around bends with varying radii as well as sign of curvature.

  9. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  10. Defect formation induced by seed-joints during directional solidification of quasi-mono-crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Reimann, C.; Friedrich, J.; Müller, G.; Krause, A.; Sylla, L.; Richter, T.

    2014-11-01

    In this work, the growth behavior inside and above seed gaps during directional solidification of monocrystalline lab-scale silicon ingots was investigated. It will be shown that the silicon melt fills the gaps rapidly and monocrystalline growth starts in most cases at the seed side walls toward the gap center. During this process, dislocations were induced at the seed edges and in the gap center by the thermal shock caused by the hot melt and the coalescence of the two growth interfaces, respectively. The dislocations originating from the gap are propagating more or less parallel to the growth axis toward the top of the crystal. These dislocation bundles fan out in dependence of the growth height and axial seed orientation, respectively. It was found that <1 0 0> is the most suitable growth direction in comparison to <1 1 1> and <1 1 0> to avoid defect clusters above the seed gaps which is probably due to the orientation of the preferential glide systems.

  11. Main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics: click polymerization, mesomorphic packing, and solid state emission

    NASA Astrophysics Data System (ADS)

    Yuan, Wang Zhang; Yu, Zhen Qiang; Lam, Jacky Wing Yip; Jim, Cathy K. W.; Tang, Ben Zhong

    2010-08-01

    Biphenyl-containing diazides and diynes carrying tetraphenylethylene units are designed and synthesized. Their "click" polymerizations are initiated by Cu(PPh3)3Br in THF or DMF, affording soluble, regioregular polytriazoles in high yields (up to 94.8%) with narrow molecular weight distributions. The structures and properties of the polymers are evaluated and characterized by IR, NMR, UV, PL, TGA, DSC, POM and XRD measurements. All the polymers are almost nonluminescent when dissolved in solutions but become highly emissive when aggregated in poor solvents or fabricated as thin films in the solid state, displaying a novel phenomenon of aggregation-induced emission. The photophysical properties of the polymers are sensitive to their molecular structures and their solid-state quantum yields decrease with an increase in the spacer length. All the polymers enjoy high thermal stability, with 5% weight loss occurring at temperatures up to 406 °C. They are mesomorphic. While polymers with rigid main chains exhibit nematicity, those with longer spacer lengths show better mesogenic packing and hence form sematic phases at higher temperatures.

  12. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  13. Radiation-induced mechanical property changes in filled rubber

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.; Small, W.; Alviso, C. T.; Chinn, S. C.; Maxwell, R. S.

    2011-06-15

    In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic modulus depends upon the radiation dosage, strain level, and strain-cycling history of the material. Using the framework of Tobolsky's two-stage independent network theory we develop a model that can quantitatively interpret the observed elastic modulus and its radiation and strain dependence.

  14. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome aberrations.

  15. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  16. Mitigating the risk of radiation-induced cancers: limitations and paradigms in drug development.

    PubMed

    Yoo, Stephen S; Jorgensen, Timothy J; Kennedy, Ann R; Boice, John D; Shapiro, Alla; Hu, Tom C-C; Moyer, Brian R; Grace, Marcy B; Kelloff, Gary J; Fenech, Michael; Prasanna, Pataje G S; Coleman, C Norman

    2014-06-01

    The United States radiation medical countermeasures (MCM) programme for radiological and nuclear incidents has been focusing on developing mitigators for the acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), and biodosimetry technologies to provide radiation dose assessments for guiding treatment. Because a nuclear accident or terrorist incident could potentially expose a large number of people to low to moderate doses of ionising radiation, and thus increase their excess lifetime cancer risk, there is an interest in developing mitigators for this purpose. This article discusses the current status, issues, and challenges regarding development of mitigators against radiation-induced cancers. The challenges of developing mitigators for ARS include: the long latency between exposure and cancer manifestation, limitations of animal models, potential side effects of the mitigator itself, potential need for long-term use, the complexity of human trials to demonstrate effectiveness, and statistical power constraints for measuring health risks (and reduction of health risks after mitigation) following relatively low radiation doses (<0.75 Gy). Nevertheless, progress in the understanding of the molecular mechanisms resulting in radiation injury, along with parallel progress in dose assessment technologies, make this an opportune, if not critical, time to invest in research strategies that result in the development of agents to lower the risk of radiation-induced cancers for populations that survive a significant radiation exposure incident. PMID:24727460

  17. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  18. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway.

    PubMed

    Babini, G; Ugolini, M; Morini, J; Baiocco, G; Mariotti, L; de Fatis, P Tabarelli; Liotta, M; Ottolenghi, A

    2015-09-01

    Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring non-irradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0-2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations. PMID:25877540

  19. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  20. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis

    PubMed Central

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-01-01

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis. PMID:26309374

  1. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.

  2. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis.

    PubMed

    Lu, Kui; Zhang, Cheng; Wu, Wenjun; Zhou, Min; Tang, Yamei; Peng, Ying

    2015-08-01

    Oxidative stress caused by ionizing radiation is involved in neuronal damage in a number of disorders, including trauma, stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Ionizing radiation can lead to the formation of free radicals, which cause neuronal apoptosis and have important roles in the development of some types of chronic brain disease. The present study evaluated the effects of varying concentrations (2, 5 and 10 µg/ml) of ethanolic rhubarb extract on the neuronal damage caused by irradiation in primary neuronal cultures obtained from the cortices of rat embryos aged 20 days. Brain damage was induced with a single dose of ?-irradiation that induced DNA fragmentation, increased lactate dehydrogenase release in neuronal cells and acted as a trigger for microglial cell proliferation. Treatment with rhubarb extract significantly decreased radiation-induced lactate dehydrogenase release and DNA fragmentation, which are important in the process of cell apoptosis. The rhubarb extract exhibited dose-dependent inhibition of lactate dehydrogenase release and neuronal cell apoptosis that were induced by the administration of ionizing radiation. The effect of a 10 µg/ml dose of rhubarb extract on the generation of reactive oxygen species (ROS) induced by radiation was also investigated. This dose led to significant inhibition of ROS generation. In conclusion, the present study showed a protective role of rhubarb extract against irradiation-induced apoptotic neuronal cell death and ROS generation. PMID:25936269

  3. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have been shown to be activated in cells exposed to radiation from photons (like cell cycle arrest in G1/S), and that supplementation with SeM abolishes HZE particle-induced differential expression of many genes. Understanding the roles that these genes play in the radiation-induced transformation of cells may help to decipher the origins of radiation-induced cancer. PMID:17265150

  4. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  5. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  6. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  7. Radiation induced strand breakage analyzed by tunel technique 

    E-print Network

    Reynolds, Marissa Dawn

    2003-01-01

    uses similar protocols to examine breaks due to radiation. Chinese hamster ovary (CHO) cells were cultured and exposed to X rays, receiving a dose ranging from 0 to 2 Gy. Slides were created using a standard metaphase chromosome preparation technique...

  8. Dynamics of radiation induced isomerization for HCN-CNH

    SciTech Connect

    Na, Kyungsun; Jung, Christof; Reichl, L. E.

    2006-07-21

    We have analyzed the dynamics underlying the use of sequential radiation pulses to control the isomerization between the HCN and the CNH molecules. The appearance of avoided crossings among Floquet eigenphases as the molecule interacts with the radiation pulses is the key to understanding the isomerization dynamics, both in the adiabatic and nonadiabatic regimes. We find that small detunings of the incident pulses can have a significant effect on the outcome of the isomerization process for the model we consider.

  9. Surface photoconductivity of organosilicate glass dielectrics induced by vacuum-ultraviolet radiation

    SciTech Connect

    Zheng, H.; Nichols, M. T.; Pei, D.; Shohet, J. L.; Nishi, Y.

    2013-08-14

    The temporary increase in the electrical surface conductivity of low-k organosilicate glass (SiCOH) during exposure to vacuum-ultraviolet radiation (VUV) is investigated. To measure the photoconductivity, patterned “comb structures” are deposited on dielectric films and exposed to synchrotron radiation in the range of 8–25 eV, which is in the energy range of most plasma vacuum-ultraviolet radiation. The change in photo surface conductivity induced by VUV radiation may be beneficial in limiting charging damage of dielectrics by depleting the plasma-deposited charge.

  10. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1?–mediated tumor apoptotic switch

    PubMed Central

    Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

    2007-01-01

    Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1? increases the activity of the canstatin-induced ?v?5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1? activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

  11. Assessment of Low Linear Energy Transfer RadiationInduced Bystander Mutagenesis in a Three-Dimensional Culture Model

    E-print Network

    Res 2005; 65(21): 9876-82) Introduction The radiation-induced ``bystander effect'' refers to the induc but are in close proximity to cells that are. The bystander effect has been shown for a variety of end pointsAssessment of Low Linear Energy Transfer Radiation­Induced Bystander Mutagenesis in a Three

  12. Lens Aging: Effects of Crystallins

    PubMed Central

    Sharma, K. Krishna; Santhoshkumar, Puttur

    2009-01-01

    The primary function of the eye lens is to focus light on the retina. The major proteins in the lens—a, b, and g-crystallins—are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and ‘humanized’ ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins. PMID:19463898

  13. Characterization of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric developed by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Kumari, Mamta; Gupta, Bhuvanesh; Ikram, Saiqa

    2012-11-01

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was carried out on polypropylene nonwoven fabric to develop a thermosensitive material and has been found to affect the thermal and physical characteristics of fabric. The grafted fabrics with different monomer ratios were characterized by thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), contact angle and atomic force microscopy (AFM). Results of FTIR clearly indicated that poly(acrylic acid) and poly(N-isopropyl acrylamide) were successfully grafted onto the membrane surface. TGA results showed that the thermal stability of PP fabric increased after grafting of NIPAAm/AA. The crystallinity values from DSC and XRD were found to decrease with increase in degree of grafting because of the addition of grafted chains within the noncrystalline region. The decrease in contact angles of the grafted fabric with an increase of the degree of grafting shows that PNIPAAm/PAA exists as the hydrophilic component. The increase in surface roughness after grafting was observed by AFM.

  14. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose.

    PubMed

    Villarruel, S; Giannuzzi, L; Rivero, S; Pinotti, A

    2015-11-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer-polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. PMID:26249626

  15. Endocrine effects of Fukushima: Radiation-induced endocrinopathy

    PubMed Central

    Niazi, Asfandyar Khan; Niazi, Shaharyar Khan

    2011-01-01

    The unfortunate accidents of Chernobyl and Fukushima have led to an enormous amount of radioactive material being released into the atmosphere. Radiation exposure to the human body may be as a result of accidents, such as those in Chernobyl and Fukushima, or due to occupational hazards, such as in the employees of nuclear plants, or due to therapeutic or diagnostic procedures. These different sources of radiations may affect the human body as a whole or may cause localized damage to a certain area of the body, depending upon the extent and dosage of the irradiation. More or less every organ is affected by radiation exposure. Some require a higher dose to be affected while others may be affected at a lower dose. All the endocrine glands are susceptible to damage by radiation exposure; however, pituitary, thyroid and gonads are most likely to be affected. In addition to the endocrine effects, the rates of birth defects and carcinomas may also be increased in the population exposed to excessive radiation. PMID:21731864

  16. Endocrine effects of Fukushima: Radiation-induced endocrinopathy.

    PubMed

    Niazi, Asfandyar Khan; Niazi, Shaharyar Khan

    2011-04-01

    The unfortunate accidents of Chernobyl and Fukushima have led to an enormous amount of radioactive material being released into the atmosphere. Radiation exposure to the human body may be as a result of accidents, such as those in Chernobyl and Fukushima, or due to occupational hazards, such as in the employees of nuclear plants, or due to therapeutic or diagnostic procedures. These different sources of radiations may affect the human body as a whole or may cause localized damage to a certain area of the body, depending upon the extent and dosage of the irradiation. More or less every organ is affected by radiation exposure. Some require a higher dose to be affected while others may be affected at a lower dose. All the endocrine glands are susceptible to damage by radiation exposure; however, pituitary, thyroid and gonads are most likely to be affected. In addition to the endocrine effects, the rates of birth defects and carcinomas may also be increased in the population exposed to excessive radiation. PMID:21731864

  17. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    SciTech Connect

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J.H.M.; Laan, Bernard F.A.M. van der; Oosting, Sjoukje F.; Schilstra, Cornelis; Langendijk, Johannes A.

    2012-11-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.

  18. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  19. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway.

    PubMed

    Liu, Yunen; Tan, Dehong; Tong, Changci; Zhang, Yubiao; Xu, Ying; Liu, Xinwei; Gao, Yan; Hou, Mingxiao

    2015-12-01

    The purpose of this study was to explore the effect of blueberry anthocyanins (BA) on radiation-induced lung injury and investigate the mechanism of action. Seven days after BA(20 and 80 mg/kg/d)administration, 6 weeks old male Sprague-Dawley rats rats were irradiated by LEKTA precise linear accelerator at a single dose of 20 Gy only once. and the rats were continuously treated with BA for 4 weeks. Moreover, human pulmonary alveolar epithelial cells (HPAEpiC) were transfected with either control-siRNA or siRNA targeting protein kinase R (PKR). Cells were then irradiated and treated with 75 ?g/mL BA for 72 h. The results showed that BA significantly ameliorated radiation-induced lung inflammation, lung collagen deposition, apoptosis and PKR expression and activation. In vitro, BA significantly protected cells from radiation-induced cell death through modulating expression of Bcl-2, Bax and Caspase-3. Suppression of PKR by siRNA resulted in ablation of BA protection on radiation-induced cell death and modulation of anti-apoptotic and pro-apoptotic proteins, as well as Caspase-3 expression. These findings suggest that BA is effective in ameliorating radiation-induced lung injury, likely through the PKR signaling pathway. PMID:26551926

  20. Radiation Force induced Liquid Flow within a Homogeneous Medium

    NASA Astrophysics Data System (ADS)

    Choi, Honggu; Joo, Boram; Jisung, Jeong; Oh, Kyunghwan; Yonsei Univ Collaboration

    2015-05-01

    The visualization of optical force required refractive index inhomogeneous boundary, or absorption to generate radiation pressure. However, the dilute liquid medium with low attenuation coefficient is affected by light carrying momentum, and generated flow. The optical force density within a dielectric medium oscillates, and their time averaged value was regarded as a vanishing parameter, however the existence of light carrying momentum within a dielectric media generates material momentum density and it results localized liquid flow. We used 980 nm fiber laser source guided along HI1060 single mode fiber which guides localized single mode Poynting vector, in order to generate effectively measureable radiation pressure during light propagation within deionized water. The micro beads with 2 micrometer diameter were deployed to visualize the flow and their location was out of beam to reject the effect of radiation pressure at the refractive index inhomogeneity between water and polymer beads.

  1. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  2. Crystalline and Crystalline International Disposal Activities

    SciTech Connect

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  3. Comparison of radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers

    NASA Astrophysics Data System (ADS)

    Gusarov, Andrei; Doyle, Dominic; Glebov, Leonid; Berghmans, Francis

    2005-09-01

    Space-born optical systems must be tolerant to radiation to guarantee that the required system performance is maintained during prolonged mission times. The radiation-induced absorption in optical glasses is often related with the presence of impurities, which are, intentionally or not, introduced during the manufacturing process. Glass manufacturers use proprietary fabrication processes and one can expect that the radiation sensitivity of nominally identical optical glasses from different manufacturers is different. We studied the gamma-radiation induced absorption of several crown glasses with nd ? 1.516 and vd ? 64, i.e. NBK7 (Schott), S-BSL7 (Ohara), BSC 517642 (Pilkington) and K8 (Russia). NBK7 recently replaced the well-known BK7. We therefore also compared the radiation response of NBK7 and BK7 glass. Our results show that whereas the glasses are optically similar before irradiation, they show a different induced absorption after irradiation and also different post-radiation recovery kinetics. Taking these differences into account can help to improve the radiation tolerance of optical systems for space applications.

  4. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  5. Crystalline amorphous semiconductor superlattice.

    PubMed

    Chong, T C; Shi, L P; Wei, X Q; Zhao, R; Lee, H K; Yang, P; Du, A Y

    2008-04-01

    A new class of superlattice, crystalline amorphous superlattice (CASL), by alternatively depositing two semiconductor materials, is proposed. CASL displays three states depending on the component materials' phase: both polycrystalline phases, both amorphous phases, and one polycrystalline phase while another amorphous phase. Using materials capable of reversible phase transition, CASL can demonstrate reversibility among three states. GeTe/Sb(2)Te(3) CASL has been synthesized and proved by x-ray reflectometry and TEM results. The reversible transition among three states induced by electrical and laser pulse was observed. The changes in the optical absorption edge, electrical resistivity, thermal conductivity, and crystallization temperature as a function of layer thickness are interpreted as quantum or nanoeffects. The unique properties of CASL enable the design of materials with specific properties. PMID:18517969

  6. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  7. Radiation Induced Stress Relaxation in Silicone and Polyurethane Elastomers

    SciTech Connect

    Spellman, G; Gourdin, W; Jensen, W; Pearson, M; Fine, I

    2007-08-22

    Many different materials are used in the National Ignition Facility, NIF, located at Lawrence Livermore National Laboratory, LLNL. Some of these are exposed to significant doses of ionizing radiation. Two elastomers are of special interest because they are used in sealing applications with long expected lifetimes. These are LPU4, a polyurethane formulated at LLNL, and Dow Corning DC93-500, a silicone RTV elastomer. In 2004 a program to determine the impact of ionizing radiation on the stress relaxation and compression set characteristics of these two elastomers was undertaken. Since the materials are used in continuous compression and must reliably seal, the primary test utilized was a stress relaxation test. This test provides insight into the ability of a seal to remain functional in a static seal. The test determines how much residual force remains after a certain period of time under compression. The temperature and absorbed radiation dose can dramatically impact this property. In this study the only independent environmental variable studied is the effect of radiation at ambient temperatures. Two levels of radiation exposure were studied, 1 MRad, and 10 MRad. One of the independent test parameters is the compression deflection during storage and in this test the value used was 25%. The need for a compression retention mechanism ruled out radiation exposure in the compressed direction since the high atomic number materials for that device would block the radiation. Therefore, an annular ring was chosen for the specimen shape. The procedures are, as closely as possible, based on ASTM D 6147-97. Since the data is readily obtained at the end of the stress relaxation test, the samples were also evaluated for compression set. Compression set is the essentially permanent deformation incurred in a seal after the seal is compressed for some period of time and then unloaded. Though this is indicative of potential sealing reliability, it is not as direct an indicator of seal performance as is stress relaxation. Compression set does not yield any useable, quantified information but is an indicator of viscoelastic deformation with time. The needed thickness measurements were obtained both from the unloading curves and direct measurement in general accordance with ASTM D395-03. The radiation source for this testing was the Co60 gamma source located at Lawrence Livermore National Laboratory (LLNL). This source has an exposure vessel approximately 29.2cm (11.5-inch) tall with an inside diameter of 7.44cm (2.93-inch). Because of the geometry limits, cylindrical symmetry and limited volume, a standard stress relaxation test such as ASTM D 6147-97 could not be utilized and a modified test was developed. An additional constraint imposed by the vertical asymmetry of the radiation dose in the exposure chamber was a limited height with reasonably uniform radiation exposure. The specific dimensions and radiation characteristics of the test cell are in Appendix A.

  8. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204

  9. Assessing application vulnerability to radiation-induced SEUs in memory

    NASA Technical Reports Server (NTRS)

    Springer, P. L.

    2001-01-01

    One of the goals of the Remote Exploration and Experimentation (REE) project at JPL is to determine how vulnerable applications are to single event upsets (SEUs) when run in low radiation space environments using commercial-off-the-shelf (COTS) components.

  10. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities

    SciTech Connect

    Roberts, J.L.; Sharrow, S.O.; Singer, A. )

    1990-03-01

    The present study demonstrates that immune tolerance can be achieved in the thymus both by clonal deletion and by clonal inactivation, but that the two tolerant states are induced by cellular elements with different radiation sensitivities. TCR engagement of self antigens on bone marrow-derived, radiation-sensitive (presumably dendritic) cells induces clonal deletion of developing thymocytes, whereas TCR engagement of self antigens on radiation-resistant cellular elements, such as thymic epithelium, induces clonal anergy. The nondeleted, anergic thymocytes can express IL-2-Rs but are unable to proliferate in response to either specific antigen or anti-TCR antibodies, and do develop into phenotypically mature cells that emigrate out of the thymus and into the periphery.

  11. Radiation effects on regeneration and T-cell-inducing function of the thymus

    SciTech Connect

    Hirokawa, K.; Sado, T.

    1984-04-01

    Radiation effects on regeneration and T-cell-inducing function of the thymus were studied in three sets of experiments. When TXB mice were grafted with 1-week-old thymus which had been previously irradiated at various doses, an exponential decrease was observed in the morphological regeneration of the thymus grafts and in their T-cell-inducing function at doses of 600 R and over, showing about 10% that of the control at 1500 R. When in situ thymus of adult mice was locally irradiated, the radiation effect on T-cell-inducing function was less pronounced as compared with the first experiment; i.e., about 40% of the control at 1797 R. When in situ thymus of 1-day-old newborn mice was locally irradiated, regeneration potential of 1-day-old newborn thymus was highly resistant to radiation exposure and no effect on immunological functions was observed even by local irradiation of 2000 R.

  12. Radiation-induced carcinoma of the lung--the St. Lawrence tragedy.

    PubMed

    Wright, E S; Couves, C M

    1977-10-01

    This paper reviews the problem of radiation-induced carcinoma of the lung in the fluorspar mines of Newfoundland. Seventy-eight workers have died from this disease since commercial operation commenced in 1933. In 1959 the source of the radiation was identified as radon, and its daughter nucleotides present as contaminants in water seeping into the mines. Heavy smoking is probably a synergistic cocarcinogen. The histology in this group of patients with radiation-induced lung cancers is unusual, since squamous cell carcinoma accounts for 90 percent of all cases. There have been four patients with second primary lung cancers. Radical radiotherapy has been the primary mode of treatment based on the reluctance of the miners to undergo operation. Surprisingly good results have been obtained, with an average survival time of 34 months after treatment. Institution of improved ventilation has reduced radiation to safe levels, but an estimated 120 miners from the pre-1960 era are still at risk. PMID:904348

  13. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    SciTech Connect

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  14. Radiation induced darkening of the optical elements in the Startracker camera

    SciTech Connect

    White, R.H.; Wirtenson, G.R.

    1993-03-01

    Optical glass flats that closely simulate the elements used in the Startracker lens designs were exposed to doses of ionizing radiation ranging from 0.44 to 1300 krad. Photometer traces determined the transmittance of the samples as a function of both wavelength and dose for wavelengths in the range 300 to 1200 nm. Cerium stabilized glasses used in the radiation stabilized Startracker system showed only a small amount of darkening for doses up to and exceeding 1 Mrad. Glasses used in the unstabilized Startracker design showed significant darkening to visible and ultra-violet spectra for doses as low as 5 krad. Plots of transmittance versus wavelength for various doses are given for each of the Startracker optical elements. Radiation induced absorption parameters that determine the radiation induced absorption coefficient are tabulated and plotted versus wavelength.

  15. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  16. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay.

    PubMed

    Ridnour, Lisa A; Cheng, Robert Y S; Weiss, Jonathan M; Kaur, Sukhbir; Soto-Pantoja, David R; Basudhar, Debashree; Heinecke, Julie L; Stewart, C Andrew; DeGraff, William; Sowers, Anastasia L; Thetford, Angela; Kesarwala, Aparna H; Roberts, David D; Young, Howard A; Mitchell, James B; Trinchieri, Giorgio; Wiltrout, Robert H; Wink, David A

    2015-07-15

    Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFN?, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment. PMID:25990221

  17. High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon

    NASA Astrophysics Data System (ADS)

    Ruffell, S.; Bradby, J. E.; Williams, J. S.

    2006-08-01

    Phase transformations induced by indentation at different unloading rates have been studied in crystalline and amorphous silicon via Raman microspectroscopy and transmission electron microscopy. Unloading was performed at a "slow" rate of ˜0.9mN/s which is known to create volumes of high pressure phases (Si-III and Si-XII) in crystalline silicon as well as "rapid" unloading (˜1000mN/s), where amorphous phases are expected. Stark differences between the resulting structures are observed depending on whether the starting material is amorphous or crystalline silicon. Interestingly, amorphous silicon transforms to high pressure phases much more readily than crystalline silicon even after rapid unloading.

  18. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  19. The effects of diet and ionizing radiation on azoxymethane induced colon carcinogenesis 

    E-print Network

    Mann, John Clifford

    2006-10-30

    .05. 31 CHAPTER IV SUMMARY AND DISCUSSION One of the primary objectives of this study was to determine the effects of ionizing radiation on the formation of high-multiplicity aberrant crypt foci induced by a carcinogen injection. Our results support... result of the radiation treatment before AOM injection. This implies that the majority of the lesions identified in rats that received both treatments may have been primarily the result of the carcinogen AOM. 32 The reason for the varied effects...

  20. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  1. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  2. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  3. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  4. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review.

    PubMed

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  5. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  6. Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Mani, R. G.; Ramanayaka, A. N.; Wegscheider, W.

    2011-08-01

    In the quasi two-dimensional GaAs/AlGaAs system, we investigate the effect of rotating in situ the electric field of linearly polarized microwaves relative to the current, on the microwave-radiation-induced magnetoresistance oscillations. We find that the frequency and the phase of the photoexcited magnetoresistance oscillations are insensitive to the polarization. On the other hand, the amplitudes of the magneto resistance oscillations are remarkably responsive to the relative orientation between the microwave antenna and the current-axis in the specimen. The results suggest a striking linear-polarization-sensitivity in the radiation-induced magnetoresistance oscillations.

  7. Radiation-induced extrinsic photoconductivity in Li-doped Si.

    NASA Technical Reports Server (NTRS)

    Fenimore, E.; Mortka, T.; Corelli, J. C.

    1972-01-01

    Investigation of the effects of lithium on radiation-produced complexes having long-time stability by examining the localized energy levels in the forbidden gap which give rise to extrinsic photoconductivity. The levels are found to disappear and in some cases shift with annealing in the 100-450 C temperature range. Due to the complexity of the system and the present lack of adequate theory, no complete analysis of the data obtained could be made.

  8. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect

    NASA Technical Reports Server (NTRS)

    Nagar, Shruti; Smith, Leslie E.; Morgan, William F.

    2003-01-01

    The detrimental effects associated with exposure to ionizing radiation have long been thought to result from the direct targeting of the nucleus leading to DNA damage; however, the emergence of concepts such as radiation-induced genomic instability and bystander effects have challenged this dogma. After cellular exposure to ionizing radiation, we have isolated a number of clones of Chinese hamster-human hybrid GM10115 cells that demonstrate genomic instability as measured by chromosomal destabilization. These clones show dynamic and persistent generation of chromosomal rearrangements multiple generations after the original insult. We hypothesize that these unstable clones maintain this delayed instability phenotype by secreting factors into the culture medium. To test this hypothesis we transferred filtered medium from unstable cells to unirradiated GM10115 cells. No GM10115 cells were able to survive this medium. This phenomenon by which GM10115 cells die when cultured in medium from chromosomally unstable GM10115 clones is the death-inducing effect. Medium transfer experiments indicate that a factor or factors is/are secreted by unstable cells within 8 h of growth in fresh medium and result in cell killing within 24 h. These factors are stable at ambient temperature but do not survive heating or freezing, and are biologically active when diluted with fresh medium. We present the initial description and characterization of the death-inducing effect. This novel epigenetic effect of radiation has implications for radiation risk assessment and for health risks associated with radiation exposure.

  9. Three-dimensional Culture Conditions Lead to Decreased Radiation Induced Crytoxicity in Human Mammary Epithelial Cells

    SciTech Connect

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-05-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extra cellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D vs. 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ~4 fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures

  10. Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium.

    PubMed

    Misra, Chitra Seetharam; Mukhopadhyaya, Rita; Apte, Shree Kumar

    2014-11-10

    Bioremediation is an attractive option for the treatment of radioactive waste. We provide a proof of principle for augmentation of uranium bioprecipitation using the radiation inducible promoter, Pssb from Deinococcus radiodurans. Recombinant cells of D. radiodurans carrying acid phosphatase gene, phoN under the regulation of Pssb when exposed to 7 kGy gamma radiation at two different dose rates of 56.8 Gy/min and 4 Gy/min, showed 8-9 fold increase in acid phosphatase activity. Highest whole cell PhoN activity was obtained after 2h in post irradiation recovery following 8 kGy of high dose rate radiation. Such cells showed faster removal of high concentrations of uranium than recombinant cells expressing PhoN under a radiation non-inducible deinococcal promoter, PgroESL and could precipitate uranium even after continuous exposure to 0.6 Gy/min gamma radiation for 10 days. Radiation induced recombinant D. radiodurans cells when lyophilized retained high levels of PhoN activity and precipitated uranium efficiently. These results highlight the importance of using a suitable promoter for removal of radionuclides from solution. PMID:25261614

  11. Radiation-induced chromosomal inversions in mice. Technical progress report

    SciTech Connect

    Roderick, T.H.

    1986-01-01

    Chromosomal inversions are being produced for the purpose of establishing efficient systems for assessing induced and spontaneous heritable mutations. The inversions and other chromosomal aberrations produced are used to ask basic questions about meiosis and reproductive performance. Chromosomal structure is being studied by identifying the cytological location of genes and break points related to the inversions. 2 tabs.

  12. Proton induced dielectron radiation off Nb: Pt and Y distributions

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Weber, M.; Agakishiev, G.; Behnke, C.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Blume, C.; Böhmer, M.; Cabanelas, P.; Chernenko, S.; Dritsa, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Holzmann, R.; Huck, P.; Hhne, C.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Krizek, F.; Kuc, H.; Kugler, A.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Lopes, L.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Siebenson, J.; Sobolev, Yu G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Hades Collaboration

    2013-03-01

    Following our recent letter [1] on inclusive e+e- pair production in proton induced reactions at Ekin = 3.5 GeV on the nucleus Nb, we present here in addition the transverse and rapidity distributions for various e+e- invariant mass bins and compare them to reference data measured in p+p reactions.

  13. Regorafenib-induced transverse myelopathy after stereotactic body radiation therapy

    PubMed Central

    Tian, Sibo; Nissenblatt, Michael

    2014-01-01

    Stereotactic body radiation therapy (SBRT) delivers large doses of radiation with great accuracy, but is known to have deleterious effects on the vascular compartment of irradiated tissues. Combining SBRT with targeted anti-angiogenesis agents, while able to increase therapeutic efficacy, may unexpectedly precipitate vascular-based toxicities. In this report, we describe a patient with colon cancer who developed transverse myelopathy from regorafenib 2 years after receiving SBRT for three metastatic liver lesions. Regorafenib (Stivarga), formerly BAY 73-4506, (Bayer HealthCare Pharmaceuticals, Montville, NJ) is a multiple receptor tyrosine kinase inhibitor with anti-angiogenic effects used in metastatic colon cancer. Its most common side effects are fatigue, diarrhea and hypertension. However, severe neurologic toxicity has not been previously recognized. Here, we illustrate a case in which the patient developed hyperalgesia and radicular pain 2 weeks after starting regorafenib. Several studies report an increased neurological toxicity when angiogenesis inhibitors are given after radiation therapy, and we postulate that the angioinhibitory effects of regorafenib accelerated subclinical microvascular injury from SBRT. This unexpected toxicity may be clinically relevant when giving targeted angiogenesis inhibitors after SBRT. PMID:25436137

  14. Lee-Wick radiation induced bouncing universe models

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Cai, Yi-Fu; Das, Suratna

    2013-04-01

    The present article discusses the effect of a Lee-Wick partner infested radiation phase of the early universe. As Lee-Wick partners can contribute negative energy density it is always possible that at some early phase of the universe when the Lee-Wick partners were thermalized the total energy density of the universe became very small making the effective Hubble radius very big. This possibility gives rise to the probability of a bouncing universe. As will be shown in the article a simple Lee-Wick radiation is not enough to produce a bounce. There can be two possibilities which can produce a bounce in the Lee-Wick radiation phase. One requires a cold dark matter candidate to trigger the bounce and the other possibility requires the bouncing temperature to be fine-tuned such as all the Lee-Wick partners of the standard fields are not thermalized at the bounce temperature. Both the possibilities give rise to a blue-tilted power spectrum of metric perturbations. Moreover the bouncing universe model can predict the lower limit of the masses of the Lee-Wick partners of chiral fermions and massless gauge bosons. The mass limit intrinsically depends upon the bounce temperature.

  15. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  16. Lee-Wick radiation induced bouncing universe models

    E-print Network

    Kaushik Bhattacharya; Yi-Fu Cai; Suratna Das

    2013-03-26

    The present article discusses about the effect of a Lee-Wick partner infested radiation phase of the early universe. As Lee-Wick partners can contribute negative energy density so it is always possible that at some early phase of the universe when the Lee-Wick partners were thermalized the total energy density of the universe became very small making the effective Hubble radius very big. This possibility gives rise to the probability of a bouncing universe. As will be shown in the article that a simple Lee-Wick radiation is not enough to produce a bounce. There can be two possibilities which can produce a bounce in the Lee-Wick radiation phase. One requires a cold dark matter candidate to trigger the bounce and the other possibility requires the bouncing temperature to be fine tuned such as all the Lee-Wick partners of the standard fields are not thermalized at the bounce temperature. Both the possibilities give rise to blue-tilted power spectrum of metric perturbations. Moreover the bouncing universe model can predict the lower limit of the masses of the Lee-Wick partners of chiral fermions and massless gauge bosons. The mass limit intrinsically depends upon the bounce temperature.

  17. Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

    PubMed Central

    Tekkök, ?smail Hakk?

    2015-01-01

    The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM. PMID:26361537

  18. Comparative analysis of radiation- and virus-induced leukemias in BALB/c mice

    SciTech Connect

    Newcomb, E.W.; Binari, R.; Fleissner, E.

    1985-01-15

    Endogenous murine leukemia virus (MuLV) proviral copies were analyzed in thymomas induced in normal BALB/c (Fv-1b) and in Fv-1n congenic mice by X-irradiation. Both strains of mice developed leukemia with similar kinetics, indicating that N-tropism of endogenous MuLV was not a rate-limiting factor in development of disease. Southern blot analysis, using a probe specific for ecotropic virus and for ecotropic-specific sequences retained in pathogenic, env-recombinant viruses, showed that the majority of radiation leukemias lacked newly acquired, clonally integrated, proviruses. This was in contrast to virus-induced leukemias, which routinely exhibited several new proviral integration sites. When an internal proviral DNA restriction fragment was monitored, some radiation leukemias showed evidence of nonclonal infection, accounting for more frequent isolation of infectious virus from such leukemias. Differences in expression of T-cell surface antigens were found in X-ray-induced and virus-induced leukemias. All radiation leukemias were TL positive, whereas virus-induced leukemias were primarily negative for TL. Some differences were also found in Lyt-1 and Lyt-2 expression. The data as a whole suggest that, in the majority of cases, radiation leukemogenesis is not initiated by a viral route--that is, the sort of viral mechanism for which exogenous infection by known pathogenic MuLV is the paradigm.

  19. The response of kidney to ionizing radiation combined with hyperthermia induced by ultrasound

    SciTech Connect

    Baker, D.G.; Sager, H.T.; Elkon, D.; Constable, W.; Rinehart, L.; Wills, M.; Savory, J.; Lacher, D.

    1982-11-01

    Mouse kidneys were made hyperthermic (42.5 degrees C for 30 min) one hour before, during, or one hour after local irradiation to determine the effect of hyperthermia on radiation damage. An ultrasound beam was used to induce hyperthermia. The urinary concentrations of total protein and albumin were used as criteria of kidney injury. Hyperthermia alone did not induce proteinuria. Radiation alone produced proteinuria that was not correlated with dose. Hyperthermia induced during or after irradiation resulted in a thermal enhancement factor of 1.29 +/- .33. Hyperthermia induced one hour before irradiation resulted in a thermal enhancement factor of 0.88 +/- .05, indicating a radioprotective effect. To the authors' knowledge, this is the first time such an effect has been shown.

  20. The response of kidney to ionizing radiation combined with hyperthermia induced by ultrasound

    SciTech Connect

    Baker, D.G.; Sager, H.T.; Elkon, D.; Constable, W.; Rinehart, L.; Wills, M.; Savory, J.; Lacher, D.

    1982-11-01

    Mouse kidneys were made hyperthermic (42.5/sup 0/C for 30 min) one hour before, during, or one hour after local irradiation to determine the effect of hyperthermia on radiation damage. An ultrasound beam was used to induce hyperthermia. The urinary concentrations of total protein and albumin were used as criteria of kidney injury. Hyperthermia alone did not induce proteinuria. Radiation alone produced proteinuria that was not correlated with dose. Hyperthermia induced during or after irradiation resulted in a thermal enhancement factor of 1.29+/-.33. Hyperthermia induced one hour before irradiation resulted in a thermal enhancement factor of 0.88+/-.05, indicating a radioprotective effect. To the authors' knowledge, this is the first time such an effect has been shown.

  1. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  2. Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis

    PubMed Central

    Kang, Stephen Y.; Deshpande, Sagar S.; Donneys, Alexis; Rodriguez, Joey J.; Nelson, Noah S.; Felice, Peter A.; Chepeha, Douglas B.; Buchman, Steven R.

    2013-01-01

    Background Radiation treatment results in a severe diminution of osseous vascularity. Intermittent parathyroid hormone (PTH) has been shown to have an anabolic effect on osteogenesis, though its impact on angiogenesis remains unknown. In this murine model of distraction osteogenesis, we hypothesize that radiation treatment will result in a diminution of vascularity in the distracted regenerate and that delivery of intermittent systemic PTH will promote angiogenesis and reverse radiation induced hypovascularity. Materials and methods Nineteen Lewis rats were divided into three groups. All groups underwent distraction of the left mandible. Two groups received radiation treatment to the left mandible prior to distraction, and one of these groups was treated with intermittent subcutaneous PTH (60 ?g/kg, once daily) beginning on the first day of distraction for a total duration of 21 days. One group underwent mandibular distraction alone, without radiation. After consolidation, the rats were perfused and imaged with micro-CT angiography and quantitative vascular analysis was performed. Results Radiation treatment resulted in a severe diminution of osseous vascularity in the distracted regenerate. In irradiated mandibles undergoing distraction osteogenesis, treatment with intermittent PTH resulted in significant increases in vessel volume fraction, vessel thickness, vessel number, degree of anisotropy, and a significant decrease in vessel separation (p < 0.05). No significant difference in quantitative vascularity existed between the group that was irradiated, distracted and treated with PTH and the group that underwent distraction osteogenesis without radiation treatment. Conclusions We quantitatively demonstrate that radiation treatment results in a significant depletion of osseous vascularity, and that intermittent administration of PTH reverses radiation induced hypovascularity in the murine mandible undergoing distraction osteogenesis. While the precise mechanism of PTH-induced angiogenesis remains to be elucidated, this report adds a key component to the pleotropic effect of intermittent PTH on bone formation and further supports the potential use of PTH to enhance osseous regeneration in the irradiated mandible. PMID:23643680

  3. Heavy ion irradiation of crystalline water ice

    E-print Network

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  4. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    SciTech Connect

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P; Gapeyev, A B; Pashovkin, T N; Matyunin, S N; Nazarov, M M; Cherkasova, O P

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 ?W cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  5. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  6. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 ?W cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  7. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    E-print Network

    Pavel Motloch; Jaime Alvarez-Muñiz; Paolo Privitera; Enrique Zas

    2015-09-04

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  8. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    E-print Network

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  9. Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system

    NASA Technical Reports Server (NTRS)

    Desai, N.; Wu, H.; George, K.; Gonda, S. R.; Cucinotta, F. A.; Cucniotta, F. A. (Principal Investigator)

    2004-01-01

    Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Department of Radiological Technology, Yuanpei University, Hsinchu, Taiwan ; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan ; Shiau, Chung-Wai; Cheng, Ann-Lii; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan ; Chen, Kuen-Feng; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  11. Unlocking the Combination: Potentiation of Radiation-Induced Antitumor Responses with Immunotherapy

    PubMed Central

    Wattenberg, Max M.; Fahim, Ahmed; Ahmed, Mansoor M.; Hodge, James W.

    2014-01-01

    There is increasing evidence of the potential for radiation therapy to generate antitumor immune responses. The mechanisms of this immune-activating potential include actions on tumor cells such as immunogenic cell death and phenotypic change. Radiation modulates tumor cell surface expression of cell death receptors, tumor-associated antigens and adhesion molecules. This process of immunomodulation sensitizes tumor cells to immune-mediated killing. Radiation also affects immune compartments, including antigen-presenting cells, cytotoxic T lymphocytes and humoral immunity, leading to specific antitumor immune responses. Recognizing the importance of immunity as a potentiator of response to radiation leads to rational augmentation of antitumor immunity by combining radiation and immunotherapy. Targeted immunotherapy manipulates the immune system in a way that best synergizes with radiation. This article discusses the ability of radiation monotherapy to induce antitumor immunity, with a focus on the effect of radiation on antigen-presenting cells and cytotoxic T lymphocytes. We define two important responses generated by tumor cells, immunogenic cell death and immunomodulation, both of which are radiation dose-dependent. In conclusion, we describe the translation of several combination therapies from the preclinical to the clinical setting and identify opportunities for further exploration. PMID:24960415

  12. Astragalus polysaccharide ameliorates ionizing radiation-induced oxidative stress in mice.

    PubMed

    Liu, Yao; Liu, Fang; Yang, Ya; Li, Di; Lv, Jun; Ou, Yangjin; Sun, Fengjun; Chen, Jianhong; Shi, Ying; Xia, Peiyuan

    2014-07-01

    Radioprotective compounds from plant resources may represent safe and cost-effective prophylactic and therapeutic agents. This study was designed to investigate the protective effect of polysaccharide derived from the dried roots of the Astragalus spp. (APS) against ionizing radiation (IR) injury in liver and to explore its role in radiation-induced oxidative stress using a mouse model. Prior to (60)Co ?-irradiation (5Gy, single dose), mice received 7 days of APS at low, mid and high doses (50, 100 or 200mg/kg/day, respectively; n=6 each group), vehicle alone (5mL normal saline orally/daily; n=6). A non-irradiated control group (n=6) received the 7-day distilled water regimen only. At 24h post-irradiation, the APS pre-treated mice showed significantly decreased alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase levels, and NF-?B expression. All APS-treated mice also showed attenuation of the IR-induced increase in thiobarbituric acid reactive substance and resolution of the IR-induced decreases in superoxide dismutase, catalase and glutathione activities (all p<0.05). High dose APS pre-treatment led to remarkably less morphologic features of IR-induced hepatic and pulmonary injury. Thus, APS exerts protective effects against IR-induced injury in liver in mice, and the related molecular mechanism may involve suppressing the radiation-induced oxidative stress reaction. PMID:24820157

  13. Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

    PubMed Central

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E.

    2012-01-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy. PMID:24009822

  14. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    SciTech Connect

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C.

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  15. Ultraviolet Radiation-induced Alteration of Martian Surface Materials

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    1999-01-01

    The nature and origin of martian surface materials cannot be fully characterized without addressing the unusual reactivity of the soil and the effects of exposure to the unique martian environment. Our laboratory experiments show that ultraviolet radiation at the martian surface can result in the oxidation of metal atoms and the creation of reactive oxygen species on grain surfaces. This process is important in understanding the nature and evolution of martian soils. It can explain the reactivity discovered by the Viking Landers and possibly the origin of the ferric component of the soil.

  16. Space radiation-induced effects in polymer photodetectors

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Le, Dang T.; Durstock, Michael F.; Taylor, Barney E.; Claus, Richard O.; Zeng, Tingying; Morath, Christian P.; Cardimona, David A.

    2002-09-01

    Self-assembled polymer photo-detectors (PPDs) composed of ruthenium complex N3 and PPDs based on thin films of poly(p-phenylene vinlyene) with sulfonated polystyrene are examined for their ability to function in a simulated space radiation environment. Examination of the PPD pre- and post- response data following gamma-ray irradiation ranging in total dose from 10 krad(Si) to 100 krad(Si) are examined. The output photovoltage was observed to decrease for all irradiated devices. The brief study was performed at room temperature and a discussion of the preliminary data and results are presented.

  17. State-dependent interaction in the antihistamine-induced disruption of a radiation-induced conditioned taste aversion

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1982-06-01

    Two experiments were run to evaluate the possibility that injection of antihistamine can produce a state-dependent acquisition of a radiation-induced conditioned taste aversion. In the first experiment, pretreating rats with the antihistamine chlorpheniramine maleate prior to their initial exposure to sucrose and to low-level irradiation on the conditioning day did not prevent the acquisition of a taste aversion to sucrose when the antihistamine was also administered prior to a subsequent preference test. In the second experiment, rats were both conditioned and tested for a radiation-induced aversion in a drug-free state. Under these condtions, the rats continued to show an aversion to sucrose despite pretreating them with chlorpheniramine prior to irradiation. Since rats conditioned under the antihistamine do not show the radiation-induced conditioned taste aversion when tested for sucrose preference in a nondrug state, it would seem that pretreating rats with an antihistamine prior to conditioning affects only the retrieval of the previously learned response and not its acquisition.

  18. Protection of liposomal lipids against radiation induced oxidative damage.

    PubMed

    Konings, A W; Damen, J; Trieling, W B

    1979-04-01

    Liposomes were prepared from phospholipids extracted from biological membranes. A comparison was made between the peroxidation rate in handshake liposomes and in sonicated liposomes. The smaller sonicated liposomes were more vulnerable to peroxidation, probably because of the smaller radius of curvature, which results in a less dense packing of lipid molecules in the bilayer and a facilitated action of water radicals produced by the X-irradiation. High oxygen enhancement ratios were obtained, especially at low dose rates, suggesting the operation of slowly progressing chain reactions initiated by ionizing radiation. Three compounds were tested for their ability to protect the liposomal membranes against lipid peroxidation. The naturally occurring compounds reduced glutathione (GSH) and vitamin E(alpha-T) and the powerful radiation protector cysteamine (MEA). All three molecules could protect the liposomes against peroxidation. The membrane-soluble compound vitamin E was by far the most powerful. About 50 per cent protection was achieved by using 5 X 10(-6) M alpha-T, 10(-4) M GSH and 5 X 10(-4) M MEA. The fatty acid composition of the lipids altered drastically as a result of the irradiation. Arachidonic acid and docosahexanoic acid were the most vulnerable of the fatty acids. Very efficient protection of these polyunsaturated fatty acids could be obtained with relatively low concentrations of vitamin E built into the membranes. PMID:312791

  19. Risk estimation based on chromosomal aberrations induced by radiation

    NASA Technical Reports Server (NTRS)

    Durante, M.; Bonassi, S.; George, K.; Cucinotta, F. A.

    2001-01-01

    The presence of a causal association between the frequency of chromosomal aberrations in peripheral blood lymphocytes and the risk of cancer has been substantiated recently by epidemiological studies. Cytogenetic analyses of crew members of the Mir Space Station have shown that a significant increase in the frequency of chromosomal aberrations can be detected after flight, and that such an increase is likely to be attributed to the radiation exposure. The risk of cancer can be estimated directly from the yields of chromosomal aberrations, taking into account some aspects of individual susceptibility and other factors unrelated to radiation. However, the use of an appropriate technique for the collection and analysis of chromosomes and the choice of the structural aberrations to be measured are crucial in providing sound results. Based on the fraction of aberrant lymphocytes detected before and after flight, the relative risk after a long-term Mir mission is estimated to be about 1.2-1.3. The new technique of mFISH can provide useful insights into the quantification of risk on an individual basis.

  20. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  1. Thermal, mechanical and ionic conductive behaviour of gamma-radiation induced PEO/PVDF(SIN)-LiClO 4 polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Song, Yongxian; Wu, Shuyun; Jing, Xiabing; Sun, Jiazhen; Chen, Donglin

    1997-05-01

    An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO 4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10 7 Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10 -4 S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity. In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium.

  2. Dewar valence isomers, the third type of environmentally relevant DNA photoproducts induced by solar radiation.

    PubMed

    Douki, T; Sage, E

    2016-01-01

    UV-induced DNA damage is the main initiating event in solar carcinogenesis. UV radiation is known to induce pyrimidine dimers in DNA, including cyclobutane dimers and (6-4) photoproducts which have been extensively studied. In contrast, much less attention has been paid to Dewar valence isomers, the photoisomerisation product of (6-4) photoproducts. Yet, the available data show that Dewar isomers can be produced by exposure to sunlight and may lead to mutations. Dewars are thus environmentally and biologically relevant. The present review summarizes currently available information on the formation, mutagenic properties and repair of this class of UV-induced DNA damage. PMID:26692437

  3. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    SciTech Connect

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  4. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  5. Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction.

    PubMed

    Zhao, Lian-Mei; Jia, Yun-Long; Ma, Ming; Duan, Yu-Qing; Liu, Li-Hua

    2015-05-01

    In this study, we investigate the efficacy of SP (Schisandra polysaccharide) in prevention of radiation-induced immune dysfunction and discussed the underlying mechanisms with a Bal/bc mouse model. The data demonstrated that SP could reverse the decreases in the number of white blood cells and lymphocytes in peripheral blood. In addition, the immunoglobulin G (IgG) and complement C3 in blood serum were all decreased after radiation and SP could restore this radiation disorder. Furthermore, SP could reverse the deregulation of CD3(+)CD4(+) and CD3(+)CD8(+) T cell subsets in peripheral blood and thymus of mice after radiotherapy. We also performed terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and Immunohistochemistry (IHC) to investigate the apoptosis and underlying mechanisms of SP in thymus. Data showed that radiation-induced apoptosis of thymocytes could be reversed by SP through inducing upregulation of Bcl-2 expression and downregulation of Fas and Bax levels. Furthermore, SP has no any side-effects on immunity of normal mice. In conclusion, our results indicated that SP could effectively prevent immune injury during radiotherapy by protecting the immune system. This valuable information should be of assistance in choosing a rational design for therapeutic interventions of prevention immune system damage in the radiation treatment. PMID:25709011

  6. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.; Lee, J.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved in the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.

  7. RADIATION AND CHEMICALLY INDUCED CHROMOSOME ABERRATIONS IN MOUSE OOCYTES: A COMPARISON WITH EFFECTS IN MALES

    EPA Science Inventory

    Data from studies on radiation-and chemically-induced chromosome aberrations in mouse oocytes have been summarized. n attempt has been made to assess the relative sensitivity to mutagenic agents of female and male germ cells through comparison of observations from mutation studie...

  8. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  9. Radiation-induced bystander effect and adaptive response in mammalian cells

    E-print Network

    Radiation-induced bystander effect and adaptive response in mammalian cells H. Zhou a,*, G. Randers conflicting phenomena, bystander effect and adaptive response, are important in determining the biological. First, there is the bystander effect, the term used to describe the bio- logical effects observed

  10. A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus

    E-print Network

    Allan, Richard P.

    contrail radiative forcing due to the entire global aircraft fleet on a diurnally averaged basis. A single aircraft operating in conditions favorable for persistent contrail formation appears to exert a contrail to contrail-induced cirrus throughout this work. Contrails may form when emissions of hot, warm engine exhaust

  11. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their

    E-print Network

    Brenner, David Jonathan

    Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all at any given dose. Most important in the present context is that cataracts appeared earlier

  12. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    SciTech Connect

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy; Limesand, Kirsten H.

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glands of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.

  13. Oxidative lipidomics of ?-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation.

    PubMed

    Tyurina, Yulia Y; Tyurin, Vladimir A; Kapralova, Valentyna I; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W; Greenberger, Joel S; Pitt, Bruce R; Kagan, Valerian E

    2011-05-01

    Oxidative damage plays a significant role in the pathogenesis of ?-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after ? irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A(2) revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in ?-radiation-induced lung injury. PMID:21338246

  14. Use of iron colloid-enhanced MRI for study of acute radiation-induced hepatic injury

    SciTech Connect

    Suto, Yuji; Ametani, Masaki; Kato, Takashi; Hashimoto, Masayuki; Kamba, Masayuki; Sugihara, Syuji; Ohta, Yoshio

    1996-03-01

    We present a case with acute radiation-induced hepatic injury using chondroitin sulfate iron colloid (CSIC)-enhanced MRI. Uptake of CSIC was decreased in the irradiated portion of the liver. CSIC-enhanced MRI is useful for obtaining information on the function of the reticuloendothelial system and demarcates between irradiated and nonirradiated zones. 18 refs., 3 figs

  15. Preparation of amidoxime-fiber adsorbents by radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Kabay, Nalan; Katakai, Akio; Sugo, Takanobu

    1995-02-01

    The fibrous adsorbents containing amidoxime groups were synthesized by radiation-induced graft polymerization of acrylonitrile onto polypropylene fibers, followed by functionalization of cyano groups to amidoxime groups with hydroxylamine. The polypropylene-based fibrous adsorbents exhibited a high grafting rate. The adsorption tests proved the performance of these fibrous adsorbents as a promising material for uranium recovery from seawater.

  16. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    SciTech Connect

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis.

  17. Perspectives on gravity-induced radiative processes in astrophysics

    E-print Network

    Giorgio Papini

    2015-04-17

    Single-vertex Feynman diagrams represent the dominant contribution to physical processes, but are frequently forbidden kinematically. This is changed when the particles involved propagate in a gravitational background and acquire an effective mass. Procedures are introduced that allow the calculation of lowest order diagrams, their corresponding transition probabilities, emission powers and spectra to all orders in the metric deviation, for particles of any spin propagating in gravitational fields described by any metric. Physical properties of the "space-time medium" are also discussed. It is shown in particular that a small dissipation term in the particle wave equations can trigger a strong back-reaction that introduces resonances in the radiative process and affects the resulting gravitational background.

  18. Radiation-induced changes in GMA-AMPS copolymer

    NASA Astrophysics Data System (ADS)

    Indira, S.; Rao, B. S.; Sridhar, V.; Punnaiah, G.

    2005-03-01

    Changes that occurred on gamma irradiation of guanidine methyl methacrylate 2-acrylamido-2-methyl- 2-propane sulphonic acid(GMA-AMPS) copolymer have been investigated by the electron spin resonance (ESR) and Fourier transform infrared (FTIR) spectroscopy. The ESR spectrum observed for gamma irradiated GMA-AMPS copolymer is a sextet spectrum with a hyperfine separation of 20 +/- 1 and 10 +/- 1G. The observed spectrum is simulated to be a superposition of component spectra arising due to macroradicals similar to CH2-(C) over dot H-CH2 similar to, methylene radicals similar to CH2 and radicals of the type RO(O) over dot and/or similar to (C) ovr dot H similar to. Irradiation of the copolymer to higher radiation dose has led to the formation of almost the same free radical species. The FTIR spectra of pure and irradiated copolymer have confirmed the earlier-mentioned results.

  19. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    E-print Network

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  20. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-10-01

    Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  1. Detection of highly conductive surface electron states in topological crystalline insulators Pb1?xSnxSe using laser terahertz radiation

    PubMed Central

    Egorova, S. G.; Chernichkin, V. I.; Ryabova, L. I.; Skipetrov, E. P.; Yashina, L. V.; Danilov, S. N.; Ganichev, S. D.; Khokhlov, D. R.

    2015-01-01

    We suggest a method for detection of highly conductive surface electron states including topological ones. The method is based on measurements of the photoelectromagnetic effect using terahertz laser pulses. In contrast to conventional transport measurements, the method is not sensitive to the bulk conductivity. The method is demonstrated on an example of topological crystalline insulators Pb1?xSnxSe. It is shown that highly conductive surface electron states are present in Pb1?xSnxSe both in the inverse and direct electron energy spectrum. PMID:26096529

  2. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  3. Radiation-induced skin cancer and radiodermatitis of the head and neck

    SciTech Connect

    van Vloten, W.A.; Hermans, J.; van Daal, W.A.

    1987-02-01

    From a cohort of 2400 patients who had been irradiated 19 to 48 years previously for benign diseases in the head and neck region a randomly selected group of 605 patients was selected and traced back. From the 360 patients alive, 257 were examined clinically and 49 were examined by questionnaire for radiation-induced skin tumors and radiodermatitis. In 21 patients, a total of 30 skin tumors were diagnosed. In 8 of 21 patients, 10 skin carcinomas were detected at recall. A dose-effect relationship of 40 carcinomas/10(4) persons/Gy for a median follow-up period of 41 years for the area exposed was calculated. The severity of radiodermatitis is associated with a higher prevalence of skin cancer. The number of radiation-induced skin cancers rises with the post-treatment time. Because of these late radiation effects, radiotherapy of benign skin lesions is contraindicated, especially now that other therapy modalities are available.

  4. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy.

    PubMed

    Futamura, Gen; Kawabata, Shinji; Siba, Hiroyuki; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji; Sakurai, Yoshinori; Tanaka, Minoru; Todo, Tomoki; Miyatake, Shin-Ichi

    2014-01-01

    We treated a 54-year-old Japanese female with a recurrent radiation-induced osteosarcoma arising from left occipital skull, by reactor-based boron neutron capture therapy (BNCT). Her tumor grew rapidly with subcutaneous and epidural extension. She eventually could not walk because of cerebellar ataxia. The tumor was inoperable and radioresistant. BNCT showed a marked initial therapeutic effect: the subcutaneous/epidural tumor reduced without radiation damage of the scalp except hair loss and the patient could walk again only 3 weeks after BNCT. BNCT seems to be a safe and very effective modality in the management of radiation-induced osteosarcomas that are not eligible for operation and other treatment modalities. PMID:25366059

  5. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    SciTech Connect

    Hood, L.L.

    1987-01-20

    Solar ultraviolet induced perturbations of the middle atmosphere occurring on the solar cycle time scale have received the most theoretical attention in the past because of the need for comparison with predicted anthropogenic trends or for evaluation of possible climatological consequences. However, short-term perturbations occurring on time scales comparable to the solar rotation period are more readily observable at present. Studies of these perturbations allow basic tests of our understanding of the relevant physics and chemistry that are needed for more accurate long-term model predictions. Detection of short-term solar UV induced ozone and/or temperature responses is hindered even at low latitudes by endogenic dynamical forcing which results in an inverse phase relationship (for either ozone or temperature) with higher-latitude variations for many events. Nevertheless, consistent correlative evidence for contributions of solar UV variability to ozone temporal behavior in the upper stratosphere and lower mesosphere has been obtained in recent years. The mean amplitude of the ozone response at low latitudes reaches a maximum near the 3-mbar level of approximately 0.5% for a 1% change in the solar flux at 205 nm. The phase lag of the ozone response relative to the 205-nm flux increases with decreasing altitude and is positive below 3 mbar. Above 3 mbar, increasingly negative lags are measured (i.e., the ozone maximum leads the UV maximum).

  6. Electrostatic origin of in vitro aggregation of human ?-crystallin

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin G.; Dobson, Cassidy M.; Garman, Scott C.; Muthukumar, Murugappan

    2013-09-01

    The proteins ?-, ?-, and ?-crystallins are the major components of the lens in the human eye. Using dynamic light scattering method, we have performed in vitro investigations of protein-protein interactions in dilute solutions of human ?-crystallin and ?-crystallin. We find that ?-crystallin spontaneously aggregates into finite-sized clusters in phosphate buffer solutions. There are two distinct populations of unaggregated and aggregated ?-crystallins in these solutions. On the other hand, ?-crystallin molecules are not aggregated into large clusters in solutions of ?-crystallin alone. When ?-crystallin and ?-crystallin are mixed in phosphate buffer solutions, we demonstrate that the clusters of ?-crystallin are prevented. By further investigating the roles of temperature, protein concentration, pH, salt concentration, and a reducing agent, we show that the aggregation of ?-crystallin under our in vitro conditions arises from non-covalent electrostatic interactions. In addition, we show that aggregation of ?-crystallin occurs under the dilute in vitro conditions even in the absence of oxidizing agents that can induce disulfide cross-links, long considered to be responsible for human cataracts. Aggregation of ?-crystallin when maintained under reducing conditions suggests that oxidation does not contribute to the aggregation in dilute solutions.

  7. Heavy-ion radiation induced Photosynthesis changes in Oryza sativa L.

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Meng, Qingmei

    The abnormal development of rice was observed frequently after the seed was exposed to heavy-ion radiation. The heavy-ion radiation could change the chloroplast structure in mesophyll cell by decreasing chloroplast grana and loosing the thylakoid lamellas. To study the mechanism of heavy-ion radiation induced photosynthesis changes, rice seed was exposed to 0-20 Gy dose of (12) C radiation. By measuring the changes of chlorophyll fluorescence parameters, the content of chlorophyll as well as the expression of CP24 in the leaves of rice at the three-leaf stage, we analyzed the influence mechanism of heavy-ion radiation on photosynthesis in rice. The results indicated that chlorophyll fluorescence parameter Fv/Fm and content of chlorophyll (including chlorophyll a, chlorophyll b and total chlorophyll) changed significantly in different doses. Both the relative expression of CP24 and its encoding gene lhcb6 altered after exposed to different dose of radiation. By using Pearson correlation analysis, we found that the 1 Gy was the bound of low-dose radiation. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Key Words: Heavy-ion Radiation; Rice; Photosynthesis; Fv/Fm; CP24.

  8. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    SciTech Connect

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R. . E-mail: akennedy@mail.med.upenn.edu

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.

  9. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    SciTech Connect

    Oldfield, E.H.; Friedman, R.; Kinsella, T.; Moquin, R.; Olson, J.J.; Orr, K.; DeLuca, A.M. )

    1990-05-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms.

  10. Radio Wave 'Messengers' of Periodic Gravitational Radiation and the Problem of Gravitationally Induced Nonlinearity in Electrodynamic Systems

    E-print Network

    A. B. Balakin; Z. G. Murzakhanov; G. V. Kisun'ko

    2005-11-10

    We discuss a gravitationally induced nonlinearity in hierarchic systems. We consider the generation of extremely low-frequency radio waves with a frequency of the periodic gravitational radiation; the generation is due to an induced nonlinear self-action of electromagnetic radiation in the vicinity of the gravitational-radiation source. These radio waves are a fundamentally new type of response of an electrodynamic system to gravitational radiation. That is why we here use an unconventional term: radio-wave messengers of periodic gravitational radiation.

  11. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status.

    PubMed

    Widel, Maria; Lalik, Anna; Krzywon, Aleksandra; Poleszczuk, Jan; Fujarewicz, Krzysztof; Rzeszowska-Wolny, Joanna

    2015-08-01

    Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0-8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at lower doses whereas wild type cells only at higher doses. Secretion of IL-8 by TP53-/- control cells was many times lower than that by TP53+/+ but increased significantly after irradiation. Transcription of the NF?BIA was induced in irradiated TP53+/+ mainly, but in bystanders a higher level was observed in TP53-/- cells, suggesting that TP53 is required for induction of NF?B pathway after irradiation but another mechanism of activation must operate in bystander cells. PMID:26099456

  12. Neurotoxicity of human neural cells induced by space radiation: in vitro risk assessment and countermeasure

    NASA Astrophysics Data System (ADS)

    Guida, P.; Vazquez, M.; Kim, A.

    As the duration of space missions increases the potential for neurological damage to astronauts resulting from exposure to radiation also increases To explore the cytotoxic effects of low and high LET radiation on cells of the central nervous system we utilized a model in vitro system consisting of a human neuronal progenitor cell line NT2 and its terminally differentiated derivative hNT neurons We found that exposure to numerous forms of ionizing radiation induced cell detachment necrosis and apoptosis in time dose and LET dependent manners From the slopes of the dose-response curves we calculated RBE values for each form of heavy ion radiation A sequential field of 1 GeV n protons and iron ions induced apoptosis to a greater extent than either ion alone and the time between hits was also an important determining factor In addition cycling neuronal progenitor cells underwent a dramatic G2 phase specific cell cycle delay within 6 hours following exposure to either low or high LET radiation The molecular effects of HZE radiation were also investigated with an emphasis on the cell stress response protein p53 Heavy ion radiation induced expression of p53 in a time and dose dependent manner in both neuronal progenitor and mature neuronal cells Furthermore several post-translational modifications to the p53 protein were detected 2 hours after exposure to gamma rays Experiments incorporating pifithrin- alpha a small molecule inhibitor of p53 suggest that induction of both apoptosis and the cell cycle delay in human NT2 cells is

  13. Detection of radiation-induced lung injury using hyperpolarized (13)C magnetic resonance spectroscopy and imaging.

    PubMed

    Thind, K; Chen, A; Friesen-Waldner, L; Ouriadov, A; Scholl, T J; Fox, M; Wong, E; VanDyk, J; Hope, A; Santyr, G

    2013-09-01

    Radiation-induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation-induced lung injury (2-4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized (13)C-pyruvate (pyruvate) and (13)C-lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole-thorax irradiation (14 Gy). Lactate-to-pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age-matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate-to-pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized (13)C metabolic MR spectroscopy and imaging for detection of early radiation-induced lung injury. PMID:23074042

  14. Radiation-Induced Cytogenetic Damage as a Predictor of Cancer Risk for Protons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Williams, Jerry R.

    1999-01-01

    We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.

  15. Radiation-induced robust oscillation and non-Gaussian fluctuation

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yan, Shi-Wei; Geng, Yi-Zhao

    2011-12-01

    There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.

  16. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy

    PubMed Central

    Mezzaroma, Eleonora; Mikkelsen, Ross B; Toldo, Stefano; Mauro, Adolfo G; Sharma, Khushboo; Marchetti, Carlo; Alam, Asim; Van Tassell, Benjamin W; Gewirtz, David A; Abbate, Antonio

    2015-01-01

    Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening. PMID:25822795

  17. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  18. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: The risk factors and hepatic radiation tolerance

    SciTech Connect

    Liang Shixiong; Zhu Xiaodong; Xu Zhiyong

    2006-06-01

    Purpose: To identify risk factors relevant to radiation-induced liver disease (RILD) and to determine the hepatic tolerance to radiation. Methods and Materials: The data of 109 primary liver carcinomas (PLC) treated with hypofractionated three-dimensional conformal radiation therapy (3D-CRT) were analyzed. Seventeen patients were diagnosed with RILD and 13 of 17 died of it. Results: The risk factors for RILD were late T stage, large gross tumor volume, presence of portal vein thrombosis, association with Child-Pugh Grade B cirrhosis, and acute hepatic toxicity. Multivariate analyses demonstrated that the severity of hepatic cirrhosis was a unique independent predictor. For Child-Pugh Grade A patients, the hepatic radiation tolerance was as follows: (1) Mean dose to normal liver (MDTNL) of 23 Gy was tolerable. (2) For cumulative dose-volume histogram, the tolerable volume percentages would be less than: V{sub 5} of 86%, V{sub 1} of 68%, V{sub 15} of 59%, V{sub 2} of 49%, V{sub 25} of 35%, V{sub 3} of 28%, V{sub 35} of 25%, and V{sub 4} of 20%. (3) Tolerable MDTNL could be estimated by MDTNL (Gy) = -1.686 + 0.023 * normal liver volume (cm{sup 3}). Conclusion: The predominant risk factor for RILD was the severity of hepatic cirrhosis. The hepatic tolerance to radiation could be estimated by dosimetric parameters.

  19. A Human Espophageal Epithelial Cell Model for Study of Radiation Induced Cancer and DNA Damage Repair

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.; Patel, Zarana S.; Hada, Megumi; Cucinotta, Francis A.

    2008-01-01

    For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma, a type of cancer found to have a significant enhancement in incidence in the survivors of the atomic bomb detonations in Japan. Here we present the results of our preliminary characterization of both normal and hTERT immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of - H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron).

  20. Thermal effusivity: a promising imaging biomarker to predict radiation-induced skin injuries.

    SciTech Connect

    Chu, J. C. H.; Templeton, A.; Yao, R.; Griem, K. L.; Sun, J. G.

    2012-01-01

    An effective screening technology is needed to triage individuals at the time of radiation incidents involving a large population. Three-dimensional thermal tomography is a relatively new development in active thermal imaging technology that produces cross-sectional images based on the subject's ability to transfer heat thermal effusivity at the voxel level. This noninvasive imaging modality has been used successfully in nondestructive examination of complex materials; also it has been shown to predict the severity of radiation-induced skin injuries several days before the manifestation of severe moist desquamations or blister formation symptoms in mice at 40 Gy. If these results are confirmed at lower dose levels in human subjects, a thermal tomography imaging device may be an ideal screening tool in radiation emergencies. This imaging method is non-invasive, relatively simple, easily adaptable for field use, and when properly deployed, it will enhance public emergency preparedness for incidents involving unexpected radiation exposure.

  1. Ultraviolet radiation--induced malignant melanoma in Monodelphis domestica.

    PubMed

    Ley, R D; Applegate, L A; Padilla, R S; Stuart, T D

    1989-07-01

    Several lines of evidence support the hypothesis that ultraviolet radiation (UVR) is involved in the etiology of cutaneous melanoma in humans. However, progress in understanding the mechanisms involved in induction of melanotic tumors by UVR has been hindered by lack of a suitable animal model. During the course of multiple exposures (3 times/wk for 70 wk) of the South American opossum, Monodelphis domestica, to UVR, we first observed the appearance of areas of dermal melanocytic hyperplasia (MH) on the exposed skin. Post-UVR exposure to photoreactivating light (320-500 nm) suppressed the occurrence of MH. We also observed at 100 weeks from first exposure that 10 of 46 surviving animals had developed melanotic tumors which arose, presumably, from areas of MH. Tumors on three of the 10 animals have been classified as malignant melanomas based on metastasis to lymph nodes. We conclude from these results that UVR can act as a complete carcinogen for melanoma induction and, based on the photoreactivation of MH induction, that DNA damage is involved in melanoma formation. PMID:2762379

  2. Radiation induced degradation of pharmaceutical residues in water: Chloramphenicol

    NASA Astrophysics Data System (ADS)

    Csay, Tamás; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    The ?-radiolytic degradation of chloramphenicol (CPL) was investigated in 0.1-1 mmol dm-3 aqueous solutions at various radiation conditions. The destruction of CPL was monitored by UV-vis spectrophotometric method through the decrease in the intensity of the absorbance band at 276 nm. LC-MS/MS was used to identify the degradation products. Results indicate that •OH can add onto the CPL aromatic ring or can abstract H-atom from the side chain. The reductive dechlorination of CPL was also studied based on the reaction of eaq- with CPL. In 0.1 mmol dm-3 solution above 2.5 kGy dose complete CPL degradation was achieved. In the presence of dissolved oxygen at relatively low dose, various oxidation products were observed. In the presence of tertiary butanol radical scavenger tertiary butanol group containing products were also detected. The toxicity increased as a function of dose to 1.0 kGy. At doses higher than 1.0 kGy the toxicity decreased continuously due to further degradation. It was also demonstrated that the O2-•/HO2• pair has low reactivity in CPL solution.

  3. Genetic variation in normal tissue toxicity induced by ionizing radiation.

    PubMed

    Popanda, Odilia; Marquardt, Jens Uwe; Chang-Claude, Jenny; Schmezer, Peter

    2009-07-10

    Radiotherapy is an important weapon in the treatment of cancer, but adverse reactions developing in the co-irradiated normal tissue can be a threat for patients. Early reactions might disturb the usual application schedule and limit the radiation dose. Late appearing and degenerative reactions might reduce or destroy normal tissue function. Genetic markers conferring the ability to identify hyper-sensitive patients in advance would considerably improve therapy. Association studies on genetic variation and occurrence of side effects should help to identify such markers. This survey includes published studies and novel data from our own laboratory. It illustrates the presence of candidate polymorphisms in genes involved in the cellular response to irradiation which could be used as predictive markers for radiosensitivity in breast or prostate cancer patients. For other tumor types such as head and neck cancers or brain tumors, the available data are much more limited. In any case, further validation of these markers is needed in large patient cohorts with systematically recorded data on side effects and patient characteristics. Genetic variation contributing to radiosensitivity should be screened on a broader basis using newly developed, more comprehensive approaches such as genome-wide association studies. PMID:19022265

  4. Implication of prostaglandins and histamine h1 and h2 receptors in radiation-induced temperature responses of rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Mickley, G.A .

    1988-01-01

    Exposure of rats to 1-15 Gy cobalt 60 gamma radiation induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxgenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H(1) and H(2) receptors may be involved in radiation-induced hypothermia since both the H(1) receptor antagonist, mepyramine, and H(2) receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggested that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations.

  5. Implication of prostaglandins and histamine H1 and H2 receptors in radiation-induced temperature responses of rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Mickley, G.A.

    1988-04-01

    Exposure of rats to 1-15 Gy gamma radiation (/sup 60/Co) induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxygenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu-receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H1 and H2 receptors may be involved in radiation-induced hypothermia, since both the H1 receptor antagonist, mepyramine, and H2 receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggest that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations.

  6. Prophylactic Management of Radiation-Induced Nausea and Vomiting

    PubMed Central

    Feyer, Petra; Jahn, Franziska; Jordan, Karin

    2015-01-01

    The incidence of nausea and vomiting after radiotherapy is often underestimated by physicians, though some 50–80% of patients may experience these symptoms. The occurrence of radiotherapy-induced nausea and vomiting (RINV) will depend on radiotherapy-related factors, such as the site of irradiation, the dosing, fractionation, irradiated volume, and radiotherapy techniques. Patients should receive antiemetic prophylaxis as suggested by the international antiemetic guidelines based upon a risk assessment, taking especially into account the affected anatomic region and the planned radiotherapy regimen. In this field the international guidelines from the Multinational Association of Supportive Care in Cancer (MASCC)/European Society of Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) guidelines as well as the National Comprehensive Cancer Network (NCCN) are widely endorsed. The emetogenicity of radiotherapy regimens and recommendations for the appropriate use of antiemetics including 5-hydroxytryptamine (5-HT3) receptor antagonists, steroids, and other antiemetics will be reviewed in regard to the applied radiotherapy or radiochemotherapy regimen. PMID:26425557

  7. AIR WATCH: air-induced fluorescence by radiation laboratory experiments

    NASA Astrophysics Data System (ADS)

    Giarrusso, Salvatore; Catalano, Osvaldo; Celi, Filippo; Fazio, G.; La Rosa, Giovanni; Richiusa, G.; Schillaci, T.; Bonanno, Giovanni; Cosentino, Rosario; Di Benedetto, Rosario; Scuderi, Salvatore

    1998-11-01

    We report preliminary measurements of the air UV fluorescence light yield as a function of pressure using as a stimulus hard x-rays. For comparison measurements in pure nitrogen are also reported. Knowledge of the air UV fluorescence light yield induced by hard x-rays is needed in order to evaluate the capability to detect, in an AIRWATCH FROM SPACE experiment, Gamma Ray Burst (GRB) events. The experiment was carried out a the LAX x-ray facility in Palermo, by using an high flux collimated x-ray photon beam. The experimental result indicate that the fluorescence yield is inversely proportional to the filling pressure. At pressures below 30 mbar, corresponding to the value for the upper atmospheric layers in which the X and gamma ray photons of the GRBs are absorbed, about 0.1 percent of the total energy of a GRB is transformed in UV photons. This makes possible the observation of the GRBs with the technique proposed in the AIRWATCH FROM SPACE experiment.

  8. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  9. Parametric analysis of transient skin heating induced by terahertz radiation.

    PubMed

    Zilberti, Luca; Arduino, Alessandro; Bottauscio, Oriano; Chiampi, Mario

    2014-07-01

    This paper investigates the effect of relevant physical parameters on transient temperature elevation induced in human tissues by electromagnetic waves in the terahertz (THz) band. The problem is defined by assuming a plane wave, which, during a limited time interval, normally impinges on the surface of a 3-layer model of the human body, causing a thermal transient. The electromagnetic equations are solved analytically, while the thermal ones are handled according to the finite element method. A parametric analysis is performed with the aim of identifying the contribution of each parameter, showing that the properties of the first skin layer (except blood flow) play a major role in the computation of the maximum temperature rise for the considered exposure situation. Final results, obtained by combining all relevant parameters together, show that the deviation from the reference solution of the maximum temperature elevation in skin is included in the coverage intervals from -30% to +10% at 0.1?THz and from -33% to +18% at 1?THz (with 95% confidence level). These data allow bounding the possible temperature increase against the spread of tissue properties that could be reasonably used for dosimetric simulations. PMID:24510310

  10. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species. PMID:17587376

  11. Associated factors of radiation pneumonitis induced by precise radiotherapy in 186 elderly patients with esophageal cancer

    PubMed Central

    Cui, Zhen; Tian, Ye; He, Bin; Li, Hongwei; Li, Duojie; Liu, Jingjing; Cai, Hanfei; Lou, Jianjun; Jiang, Hao; Shen, Xueming; Peng, Kaigui

    2015-01-01

    Background: Radiation pneumonitis is one of the most severe complications of esophageal cancer. Purpose: To explore the factors correlated to radiation pneumonitis induced by precise radiotherapy for elderly patients with esophageal cancer. Methods: The retrospective analysis was used to collect clinical data from 186 elderly patients with esophageal cancer. The incidence of radiation pneumonitis was observed, followed by statistical analysis through ANVON or multiple regression analysis. Results: 27 in 186 cases of esophageal cancer suffered from radiation pneumonitis, with incidence of 14.52%. The single factor analysis showed that, Karnofsky performance status (KPS) score, chronic obstructive pulmonary disease, concurrent chemoradiotherapy, gross tumor volume (GTV) dose, lung V20, mean lung dose (MLD) and planning target volume (PTV) were associated with radiation pneumonitis. The logistic regression analysis indicated that, concurrent chemoradiotherapy, GTV dose, lung V20 and PTV were the independent factors of radiation pneumonitis. Conclusion: The concurrent chemoradiotherapy, GTV dose, lung V20, MLD and PTV are the major risk factors of radiation pneumonitis for elderly patients with esophageal cancer.

  12. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    PubMed Central

    Fan, Zi-Luan; Wang, Zhen-Yu; Zuo, Li-Li; Tian, Shuang-Qi

    2012-01-01

    There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB) are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05) enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN) in bone marrow polychromatic erythrocytes (PCEs). These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation. PMID:23249859

  13. Radiation-induced loss of unsaturation in 1,2-polybutadiene

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Cormia, R. D.

    1982-01-01

    The radiation induced loss of unsaturation and methyl production in 1,2-polybutadiene (VB) was studied using IR spectroscopy. It was found that G(-1,2), which depends on the initial vinyl content, decreased from approximately 550 for VB with 98.5% 1,2 initially, to approximately 270 for VB with 85% 1,2 initially. G(-trans-1,4) ranged from approximately 21 for VB with 14% trans-1,4 to nearly zero for VB with less than 1% trans-1,4 initially. Methyl production was found to equal one methyl group formed for every 4-5 vinyl units consumed in the radiation-cyclized VB, in contrast to one methyl formed for every two vinyls reacted during cationic cyclization to give monocyclic structures. The IR spectra of gamma-irradiated VB were very similar to the spectra of UV-irradiated or thermally-treated VB at the same residual vinyl contents. It is suggested that the radiation-induced cyclization of VB occurs by a nonionic, nonradical 'energy chain' mechanism, which apparently holds for the cyclization of VB, whether induced by gamma-rays, UV radiation, or heat.

  14. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in /sup 45/Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant /sup 45/Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced /sup 45/Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.

  15. The Efficacy of Nardostachys Jatamansi Against The Radiation Induced Haematological Damage In Rats

    PubMed Central

    Gowda, Damodara K M; Shetty, Lathika; A P, Krishna; Kumari, Suchetha N; Sanjeev, Ganesh; P, Naveen

    2013-01-01

    Introduction: Radiation is increasingly being used for medical purposes and it is an established weapon in the diagnosis and the therapy of cancer. An exposure to 1-2 Gys causes the NVD (Nausea, vomiting, diarrhoea) syndrome, whereas an exposure to 2-6 Gys causes the haematopoietic syndrome. The aim of the present study was to investigate the protective effect of the Nardostachys jatamansi root extract (NJE) on the radiation induced haematological damage in rats. Materials and Methods: EBR was performed at the Microtron Centre, Mangalore University, India. Rats were treated with NJE once daily for 15 days before and after the irradiation. After the irradiation, blood was collected for determining the peripheral blood counts (RBC and WBC), haemoglobin, the platelet count and the packed cell volume (PCV) at 6 hours, 12 hours, 24 hours, 48 hours and 5, 10 and 15 days post irradiation. The data was analyzed by one way ANOVA, followed by the Tukey’s test for multiple comparisons. Result: NJE provided protection against the radiation induced haematological disorders. The rats treated with NJE exhibited a time dependent significant elevation in all the haematological parameters which were studied and its modulation upto the near normal level was recorded. Conclusion: From this study, we concluded that, NJE provides protection by modulating the radiation induced damage on the haematopoietic system. PMID:23905085

  16. Radiation-induced metabolomic changes in sterile male ??nochamus alternatus (Coleoptera: Cerambycidae).

    PubMed

    Qu, L J; Wang, L J; Zhang, Y A; Wang, Q H; Wang, Y Z; Zhao, T H; Cai, W Z

    2014-01-01

    Radiation-induced sterile insect technique is a biologically based, environment-friendly method for the suppression or eradication of a number of insect pests. Although the basic mechanisms underlying the technology have been well studied, little is known about the cell responses in organisms. Characterization of the metabolic shift associated with radiation exposure in sterile insects would be helpful for understanding the detailed mechanism underlying this technique and promote its practical application. In this article, a metabolomic study was performed to characterize the global metabolic changes induced by radiation using untreated and 40 Gy (60)Co?-irradiated testes of Japanese pine sawyer, Monochamus alternatus Hope. Differential metabolites were detected and tentatively identified. Many key metabolites in glycolysis and the tricarboxylic acid cycle, as well as most fatty and amino acids, were elevated in irradiated male M. alternatus, presumably resulting from depression of glycolysis and the tricarboxylic acid cycle, each of which are important pathways for energy generation Adenosine Triphosphate (ATP) in insect spermatozoa. The findings in this article will contribute to our knowledge of the characteristic metabolic changes associated with irradiation sterility and understand the molecular mechanisms underlying radiation-induced sterile insect technique. PMID:25368082

  17. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation

    SciTech Connect

    Henderson, M.A.; Rusek, A.; Valluri, S.; Garrett, J.; Lopez, J.; Caperell-Grant, A.; Mendonca, M.; Bigsby, R.; Dynlacht, J.

    2010-02-01

    Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of {sup 60}Co {gamma} rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-{beta}-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV {sup 56}Fe ions. Lens opacification was measured at 2-4 week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.

  18. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  19. Altered gastric emptying and prevention of radiation-induced vomiting in dogs. [Cobalt 60 irradiation

    SciTech Connect

    Dubois, A.; Jacobus, J.P.; Grissom, M.P.; Eng, R.R.; Conklin, J.J.

    1984-03-01

    The relation between radiation-induced vomiting and gastric emptying is unclear and the treatment of this condition is not established. We explored, therefore, (a) the effect of cobalt 60 irradiation on gastric emptying of solids and liquids and (b) the possibility of preventing radiation-induced vomiting with the dopamine antagonist, domperidone. Twenty dogs were studied on two separate days, blindly and in random order, after i.v. injection of either a placebo or 0.06 mg/kg domperidone. On a third day, they received 8 Gy (800 rads) whole body irradiation with cobalt 60 gamma-rays after either placebo (n . 10) or domperidone (n . 10). Before each study, each dog was fed chicken liver tagged in vivo with 99mTc-sulfur colloid (solid marker), and water containing 111In-diethylenetriamine pentaacetic acid (liquid marker). Dogs were placed in a Pavlov stand for the subsequent 3 h and radionuclide imaging was performed at 10-min intervals. Irradiation produced vomiting in 9 of 10 dogs given placebo but only in 1 of 10 dogs pretreated with domperidone (p less than 0.01). Gastric emptying of liquids and solids was significantly suppressed by irradiation (p less than 0.01) after both placebo and domperidone. These results demonstrate that radiation-induced vomiting is accompanied by suppression of gastric emptying. Furthermore, domperidone prevents vomiting produced by ionizing radiation but does not alter the accompanying delay of gastric emptying.

  20. STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma.

    PubMed

    Lau, Jasmine; Ilkhanizadeh, Shirin; Wang, Susan; Miroshnikova, Yekaterina A; Salvatierra, Nicolas A; Wong, Robyn A; Schmidt, Christin; Weaver, Valerie M; Weiss, William A; Persson, Anders I

    2015-10-15

    High grade gliomas (HGG) are classified into four subgroups based on transcriptional signatures and phenotypic characteristics. In particular, the proneural-to-mesenchymal transition (PMT) is associated with increased malignancy, poor prognosis, and disease recurrence, but the underlying causes of PMT are still unclear. In this study, we investigated whether radiotherapy promotes PMT using a genetically engineered mouse model of proneural HGG. We found that cranial ionizing radiation induced robust and durable PMT in tumors. Additionally, we isolated primary proneural HGG cells from mouse and human tumors and demonstrate that radiation induced a sustained cell-intrinsic mesenchymal transition associated with increased invasiveness and resistance to the alkylating agent temozolomide. Expectedly, irradiation-induced PMT was also associated with activation of the STAT3 transcription factor, and the combination of STAT3 blockade using JAK2 inhibitors with radiation abrogated the mesenchymal transition and extended survival of mice. Taken together, our data suggest that clinical JAK2 inhibitors should be tested in conjunction with radiation in patients with proneural HGG as a new strategy for blocking the emergence of therapy-resistant mesenchymal tumors at relapse. Cancer Res; 75(20); 4302-11. ©2015 AACR. PMID:26282165