Sample records for radiation induced reactions

  1. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  2. The effect of Mepitel Film on acute radiation-induced skin reactions in head and neck cancer patients: a feasibility study.

    PubMed

    Wooding, Hayley; Yan, Jing; Yuan, Ling; Chyou, Te-Yu; Gao, Shanbao; Ward, Iain; Herst, Patries M

    2018-01-01

    Mepitel Film significantly decreases acute radiation-induced skin reactions in breast cancer patients. Here we investigated the feasibility of using Mepitel Film in head and neck cancer patients (ACTRN12614000932662). Out of a total of 36 head and neck cancer patients from New Zealand (NZ) (n = 24) and China (n = 12) recruited between June 2015 and December 2016, 33 patients complied with protocol. Of these, 11 NZ patients followed a management protocol; 11 NZ patients and 11 Chinese patients followed a prophylactic protocol. An area of the neck receiving a homogenous radiation dose of > 35 Gy was divided into two equal halves; one half was randomized to Film and the other to either Sorbolene cream (NZ) or Biafine cream (China). Skin reaction severity was measured by Radiation Induced Skin Reaction Assessment Scale and expanded Radiation Therapy Oncology Group toxicity criteria. Skin dose was measured by thermoluminescent dosimeters or gafchromic film. Film decreased overall skin reaction severity (combined Radiation Induced Skin Reaction Assessment Scale score) by 29% and moist desquamation rates by 37% in the Chinese cohort and by 27 and 28%, respectively in the NZ cohort. Mepitel Film did not affect head movements but did not adhere well to the skin, particularly in males with heavy beard stubble, and caused itchiness, particularly in Chinese patients. Mepitel Film reduced acute radiation-induced skin reactions in our head and neck cancer patients, particularly in patients without heavy stubble. Advances in knowledge: This is the first study to confirm the feasibility of using Mepitel Film in head and neck cancer patients.

  3. Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.B.; Travis, E.L.

    To determine (a) whether a wound dressing gel that contains acemannan extracted from aloe leaves affects the severity of radiation-induced acute skin reactions in C3H mice; (b) if so, whether other commercially available gels such as a personal lubricating jelly and a healing ointment have similar effects; and (c) when the wound dressing gel should be applied for maximum effect. Male C3H mice received graded single doses of gamma radiation ranging from 30 to 47.5 Gy to the right leg. In most experiments, the gel was applied daily beginning immediately after irradiation. Dose-response curves were obtained by plotting the percentagemore » of mice that reached or exceeded a given peak skin reaction as a function of dose. Curves were fitted by logit analysis and ED{sub 50} values, and 95% confidence limits were obtained. The average peak skin reactions of the wound dressing gel-treated mice were lower than those of the untreated mice at all radiation doses tested. The ED{sub 50} values for skin reactions of 2.0-2.75 were approximately 7 Gy higher in the wound dressing gel-treated mice. The average peak skin reactions and the ED{sub 50} values for mice treated with personal lubricating jelly or healing ointment were similar to irradiated control values. Reduction in the percentage of mice with skin reactions of 2.5 or more was greatest in the groups that received wound dressing gel for at least 2 weeks beginning immediately after irradiation. There was no effect if gel was applied only before irradiation or beginning 1 week after irradiation. Wound dressing gel, but not personal lubricating jelly or healing ointment, reduces acute radiation-induced skin reactions in C3H mice if applied daily for at least 2 weeks beginning immediately after irradiation. 31 refs., 4 figs., 1 tab.« less

  4. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  5. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  6. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  7. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  8. Photo- and radiation chemical induced degradation of lignin model compounds.

    PubMed

    Lanzalunga; Bietti, M

    2000-07-01

    The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.

  9. Pre-recombination quenching of the radiation induced fluorescence as the approach to study kinetics of ion-molecular reactions

    NASA Astrophysics Data System (ADS)

    Borovkov, V. I.; Ivanishko, I. S.

    2011-04-01

    This study deals with the geminate ion recombination in the presence of bulk scavengers, that is the so-called scavenger problem, as well as with the effect of the scavenging reaction on the radiation-induced recombination fluorescence. Borovkov and Velizhanin (2004) have proposed a method to determine the rate constant of the bulk reaction between neutral scavengers and one of the geminate ions if the ion-molecular reaction prevented the formation of electronically excited states upon recombination involving a newly formed ion. If such pre-recombination quenching of the radiation-induced fluorescence took place, it manifested itself as a progressive decrease in the decay of the fluorescence intensity. The relative change in the fluorescence decay as caused by the scavengers was believed to be closely related to the kinetics of the scavenging reaction. The goal of the present study is to support this method, both computationally and experimentally because there are two factors, which cast doubt on the intuitively obvious approach to the scavenger problem: spatial correlations between the particles involved and the drift of the charged reagent in the electric field of its geminate partner. Computer simulation of geminate ions recombination with an explicit modeling of the motion trajectories of scavengers has been performed for media of low dielectric permittivity, i.e. for the maximal Coulomb interaction between the ions. The simulation has shown that upon continuous diffusion of the particles involved, the joint effect of the two above factors can be considered as insignificant with a high accuracy. Besides, it is concluded then that the method of pre-recombination quenching could be applied to study parallel and consecutive reactions where the yields of excited states in the reaction pathways are different with the use of very simple analytical relations of the formal chemical kinetics. The conclusion has been confirmed experimentally by the example of the

  10. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  11. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    PubMed

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ( • OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10 9 and 1.8 × 10 7 M -1 s -1 , respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N 2 O) and nitromethane (CH 3 NO 2 ) were also examined. Decay of [Formula: see text] due to scavenging by N 2 O and CH 3 NO 2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N 2 O than for CH 3 NO 2 , revealing lower solubility of N 2 O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH 3 NO 2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N 2 O was slightly higher than that in water containing N 2 O, and the same tendency was found for CH 3 NO 2 .

  12. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes.

    PubMed

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; Ruiz de Almodóvar, José Mariano

    2005-01-01

    Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify

  13. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    PubMed Central

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; de Almodóvar, José Mariano Ruiz

    2005-01-01

    Introduction Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Methods Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Results Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. Conclusion After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity

  14. Radiative capture reactions via indirect methods

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Rogachev, G. V.

    2017-10-01

    Many radiative capture reactions of astrophysical interest occur at such low energies that their direct measurement is hardly possible. Until now the only indirect method, which was used to determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb dissociation. In this paper we address another indirect method, which can provide information about resonant radiative capture reactions at astrophysically relevant energies. This method can be considered an extension of the Trojan horse method for resonant radiative capture reactions. The idea of the suggested indirect method is to use the indirect reaction A (a ,s γ )F to obtain information about the radiative capture reaction A (x ,γ )F , where a =(s x ) and F =(x A ) . The main advantage of using the indirect reactions is the absence of the penetrability factor in the channel x +A , which suppresses the low-energy cross sections of the A (x ,γ )F reactions and does not allow one to measure these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative capture reactions is developed when only a few intermediate states contribute and a statistical approach cannot be applied. The indirect method requires coincidence measurements of the triple differential cross section, which is a function of the photon scattering angle, energy, and the scattering angle of the outgoing spectator particle s . Angular dependence of the triple differential cross section at fixed scattering angle of the spectator s is the angular γ -s correlation function. Using indirect resonant radiative capture reactions, one can obtain information about important astrophysical resonant radiative capture reactions such as (p ,γ ) , (α ,γ ) , and (n ,γ ) on stable and unstable isotopes. The indirect technique makes accessible low-lying resonances, which are close to the threshold, and even subthreshold bound states located at negative energies. In this paper, after

  15. Force approach to radiation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less

  16. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions.

    PubMed

    Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization

  17. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse

  18. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  19. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, G.; Matzinger, E.; Gange, R.W.

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areasmore » were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.« less

  20. Non-radiation induced signals in TL dosimetry.

    PubMed

    German, U; Weinstein, M

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.

  1. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  2. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    PubMed

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  3. Radiative capture reactions in astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, Carl R.; Davids, Barry

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  4. Radiative capture reactions in astrophysics

    DOE PAGES

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  5. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures: A study using nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Briere, M. A.

    Resonant Nuclear Reaction Analysis (NRA), using the H-1/N-15, alpha gamma/c-12 reaction at 6.4 MeV, is successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal oxide silicon structures. The influence of processing parameters on the H content of thermal oxides, with and without gate material present, is studied. Hydrogen accumulation at the Si-SiO2 interface is reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon oxide interface during NRA, is investigated. It is found that the cross section for this migration, per incident N-15 ion, depends on the sample processing history. It is argued that the release is due to electron capture at Si-OH sites and that the migration is driven by reductions in the interfacial free energy associated with the incorporation of hydrogen within the strained oxide region. A similar migration of hydrogen during irradiation with 2.5 MeV electrons is presented, which suggests that the migration occurs preferentially under applied fields which are directed to the silicon interface. It is argued that this bias effect is due to holes, which modify the interfacial region so as to increase hydrogen solubility, that is explained by the diffusivity of the hydrogen species during N-15 irradiation, which suggest identification as neutral atomic hydrogen. The spatial distribution of hydrogen at the Si-SiO2 interface is shown to be confined to within ca. 2 nm of the metallurgical boundary, in agreement with measurements of the location of oxide charge states, paramagnetic centers, as well as the width of the strained transition region in the neighborhood of this interface. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong

  6. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  7. Real-space analysis of radiation-induced specific changes with independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borek, Dominika; Bromberg, Raquel; Hattne, Johan

    A method of analysis is presented that allows for the separation of specific radiation-induced changes into distinct components in real space. The method relies on independent component analysis (ICA) and can be effectively applied to electron density maps and other types of maps, provided that they can be represented as sets of numbers on a grid. Here, for glucose isomerase crystals, ICA was used in a proof-of-concept analysis to separate temperature-dependent and temperature-independent components of specific radiation-induced changes for data sets acquired from multiple crystals across multiple temperatures. ICA identified two components, with the temperature-independent component being responsible for themore » majority of specific radiation-induced changes at temperatures below 130 K. The patterns of specific temperature-independent radiation-induced changes suggest a contribution from the tunnelling of electron holes as a possible explanation. In the second case, where a group of 22 data sets was collected on a single thaumatin crystal, ICA was used in another type of analysis to separate specific radiation-induced effects happening on different exposure-level scales. Here, ICA identified two components of specific radiation-induced changes that likely result from radiation-induced chemical reactions progressing with different rates at different locations in the structure. In addition, ICA unexpectedly identified the radiation-damage state corresponding to reduced disulfide bridges rather than the zero-dose extrapolated state as the highest contrast structure. The application of ICA to the analysis of specific radiation-induced changes in real space and the data pre-processing for ICA that relies on singular value decomposition, which was used previously in data space to validate a two-component physical model of X-ray radiation-induced changes, are discussed in detail. This work lays a foundation for a better understanding of protein-specific radiation

  8. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  9. Electromagnetic Radiation Reaction in General Relativity.

    NASA Astrophysics Data System (ADS)

    O'Donnell, Nuala

    Available from UMI in association with The British Library. This thesis examines the electromagnetic radiation reaction felt by a charged body falling freely in an external gravitational field in general relativity. The original objective was to find a new derivation of the radiation reaction force F^{i} of DeWitt and DeWitt^1 which was calculated for the special case of a point charge falling in slow motion in a weak, static gravitational field: F ^{i} = {2over 3}e^2R^{i}_{0j0 }v^{j}. This may be thought of as a local expression since it involves the particle's velocity v^{j } and the local Riemann curvature tensor R ^{i}_{0j0}. Its derivation involves integrals over the whole history of the particle, covering distances of approximately the length scale on which R^{i}_{0j0 } changes. This is different from calculations of the Abraham-Lorentz force of flat space-time involving integrals over distances only a few times the size of the charge. This work was motivated by the wish to find a "local" derivation of the local reaction force. Using Schutz's^2 local initial value method to solve the problem of a charged, rigid, spherically symmetric body moving in an external gravitational field of arbitrary metric. Calculations are done in a Riemann normal coordinate system ^3 and are only valid in a normal neighbourhood of the origin, where geodesics have not begun to cross one another. We solve Maxwell's equations for the self -force by making a slow-motion approximation and keeping terms to first order only in the Riemann tensor and velocity. It is surprising that we find no local radiation reaction. Consider two particles in a static spacetime with the same initial conditions at t = 0. Particle A is that of DeWitt and DeWitt; it feels a reaction force F^{i} = {2over 3}e^2R^{i }_{0j0}v^{j}. Particle B is accelerated from rest to the same small velocity; it feels no reaction force. The two particles therefore follow different trajectories. We conclude that there is a

  10. Experimental evidence of quantum radiation reaction in aligned crystals.

    PubMed

    Wistisen, Tobias N; Di Piazza, Antonino; Knudsen, Helge V; Uggerhøj, Ulrik I

    2018-02-23

    Quantum radiation reaction is the influence of multiple photon emissions from a charged particle on the particle's dynamics, characterized by a significant energy-momentum loss per emission. Here we report experimental radiation emission spectra from ultrarelativistic positrons in silicon in a regime where quantum radiation reaction effects dominate the positron's dynamics. Our analysis shows that while the widely used quantum approach is overall the best model, it does not completely describe all the data in this regime. Thus, these experimental findings may prompt seeking more generally valid methods to describe quantum radiation reaction. This experiment is a fundamental test of quantum electrodynamics in a regime where the dynamics of charged particles is strongly influenced not only by the external electromagnetic fields but also by the radiation field generated by the charges themselves and where each photon emission may significantly reduce the energy of the charge.

  11. Three-body radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2018-01-01

    Radiative capture reaction rates for 6He, 9Be and 17Ne formation at astrophysical conditions are studied within a three-body model using the analytical transformed harmonic oscillator method to calculate their states. An alternative procedure to estimate these rates from experimental data on low-energy breakup is also discussed.

  12. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  13. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  14. Tests of three radiation reaction formulas

    NASA Astrophysics Data System (ADS)

    Comay, E.

    1987-11-01

    The radiation reaction formulas of Bonnor, of Mo and Papas and of Herrera are tested in a system of two charges rotating in a circle. It is proved that each of these formulas fails to satisfy energy and angular momentum conservation.

  15. Radiation-induced leukemia: lessons from history.

    PubMed

    Finch, Stuart C

    2007-03-01

    Beginning in 1895, with the discovery of x-rays, alpha and beta radiation, uranium, radium, thorium, and polonium, the fascinating story of the beginning of knowledge concerning the existence of ionizing radiation unfolds. This brief history of radiation and leukemia is divided into two main parts: the first 50 years, which deals with the confusion regarding radiation effects and the failure to clearly recognize that exposure to ionizing radiation may induce leukemia. The second part focuses on the last 60 years, when the radiation induction of leukemia was accepted and some progress achieved in understanding the clinical and pathophysiological characteristics of radiation-induced leukemia. Particular attention in this is paid to the effects of radiation on the survivors of Hiroshima and Nagasaki. The discussion in this section also covers some concepts of radiation-induced cell damage and ruminations on unanswered questions.

  16. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol

    NASA Astrophysics Data System (ADS)

    Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.

    2014-05-01

    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.

  17. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    PubMed Central

    Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie

    2014-01-01

    Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126

  18. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  19. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells.

    PubMed

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan; Ahn, Kyu Joong

    2016-08-01

    We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.

  20. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  1. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  2. Transfer reactions induced by lithium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A.A.

    The review deals with nuclear reactions induced by /sup 6/Li and /sup 7/ Li io ns having energies between 10 and 30 MeV. Due to the cluster structure of / sup 6/Li (/sup 6/Li= alpha +d) and /sup 7/Li (/sup 7/Li= alpha +t) and the low bindi ng energy of these nuclei, one of the clustcr is directly transferred in (/ sup 6/Li, d), (/sup 7/Li, t) (/sup 6/Li alpha ) and (/sup 7/Li, alpha ) reactions, i.e., the alpha p article, the deuteron, or the triton is directly transferred. Particular attention is paid to the (/sup 6/Li, d) andmore » (/sup 7/Li, t) reactions, in which the cluster-transfe r mechanism (alpha-particle transfer) appear in ita purest fomn. These reactions can be used to study the alpha- particle or quartet states of light nuclei, which are difficult or impossible to excite in any other way. The present state of the theory of multinucleon transfcr reactions is considered and the application of the theory to thc analysis of reactions induced by lithium atoms is discussed. (auth)« less

  3. Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis.

    PubMed

    Ma, Yifang; Zheng, Chutian; Feng, Yiping; Xu, Qingsheng

    2017-09-01

    Radiation necrosis is one of the complications of Gammaknife radiosurgery. The traditional treatment of radiation necrosis carries a high risk of failure, Bevacizumab is an antiangiogenic monoclonal antibody against vascular endothelial growth factor, a known mediator of cerebral edema. It can be used to successfully treat brain radiation necrosis. Two patients with a history of small cell lung cancer presented with metastatic disease to the brain. They underwent Gammaknife radiosurgery to brain metastases. Several months later, magnetic resonance imaging showed radiation necrosis with significant surrounding edema. The patients had a poor response to treatment with dexamethasone. They were eventually treated with bevacizumab (5 mg/kg every 2 weeks, 7.5 mg/kg every 3 weeks, respectively), and the treatment resulted in significant clinical and radiographic improvement. Bevacizumab can be successfully used to treat radiation necrosis induced by Gammaknife radiosurgery in patients with cerebral metastases. It is of particular benefit in patients with poor reaction to corticosteroids and other medications.

  4. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  5. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  6. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are

  7. Epidemiology of radiation-induced cancer.

    PubMed Central

    Radford, E P

    1983-01-01

    The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538

  8. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  9. Proton radiation-induced miRNA signatures in mouse blood: Characterization and comparison with 56Fe-ion and gamma radiation

    PubMed Central

    Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.

    2013-01-01

    Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419

  10. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  11. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  12. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    PubMed

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  13. The role of radiation reaction in Lienard-Wiechert description of FEL interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimel, I.; Elias, L.R.

    1995-12-31

    The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursuedmore » the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.« less

  14. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    NASA Astrophysics Data System (ADS)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  15. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.

  16. On the synchrotron radiation reaction in external magnetic field

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Kološ, Martin

    2017-12-01

    We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.

  17. Radiation-induced vaginal stenosis: current perspectives

    PubMed Central

    Morris, Lucinda; Do, Viet; Chard, Jennifer; Brand, Alison H

    2017-01-01

    Treatment of gynecological cancer commonly involves pelvic radiation therapy (RT) and/or brachytherapy. A commonly observed side effect of such treatment is radiation-induced vaginal stenosis (VS). This review analyzed the incidence, pathogenesis, clinical manifestation(s) and assessment and grading of radiation-induced VS. In addition, risk factors, prevention and treatment options and follow-up schedules are also discussed. The limited available literature on many of these aspects suggests that additional studies are required to more precisely determine the best management strategy of this prevalent group after RT. PMID:28496367

  18. Ultraviolet radiation-induced suppression of contact hypersensitivity in relation to padimate O and oxybenzone.

    PubMed

    Fisher, M S; Menter, J M; Willis, I

    1989-03-01

    Contact hypersensitivity (CHS) in mice can be induced by cutaneous sensitization followed by elicitation via ear-painting with trinitrochlorobenzene (TNCB). This CHS reaction is systemic and can be suppressed by exposure of mice to suberythemogenic doses of 280-315 nm radiation. In this study, we investigated whether a commercially available water-resistant sunscreen, either SPF-6 or SPF-15, containing Padimate O (UVB absorber) and oxybenzone (UVA absorber), was effective in preventing systemic suppression of CHS induced by either FS36 sunlamp exposure or solar simulating radiation. We observed that these two sunscreen preparations were totally incapable of preventing the immunologic suppression of contact hypersensitivity by UV radiation. These results indicate that application of sunscreen does not retard the development of suppression of CHS following repeated UV exposure under conditions where erythema is not clinically observed. Thus, erythema may not be a good end point for assessing systemic immune suppression and its consequences.

  19. Role of neurotensin in radiation-induced hypothermia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H.

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  20. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  1. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays,more » were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.« less

  2. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  3. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad

    2011-11-01

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting ( G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 °C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting.

  4. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  5. RADIATION-INDUCED MUTATIONS FOR STEM RUST RESISTANCE IN OATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzak, C.F.

    1959-01-01

    Stem rust rcsistant viriants from earlier experiments on the induction or resistance in oats by radiation were found to result from natural field hybridization. Recent controlled experiments did, however, yield new variants at a low frequency in one instance. and no variants in another. Both experiments included over 3,000 lines from irradiated seeds. One previously unknown type of rust resistance reaction was obtained in a mutant plant. This mutant shows a temperature sensitive response for resistance to race 7A of Puccinia graminis avenae. It was suggested that some, as yet unknown, mcdifying factors mav limit the development of induced changesmore » into mutations. (auth)« less

  6. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  7. Radiation reaction effect on laser driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particlemore » which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.« less

  8. Effectiveness of semi-permeable dressings to treat radiation-induced skin reactions. A systematic review.

    PubMed

    Fernández-Castro, M; Martín-Gil, B; Peña-García, I; López-Vallecillo, M; García-Puig, M E

    2017-11-01

    The aim of this systematic review is to assess the available evidence concerning the effectiveness of semi-permeable dressings, on the full range of skin reactions, related to radiation therapy in cancer patients, from local erythema to moist desquamation, including subjective symptoms such as pain, discomfort, itchiness, burning and the effect on daily life activities. The bibliographic search was carried out looking for Randomised Clinical Trials (RCTs) indexed in PubMed, Cinhal, Cochrane plus and Biblioteca Nacional de Salud, published in the English and Spanish language, between 2010 and 2015. Data extraction and evaluation of study quality was undertaken by peer reviewers using the Critical Appraisal Skills Programme (CASP). Of 181 studies, nine full texts were assessed. Finally, six RCT were included in the final synthesis: three analysed the application of Mepilex ® Lite in breast cancer and head & neck cancer; one evaluated the application of Mepitel ® Film in breast cancer; and two assessed the use of silver nylon dressings in breast cancer and in patients with lower gastrointestinal cancer. The results show that semi-permeable dressings are beneficial in the management of skin toxicity related to radiation therapy. However, rigorous trials showing stronger evidence are needed. © 2017 John Wiley & Sons Ltd.

  9. The influence of radiation-induced vacancy on the formation of thin-film of compound layer during a reactive diffusion process

    NASA Astrophysics Data System (ADS)

    Akintunde, S. O.; Selyshchev, P. A.

    2016-05-01

    A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.

  10. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less

  11. Radiation-induced changes in intestinal and tissue-nonspecific alkaline phosphatase: implications for recovery after radiation therapy.

    PubMed

    Rentea, Rebecca M; Lam, Vy; Biesterveld, Ben; Fredrich, Katherine M; Callison, Jennifer; Fish, Brian L; Baker, John E; Komorowski, Richard; Gourlay, David M; Otterson, Mary F

    2016-10-01

    Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    2014-01-01

    Background Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling, redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. Methods We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Results Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD -0.92 (95% CI -1.36 to -0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Conclusions Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the

  13. ON THE ROLE OF DISTURBANCES IN VEGETATIVE NERVOUS REGULATION IN IONIZING RADIATION INDUCED CHANGES IN CARDIO-VASCULAR SYSTEM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnova, N.P.

    A total exposure to x radiation induced disturbances of the central blood circulation apparatus. The disturbances were evaluated by the response of the hypothalamic region to irritation. An increased or changed reaction without variability in the excitation threshold are characteristic of hypothalamic effects of a neurohumoral nature (blood circulation and cutaneous vessel reaction). Considerable changes in irritation thresholds were found. (R.V.J.)

  14. The effect of vitamin E on acute skin reaction caused by radiotherapy.

    PubMed

    Dirier, A; Akmansu, M; Bora, H; Gurer, M

    2007-09-01

    Ionizing radiation affects healthy organs and tissues as well as diseased tissues during radiation therapy. Skin reactions varying from acute erythema to necrosis can be seen. It has been found that vitamin E can prevent mutagenic and/or carcinogenic effects of ionizing radiation in both animals and cell cultures. This study investigated the preventative effect of antioxidant vitamin E on irradiation-induced acute skin reactions. No protective effect of vitamin E was demonstrated. It is possible that the vehicle induced free radical exposure in the irradiated skin.

  15. Structure effects on reaction mechanisms in collisions induced by radioactive ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietro, A. Di, E-mail: dipietro@lns.infn.it; Figuera, P.; Scuderi, V.

    2006-08-15

    The present paper concerns the study of reactions induced by radioactive beams of halo and weakly bound nuclei at energies around and above the Coulomb barrier. The results obtained for the reaction induced by the halo nucleus {sup 6}He on {sup 64}Zn have been compared with the results for the reaction induced by {sup 4}He on the same target. The results of the reaction induced by the weakly bound unstable {sup 13}N on the weakly bound {sup 9}Be have been compared with those for the reaction {sup 10}B + {sup 12}C.

  16. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  17. Apatinib in refractory radiation-induced brain edema

    PubMed Central

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-01-01

    Abstract Rationale: Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Patient concerns: Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Diagnoses: Two patients were both diagnosed as refractory radiation-induced brain edema. Interventions: Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Outcomes: Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Lessons: Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study. PMID:29145238

  18. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  19. Radiation-induced sarcoma of the thyroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  20. Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An Overview

    PubMed Central

    Pirayesh Islamian, Jalil; Mehrali, Habib

    2015-01-01

    Radio-protectors are agents that protect human cells and tissues from undesirable effects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ionizing radiation may be an effective approach in diminishing undesirable effects of radiation byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects. PMID:25685729

  1. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  2. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.

    PubMed

    Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H

    2009-06-01

    In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.

  3. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  4. Gemcitabine-induced rectus abdominus radiation recall.

    PubMed

    Fakih, Marwan G

    2006-05-09

    Radiation recall has been described in the context of gemcitabine chemotherapy. However, this phenomenon has been largely limited to skin. We hereby report a case of radiation recall dermatitis and myositis occurring on gemcitabine monotherapy, five months after completing chemoradiation for locally advanced pancreatic cancer. Radiation recall resolved spontaneously with withdrawal of gemcitabine. This is the second case report that describes gemcitabine-induced radiation recall in rectus abdominus muscles after gemcitabine-based radiation therapy. Given the wide use of gemcitabine following chemoradiation for pancreatic cancer, providers should be aware of this potential complication.

  5. Treatment of radiation-induced cystitis with hyperbaric oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Boland, F.P.; Mori, H.

    The effects of hyperbaric oxygen on radiation cystitis have been documented in 3 patients with radiation-induced hemorrhagic cystitis refractory to conventional therapy. Cessation of gross hematuria and reversal of cystoscopic bladder changes were seen in response to a series of hyperbaric oxygen treatments of 2 atmosphere absolute pressure for 2 hours. To our knowledge this is the first report of cystoscopically documented healing of radiation-induced bladder injury.

  6. Modulation of oxidative phosphorylation (OXPHOS) by radiation- induced biophotons.

    PubMed

    Le, Michelle; McNeill, Fiona E; Seymour, Colin B; Rusin, Andrej; Diamond, Kevin; Rainbow, Andrew J; Murphy, James; Mothersill, Carmel E

    2018-05-01

    Radiation-induced biophotons are an electromagnetic form of bystander signalling. In human cells, biophoton signalling is capable of eliciting effects in non-irradiated bystander cells. However, the mechanisms by which the biophotons interact and act upon the bystander cells are not clearly understood. Mitochondrial energy production and ROS are known to be involved but the precise interactions are not known. To address this question, we have investigated the effect of biophoton emission upon the function of the complexes of oxidative phosphorylation (OXPHOS). The exposure of bystander HCT116 p53 +/+ cells to biophoton signals emitted from β-irradiated HCT116 p53 +/+ cells induced significant modifications in the activity of Complex I (NADH dehydrogenase or NADH:ubiquinone oxidoreductase) such that the activity was severely diminished compared to non-irradiated controls. The enzymatic assay showed that the efficiency of NADH oxidation to NAD+ was severely compromised. It is suspected that this impairment may be linked to the photoabsorption of biophotons in the blue wavelength range (492-455 nm). The photobiomodulation to Complex I was suspected to contribute greatly to the inefficiency of ATP synthase function since it resulted in a lower quantity of H + ions to be available for use in the process of chemiosmosis. Other reactions of the ETC were not significantly impacted. Overall, these results provide evidence for a link between biophoton emission and biomodulation of the mitochondrial ATP synthesis process. However, there are many aspects of biological modulation by radiation-induced biophotons which will require further elucidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Optimization strategies for radiation induced grafting of 4-vinylpyridine onto poly(ethylene-co-tetraflouroethene) film using Box-Behnken design

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Shamsaei, Ezzatollah; Ghassemi, Payman; Ahmed Aly, Amgad; Hamid Yahaya, Abdul

    2012-04-01

    The radiation induced grafting of 4-vinylpyridine (4-VP) onto poly(ethylene-co-tetrafluoroethene) (ETFE) was optimized using the Box-Behnken factorial design available in the response surface method (RSM). The optimized grafting parameters; absorbed dose, monomer concentration, grafting time and reaction temperature were varied in four levels to quantify their effect on the grafting yield (GY). The validity of the statistical model was supported by the small deviation between the predicted (GY=61%) and experimental (GY=57%) values. The optimum conditions for enhancing GY were determined at the following values: monomer concentration of 48 vol%, absorbed dose of 64 kGy, reaction time of 4 h and temperature of 68 °C. A comparison was made between the optimization model developed for the present grafting system and that for grafting of 1-vinylimidazole (1-VIm) onto ETFE to confirm the validly and reliability of the Box-Behnken for the optimization of various radiation induced grafting reactions. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to investigate the properties of the obtained films and provide evidence for grafting.

  8. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate

  9. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.; Ohta, M.; Utsunomiya, H.

    2013-11-01

    An update of the NACRE compilation [3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number A<16, of which fifteen are particle-transfer reactions and the rest radiative capture reactions. When compared with NACRE, NACRE II features in particular (1) the addition to the experimental data collected in NACRE of those reported later, preferentially in the major journals of the field by early 2013, and (2) the adoption of potential models as the primary tool for extrapolation to very low energies of astrophysical S-factors, with a systematic evaluation of uncertainties.

  10. Radiation-Induced Oral Mucositis

    PubMed Central

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment. PMID:28589080

  11. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  12. HLA Association with Drug-Induced Adverse Reactions

    PubMed Central

    Fan, Wen-Lang; Shiao, Meng-Shin; Hui, Rosaline Chung-Yee; Wang, Chuang-Wei; Chang, Ya-Ching

    2017-01-01

    Adverse drug reactions (ADRs) remain a common and major problem in healthcare. Severe cutaneous adverse drug reactions (SCARs), such as Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) with mortality rate ranges from 10% to more than 30%, can be life threatening. A number of recent studies demonstrated that ADRs possess strong genetic predisposition. ADRs induced by several drugs have been shown to have significant associations with specific alleles of human leukocyte antigen (HLA) genes. For example, hypersensitivity to abacavir, a drug used for treating of human immunodeficiency virus (HIV) infection, has been proposed to be associated with allele 57:01 of HLA-B gene (terms HLA-B∗57:01). The incidences of abacavir hypersensitivity are much higher in Caucasians compared to other populations due to various allele frequencies in different ethnic populations. The antithyroid drug- (ATDs- ) induced agranulocytosis are strongly associated with two alleles: HLA-B∗38:02 and HLA-DRB1∗08:03. In addition, HLA-B∗15:02 allele was reported to be related to carbamazepine-induced SJS/TEN, and HLA-B∗57:01 in abacavir hypersensitivity and flucloxacillin induced drug-induced liver injury (DILI). In this review, we summarized the alleles of HLA genes which have been proposed to have association with ADRs caused by different drugs. PMID:29333460

  13. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  14. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  15. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Effectiveness of the herbal medicine daikenchuto for radiation-induced enteritis.

    PubMed

    Takeda, Takashi; Kamiura, Shouji; Kimura, Tadashi

    2008-07-01

    Radiation-induced enteritis is a serious clinical problem for which there is currently no recommended standard management. Daikenchuto (DKT) is a Japanese herbal medicine that has been used to treat adhesive bowel obstruction in Japan. This report describes a patient with radiation-induced enteritis whose clinical symptoms were much improved by treatment with DKT. The patient was administered DKT, a traditional Japanese herbal formula, orally (2.5 g 3 times daily). Abdominal distention was evaluated objectively with computed tomography. Gastrointestinal symptoms associated with radiation-induced enteritis were controlled successfully with DKT treatment. DKT treatment may be useful for the management of radiation-induced enteritis.

  17. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  18. Radiation induced detwinning in nanotwinned Cu

    DOE PAGES

    Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; ...

    2016-11-15

    Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.

  19. Radiated chemical reaction impacts on natural convective MHD mass transfer flow induced by a vertical cone

    NASA Astrophysics Data System (ADS)

    Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir

    2018-03-01

    The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.

  20. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  1. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury.

    PubMed

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation

  2. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    PubMed

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  3. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  4. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  5. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  6. RADIATION INDUCED AGING IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, H.J.; Gebhard, K.L.

    1958-10-31

    . Experiments were undertaken in an effort to determine the degree of similarity between natural and radiation induced aging, and to determine the causes for the latter. Several severe non-specific stresses were applied to mice either as single massive doses or as smaller doses administered over a large fraction of the life span of the animals. Stresses used included typhoid vaccine, tetanus toxin and tetanus toxoid and turpentine. None of these produced any premature aging comparable to that produced by radiation. The somatic mutation theory of aging and expecially radiationinduced aging has been tested by applying the chemical mutatgen, nitrogenmore » mustard, either as a massive single dose or as smaller single doses repeated over long periods of time. No shortening of the life span has been observed and it is concluded that the somatic mutation theory is untenable. Experiments designed to determine the organ system responsible for radiation induced aging have demonstrated that the hematopoietic system is not primarily involved in this phenomenon. (auth)« less

  7. Role of breakup and direct processes in deuteron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Avrigeanu, V.

    2015-08-01

    Background: Recent studies of deuteron-induced reactions around the Coulomb barrier B pointed out that numerical calculations for deuteron-induced reactions are beyond current capabilities. The statistical model of nuclear reactions was used in this respect since the compound-nucleus (CN) mechanism was considered to be responsible for most of the total-reaction cross section σR in this energy range. However, specific noncompound processes such as the breakup (BU) and direct reactions (DR) should be also considered for the deuteron-induced reactions, making them different from reactions with other incident particles. Purpose: The unitary and consistent BU and DR consideration in deuteron-induced reactions is proved to yield results at variance with the assumption of negligible noncompound components. Method: The CN fractions of σR obtained by analysis of measured neutron angular distributions in deuteron-induced reactions on 27Al, 56Fe, 63,63Cu, and 89Y target nuclei, around B , are compared with the results of an unitary analysis of every reaction mechanism. The latter values have been supported by the previously established agreement with all available deuteron data for 27Al 54,56,-58,natCu, 63,65,natCu and 93Nb. Results: There is a significant difference between the larger CN contributions obtained from measured neutron angular distributions and calculated results of an unitary analysis of every deuteron-interaction mechanism. The decrease of the latter values is mainly due to the BU component. Conclusions: The above-mentioned differences underline the key role of the breakup and direct reactions that should be considered explicitly in the case of deuteron-induced reactions.

  8. Radiation-induced schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  9. Evolution of a predator-induced, nonlinear reaction norm.

    PubMed

    Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P

    2017-08-30

    Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.

  10. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    PubMed

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  11. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  12. Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada

    Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluatemore » the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue

  13. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status.

    PubMed

    Vlashi, Erina; Chen, Allen M; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A; Hess, Clayton B; Pajonk, Frank

    2016-04-01

    To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription-polymerase chain reaction for re-expression of reprogramming factors. Patients with HPV-positive tumors have superior overall survival and local-regional control. Human papillomavirus-positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus-negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning

    DTIC Science & Technology

    1986-01-01

    to Walter A. Hunt. 86 4 21 144 . J Jr -.W U *’ = 7 . 7 .: M: W. ,WLW;i , .-, -’ .’P. %k T .- - ’ .: ’W ; .a --,.-" -. t .:-. , 56 RABIN AND HUNT can...8217. 7m. U RADIATION-INDUCED TASTE AVERSIONS 57 induced CTA 11021. Alternatively, when the antihistamine is [ 21 . A radiation-induced CTA can be...in rats. Pharmmad psychioactive drugs. J (omp Phvsiod Pvchld .;’: 21 -26. 1972. Biochem Behav 17: 305-311. 1982. 4. Berger. B. D.. C. D. Wise and L

  15. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  16. A report on radiation-induced gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvati, M.; Artico, M.; Caruso, R.

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  17. Radiation-induced phenomena in ethylene-co-tetrafluoroethylene polymer. Temperature and LET effects

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Washio, Masakazu

    2003-08-01

    Irradiation temperature and linear energy transfer (LET) dependency on radiation-induced reactions of ethylene-co-tetrafluoroethylene polymer (ETFE) were investigated precisely by using low and high LET beams, and in a wide range of irradiation temperatures from 77 to 573 K including its melting temperature, respectively. At various temperatures irradiation by low LET beam such as γ-rays or electron beams, significant changes were observed in the photo-absorption spectra in the wavelength region between 200 and 500 nm. The general tendency is that the absorption band shifts to longer wavelengths with higher irradiation temperatures. The enhancement of the photo-absorption at 200-500 nm is due to the formation of conjugated double bonds in ETFE by irradiation. By high LET beam irradiation at room temperature such as ion beams, the photo-absorption spectra was different from those of low LET beams, i.e. the new absorption bands around 250-450 nm was appeared. It could be suggested that the high LET beams induced the production of intermediate species in a localized area such as track structure. As a result, reaction kinetics are different from low LET beams.

  18. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  19. Tailoring transition-metal hydroxides and oxides by photon-induced reactions

    DOE PAGES

    Niu, Kai -Yang; Fang, Liang; Ye, Rong; ...

    2016-10-18

    Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni 2+, Mn 2+, and Co 2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni 0.18Mn 0.45Co 0.37O x) or core–shell metal hydroxide nanoflowers ([Ni 0.15Mnmore » 0.15Co 0.7(OH) 2](NO 3) 0.2•H 2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. As a result, the study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.« less

  20. Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis

    PubMed Central

    Anwar, Mumtaz; Ahmad, Shabeer; Akhtar, Reyhan; Mahmood, Akhtar

    2017-01-01

    Radiation enteritis is one of the most feared complications of abdominal and pelvic regions. Thus, radiation to abdominal or pelvic malignancies unavoidably injures the intestine. Because of rapid cell turnover, the intestine is highly sensitive to radiation injury, which is the limiting factor in the permissible dosage of irradiation. Bowel injuries such as fistulas, strictures, and chronic malabsorption are potentially life-threatening complications and have an impact on patient quality of life. The incidence of radiation enteritis is increasing because of the current trend of combined chemotherapy and radiation. The consequences of radiation damage to the intestine may result in considerable morbidity and even mortality. The observed effects of ionizing radiation are mediated mainly by oxygen-free radicals that are generated by its action on water and are involved in several steps of signal transduction cascade, leading to apoptosis. The oxyradicals also induce DNA strand breaks and protein oxidation. An important line of defense against free radical damage is the presence of antioxidants. Therefore, administration of antioxidants may ameliorate the radiation-induced damage to the intestine. PMID:28532242

  1. Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-05-01

    In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

  2. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.

    PubMed

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  3. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions

    PubMed Central

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro, human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  4. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  5. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  6. Resolution of radiation-induced acneform eruption following treatment with tretinoin and minocycline: a case report.

    PubMed

    Parr, Karina; Mahmoudizad, Rod; Grimwood, Ronald

    2013-07-01

    Postradiation comedogenesis is an uncommon side effect of radiation therapy, with few cases reported in the medical literature. The proposed etiology of this reaction is alteration of pilosebaceous unit secretions and retention of proliferating ductal keratinocytes due to stricture and scarring. We report a case of a 48-year-old woman who had been treated for infiltrating ductal carcinoma of the right breast with lumpectomy and radiation therapy. She subsequently developed open and closed comedones as well as tender inflammatory papules and papulopustules in the irradiated area. Our patient was treated with tretinoin cream and oral minocycline, with rapid improvement in symptoms and complete resolution of lesions after 2 months of therapy. We review the literature on the pathogenesis, clinical features, and treatment of postradiation acne, and discuss rapid resolution of a radiation-induced acneform eruption after combination treatment with tretinoin and minocycline.

  7. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  8. Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution.

    PubMed

    Changotra, Rahil; Guin, Jhimli Paul; Varshney, Lalit; Dhir, Amit

    2018-06-01

    Gamma radiolytic degradation of an antibiotic, ofloxacin (OFX) was investigated under different experimental conditions. The parameters such as initial OFX concentration, solution pH, absorbed dose and the concentrations of inorganic (CO 3 2- ) and organic (t-BuOH) additives were optimized to achieve the efficient degradation of OFX. The degradation dose constant values of OFX were calculated as 2.364, 1.159, 0.776 and 0.618 kGy -1 for the initial OFX concentrations of 0.05, 0.1, 0.15 and 0.2 mM with their corresponding (G (-OFX)) values of 0.481, 0.684, 1.755 and 1.971, respectively. Degradation rate of OFX was significantly increased with increase in the absorbed dose and decrease in the initial OFX concentration under acidic condition when compared to neutral or alkaline condition. Reaction of OFX in the presence of CO 3 2- and t-BuOH showed that the degradation was primarily caused by the reaction of OFX with radiolytically generated reactive hydroxyl radicals. Mineralization extent of OFX was determined in terms of percentage reduction in total organic carbon (TOC) and results revealed that the addition of H 2 O 2 enhanced the mineralization of OFX from 29% to 36.1% with H 2 O 2 dose of 0.5 mM at an absorbed dose of 3.0 kGy. Based on the LC-QTOF-MS analysis, gamma radiolytic degradation intermediates/products of OFX were identified and the possible degradation pathways of OFX were proposed. Cytotoxicity study of the irradiated OFX solutions showed that gamma radiation has potential to detoxify OFX. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  10. Toxic properties of specific radiation determinant molecules, derived from radiated species

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a

  11. Cord blood-derived cytokine-induced killer cellular therapy plus radiation therapy for esophageal cancer: a case report.

    PubMed

    Wang, Liming; Huang, Shigao; Dang, Yazheng; Li, Ming; Bai, Wen; Zhong, Zhanqiang; Zhao, Hongliang; Li, Yang; Liu, Yongjun; Wu, Mingyuan

    2014-12-01

    Esophageal cancer is a serious malignancy with regards to mortality and prognosis. Current treatment options include multimodality therapy mainstays of current treatment including surgery, radiation, and chemotherapy. Cell therapy for esophageal cancer is an advancing area of research. We report a case of esophageal cancer following cord blood-derived cytokine-induced killer cell infusion and adjuvant radiotherapy. Initially, she presented with poor spirit, full liquid diets, and upper abdominal pain. Through cell therapy plus adjuvant radiotherapy, the patient remitted and was self-reliant. Recognition of this curative effect of sequent therapy for esophageal cancer is important to enable appropriate treatment. This case highlights cord blood-derived cytokine-induced killer cell therapy significantly alleviates the adverse reaction of radiation and improves the curative effect. Cell therapy plus adjuvant radiotherapy can be a safe and effective treatment for esophageal cancer.

  12. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100%more » mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.« less

  13. Evidence for radiation-induced disseminated intravascular coagulation as a major cause of radiation-induced death in ferrets.

    PubMed

    Krigsfeld, Gabriel S; Savage, Alexandria R; Billings, Paul C; Lin, Liyong; Kennedy, Ann R

    2014-03-15

    The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [The occupational radiation-induced cataract in five industrial radiographers].

    PubMed

    Benzarti Mezni, A; Loukil, I; Hriz, N; Kallel, K; Mlaiki, N; Ben Jemaâ, A

    2012-04-01

    The industrial uses of ionizing radiation in Tunisia are expanding, especially in industry and most particularly in the nondestructive testing of welds. Thus workers operating in the non-destructive testing of welds may develop a radiation-induced cataract varying in time to onset depending on the dose. To describe the characteristics of the radiation-induced cataract in patients exposed to ionizing radiation, determine the risk factors of radiation-induced cataracts. This was an anamnestic, clinical, and environmental study of five cases of radiation-induced cataract in workers employed in non-destructive testing of welds. This series of five cases had a mean age of 30.2 years and 5.53 years of work experience, ranging from 14 months to 15 years. All the patients were male and industrial radiographers specialized in nondestructive testing of welds. The average duration of exposure to ionizing radiation was 5.53 years. None of the patients had worn protective gear such as eye goggles. The ophthalmic check-up for the five special industrial radiographers showed punctuate opacities in three cases, punctiform opacities in one eye in one case, and phacosclerosis with bilateral lens multiple crystalline stromal opacities in a case of micro-lens opacities in both eyes with opalescence of both eyes in one case. These cataracts had been declared as occupational diseases. The value of a specialized ophthalmologic surveillance among these workers and the early diagnosis of lens opacities must be emphasized. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    PubMed

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  16. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu; Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California; Chen, Allen M.

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positivemore » and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.« less

  17. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.

    2012-04-28

    The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less

  18. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  19. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  20. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglan, R.J.; Marks, J.E.

    1981-04-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less

  1. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  2. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Radiation-induced transformations of isolated CH3CN molecules in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Kameneva, Svetlana V.; Volosatova, Anastasia D.; Feldman, Vladimir I.

    2017-12-01

    The transformations of isolated CH3CN molecules in various solid noble-gas matrices (Ne, Ar, Kr, and Xe) under the action of X-ray irradiation at 5 K were investigated by FTIR spectroscopy. The main products are CH3NC, CH2CNH and CH2NCH molecular isomers as well as CH2CN and CH2NC radicals. The matrix has a strong effect on the distribution of reaction channels. In particular, the highest relative yield of keteneimine (CH2CNH) was found in Ne matrix, whereas the formation of CH3NC predominates in xenon. It was explained by differences in the matrix ionization energy (IE) resulting in different distributions of hot ionic reactions. The reactions of neutral excited states are mainly involved in Xe matrix with low IE, while the isomerization of the primary acetonitrile positive ions may be quite effective in Ne and Ar. Annealing of the irradiated samples results in mobilization of trapped hydrogen atoms followed by their reactions with radicals to yield parent molecule and its isomers. The scheme of the radiation-induced processes and its implications for the acetonitrile chemistry in cosmic ices are discussed.

  4. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation

    NASA Astrophysics Data System (ADS)

    Cadet, Jean; Wagner, J. Richard

    2016-11-01

    This mini-review focuses on the recent identification of several novel radiation-induced single and tandem modifications in cellular DNA. For this purpose accurate high-performance electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was applied allowing their quantitative measurement and unambiguous characterization. Exposure of human cells to gamma rays led to the formation of several modified bases arising from the rearrangement of the pyrimidine ring of thymine, cytosine and 5-methylcytosine subsequent to initial addition of an hydroxyl radical (•OH) to the 5,6-ethylenic bond. In addition, 5-hydroxymethylcytosine, an novel epigenetic mark, and 5-formylcytosine, were found to be generated consecutively to •OH-mediated hydrogen abstraction from the methyl group of 5-methylcytosine. Relevant mechanistic information on one-oxidation reactions of cellular DNA was also gained from the detection of 5-hydroxycytosine and guanine-thymine intra-strand adducts whose formation is rationalized by the generation of related base radical cation. Attempts to search for the radiation-induced formation of purine 5‧,8-cyclo-2‧-deoxyribonucleosides were unsuccessful with the exception of trace amounts of (5‧S)-5‧,8-cyclo-2‧-deoxyadenosine.

  5. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  6. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  7. Radiation-induced cerebrovascular disease in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, T.L.; Bresnan, M.J.

    1976-06-01

    Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma.

  8. Drug-induced sarcoidosis-like reactions (DISR).

    PubMed

    Chopra, Amit; Nautiyal, Amit; Kalkanis, Alexander; Judson, Marc A

    2018-04-23

    A drug-induced sarcoidosis-like reaction (DISR) is a systemic granulomatous reaction that is indistinguishable from sarcoidosis and occurs in temporal relationship with initiation of an offending drug. DISRs typically improve or resolve after the withdrawal of offending drug. Four common categories of drugs that have been associated with the development of a DISR are immune checkpoint inhibitors (ICIs), highly active anti-retroviral therapy (HAART), interferons (IFNs) and tumor necrosis factor alpha antagonists (TNF-alpha antagonists). Similar to sarcoidosis, DISRs do not necessarily require treatment, as they may cause no significant symptoms, quality of life impairment or organ dysfunction. When treatment of a DISR is required, standard anti-sarcoidosis regimens seem to be effective. As a DISR tends to improve or resolve when the offending drug is discontinued, this is another effective treatment for a DISR. However, the offending drug need not be discontinued if it is useful, and anti-granulomatous therapy can be added. In some situations, the development of a DISR may suggest a beneficial effect of the inducing drug. Understanding the mechanisms leading to DISRs may yield important insights into the immunopathogenesis of sarcoidosis. Copyright © 2018. Published by Elsevier Inc.

  9. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  10. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    NASA Astrophysics Data System (ADS)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  11. Radiation Induced Incorporation of CO in Pure and Aqueous Methanol

    NASA Astrophysics Data System (ADS)

    Jung, Hak-Jin; Getoff, Nikola; Lorbeer, Eberhard

    1994-05-01

    Pure and aqueous methanol were used for radiation induced incorporation of CO at elevated pressure (up to 15 bar). The initial yields (Gi) of the main products in pure methanol under 15 bar CO and 1 bar N2O were found to be: Gi(formaldehyde) = 3.80 and Gi(glycolic aldehyde) = 2.0. For aqueous (10-2 mol · dm-3) methanol under 15 bar CO (dose: 0.557 kGy, pH = 2): the yields were G(formaldehyde) = 5.44, G(glycolic aldehyde) = 4.0 and G(oxalic acid) = 7.7. At pH = 7 the yields were essentially lower, namely: G(formaldehyde) = 3.2, G(glycolic aldehyde) = 2.0, G(formate) = 3.8 and G(oxalate) = 5.0. Probable reaction-mechanisms for the product formation are discussed.

  12. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer

    PubMed Central

    King, Suzanne N.; Dunlap, Neal E.; Tennant, Paul A.; Pitts, Teresa

    2017-01-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia is comprised of a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  13. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.

  14. Radiation-induced chondrosarcoma of the maxilla 7-year after combined chemoradiation for tonsillar lymphoma.

    PubMed

    Mohammadianpanah, M; Gramizadeh, B; Omidvari, Sh; Mosalaei, A

    2004-01-01

    Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.

  15. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects

    NASA Astrophysics Data System (ADS)

    Niel, F.; Riconda, C.; Amiranoff, F.; Duclous, R.; Grech, M.

    2018-04-01

    Radiation reaction in the interaction of ultrarelativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the nonlinear moderately quantum regime. Three complementary descriptions are discussed considering arbitrary geometries of interaction: a deterministic one relying on the quantum-corrected radiation reaction force in the Landau and Lifschitz (LL) form, a linear Boltzmann equation for the electron distribution function, and a Fokker-Planck (FP) expansion in the limit where the emitted photon energies are small with respect to that of the emitting electrons. The latter description is equivalent to a stochastic differential equation where the effect of the radiation reaction appears in the form of the deterministic term corresponding to the quantum-corrected LL friction force, and by a diffusion term accounting for the stochastic nature of photon emission. By studying the evolution of the energy moments of the electron distribution function with the three models, we are able to show that all three descriptions provide similar predictions on the temporal evolution of the average energy of an electron population in various physical situations of interest, even for large values of the quantum parameter χ . The FP and full linear Boltzmann descriptions also allow us to correctly describe the evolution of the energy variance (second-order moment) of the distribution function, while higher-order moments are in general correctly captured with the full linear Boltzmann description only. A general criterion for the limit of validity of each description is proposed, as well as a numerical scheme for the inclusion of the FP description in particle-in-cell codes. This work, not limited to the configuration of a monoenergetic electron beam colliding with a laser pulse, allows further insight into the relative importance of various effects of radiation reaction and in particular of the discrete and stochastic nature of high

  16. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  17. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  18. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung Park, Han; Diebold, Gerald J.

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less

  19. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  20. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation.

    PubMed

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  1. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  2. Laser-induced reaction alumina coating on ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  3. Hyperbaric oxygen: Primary treatment of radiation-induced hemorrhagic cystitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Neville, E.C.

    Of 8 patients with symptoms of advanced cystitis due to pelvic radiation treated with hyperbaric oxygen 7 are persistently improved during followup. All 6 patients treated for gross hematuria requiring hospitalization have been free of symptoms for an average of 24 months (range 6 to 43 months). One patient treated for stress incontinence currently is dry despite little change in bladder capacity, implying salutary effect from hyperbaric oxygen on the sphincter mechanism. One patient with radiation-induced prostatitis failed to respond. This experience suggests that hyperbaric oxygen should be considered the primary treatment for patients with symptomatic radiation-induced hemorrhagic cystitis.

  4. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-06-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral /sup 60/Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously ormore » subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  5. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenouslymore » or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  6. Adverse drug reactions induced by cardiovascular drugs in outpatients.

    PubMed

    Gholami, Kheirollah; Ziaie, Shadi; Shalviri, Gloria

    2008-01-01

    Considering increased use of cardiovascular drugs and limitations in pre-marketing trials for drug safety evaluation, post marketing evaluation of adverse drug reactions (ADRs) induced by this class of medicinal products seems necessary. To determine the rate and seriousness of adverse reactions induced by cardiovascular drugs in outpatients. To compare sex and different age groups in developing ADRs with cardiovascular agents. To assess the relationship between frequencies of ADRs and the number of drugs used. This cross-sectional study was done in cardiovascular clinic at a teaching hospital. All patients during an eight months period were evaluated for cardiovascular drugs induced ADRs. Patient and reaction factors were analyzed in detected ADRs. Patients with or without ADRs were compared in sex and age by using chi-square test. Assessing the relationship between frequencies of ADRs and the number of drugs used was done by using Pearson analysis. The total number of 518 patients was visited at the clinic. ADRs were detected in 105 (20.3%) patients. The most frequent ADRs were occurred in the age group of 51-60. The highest rate of ADRs was recorded to be induced by Diltiazem (23.5%) and the lowest rate with Atenolol (3%). Headache was the most frequent detected ADR (23%). Assessing the severity and preventability of ADRs revealed that 1.1% of ADRs were detected as severe and 1.9% as preventable reactions. Women significantly developed more ADRs in this study (chi square = 3.978, P<0.05). ADRs more frequently occurred with increasing age in this study (chi square = 15.871, P<0.05). With increasing the number of drugs used, the frequency of ADRs increased (Pearson=0.259, P<0.05). Monitoring ADRs in patients using cardiovascular drugs is a matter of importance since this class of medicines is usually used by elderly patients with critical conditions and underlying diseases.

  7. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    PubMed

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  8. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  11. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  12. HLA-A★3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

    PubMed Central

    McCormack, Mark; Alfirevic, Ana; Bourgeois, Stephane; Farrell, John J.; Kasperavičiūtė, Dalia; Carrington, Mary; Sills, Graeme J.; Marson, Tony; Jia, Xiaoming; de Bakker, Paul I.W.; Chinthapalli, Krishna; Molokhia, Mariam; Johnson, Michael R.; O’Connor, Gerard D.; Chaila, Elijah; Alhusaini, Saud; Shianna, Kevin V.; Radtke, Rodney A.; Heinzen, Erin L.; Walley, Nicole; Pandolfo, Massimo; Pichler, Werner; Park, B. Kevin; Depondt, Chantal; Sisodiya, Sanjay M.; Goldstein, David B.; Deloukas, Panos; Delanty, Norman; Cavalleri, Gianpiero L.; Pirmohamed, Munir

    2011-01-01

    BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B★1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS–TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A★3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P = 3.5×10−8). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A★3101 allele (P = 1.1×10−6). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS–TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A★3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.) PMID:21428769

  13. Apatinib in refractory radiation-induced brain edema: A case report.

    PubMed

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-11-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Two patients were both diagnosed as refractory radiation-induced brain edema. Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study.

  14. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  16. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  17. A single sub-erythematous exposure of solar-simulated radiation on the elicitation phase of contact hypersensitivity induces IL-10-producing T-regulatory cells in human skin.

    PubMed

    Stoebner, Pierre E; Rahmoun, Massilva; Ferrand, Christophe; Meunier, Laurent; Yssel, Hans; Pène, Jérôme

    2006-08-01

    Solar ultraviolet (UV) radiation has hazardous effects on human health that are, in part, associated with its immunosuppressive effects via the induction of interleukin (IL)-10 production. Although IL-10 is produced by both T helper type 2 (Th2) cells and T-regulatory type 1 (Tr1) cells, the relative contribution of either subset in UV radiation-induced immunosuppression has not been established. Here, we show that T cells isolated from non-treated allergic contact dermatitis (ACD) reactions, 48 h following nickel challenge and propagated for 7-10 days in the presence of IL-2, were mainly CD4(+) and produced IL-10, but little interferon-gamma. A single sub-erythematous solar-simulated radiation (SSR) prior to antigen challenge exposure resulted in a clinical attenuation of the intensity of ACD reactions which was associated with a significant increase in both the magnitude of IL-10 production by skin-infiltrating T cells and the frequency of IL-10-producing Tr1 cells. Skin-infiltrating T cells in SSR-exposed, as well as non-exposed, ACD reactions showed a perturbed T-cell receptor (TCR)-Vbeta repertoire, without overexpression of a particular TCR-Vbeta gene product, indicating the presence of high frequencies of nickel non-specific T cells in ACD reactions. These results show that a single sub-erythematous SSR induces immunosuppression via the cutaneous infiltration of IL-10-producing Tr1, and to a lesser extent, Th2 cells.

  18. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  19. Diskoseismology: Probing accretion disks. II - G-modes, gravitational radiation reaction, and viscosity

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wagoner, Robert V.

    1992-01-01

    A scalar potential is used to derive a single partial differential equation governing the oscillation of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically, the eigenfunctions and eigenfrequencies of isothermal disks are computed, and the way in which these results can be generalized to other disk models is indicated. The (assumed) relatively small rates of growth or damping of the modes due to various mechanisms, in particular gravitational radiation reaction and parameterized models of viscosity are also computed. It is found that for certain parameters the p-modes are unstable to gravitational radiation reaction (CFS instability), while both the p-modes and g-modes are unstable to viscosity unless highly anisotropic viscosity models are considered.

  20. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    PubMed Central

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. PMID:26019540

  1. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome.

    PubMed

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-05-04

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 - dose that kills 100% of the mice at 30 days) from 137 Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery.

  2. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    PubMed

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  3. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  4. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats.

    PubMed

    Kale, Aydemir; Piskin, Özcan; Bas, Yilmaz; Aydin, Bengü Gülhan; Can, Murat; Elmas, Özlem; Büyükuysal, Çagatay

    2018-04-24

    Extensive research has been focused on radiation-induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of quercetin in an experimental radiation-induced brain injury. A total of 32 adult male Wistar-Albino rats were randomly divided into four groups (control, quercetin, radiation, and radiation+quercetin groups, with eight rats in each group). Doses (50 mg/kg) of quercetin were administered to the animals in the quercetin and radiation+quercetin groups; radiation and radiation+quercetin groups were exposed to a dose of 20 Gy to the cranium region. Tissue samples, and biochemical levels of tissue injury markers in the four groups were compared. In all measured parameters of oxidative stress, administration of quercetin significantly demonstrated favorable effects. Both plasma and tissue levels of malondialdehyde and total antioxidant status significantly changed in favor of antioxidant activity. Histopathological evaluation of the tissues also demonstrated a significant decrease in cellular degeneration and infiltration parameters after quercetin administration. Quercetin demonstrated significant neuroprotection after radiation-induced brain injury. Further studies of neurological outcomes under different experimental settings are required in order to achieve conclusive results.

  5. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, G. G.; Gyürky, Gy.; Halász, Z.; Fülöp, Zs.; Rauscher, T.

    2018-01-01

    The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ)195Au, 191Ir(α,n)194Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions have been measured with the activation technique between Eα = 13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α + nucleus optical potential gives a good description of the experimental data.

  6. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-05-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.

  7. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the

  8. Molecular analysis and comparison of radiation-induced large deletions of the HPRT locus in primary human skin fibroblasts

    NASA Technical Reports Server (NTRS)

    Yamada, Y.; Park, M. S.; Okinaka, R. T.; Chen, D. J.

    1996-01-01

    Genetic alterations in gamma-ray- and alpha-particle-induced HPRT mutants were examined by multiplex polymerase chain reaction (PCR) analysis. A total of 39-63% of gamma-ray-induced and 31-57% of alpha-particle-induced mutants had partial or total deletions of the HPRT gene. The proportion of these deletion events was dependent on radiation dose, and at the resolution limits employed there were no significant differences between the spectra induced by equitoxic doses of alpha particles (0.2-0.4 Gy) and gamma rays (3 Gy). The molecular nature of the deletions was analyzed by the use of sequence tagged site (STS) primers and PCR amplification as a "probe" for specific regions of the human X chromosome within the Xq26 region. These STSs were closely linked and spanned regions approximately 1.7 Mbp from the telomeric side and 1.7 Mbp from the centromeric side of the HPRT gene. These markers include: DXS53, 299R, DXS79, yH3L, 3/19, PR1, PR25, H2, yH3R, 1/44, 1/67, 1/1, DXS86, D8C6, DXS10 and DXS144. STS analyses indicated that the maximum size of total deletions in radiation-induced HPRT mutants can be greater than 2.7 Mbp and deletion size appears to be dependent on radiation dose. There were no apparent differences in the sizes of the deletions induced by alpha particles or gamma rays. On the other hand, deletions containing portions of the HPRT gene were observed to be 800 kbp or less, and the pattern of the partial deletion induced by alpha particles appeared to be different from that induced by gamma rays.

  9. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  10. Modulating factors in the expression of radiation-induced oncogenic transformation.

    PubMed Central

    Hall, E J; Hei, T K

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitative are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing alpha-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene. Images FIGURE 4. PMID:2272310

  11. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.

    PubMed

    Moison, R M; Beijersbergen Van Henegouwen, G M

    2001-07-01

    Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.

  12. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  13. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Yamashita, Teruo; Schubnel, Alexandre

    2016-10-01

    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  14. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.

  15. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  16. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  17. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    PubMed

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  18. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  19. Quantum radiation reaction in laser-electron-beam collisions.

    PubMed

    Blackburn, T G; Ridgers, C P; Kirk, J G; Bell, A R

    2014-01-10

    It is possible using current high-intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high-energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of 10(9) 1 GeV electrons colliding with a 30 fs laser pulse of intensity 10(22)  W cm(-2) will emit 6300 photons with energy greater than 700 MeV, 60× the number predicted by classical theory.

  20. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  1. Clinical and dosimetric factors of radiation-induced esophageal injury: radiation-induced esophageal toxicity.

    PubMed

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-05-07

    To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus > or =60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). Concurrent chemotherapy and the maximal esophageal point dose > or =60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.

  2. Establishing a theory for deuteron-induced surrogate reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-01

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the prior formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the 93Nb(d ,p )X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states. Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. Finally, we make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.

  3. Shock-induced reaction synthesis of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Beason, M. T.; Pauls, J. M.; Gunduz, I. E.; Rouvimov, S.; Manukyan, K. V.; Matouš, K.; Son, S. F.; Mukasyan, A.

    2018-04-01

    Here, we report ultra-fast (0.1-5 μs) shock-induced reactions in the 3B-TiN system, leading to the direct synthesis of cubic boron nitride, which is extremely rare in nature and is the second hardest material known. Composite powders were produced through high-energy ball milling to provide intimate mixing and subsequently shocked using an explosive charge. High-resolution transmission electron microscopy and X-ray diffraction confirm the formation of nanocrystalline grains of c-BN produced during the metathetical reaction between boron and titanium nitride. Our results illustrate the possibility of rapid reactions enabled by high-energy ball milling possibly occurring in the solid state on incredibly short timescales. This process may provide a route for the discovery and fabrication of advanced compounds.

  4. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  5. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  7. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells

    PubMed Central

    Nagarajan, Devipriya; Wang, Lei; Zhao, Weiling; Han, Xiaochen

    2017-01-01

    Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling. PMID:29254201

  8. Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

    PubMed Central

    Tekkök, İsmail Hakkı

    2015-01-01

    The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM. PMID:26361537

  9. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  11. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  13. KINETIC STUDY OF RADIATION-REACTION-LIMITED PARTICLE ACCELERATION DURING THE RELAXATION OF UNSTABLE FORCE-FREE EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan

    2016-09-10

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less

  14. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  15. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also

  16. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  17. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  18. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    PubMed

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  19. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  1. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    PubMed Central

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and

  2. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  3. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  4. Visual sensations induced by Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1975-08-01

    Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space. (auth)

  5. Establishing a theory for deuteron induced surrogate reactions

    DOE PAGES

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-18

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the priormore » formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the Nb93(d,p)X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We then look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states.Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. We finally make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.« less

  6. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  7. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  8. THE USE OF RADIATION-INDUCED MUTATIONS IN CROP BREEDING IN LATIN AMERICA AND SOME BIOLOGICAL EFFECTS OF RADIATION IN COFFEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moh, C.C.

    1962-07-01

    Results are summarized from a study on the genetic effects of radiation in coffee as observed in R/sub 1/ plants grown from seeds exposed to x radiation, gamma radiation, or thermal neutrons. A high frequency of morphological mutants was observed in the young plants. Possible reaction mechanisms involved in the induction of the mutants are discussed. (C.H.)

  9. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature).

    PubMed

    Abbaszadeh, A; Haddadi, G H; Haddadi, Z

    2017-06-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.

  10. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

    PubMed Central

    Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.

    2017-01-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334

  11. Prevention and Management of Adverse Reactions Induced by Iodinated Contrast Media.

    PubMed

    Wu, Yi Wei; Leow, Kheng Song; Zhu, Yujin; Tan, Cher Heng

    2016-04-01

    Iodinated radiocontrast media (IRCM) is widely used in current clinical practice. Although IRCM is generally safe, serious adverse drug reactions (ADRs) may still occur. IRCM-induced ADRs may be subdivided into chemotoxic and hypersensitivity reactions. Several factors have been shown to be associated with an increased risk of ADRs, including previous contrast media reactions, history of asthma and allergic disease, etc. Contrast media with lower osmolality is generally recommended for at-risk patients to prevent ADRs. Current premedication prophylaxis in at-risk patients may reduce the risk of ADRs. However, there is still a lack of consensus on the prophylactic role of premedication. Contrast-induced nephropathy (CIN) is another component of IRCM-related ADRs. Hydration remains the mainstay of CIN prophylaxis in at-risk patients. Despite several preventive measures, ADRs may still occur. Treatment strategies for potential contrast reactions are also summarised in this article. This article summarises the pathophysiology, epidemiology and risk factors of ADRs with emphasis on prevention and treatment strategies. This will allow readers to understand the rationale behind appropriate patient preparation for diagnostic imaging involving IRCM.

  12. Electron and Ion Reactions in Molecular Solids: from water ice to DNA

    NASA Astrophysics Data System (ADS)

    Huels, Michael A.

    2002-05-01

    Wherever ionizing radiation interacts with matter, it initiates reaction cascades involving non-thermal ions, radicals, and ballistic secondary electrons, which in turn may lead to substantial physical and chemical modifications of a medium. The detailed study of the fundamental reaction mechanisms which occur on a molecular level aids our general understanding of radiation induced processes in a variety of contexts, ranging from radiobiology to astrochemistry. Here I present measurements of electron (1 - 80 eV) and some ion (1 - 8 eV) mediated reactions in molecular films that resemble biological model systems. These consist of cryogenic films (pure or mixed) of rare gases, oxygen, water, methane, or aromatic hydrocarbons of increasing complexity, including bases, sugars, single and double stranded DNA. Although the basic nature of the electron or ion reaction mechanisms are found to be similar to those in the gas phase, they are often modulated by the physico-chemical characteristics of the medium. Depending on the latter, some reaction channels may be strongly enhanced, some may be quenched, and new reaction pathways, unavailable in the gas phase, may open. Thus, a given reaction cascade may lead to different end-points even in the same target. Although the goal of these studies is to unravel some of the nascent secondary-electron and reactive-ion induced events that contribute to radiation damage in living tissue, the basic observed reactions relate to other areas of application which will be briefly discussed. This research is supported by the Canadian Institutes of Health Research (CIHR), the National Cancer Institutes of Canada, the Natural Science and Engineering Research Council, and NATO.

  13. Influence of reaction-induced fracturing on serpentinisation rate

    NASA Astrophysics Data System (ADS)

    Malvoisin, B.; Brantut, N.; Kaczmarek, M. A.

    2017-12-01

    The alteration of mantle rocks at mid-ocean ridges (i.e. serpentinisation) can lead to a solid volume increase responsible for stress build-up and cracking during reaction (reaction-induced fracturing). This mechanism has been proposed to play a key role for maintaining fluid pathways during reaction. However, its impact on the reaction rate is not yet quantified. We propose here a micromechanical model to quantify the influence of the crystallisation pressure generated during serpentine precipitation on crack propagation in olivine. This model is then coupled to a simple geometrical model to calculate the generation of reactive surface area during grain splitting, and thus bulk reaction rate. The model is able to reproduce experimental kinetic data as well as the mesh texture observed in natural samples. The model results are compared to olivine grain size distribution in serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papuan New Guinea). The observations and the model both indicate a decrease of the mean grain size by one order of magnitude as the reaction progresses from 5 to 40 %. Based on this good agreement, we use our model to predict that cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1,000 yr. The peak serpentinisation is also shifted 4 km above the previous predictions due to effective pressure increase with depth.

  14. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  15. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.

    PubMed

    Nandakumar, Athira; Uwatoko, Futoshi; Yamamoto, Megumi; Tomita, Kazuo; Majima, Hideyuki J; Akiba, Suminori; Koriyama, Chihaya

    2017-07-01

    Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.

  16. Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation?

    PubMed

    Ramasubramaniam, Rajagopal; Roy, Arindam; Sharma, Bharati; Nagalakshmi, Surendra

    2011-12-01

    Most of the studies on sunlight-induced pigmentation of skin are mainly focused on ultraviolet (UV) radiation-induced pigmentation and ways to prevent it. Recent studies have shown that the visible component of sunlight can also cause significant skin pigmentation. In the current study, the extent of pigmentation induced by UV and visible regions of sunlight in subjects with Fitzpatrick skin type IV-V was measured and compared with pigmentation induced by total sunlight. The immediate pigment darkening (IPD) induced by the visible fraction of sunlight is not significantly different from that induced by the UV fraction. However, the persistent pigment darkening (PPD) induced by visible fraction of sunlight in significantly lower than that induced by the UV fraction. The dose responses of IPD induced by UV, visible light and total sunlight suggest that both UV and visible light interact with the same precursor although UV is 25 times more efficient in inducing pigmentation per J cm(-2) of irradiation compared to visible radiation. The measured diffused reflection spectra and decay kinetics of UV and visible radiation-induced pigmentation are very similar, indicating that the nature of the transient and persistent species involved in both the processes are also likely to be same.

  17. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  18. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  19. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  20. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, J.; Mancuso, A.; Beck, R.

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence ofmore » both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.« less

  1. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  2. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  3. Proton-induced knockout reactions with polarized and unpolarized beams

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  4. Cinnamon extract ameliorates ionizing radiation-induced cellular injury in rats.

    PubMed

    Azab, Khaled Sh; Mostafa, Abdel-Halem A; Ali, Ehab M M; Abdel-Aziz, Mohamed A S

    2011-11-01

    The present study aimed to investigate the protective role of cinnamon extract against inflammatory and oxidative injuries in gamma irradiated rats. Rats were subjected to fractionated doses of gamma radiation. Cinnamon extract were daily administrated before starting irradiation and continued after radiation exposure. The results obtained revealed that the administration of cinnamon extract to irradiated rats significantly ameliorated the changes induced in liver antioxidant system; catalase, superoxide dismutase and glutathione peroxidase activities as well as reduced glutathione concentration. The liver's lipid peroxidation and protein oxidation indices were significantly decreased when compared with their equivalent values in irradiated rats. Furthermore, the changes induces in xanthine oxidoreductase system were significantly diminished. In addition, the changes in liver nitric oxide contents, serum tumor necrosis factor alpha and C-reactive protein levels were markedly improved. In conclusion, the administration of cinnamon extract might provide substantial protection against radiation-induced oxidative and inflammatory damages. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Human FcγRIIA induces anaphylactic and allergic reactions

    PubMed Central

    Jönsson, Friederike; Mancardi, David A.; Zhao, Wei; Kita, Yoshihiro; Iannascoli, Bruno; Khun, Huot; van Rooijen, Nico; Shimizu, Takao; Schwartz, Lawrence B.; Daëron, Marc

    2012-01-01

    IgE and IgE receptors (FcϵRI) are well-known inducers of allergy. We recently found in mice that active systemic anaphylaxis depends on IgG and IgG receptors (FcγRIIIA and FcγRIV) expressed by neutrophils, rather than on IgE and FcϵRI expressed by mast cells and basophils. In humans, neutrophils, mast cells, basophils, and eosinophils do not express FcγRIIIA or FcγRIV, but FcγRIIA. We therefore investigated the possible role of FcγRIIA in allergy by generating novel FcγRIIA-transgenic mice, in which various models of allergic reactions induced by IgG could be studied. In mice, FcγRIIA was sufficient to trigger active and passive anaphylaxis, and airway inflammation in vivo. Blocking FcγRIIA in vivo abolished these reactions. We identified mast cells to be responsible for FcγRIIA-dependent passive cutaneous anaphylaxis, and monocytes/macrophages and neutrophils to be responsible for FcγRIIA-dependent passive systemic anaphylaxis. Supporting these findings, human mast cells, monocytes and neutrophils produced anaphylactogenic mediators after FcγRIIA engagement. IgG and FcγRIIA may therefore contribute to allergic and anaphylactic reactions in humans. PMID:22138510

  6. Human FcγRIIA induces anaphylactic and allergic reactions.

    PubMed

    Jönsson, Friederike; Mancardi, David A; Zhao, Wei; Kita, Yoshihiro; Iannascoli, Bruno; Khun, Huot; van Rooijen, Nico; Shimizu, Takao; Schwartz, Lawrence B; Daëron, Marc; Bruhns, Pierre

    2012-03-15

    IgE and IgE receptors (FcεRI) are well-known inducers of allergy. We recently found in mice that active systemic anaphylaxis depends on IgG and IgG receptors (FcγRIIIA and FcγRIV) expressed by neutrophils, rather than on IgE and FcεRI expressed by mast cells and basophils. In humans, neutrophils, mast cells, basophils, and eosinophils do not express FcγRIIIA or FcγRIV, but FcγRIIA. We therefore investigated the possible role of FcγRIIA in allergy by generating novel FcγRIIA-transgenic mice, in which various models of allergic reactions induced by IgG could be studied. In mice, FcγRIIA was sufficient to trigger active and passive anaphylaxis, and airway inflammation in vivo. Blocking FcγRIIA in vivo abolished these reactions. We identified mast cells to be responsible for FcγRIIA-dependent passive cutaneous anaphylaxis, and monocytes/macrophages and neutrophils to be responsible for FcγRIIA-dependent passive systemic anaphylaxis. Supporting these findings, human mast cells, monocytes and neutrophils produced anaphylactogenic mediators after FcγRIIA engagement. IgG and FcγRIIA may therefore contribute to allergic and anaphylactic reactions in humans.

  7. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  8. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  9. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  10. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  11. Investigation deuteron-induced reactions on cobalt

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.

    2010-09-01

    The excitation functions of deuteron-induced reactions were measured on metallic cobalt. Beyond the 56,57,58,60Co cobalt isotopes, we also identified 57Ni, 54Mn, 56Mn and 59Fe in the deuteron experiments. For the above radionuclides, the excitation functions in the measured energy range were determined and compared with the data found in the literature and with the results of model calculations (ALICE-IPPE, EMPIRE-D, EAF, and TALYS (TENDL)). The excitation functions agree with previous measurements; furthermore, we calculated the yield and thin layer activation (TLA) curves that are necessary for practical and industrial applications.

  12. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates.

    PubMed

    Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M; Hanbury, David B; Tooze, Janet A; Bourland, J Daniel; Hampson, Robert E; Deadwyler, Samuel A; Cline, J Mark

    2017-05-01

    Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that

  13. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  14. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A study on differences between radiation-induced micronuclei and apoptosis of lymphocytes in breast cancer patients after radiotherapy.

    PubMed

    Taghavi-Dehaghani, Mahnaz; Mohammadi, Shahla; Ziafazeli, Tahereh; Sardari-Kermani, Manouchehr

    2005-01-01

    Cancer patients' responses to radiotherapy vary in severity. It has been suggested that it may be due to differences in intrinsic cellular radiosensitivity. Prediction of tissue reactions to radiotherapy would permit tailoring of dosage to each patient. Towards this goal the micronucleus and apoptosis tests have been proposed as methods for measurement of chromosomal damage in peripheral blood lymphocytes. In this study, gamma-ray sensitivity of cultured lymphocytes of 26 breast cancer patients with early or late reactions was investigated. After irradiation with 4 Gy gamma radiation in G0, the frequency of micronuclei for patients with early reactions was significantly higher (P < 0.05) than for patients with late reactions. In the contrary the frequency of apoptosis for patients with early reactions was significantly lower (P < 0.05) than in the other group. It could be suggested that such a reduced amount of micronuclei in the late effects group is due to the presence of some residual DNA damages which are not completely repaired and lesions show increasing severity when the patients' cells are irradiated again. These induced damages, probably are high enough to stimulate other endpoints like apoptosis instead of micronuclei.

  16. Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis

    PubMed Central

    Olcina, Monica M.; Giaccia, Amato J.

    2016-01-01

    Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail. PMID:27548524

  17. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  18. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  19. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  2. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  3. X-ray induced chemical reaction revealed by in-situ X-ray diffraction and scanning X-ray microscopy in 15 nm resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.

    2016-09-01

    The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.

  4. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy.

    PubMed

    Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S

    2010-04-01

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.

  5. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  6. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  7. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  8. The annealing mechanism of the radiation-induced vacancy-oxygen defect in silicon

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Londos, C. A.

    2012-06-01

    Annealing experiments on the VO defect (the A-centre) produced by radiation in silicon—reported long ago—have been re-examined in order to deduce the two most important properties of VO: its diffusivity and the equilibrium constant for VO dissociation into V + O. The loss rate of VO is accounted for by two major reactions. One is the conventional reaction of the trapping of mobile VO by oxygen, thus producing VO2. The other is an annihilation of vacancies, which coexist in an equilibrium ratio with VO, by radiation-produced interstitial point defects. In some cases, a minor reaction, VO + V, should also be taken into account. The emerging minor defects V2O are also highly mobile. They partially dissociate back and partially get trapped by oxygen producing stable V2O2 defects.

  9. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  10. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.

    PubMed

    Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo

    2018-05-04

    Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. A prospective cohort study on radiation-induced hypothyroidism: development of an NTCP model.

    PubMed

    Boomsma, Marjolein J; Bijl, Hendrik P; Christianen, Miranda E M C; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J H M; van der Laan, Bernard F A M; Wolffenbuttel, Bruce H R; Oosting, Sjoukje F; Schilstra, Cornelis; Langendijk, Johannes A

    2012-11-01

    To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm(3)). Model performance was good with an area under the curve (AUC) of 0.85. This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  13. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroidmore » gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.« less

  14. Cerenkov radiation-induced phototherapy for depth-independent cancer treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Achilefu, Samuel; Kotagiri, Nalinikanth

    2017-02-01

    Light emitted as the result of high-energy particle transport through biological tissues (Cerenkov radiation) can be exploited for noninvasive diagnostic imaging using high sensitivity scientific cameras. We have investigated the energy transfer potential of Cerenkov radiation, discovering a new phototherapeutic technique for treatment of localized and disseminated cancers. This technique, Cerenkov radiation-induced phototherapy (CRIT), like photodynamic therapy, requires the presence of both light and photosensitive agent together to induce cytotoxicity and effective cancer treatment. But unlike conventional phototherapy strategies in which tissue ablation or activation of photoactive molecules is limited to superficial structures, radiation-induced phototherapy enables phototherapy delivery to the tumor sites throughout the body. Titanium oxide nanoparticles, which produce cytotoxic reactive oxygen species upon irradiation with UV light, were targeted to tumor tissue by surface decoration with transferrin. Subsequent administration of tumor-avid radiotracer, 18-fluorodeoxyglucose (18FDG) provided localized UV light source via Cerenkov radiation. Treatment of tumor-bearing mice with the combination of Titanium nanoparticles and 18FDG resulted in effective reduction in tumor growth, while individual agents were not therapeutic. This new strategy in cancer therapy extends the reach of phototherapy beyond what was previously possible, with potential for treatment of cancer metastases and rescue from treatment resistance.

  15. Two-photon-induced cycloreversion reaction of chalcone photodimers

    NASA Astrophysics Data System (ADS)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  16. Complete prevention of radiation-induced dermatitis using topical adrenergic vasoconstrictors.

    PubMed

    Fahl, William E

    2016-12-01

    Radiation dermatitis is a commonly occurring, painful, side effect of cancer radiotherapy that causes some patients to withdraw from the radiotherapy course. Our goal was to test and optimize topical application of an adrenergic vasoconstrictor to rat skin in a preclinical test to prevent radiation-induced dermatitis. A radiation dermatitis assay was developed in which 17.2 Gy to a 1.5 × 3.0 cm rectangle on the clipped dorsal back of rats yielded Grade 3 radiation dermatitis over the irradiated area 13 days later. Single, topical applications of each of three adrenergic vasoconstrictors, epinephrine, norepinephrine, or phenylephrine, in various vehicle formulations, doses, and application schedules, were tested to determine their efficacy in preventing radiation dermatitis. Each of the three adrenergic agonists conferred 100 % prevention of radiation dermatitis in linear, dose-dependent manners and their EC 50 potencies in preventing radiation dermatitis correlated well with their individual K d association constants for binding to mammalian α-adrenergic receptors. Topical vasoconstrictor application as little as 3-12 min before irradiation gave 80-100 % prevention, respectively, of radiation dermatitis. There was a strong correlation between the extent (0-100 %) of skin blanch present in skin immediately before irradiation and prevention of radiation dermatitis scored 13 days after irradiation. The data presented here demonstrate that topical application of adrenergic vasoconstrictors to rat skin before a large, 17.2 Gy, radiation insult confers 100 % protection against radiation dermatitis and support ongoing clinical trials and commercial development of a vasoconstrictor-based product to prevent radiotherapy-induced dermatitis.

  17. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  18. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  19. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.

    PubMed

    Chang, Jae Won; Park, Keun Hyung; Hwang, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-03-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.

  20. The effect of noise-induced variance on parameter recovery from reaction times.

    PubMed

    Vadillo, Miguel A; Garaizar, Pablo

    2016-03-31

    Technical noise can compromise the precision and accuracy of the reaction times collected in psychological experiments, especially in the case of Internet-based studies. Although this noise seems to have only a small impact on traditional statistical analyses, its effects on model fit to reaction-time distributions remains unexplored. Across four simulations we study the impact of technical noise on parameter recovery from data generated from an ex-Gaussian distribution and from a Ratcliff Diffusion Model. Our results suggest that the impact of noise-induced variance tends to be limited to specific parameters and conditions. Although we encourage researchers to adopt all measures to reduce the impact of noise on reaction-time experiments, we conclude that the typical amount of noise-induced variance found in these experiments does not pose substantial problems for statistical analyses based on model fitting.

  1. Impact of the HLA-B(*)58:01 Allele and Renal Impairment on Allopurinol-Induced Cutaneous Adverse Reactions.

    PubMed

    Ng, Chau Yee; Yeh, Yu-Ting; Wang, Chuang-Wei; Hung, Shuen-Iu; Yang, Chih-Hsun; Chang, Ya-Ching; Chang, Wan-Chun; Lin, Yu-Jr; Chang, Chee-Jen; Su, Shih-Chi; Fan, Wen-Lang; Chen, Der-Yuan; Wu, Yeong-Jian Jan; Tian, Ya-Chung; Hui, Rosaline Chung-Yee; Chung, Wen-Hung

    2016-07-01

    Allopurinol, a common drug for treating hyperuricemia, is associated with cutaneous adverse drug reactions ranging from mild maculopapular exanthema to life-threatening severe cutaneous adverse reactions, including drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome, and toxic epidermal necrolysis. We have previously reported that HLA-B*58:01 is strongly associated with allopurinol-induced severe cutaneous adverse reactions in Han Chinese, but the associations of the HLA-B*58:01 genotype in an allopurinol-induced hypersensitivity phenotype remain unclear. To investigate the comprehensive associations of HLA-B*58:01, we enrolled 146 patients with allopurinol-induced cutaneous adverse drug reactions (severe cutaneous adverse reactions, n = 106; maculopapular exanthema, n = 40) and 285 allopurinol-tolerant control subjects. Among these allopurinol-induced cutaneous adverse drug reactions, HLA-B*58:01 was strongly associated with severe cutaneous adverse reactions (odds ratio [OR] = 44.0; 95% confidence interval = 21.5-90.3; P = 2.6 × 10(-41)), and the association was correlated with disease severity (OR = 44.0 for severe cutaneous adverse reactions, OR = 8.5 for maculopapular exanthema). The gene dosage effect of HLA-B*58:01 also influenced the development of allopurinol-induced cutaneous adverse drug reactions (OR = 15.25 for HLA-B*58:01 heterozygotes and OR = 72.45 for homozygotes). Furthermore, coexistence of HLA-B*58:01 and renal impairment increased the risk and predictive accuracy of allopurinol-induced cutaneous adverse drug reactions (heterozygous HLA-B*58:01 and normal renal function: OR = 15.25, specificity = 82%; homozygous HLA-B*58:01 and severe renal impairment: OR = 1269.45, specificity = 100%). This HLA-B*58:01 correlation study suggests that patients with coexisting HLA-B*58:01 and renal impairment (especially estimated glomerular filtration rate < 30ml/minute/1.73 m(2)) should be cautious and avoid using

  2. A non-human primate model of radiation-induced cachexia.

    PubMed

    Cui, Wanchang; Bennett, Alexander W; Zhang, Pei; Barrow, Kory R; Kearney, Sean R; Hankey, Kim G; Taylor-Howell, Cheryl; Gibbs, Allison M; Smith, Cassandra P; MacVittie, Thomas J

    2016-03-31

    Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.

  3. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVinduced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  4. Proteomic overview and perspectives of the radiation-induced bystander effects.

    PubMed

    Chevalier, François; Hamdi, Dounia Houria; Saintigny, Yannick; Lefaix, Jean-Louis

    2015-01-01

    Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  6. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  7. UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF-β1-FAP-α.

    PubMed

    Wäster, Petra; Orfanidis, Kyriakos; Eriksson, Ida; Rosdahl, Inger; Seifert, Oliver; Öllinger, Karin

    2017-08-08

    Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF-β1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF-β1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.

  8. (Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignerey, A.C.

    1988-10-01

    A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less

  9. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  10. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gridley, Daila S.

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset ofmore » lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes

  11. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.

    PubMed

    Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin

    2014-01-01

    Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.

  12. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied

  13. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    PubMed

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  14. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  15. Radiation-induced skin carcinomas of the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron, E.; Modan, B.; Preston, D.

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenicmore » skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.« less

  16. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudinsmore » were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.« less

  17. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  18. Three case reports of radiation-induced glioblastoma after complete remission of acute lymphoblastic leukemia.

    PubMed

    Kajitani, Takumi; Kanamori, Masayuki; Saito, Ryuta; Watanabe, Yuko; Suzuki, Hiroyoshi; Watanabe, Mika; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.

  19. B-DIM impairs radiation-induced survival pathways independently of androgen receptor expression and augments radiation efficacy in prostate cancer.

    PubMed

    Singh-Gupta, Vinita; Banerjee, Sanjeev; Yunker, Christopher K; Rakowski, Joseph T; Joiner, Michael C; Konski, Andre A; Sarkar, Fazlul H; Hillman, Gilda G

    2012-05-01

    Increased consumption of cruciferous vegetables is associated with decreased risk in prostate cancer (PCa). The active compound in cruciferous vegetables appears to be the self dimerized product [3,3'-diindolylmethane (DIM)] of indole-3-carbinol (I3C). Nutritional grade B-DIM (absorption-enhanced) has proven safe in a Phase I trial in PCa. We investigated the anti-cancer activity of B-DIM as a new biological approach to improve the effects of radiotherapy for hormone refractory prostate cancer cells, which were either positive or negative for androgen receptor (AR) expression. B-DIM inhibited cell growth in a dose-dependent manner in both PC-3 (AR-) and C4-2B (AR+) cell lines. B-DIM was effective at increasing radiation-induced cell killing in both cell lines, independently of AR expression. B-DIM inhibited NF-κB and HIF-1α DNA activities and blocked radiation-induced activation of these transcription factors in both PC-3 and C4-2B cells. In C4-2B (AR+) cells, AR expression and nuclear localization were significantly increased by radiation. However, B-DIM abrogated the radiation-induced AR increased expression and trafficking to the nucleus, which was consistent with decreased PSA secretion. In vivo, treatment of PC-3 prostate tumors in nude mice with B-DIM and radiation resulted in significant primary tumor growth inhibition and control of metastasis to para-aortic lymph nodes. These studies demonstrate that B-DIM augments radiation-induced cell killing and tumor growth inhibition. B-DIM impairs critical survival signaling pathways activated by radiation, leading to enhanced cell killing. These novel observations suggest that B-DIM could be used as a safe compound to enhance the efficacy of radiotherapy for castrate-resistant PCa. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  1. A Novel In Vivo Protocol for Molecular Study of Radiation-Induced Fibrosis in Head and Neck Cancer Patients.

    PubMed

    Krisciunas, Gintas P; Platt, Michael; Trojanowska, Maria; Grillone, Gregory A; Haines, Paul C; Langmore, Susan E

    2016-03-01

    Radiation-induced fibrosis is a common complication for patients following head and neck cancer treatment. This study presents a novel minimally invasive protocol for molecular study of fibrosis in the stromal tissues. Subjects with radiation-induced fibrosis in the head and neck who were at least 6 months post treatment received submental core needle biopsies, followed by molecular processing and quantification of gene expression for 14 select pro-inflammatory and pro-fibrotic genes. Control biopsies from the upper arm were obtained from the same subjects. Patients were followed up at 1 and 2 weeks to monitor for safety and adverse outcomes. Six subjects were enrolled and completed the study. No subjects experienced adverse outcomes or complication. An 18 gauge core biopsy needle with a 10 mm notch inserted for up to 60 seconds was needed. Subcutaneous tissue yielded 3 ng of RNA, amplified to 6 µg of cDNA, allowing for adequately sensitive quantitative polymerase chain reaction (qPCR) analysis of approximately 28 genes. This study demonstrates the safety and utility of a novel technique for the molecular study of fibrosis in head and neck cancer patients. Longitudinal studies of patients undergoing radiation therapy will allow for identification of molecular targets that contribute to the process of fibrosis in the head and neck. © The Author(s) 2015.

  2. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jong Cheol; Department of Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan; Lee, Won Hyeok

    2014-04-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry weremore » used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation.« less

  3. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  4. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  5. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  6. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  7. Neutron emission in 19F-induced reactions

    NASA Astrophysics Data System (ADS)

    Acharya, Jaimin; Mukherjee, S.; Chatterjee, A.; Singh, N. L.; Ramachandran, K.; Rout, P. C.; Mahata, K.; Desai, Vishal; Mirgule, E. T.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Steyn, G. F.

    2018-03-01

    We measured neutron emission spectra for 19F-induced reactions on 181Ta, 89Y, and 51V at beam energies of 130, 140, 145, and 150 MeV. Measurements were made using liquid scintillator detectors at eight angles in the range of 25∘-143∘ using time-of-flight and pulse-shape discrimination. A comparison has been made with alice2014 and pace4 calculations to understand the role of incomplete fusion and pre-equilibrium effects. Global predictions with alice2014 without parameter adjustment gives a fair agreement with the measured data.

  8. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  9. [Biomarkers of radiation-induced DNA repair processes].

    PubMed

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. Sulthiame-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome.

    PubMed

    Fong, Choong Yi; Hashim, Nurmaira; Gan, Chin Seng; Chow, Tak Kuan; Tay, Chee Geap

    2016-11-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare and potentially life-threatening acute drug-induced hypersensitivity reaction. Antiepileptic drugs (AEDs) predominantly aromatic AEDs are commonly reported in DRESS. To date there are no reports of sulthiame AED causing DRESS syndrome. We report a 10-year-old girl of Indian descent with AED resistant epilepsy on maintenance sodium valproate and clonazepam. Sulthiame AED was initiated to try to improve her seizure control. Five weeks after commencing sulthiame, she developed fever with a diffuse erythematous morbilliform maculopapular rash, elevated transaminases and atypical lymphocytes. At day 3 of illness, she deteriorated with worsening elevation of liver transaminases, thrombocytopenia, progression of rash, hepatosplenomegaly, pneumonitis and markedly elevated inflammatory markers. Immunomodulatory treatment of pulse methylprednisolone was given from day 7 which was associated with improvement inflammatory markers and complete resolution of rash from day 30 of illness. The diagnosis of sulthiame-induced DRESS syndrome was made based on clinical, laboratory and skin histology findings. She was HLA-B heterozygous for HLA-B ∗ 15:123 and 15:240 and HLA-A homozygous for HLA-A ∗ 11:01:09. Both these HLA-A and HLA-B typing has not been reported before in cutaneous drug reactions. This is the first reported case of sulthiame-induced DRESS syndrome. Our case expands the list of possible susceptible HLA alleles associated with cutaneous drug reactions. It also raises the awareness of possible DRESS syndrome among patients commenced on sulthiame who will require immediate discontinuation of sulthiame and consideration of prompt treatment of corticosteroids. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  12. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  13. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  14. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: a systematic review.

    PubMed

    Fox, Nyssa F; Xiao, Christopher; Sood, Amit J; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand; Day, Terry A

    2015-07-01

    Radiation-induced xerostomia is one of the most common morbidities of radiation therapy in patients with head and neck cancer. However, in spite of its high rate of occurrence, there are few effective therapies available for its management. The aim of this study was to assess the efficacy of hyperbaric oxygen on the treatment of radiation-induced xerostomia and xerostomia-related quality of life. PubMed, Google Scholar, and the Cochrane Library were searched for retrospective or prospective trials assessing subjective xerostomia, objective xerostomia, or xerostomia-related quality of life. To be included, patients had to have received radiation therapy for head and neck cancer, but not hyperbaric oxygen therapy (HBOT). The systematic review initially identified 293 potential articles. Seven studies, comprising 246 patients, qualified for inclusion. Of the included studies, 6 of 7 were prospective in nature, and 1 was a retrospective study; and 2 of the 7 were controlled studies. HBOT may have utility for treating radiation-induced xerostomia refractory to other therapies. Additionally, HBOT may induce long-term improvement in subjective assessments of xerostomia, whereas other therapies currently available only provide short-term relief. The strength of these conclusions is limited by the lack of randomized controlled clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.

    PubMed

    Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A

    2002-12-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  16. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  17. Radiation induced fracture of the scapula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.H. III; Schultz, G.D.; Hanes, S.A.

    A case of radiation induced osteonecrosis resulting in a fracture of the scapula in a 76-yr-old female patient with a history of breast carcinoma is presented. Diagnostic imaging, laboratory recommendations and clinical findings are discussed along with an algorithm for the safe management of patients with a history of cancer and musculoskeletal complaints. This case demonstrates the necessity of a thorough investigation of musculoskeletal complaints in patients with previous bone-seeking carcinomas.

  18. Radiation-induced changes affecting polyester based polyurethane binder

    NASA Astrophysics Data System (ADS)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion

  19. [Anaphylactoid reactions induced by polysorbate 80 on Beagle dogs].

    PubMed

    Sun, Weiwei; Li, Yikui; Wang, Naijie; Du, Feng; Hao, Wei; Zhao, Le

    2011-07-01

    To evaluate the sensitization effect of polysorbate 80 from different factories on Beagle dogs. Beagles dogs were randomly divided into 5 groups, 3 in each group, received respectively the intravenous infusion of polysorbate 80 made by four factories in the concentration of 0.5%, with the constant infusing speed of 5 mL x min(-1) and volume of 10 mL x kg(-1). Changes were observed before infusion and in the 24 h after infusion, time of symptom appearance and disappearance was recorded, and the grade of response was determined. Moreover, blood pressure and heart rates were tested by the machine of Bp-98E, blood samples of animals were collected before infusion and at 10 min after ending infusion for measuring histamine content in plasma using ELISA. Then the sensitization effect was comprehensively estimated by combined consideration of the responding grade and histamine level. Typical symptoms of anaphylactoid reactions were found in sample 3 group, atypical symptoms were found in other polysorbate 80 groups. Different degrees of heart rate speeding and blood pressure downing were found in polysorbate 80 groups. No over 1-fold increase of plasma histamine level was found in all groups. The atypical anaphylactoid reactions and blood pressure of sample 2 group was lighter than other polysorbate 80 groups. Estimation showed that the sample 3 induced the suspicious anaphylactoid reactions, other test solutions did not induce the typical anaphylactoid reactions on Beagle dogs. For allergies and other special populations, there is still a certain risk to applicate polysorbate 80 in the concentration of 0.5%. Production process of polysorbate 80 have a certain influence on allergenicity, refined polysorbate 80 increase the security, but further reasearchs are needed to confirmed.

  20. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the

  1. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  2. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, D; Bednarz, B

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt tomore » validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.« less

  3. ON THE RADIATION REACTION IN THE REGION OF CICATRIZED LUNG PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widow, W.; Huber, R.

    1961-03-30

    The effect of radiotherapy on old tuberculous lung scars was investigated in 23 persons undergoing treatment for lung cancer. In most cases total Co/sup 60/ x-ray doses of 2000 to 4000 r were given over a 2- to 3-week period, after which time cancer-bearing portions of the lung were surgically removed. Sections of the lung were examined histologically to determine particularly whether irradiation reactivated old tuberculous lesions. In 20 of the 23 cases, marked histologic changes, reflecting radiation pneumonitis, were observed, and in 8 cases tuberculous scar tissue was noted. Findings in these cases are described in detail. Except formore » one case, there was no evidence that irradiation exacerbated the tuberculous process; on the other hand, the radiation reaction appeared to be intensified in the vicinity of tubercles. (H.H.D.)« less

  4. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  5. Hydrazine-induced post-chemiluminescence phenomenon of permanganate-luminol reaction and its applications.

    PubMed

    Du, Jianxiu; Lu, Jiuru

    2004-01-01

    The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.

  6. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  7. Rescue effects of ginger extract on dose dependent radiation-induced histological and biochemical changes in the kidneys of male Wistar rats.

    PubMed

    Saberi, Hassan; Keshavarzi, Behnaz; Shirpoor, Alireza; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2017-10-01

    Radiation is an essential modality in the management of cancer therapy, but its acute and chronic side effects on the normal organs limit the helpfulness of radiotherapy. The deleterious effects of radiation begin with oxidative stress and inflammatory reaction to radiolytic hydrolysis and formation of free radicals. The aim of the current study was to investigate the effect of dose dependent whole body radiation exposure on histological and biochemical alterations in rat kidney. It was also planned to find out whether ginger extract mitigated the deleterious effects of different doses of radiation in rat kidney. Male Wistar rats were exposed to three doses (2, 4, and 8Gy) of γ- ray with or without a 10day pretreatment with ginger extract. After 10days of whole body γ- ray exposure, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant increase in 8-OHdG, CRP, cystatin C (in 8Gy), plasma urea and creatinine levels, as well as a significant decrease in total antioxidant capacity of radiation groups compared to those of the control group. Ginger extract administration once daily for 10 consecutive days before exposure to 2-4-8Gy radiotherapy, which ameliorated histological and biochemical alterations in kidneys of the rats entirely or partially compared to those in the ethanol group rats. These findings indicate that whole body exposure to radiation induces kidney damage through oxidative DNA damage and inflammatory reactions, and that these effects can be alleviated using ginger pretreatment as an antioxidant and anti-inflammatory agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    PubMed

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  9. Sensitive Detection of Radiation-Induced Medulloblastomas after Acute or Protracted Gamma-Ray Exposures in Ptch1 Heterozygous Mice Using a Radiation-Specific Molecular Signature.

    PubMed

    Tsuruoka, Chizuru; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shinagawa, Mayumi; Shimada, Yoshiya; Kakinuma, Shizuko

    2016-10-01

    Recently reported studies have led to a heightened awareness of the risks of cancer induced by diagnostic radiological imaging, and in particular, the risk of brain cancer after childhood CT scans. One feature of Ptch1 +/- mice is their sensitivity to radiation-induced medulloblastomas (an embryonic cerebellar tumor) during a narrow window of time centered on the days around birth. Little is known about the dynamics of how dose protraction interacts with such narrow windows of sensitivity in individual tissues. Using medulloblastomas from irradiated Ptch1 +/- mice with a hybrid C3H × C57BL/6 F1 genetic background, we previously showed that the alleles retained on chromosome 13 (which harbors the Ptch1 gene) reveal two major mechanisms of loss of the wild-type allele. The loss of parental alleles from the telomere extending up to or past the Ptch1 locus by recombination (spontaneous type) accounts for almost all medulloblastomas in nonirradiated mice, while tumors in irradiated mice often exhibited interstitial deletions, which start downstream of the wild-type Ptch1 and extend up varying lengths towards the centromere (radiation type). In this study, Ptch1 +/- mice were exposed to an acute dose of either 100 or 500 mGy gamma rays in utero or postnatally, or the same radiation doses protracted over a four-day period, and were monitored for medulloblastoma development. The results showed dose- and age-dependent radiation-induced type tumors. Furthermore, the size of the radiation-induced deletion differed with the dose rate. The results of this work suggest that tumor latency may be related to the size of the deletion. In this study, 500 mGy exposure produced radiation-induced type tumors at all ages and dose rates, while 100 mGy exposure did not significantly produce radiation-induced type tumors. The radiation signature allows for unique mechanistic insight into the action of radiation to induce DNA lesions with known causal relationship to a specific tumor type

  10. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  11. Modeling thermal spike driven reactions at low temperature and application to zirconium carbide radiation damage

    NASA Astrophysics Data System (ADS)

    Ulmer, Christopher J.; Motta, Arthur T.

    2017-11-01

    The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.

  12. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  13. microRNA alterations driving acute and late stages of radiation-induced fibrosis in a murine skin model.

    PubMed

    Simone, Brittany A; Ly, David; Savage, Jason E; Hewitt, Stephen M; Dan, Tu D; Ylaya, Kris; Shankavaram, Uma; Lim, Meng; Jin, Lianjin; Camphausen, Kevin; Mitchell, James B; Simone, Nicole L

    2014-09-01

    Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation. Published by Elsevier Inc.

  14. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    PubMed

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  15. Natural Oil-Based Emulsion Containing Allantoin Versus Aqueous Cream for Managing Radiation-Induced Skin Reactions in Patients With Cancer: A Phase 3, Double-Blind, Randomized, Controlled Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Raymond Javan, E-mail: email.rchan@gmail.com; School of Nursing, Queensland University of Technology, Kelvin Grove; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove

    Purpose: To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation-induced skin reactions. Methods and Materials: A total of 174 patients were randomized and participated in the study. Patients received either cream 1 (the natural oil-based emulsion containing allantoin) or cream 2 (aqueous cream). Skin toxicity, pain, itching, and skin-related quality of life scores were collected for up to 4 weeks after radiation treatment. Results: Patients who received cream 1 had a significantly lower average level of Common Terminology Criteria for Adverse Events at week 3 (P<.05) but had statistically higher averagemore » levels of skin toxicity at weeks 7, 8, and 9 (all P<.001). Similar results were observed when skin toxicity was analyzed by grades. With regards to pain, patients in the cream 2 group had a significantly higher average level of worst pain (P<.05) and itching (P=.046) compared with the cream 1 group at week 3; however, these differences were not observed at other weeks. In addition, there was a strong trend for cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison with cream 1 (P=.056). Overall, more participants in the cream 1 group were required to use another topical treatment at weeks 8 (P=.049) and 9 (P=.01). Conclusion: The natural oil-based emulsion containing allantoin seems to have similar effects for managing skin toxicity compared with aqueous cream up to week 5; however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching, and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream seems to be a more preferred option.« less

  16. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  17. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  18. Production of metals and compounds by radiation chemistry

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  19. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  20. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  1. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  2. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treatingmore » the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.« less

  3. Defect reaction network in Si-doped InAs. Numerical predictions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulkmore » InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank« less

  4. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  5. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less

  6. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    PubMed Central

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972

  7. Preparation of polymeric Janus particles by directional UV-induced reactions.

    PubMed

    Liu, Lianying; Ren, Mingwei; Yang, Wantai

    2009-09-15

    Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.

  8. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples

  9. [Chlorophyll mutations induced by gamma radiation in Phaseolus vulgaris L].

    PubMed

    Meoño, M E

    1975-07-01

    In a study of chlorophyll mutants of Phaseolus vulgaris L. through Co60 gamma radiation, five types of mutants, classified as albino, cream, yellow, yellow-green and light green were obtained; all were lethal; their segregation was always proportionally lower than the Mendelian. Gamma radiation-induced mutations in black beans do not depart significantly from those obtained elsewhere in barley and wheat.

  10. Leucovorin-induced hypersensitivity reaction.

    PubMed

    Damaske, Avni; Ma, Nichole; Williams, Reba

    2012-03-01

    Leucovorin is a reduced form of folic acid, which has multiple uses.(1) In this case report, it is used in combination with fluorouracil in the treatment of colon cancer. We describe a 53-year-old male, who was started on FOLFOX 6 + bevacizumab who experienced a hypersensitivity reaction to leucovorin. There have been very few cases of leucovorin hypersensitivity reactions reported in the literature. In this case, symptoms include flushing, hives, body pain, headaches, elevated blood pressures, and general discomfort. Although leucovorin reactions are considered rare, one should be aware of the types of reactions that can occur with leucovorin.

  11. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  12. Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis.

    PubMed

    Shen, Zongshan; Wang, Jiancheng; Huang, Qiting; Shi, Yue; Wei, Zhewei; Zhang, Xiaoran; Qiu, Yuan; Zhang, Min; Wang, Yi; Qin, Wei; Huang, Shuheng; Huang, Yinong; Liu, Xin; Xia, Kai; Zhang, Xinchun; Lin, Zhengmei

    2018-02-14

    Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR 2 -overexpressing MSCs (MSCs CXCR2 ) for mucositis treatment. Indeed, MSCs CXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSC CXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.

  13. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  14. Effects of Boron-Based Gel on Radiation-Induced Dermatitis in Breast Cancer: A Double-Blind, Placebo-Controlled Trial.

    PubMed

    Aysan, Erhan; Idiz, Ufuk Oguz; Elmas, Leyla; Saglam, Esra Kaytan; Akgun, Zuleyha; Yucel, Serap Baskaya

    2017-06-01

    This study is aimed to evaluate the effects of boron on radiation-induced skin reactions (RISR) in breast cancer patients. After 47 patients with invasive ductal carcinoma underwent radiotherapy, 23 (49%) received a boron-based gel, and 24 (51%) received placebo. Assessments were performed according to the Radiation Therapy Oncology Group (RTOG) skin scale and a Five-Point Horizontal Scale (FPHS). At the end of the fifth week of radiotherapy, the RTOG scores in the boron group were significantly lower than those in the placebo group (p = .024). The FPHS score was higher in the placebo group than in the boron group, and this difference was not statistically significant (p = .079). Using the RTOG scoring system, we revealed that the application of a boron-based gel diminished RISR. The mechanism of action is unclear but may be related to antioxidant, wound healing, and thermal degradation effects of boron.

  15. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis.

    PubMed

    Nawroth, Isabel; Alsner, Jan; Behlke, Mark A; Besenbacher, Flemming; Overgaard, Jens; Howard, Kenneth A; Kjems, Jørgen

    2010-10-01

    One of the most common and dose-limiting long-term adverse effects of radiation therapy is radiation-induced fibrosis (RIF), which is characterized by restricted tissue flexibility, reduced compliance or strictures, pain and in severe cases, ulceration and necrosis. Several strategies have been proposed to ameliorate RIF but presently no effective one is available. Recent studies have reported that tumor necrosis factor-α (TNFα) plays a role in fibrogenesis. Male CDF1 mice were radiated with a single dose of 45 Gy. Chitosan/DsiRNA nanoparticles targeting TNFα were intraperitoneal injected and late radiation-induced fibrosis (RIF) was assessed using a modification of the leg contracture model. Additionally, the effect of these nanoparticles on tumor growth and tumor control probability in the absence of radiation was examined in a C3H mammary carcinoma model. We show in this work, that targeting TNFα in macrophages by intraperitoneal administration of chitosan/DsiRNA nanoparticles completely prevented radiation-induced fibrosis in CDF1 mice without revealing any cytotoxic side-effects after a long-term administration. Furthermore, such TNFα targeting was selective without any significant influence on tumor growth or irradiation-related tumor control probability. This nanoparticle-based RNAi approach represents a novel approach to prevent RIF with potential application to improve clinical radiation therapeutic strategies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy.

    PubMed

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the

  17. Severe skin reaction secondary to concomitant radiotherapy plus cetuximab

    PubMed Central

    Berger, Bernhard; Belka, Claus

    2008-01-01

    The therapeutic use of monoclonal antibodies against the epidermal growth factor receptor (EGFR) is specifically associated with dermatologic reactions of variable severity. Recent evidence suggests superiority of the EGFR inhibitor (EGFRI) cetuximab plus radiotherapy compared to radiotherapy alone in patients with squamous cell carcinoma of the head and neck. Although not documented in a study population, several reports indicate a possible overlap between radiation dermatitis and the EGFRI-induced skin rash. We here present a case of severe skin reaction secondary to the addition of cetuximab to radiotherapy. PMID:18226196

  18. Extracorporeal shock wave markedly alleviates radiation-induced chronic cystitis in rat

    PubMed Central

    Chen, Yen-Ta; Chen, Kuan-Hung; Sung, Pei-Hsun; Yang, Chih-Chao; Cheng, Ben-Chung; Chen, Chih-Hung; Chang, Chia-Lo; Sheu, Jiunn-Jye; Lee, Fan-Yen; Shao, Pei-Lin; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2018-01-01

    This study tested the hypothesis that extracorporeal shock wave (ECSW) treatment can effectively inhibit radiation-induced chronic cystitis (CC). Adult male Sprague-Dawley (SD) rats (n = 24) were randomly divided into group 1 (normal control), group 2 (CC induced by radiation with 300 cGy twice with a four-hour interval to the urinary bladder), group 3 [CC with ECSW treatment (0.2 mJ/mm2/120 impulses/at days 1, 7, and 14 after radiation)]. Bladder specimens were harvested by day 28 after radiation. By day 28 after radiation, the degree of detrusor contraction impairment was significantly higher in group 2 than that in groups 1 and 3, and significantly higher in group 3 than that in group 1 (P<0.0001). The urine albumin concentration expressed an opposite pattern compared to that of detrusor function among the three groups (P<0.0001). The bladder protein expressions of inflammatory (TLR-2/TLR-4/IL-6/IL-12/MMP-9/TNF-α/NF-κB/RANTES/iNOS) and oxidative-stress (NOX-1/NOX-2/oxidized protein) biomarkers exhibited a pattern identical to that of urine albumin in all groups (all P<0.0001). The cellular expressions of inflammatory (CD14+/CD68+/CD74+/COX-2/MIF+/substance P+) and cytokeratin (CK13+/HMW CK+/CK+17/CK+18/CK+19) biomarkers, and collagen-deposition/fibrotic areas as well as epithelial-damaged score displayed an identical pattern compared to that of urine albumin among the three groups (all P<0.0001). In conclusion, ECSW treatment effectively protected urinary bladder from radiation-induced CC. PMID:29636892

  19. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  20. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  2. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  3. Medium-induced gluon radiation and colour decoherence beyond the soft approximation

    NASA Astrophysics Data System (ADS)

    Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.

    2015-02-01

    We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. By rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, that is of interest for a probabilistic implementation of the modified parton shower. Known results are recovered for the particular cases of soft radiation and eikonal quark and for the case of a very long medium, with length much larger than the average formation times for medium-induced radiation. Technical details of the computation of the relevant n-point functions in colour space and of the required path integrals in transverse space are provided. The final result completes the calculation of all finite energy corrections for the radiation off a quark in a QCD medium that exist in the small angle approximation and for a recoilless medium.

  4. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  5. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  6. Radiation-induced defect centers in glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, T.E.; Friebele, E.J.; Griscom, D.L.

    1989-01-15

    Electron spin resonance (ESR) was used to characterize the radiation-induced defect centers in low-thermal-expansion glass ceramics, including two types of Zerodur and Astrositall. The observed ESR spectra can be associated with different types of defect centers: a Zn/sup +/ center, several types of oxygen hole centers (OHCs), an aluminum-oxygen hole center (Al-OHC), an Fe/sup 3 +/ center, Ti/sup 3 +/ and Zr/sup 3 +/ centers, and three types of As centers. An Sb/sup 4 +/ center, which is not observed in Zerodur, is tentatively identified in Astrositall. From the effect of crystallization on the observed defect concentrations in Zerodur andmore » computer simulation of the spectral lines of some of the centers, we infer that among the nine defect centers observed in the Zerodurs, the As-associated centers are located in the glassy phase and/or at the interface between the glassy and crystalline phases, Zn/sup +/ and Al-OHC are in the crystalline phase, and the rest (including most of the OHCs) are in the glassy phase. Radiation-induced compaction in these materials appears to be related to the generation of OHCs in the glass phase.« less

  7. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    PubMed

    Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A

    2017-09-15

    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Microscopic approach based on a multiscale algebraic version of the resonating group model for radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Solovyev, Alexander S.; Igashov, Sergey Yu.

    2017-12-01

    A microscopic approach to description of radiative capture reactions based on a multiscale algebraic version of the resonating group model is developed. The main idea of the approach is to expand wave functions of discrete spectrum and continuum for a nuclear system over different bases of the algebraic version of the resonating group model. These bases differ from each other by values of oscillator radius playing a role of scale parameter. This allows us in a unified way to calculate total and partial cross sections (astrophysical S factors) as well as branching ratio for the radiative capture reaction, to describe phase shifts for the colliding nuclei in the initial channel of the reaction, and at the same time to reproduce breakup thresholds of the final nucleus. The approach is applied to the theoretical study of the mirror 3H(α ,γ )7Li and 3He(α ,γ )7Be reactions, which are of great interest to nuclear astrophysics. The calculated results are compared with existing experimental data and with our previous calculations in the framework of the single-scale algebraic version of the resonating group model.

  9. Protective effect of α-lipoic acid against radiation-induced fibrosis in mice

    PubMed Central

    Ryu, Seung-Hee; Park, Eun-Young; Kwak, Sungmin; Heo, Seung-Ho; Ryu, Je-Won; Park, Jin-hong

    2016-01-01

    Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. We found that α-lipoic acid (α-LA) effectively prevents RIF. In RIF a mouse model, leg contracture assay was used to test the in vivo efficacy of α-LA. α-LA suppressed the expression of pro-fibrotic genes after irradiation, both in vivo and in vitro, and inhibited the up-regulation of TGF-β1-mediated p300/CBP activity. Thus, α-LA prevents radiation-induced fibrosis (RIF) by inhibiting the transcriptional activity of NF-κB through inhibition of histone acetyltransferase activity. α-LA is a new therapeutic methods that can be used in the prevention-treatment of RIF. PMID:26799284

  10. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    PubMed

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  11. Radiation-induced transmethylation and transsulfuration in the system DNA-methionine

    NASA Astrophysics Data System (ADS)

    Köhnlein, W.; Merwitz, O.; Ohneseit, P.

    Evidence is presented for the radiation-induced transmethylation and transsulfuration in a DNA-methionine model system. The extent of such alkylation of DNA is found to be comparable with that of alkylating agents. Therefore, both processes could be initial steps in radiation carcinogenesis. The protective effect of methionine on DNA strand breaks, due to scavenging of OH radicals, causes the formation of methyl and thiyl radicals.

  12. Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and Hypoxia-inducible factor-1 activity.

    PubMed

    Burrows, Natalie; Telfer, Brian; Brabant, Georg; Williams, Kaye J

    2013-09-01

    Undifferentiated follicular and anaplastic thyroid tumours often respond poorly to radiotherapy and show increased metastatic potential. We evaluated radiation-induced effects on metastasis in thyroid carcinoma cells and tumours, mechanistically focusing on phosphatidylinositide 3-kinase (PI3K) and associated pathways. Migration was analysed in follicular (FTC133) and anaplastic (8505c) cells following radiotherapy (0-6 Gray) with concomitant pharmacological (GDC-0941) or genetic inhibition of PI3K. Hypoxia-inducible factor-1 (HIF-1)-activity was measured using luciferase reporter assays and was inhibited using a dominant-negative variant. Activation and subcellular localisation of target proteins were assessed via Western blot and immunofluorescence. In vivo studies used FTC133 xenografts with metastatic lung dissemination assessed ex vivo. Radiation induced migration in a HIF-dependent manner in FTC133 cells but decreased migration in 8505c's. Post-radiation HIF-activity correlated with migratory phenotype. PI3K-targeting inhibited migration under basal and irradiated conditions through inhibition of HIF-1α, Rho-GTPase expression/activity and localisation whilst having little effect on src/FAK. In vivo, radiation induced PI3K, HIF, Rho-GTPases and src but only PI3K, HIF and Rho-GTPases were inhibited by GDC-0941. Co-treatment with GDC-0941 and radiation significantly reduced metastatic dissemination versus radiotherapy alone. Radiation modifies metastatic characteristics of thyroid carcinoma cells, which can be successfully inhibited by targeting PI3K using GDC-0941 in vitro and in vivo. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. [The distribution of radiation-induced breaks in the chromosomes of irradiated subjects].

    PubMed

    Shemetun, O V; Pidlins'ka, M A; Shemetun, H M

    2000-01-01

    Distribution of radiation-induced breakpoints in chromosomes and its bands in persons recovered from acute radiation sickness and personnel from Chernobyl NPP were investigated using G-banding staining. The frequency of damaged bands and breakpoints in groups exposed to radiation was significantly higher as compared with the control group. It was shown that in exposed to radiation persons damage depends on its length. Most frequently damaged bands in the observed groups were determined. The G-negative bands and telomeres of chromosomes were more sensitive to radiation.

  14. Monte Carlo Simulation of Nonlinear Radiation Induced Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, B. S.

    1972-01-01

    A Monte Carlo simulation model for radiation induced plasmas with nonlinear properties due to recombination was, employing a piecewise linearized predict-correct iterative technique. Several important variance reduction techniques were developed and incorporated into the model, including an antithetic variates technique. This approach is especially efficient for plasma systems with inhomogeneous media, multidimensions, and irregular boundaries. The Monte Carlo code developed has been applied to the determination of the electron energy distribution function and related parameters for a noble gas plasma created by alpha-particle irradiation. The characteristics of the radiation induced plasma involved are given.

  15. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  16. Neutron-induced reaction cross-sections of 93Nb with fast neutron based on 9Be(p,n) reaction

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.; Zaman, M.; Nadeem, M.; Sahid, M.

    2018-02-01

    The cross-sections of the 93Nb (n , 2 n)92mNb, 93Nb (n , 3 n)91mNb and 93Nb (n , 4 n)90Nb reactions with the average neutron energies of 14.4 to 34.0 MeV have been determined by using an activation and off-line γ-ray spectrometric technique. The fast neutrons were produced using the 9Be (p , n) reaction with the proton energies of 25-, 35- and 45-MeV from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron flux-weighted average cross-sections of the 93Nb(n , xn ; x = 2- 4) reactions were also obtained from the mono-energetic neutron-induced reaction cross-sections of 93Nb calculated using the TALYS 1.8 code, and the neutron flux spectrum based on the MCNPX 2.6.0 code. The present results for the 93Nb(n , xn ; x = 2- 4) reactions are compared with the calculated neutron flux-weighted average values and found to be in good agreement.

  17. Chronic radiation-induced dermatitis: challenges and solutions.

    PubMed

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients' quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  18. Radiation reaction studies in an all-optical set-up: experimental limitations

    NASA Astrophysics Data System (ADS)

    Samarin, G. M.; Zepf, M.; Sarri, G.

    2018-06-01

    The recent development of ultra-high intensity laser facilities is finally opening up the possibility of studying high-field quantum electrodynamics in the laboratory. Arguably, one of the central phenomena in this area is that of quantum radiation reaction experienced by an ultra-relativistic electron beam as it propagates through the tight focus of a laser beam. In this paper, we discuss the major experimental challenges that are to be faced in order to extract meaningful and quantitative information from this class of experiments using existing and near-term laser facilities.

  19. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  20. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOEpatents

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  1. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  2. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.

    PubMed

    Prasad, Ankush; Pospíšil, Pavel

    2012-08-01

    Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.

  3. Ginger for Prevention of Antituberculosis-induced Gastrointestinal Adverse Reactions Including Hepatotoxicity: A Randomized Pilot Clinical Trial.

    PubMed

    Emrani, Zahra; Shojaei, Esphandiar; Khalili, Hossein

    2016-06-01

    In this study, the potential benefits of ginger in preventing antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity have been evaluated in patients with tuberculosis. Patients in the ginger and placebo groups (30 patients in each group) received either 500 mg ginger (Zintoma)(®) or placebo one-half hour before each daily dose of antituberculosis drugs for 4 weeks. Patients' gastrointestinal complaints (nausea, vomiting, dyspepsia, and abdominal pain) and antituberculosis drug-induced hepatotoxicity were recorded during the study period. In this cohort, nausea was the most common antituberculosis drug-induced gastrointestinal adverse reactions. Forty eight (80%) patients experienced nausea. Nausea was more common in the placebo than the ginger group [27 (90%) vs 21 (70%), respectively, p = 0.05]. During the study period, 16 (26.7%) patients experienced antituberculosis drug-induced hepatotoxicity. Patients in the ginger group experienced less, but not statistically significant, antituberculosis drug-induced hepatotoxicity than the placebo group (16.7% vs 36.7%, respectively, p = 0.07). In conclusion, ginger may be a potential option for prevention of antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  5. Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients

    PubMed Central

    Jelonek, Karol; Pietrowska, Monika; Ros, Malgorzata; Zagdanski, Adam; Suchwalko, Agnieszka; Polanska, Joanna; Marczyk, Michal; Rutkowski, Tomasz; Skladowski, Krzysztof; Clench, Malcolm R.; Widlak, Piotr

    2014-01-01

    Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation. PMID:24747595

  6. Neutron-induced reactions on AlF3 studied using the optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Lv, Cui-Juan; Zhang, Guo-Qiang; Wang, Hong-Wei; Zuo, Jia-Xu

    2015-08-01

    Neutron-induced reactions on 27Al and 19F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + 27Al and n + 19F reactions, the results of the n + 27Al19F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.

  7. Radiation-induced cerebral meningioma: a recognizable entity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A.B.; Shalit, M.N.; Cohen, M.L.

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the eramore » prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.« less

  8. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

    PubMed

    Gonzalez-Vasconcellos, Iria; Anastasov, Natasa; Sanli-Bonazzi, Bahar; Klymenko, Olena; Atkinson, Michael J; Rosemann, Michael

    2013-07-15

    Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control. ©2013 AACR.

  9. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, N C; Wu, Z; Chu, J

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) andmore » at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.« less

  10. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size andmore » tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.« less

  11. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    PubMed

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  12. Radiation-induced moyamoya syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Snehal S.; Paulino, Arnold C.; Mai, Wei Y.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%.more » Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.« less

  13. Ionizing radiation-induced bystander mutagenesis and adaptation: Quantitative and temporal aspects

    PubMed Central

    Zhang, Ying; Zhou, Junqing; Baldwin, Joseph; Held, Kathryn D; Prise, Kevin M; Redmond, Robert W.; Liber, Howard L.

    2009-01-01

    This work explores several quantitative aspects of radiation-induced bystander mutagenesis in WTK1 human lymphoblast cells. Gamma-irradiation of cells was used to generate conditioned medium containing bystander signals, and that medium was transferred onto naïve recipient cells. Kinetic studies revealed that it required up to one hour to generate sufficient signal to induce the maximal level of mutations at the thymidine kinase locus in the bystander cells receiving the conditioned medium. Furthermore, it required at least one hour of exposure to the signal in the bystander cells to induce mutations. Bystander signal was fairly stable in the medium, requiring 12–24 hours to diminish. Medium that contained bystander signal was rendered ineffective by a 4-fold dilution; in contrast a greater than 20-fold decrease in the cell number irradiated to generate a bystander signal was needed to eliminate bystander-induced mutagenesis. This suggested some sort of feedback inhibition by bystander signal that prevented the signaling cells from releasing more signal. Finally, an ionizing radiation-induced adaptive response was shown to be effective in reducing bystander mutagenesis; in addition, low levels of exposure to bystander signal in the transferred medium induced adaptation that was effective in reducing mutations induced by subsequent γ-ray exposures. PMID:19695271

  14. Dynamics of surface-migration: Electron-induced reaction of 1,2-dihaloethanes on Si(100)

    NASA Astrophysics Data System (ADS)

    Huang, Kai; MacLean, Oliver; Guo, Si Yue; McNab, Iain R.; Ning, Zhanyu; Wang, Chen-Guang; Ji, Wei; Polanyi, John C.

    2016-10-01

    Scanning Tunneling Microscopy was used to investigate the electron-induced reaction of 1,2-dibromoethane (DBE) and 1,2-dichloroethane (DCE) on Si(100).We observed a long-lived physisorbed molecular state of DBE at 75 K and of DCE at 110 K. As a result we were able to characterize by experiment and also by ab initio theory the dynamics of ethylene production in the electron-induced surface-reaction of these physisorbed species. For both DBE and DCE the ethylene product was observed to migrate across the surface. In the case of DBE the recoil of the ethylene favored the silicon rows, migrating by an average distance of 22 Å, and up to 100 Å. Trajectory calculations were performed for this electron-induced reaction, using an 'Impulsive Two-State' model involving an anionic excited state and a neutral ground-potential. The model agreed with experiment in reproducing both migration and desorption of the ethylene product. The computed migration exhibited a 'ballistic' launch and subsequent 'bounces', thereby accounting for the observed long-range migratory dynamics.

  15. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients.

    PubMed

    Alfotih, Gobran Taha Ahmed; Zheng, Mei Guang; Cai, Wang Qing; Xu, Xin Ke; Hu, Zhen; Li, Fang Cheng

    2016-01-01

    Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  17. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts.

    PubMed

    Dang, Bingrong; Yang, Yuping; Zhang, Erdong; Li, Wenjian; Mi, Xiangquan; Meng, Yue; Yan, Siqi; Wang, Zhuanzi; Wei, Wei; Shao, Chunlin; Xing, Rui; Lin, Changjun

    2014-03-03

    Microgravity and radiation, common in space, are the main factors influencing astronauts' health in space flight, but their combined effects on immune cells are extremely limited. Therefore, the effect of simulated microgravity on heavy ion radiation-induced apoptosis, and reactive oxygen species (ROS)-sensitive apoptosis signaling were investigated in human B lymphoblast HMy2.CIR cells. Simulated microgravity was achieved using a Rotating Wall Vessel Bioreactor at 37°C for 30 min. Heavy carbon-ion irradiation was carried out at 300 MeV/u, with a linear energy transfer (LET) value of 30 keV/μm and a dose rate of 1Gy/min. Cell survival was evaluated using the Trypan blue exclusion assay. Apoptosis was indicated by Annexin V/propidium iodide staining. ROS production was assessed by cytometry with a fluorescent probe dichlorofluorescein. Malondialdehyde was detected using a kit. Extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase phosphatase-1 (MKP-1) and caspase-3 activation were measured by immunoblotting. Simulated microgravity decreased heavy ion radiation-induced cell survival and increased apoptosis in HMy2.CIR cells. It also amplified heavy ion radiation-elicited intracellular ROS generation, which induced ROS-sensitive ERK/MKP-1/caspase-3 activation in HMy2.CIR cells. The above phenomena could be reversed by the antioxidants N-acetyl cysteine (NAC) and quercetin. These results illustrated that simulated microgravity increased heavy ion radiation-induced cell apoptosis, mediated by a ROS-sensitive signal pathway in human B lymphoblasts. Further, the antioxidants NAC and quercetin, especially NAC, might be good candidate drugs for protecting astronauts' and space travelers' health and safety. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    PubMed

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy.

  19. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali, E-mail: Gholamrezaei@med.mui.ac.ir; Poursina Hakim Research Institution, Isfahan

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data.more » Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.« less

  20. Changes in skin microcirculation during radiation therapy for breast cancer.

    PubMed

    Tesselaar, Erik; Flejmer, Anna M; Farnebo, Simon; Dasu, Alexandru

    2017-08-01

    The majority of breast cancer patients who receive radiation treatment are affected by acute radiation-induced skin changes. The assessment of these changes is usually done by subjective methods, which complicates the comparison between different treatments or patient groups. This study investigates the feasibility of new robust methods for monitoring skin microcirculation to objectively assess and quantify acute skin reactions during radiation treatment. Laser Doppler flowmetry, laser speckle contrast imaging, and polarized light spectroscopy imaging were used to measure radiation-induced changes in microvascular perfusion and red blood cell concentration (RBC) in the skin of 15 patients undergoing adjuvant radiation therapy for breast cancer. Measurements were made before treatment, once a week during treatment, and directly after the last fraction. In the treated breast, perfusion and RBC concentration were increased after 1-5 fractions (2.66-13.3 Gy) compared to baseline. The largest effects were seen in the areola and the medial area. No changes in perfusion and RBC concentration were seen in the untreated breast. In contrast, Radiation Therapy Oncology Group (RTOG) scores were increased only after 2 weeks of treatment, which demonstrates the potential of the proposed methods for early assessment of skin changes. Also, there was a moderate to good correlation between the perfusion (r = 0.52) and RBC concentration (r = 0.59) and the RTOG score given a week later. We conclude that radiation-induced microvascular changes in the skin can be objectively measured using novel camera-based techniques before visual changes in the skin are apparent. Objective measurement of microvascular changes in the skin may be valuable in the comparison of skin reactions between different radiation treatments and possibly in predicting acute skin effects at an earlier stage.

  1. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nyirenda, A. N.; Chithambo, M. L.

    2017-04-01

    It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  2. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    PubMed

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  3. Paclitaxel-carboplatin induced radiation recall colitis.

    PubMed

    Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet

    2004-01-01

    Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy.

  4. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  5. Nitric oxide-dependent pigment migration induced by ultraviolet radiation in retinal pigment cells of the crab Neohelice granulata.

    PubMed

    Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia

    2010-01-01

    The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  6. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  7. Radiation induced degradation of xanthan gum in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat

    2018-03-01

    In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.

  8. Calreticulin attenuated microwave radiation-induced human microvascular endothelial cell injury through promoting actin acetylation and polymerization.

    PubMed

    Xu, Feifei; Wang, You; Tao, Tianqi; Song, Dandan; Liu, Xiuhua

    2017-01-01

    Recent work reveals that actin acetylation modification has been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight the effects of calreticulin on actin acetylation and cell injury induced by microwave radiation in human microvascular endothelial cell (HMEC). HMEC injury was induced by high-power microwave of different power density (10, 30, 60, 100 mW/cm 2 , for 6 min) with or without exogenous recombinant calreticulin. The cell injury was assessed by lactate dehydrogenase (LDH) activity and Cell Counting Kit-8 in culture medium, migration ability, intercellular junction, and cytoskeleton staining in HMEC. Western blotting analysis was used to detected calreticulin expression in cytosol and nucleus and acetylation of globular actin (G-actin). We found that HMEC injury was induced by microwave radiation in a dose-dependent manner. Pretreatment HMEC with calreticulin suppressed microwave radiation-induced LDH leakage and increased cell viability and improved microwave radiation-induced decrease in migration, intercellular junction, and cytoskeleton. Meanwhile, pretreatment HMEC with exogenous calreticulin upregulated the histone acetyltransferase activity and the acetylation level of G-actin and increased the fibrous actin (F-actin)/G-actin ratio. We conclude that exogenous calreticulin protects HMEC against microwave radiation-induced injury through promoting actin acetylation and polymerization.

  9. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  10. A combined plant and reaction chamber setup to investigate the effect of pollution and UV-B radiation on biogenic emissions

    NASA Astrophysics Data System (ADS)

    Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.

    2012-12-01

    Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing

  11. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  12. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  13. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated onmore » days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.« less

  14. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited themore » radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.« less

  15. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  16. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  17. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  18. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less

  19. Radiation reaction force on a particle in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Tripathi, Swapnil; Wiseman, Alan

    2007-04-01

    The mathematical modelling of the radiation reaction force experienced by a particle in curved spacetime is very important for calculations of the templates used in detection of gravitational waves with LIGO, LISA etc. In particular, extreme mass ratio inspirals are strong candidates for gravitational wave detection with LISA. We model these systems as a particle in Schwarzschild spacetime, and use the Quinn Wald axioms to regularize the self force. Mode by mode expansion techniques are used for calculating the selfforce. Recent progress in this work is being reported in this talkootnotetextA. G. Wiseman, Phys. Rev. D 61 (2000) arXiv.org:gr-qc/084014 ootnotetextT.C. Quinn, Phys. Rev. D 62 (2000) arXiv.org:gr- qc/064029 ootnotetextT.C. Quinn, R.M. Wald Phys. Rev. D 56 (1997) 3381

  20. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  1. Effects of antiemetics on the acquisition and recall of radiation- and lithium chloride-induced conditioned taste aversions.

    PubMed

    Rabin, B M; Hunt, W A

    1983-04-01

    A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.

  2. Arginine glutamate improves healing of radiation-induced skin ulcers in guinea pigs.

    PubMed

    Khalin, Igor; Kocherga, Ganna

    2013-12-01

    The increase in the incidence of the radiation-induced skin injury cases and the absence of standard treatments escalate the interest in finding new and effective drugs for these lesions. We studied the effect of a 40% solution of arginine glutamate on the healing of radiation-induced skin ulcers in guinea pigs. Radiation skin injury was produced on the thigh of guinea pigs by 60 Gy local X-ray irradiation. Treatment was started 6 weeks after the irradiation when ulcers had been formed. Arginine glutamate was administered by subcutaneous injections around the wound edge. Methyluracil was chosen as the comparison drug. The animals were sacrificed on day 21 after the start of treatment and the irradiated skin tissues were subjected to histological evaluation, cytokines analysis, lipid peroxidation and antioxidant enzymes analysis. We have shown that arginine glutamate significantly (p < 0.05) decreased levels of pro-inflammatory cytokines in the wound, restored the balance between lipid peroxidation formation and antioxidant enzymes activity and promoted cell proliferation as well as collagen synthesis. These results demonstrate that arginine glutamate successfully improves the healing of radiation-induced skin ulcers. In all probability, the curative effect is associated with the interaction of arginine with nitric oxide synthase II and arginase I, but further investigations are needed to validate this.

  3. MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Adam R.; Bambhroliya, Arvind; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas

    Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of anmore » miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom

  4. UVA radiation induced ultrafast electron transfer from a food carcinogen benzo[a]pyrene to organic molecules, biological macromolecules, and inorganic nano structures.

    PubMed

    Banerjee, Soma; Sarkar, Soumik; Lakshman, Karthik; Dutta, Joydeep; Pal, Samir Kumar

    2013-04-11

    Reactions involving electron transfer (ET) and reactive oxygen species (ROS) play a pivotal role in carcinogenesis and cancer biochemistry. Our present study emphasizes UVA radiation induced ET reaction as one of the key aspects of a potential carcinogen, benzo[a]pyrene (BP), in the presence of a wide variety of molecules covering organic p-benzoquinone (BQ), biological macromolecules like calf-thymus DNA (CT-DNA), human serum albumin (HSA) protein, and inorganic zinc oxide (ZnO) nanorods (NRs). Steady-state and picosecond-resolved fluorescence spectroscopy have been used to monitor such ET reactions. Physical consequences of BP association with CT-DNA have been investigated through temperature-dependent circular dichroism (CD) spectroscopy. The temperature-dependent steady-state, picosecond-resolved fluorescence lifetime and anisotropy studies reveal the effect of temperature on the perturbation of such ET reactions from BP to biological macromolecules, highlighting their temperature-dependent association. Furthermore, the electron-donating property of BP has been corroborated by measuring wavelength-dependent photocurrent in a BP-anchored ZnO NR-based photodevice, offering new physical insights for the carcinogenic study of BP.

  5. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less

  6. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callens, M; Verboven, E; Van Den Abeele, K

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles

  7. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  8. Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions.

    PubMed

    Kuhnen, Carlos A; Dall'Oglio, Evandro L; de Sousa, Paulo T

    2017-08-03

    In this study, a quantum approach is presented to explain microwave-enhanced reaction rates by considering the tunneling effects in chemical reactions. In the Arrhenius equation, the part of the Hamiltonian relative to the interaction energy during tunneling, between the particle that tunnels and the electrical field defined in the medium, whose spatial component is specified by its rms value, is taken into account. An approximate evaluation of the interaction energy leads to a linear dependence of the effective activation energy on the applied field. The evaluation of the rms value of the field for pure liquids and reaction mixtures, through their known dielectric properties, leads to an appreciable reduction in the activation energies for the proton transfer process in these liquids. The results indicate the need to move toward the use of more refined methods of modern quantum chemistry to calculate more accurately field-induced reaction rates and effective activation energies.

  9. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.

  10. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  11. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu

    2017-10-01

    Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.

  12. Effects of Variable Thermal Conductivity and Non-linear Thermal Radiation Past an Eyring Powell Nanofluid Flow with Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong

    2017-06-01

    Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)

  13. A case of radiation-induced generalized morphea with prominent mucin deposition and tenderness.

    PubMed

    Yanaba, Koichi; Umezawa, Yoshinori; Nakagawa, Hidemi

    2015-05-10

    Radiation-induced morphea is a rare complication of radiation therapy. The affected areas are generally restricted to the radiation field or to the nearby surrounding area. A 67-year-old Japanese woman with a history of right breast cancer followed by adjuvant radiotherapy was referred our hospital because of 7-year history of symmetrical indurated erythematous plaques on her trunk. Three months after completion of irradiation, erythematous plaques developed on her right chest and gradually spread accompanied tenderness. She did not have a history of trauma to her right chest. Laboratory testing was positive for antinuclear antibody test at 1: 640 but negative for anti-SS-A/B, anti-U1-RNP, anti-DNA, anti-Sm, anticentromere, anti-topoisomerase I antibodies, and Borrelia and cytomegalovirus infection. She had no Raynaud's phenomenon, sclerodactyly, or nail-fold bleeding. She did not have interstitial lung disease or other internal organ involvement. A biopsy specimen revealed reticular dermal fibrosis with thickened collagen bundles with superficial and deep perivascular infiltration of mononuclear cells. These findings were consistent with morphea. Furthermore, mucin deposition was present in the papillary dermis upon Alcian blue staining, which has been reported to be observed in generalized morphea. Consequently, a diagnosis of generalized morphea induced by radiotherapy was made. She had been treated with oral hydroxychloroquine sulfate, resulting in the resolution of tenderness but the erythematous plaques remained. To the best of our knowledge, this is the first report of radiation-induced generalized morphea with prominent mucin deposition. Hydroxychloroquine sulfate may be efficacious for radiation-induced morphea-associated tenderness.

  14. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  15. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect

    NASA Technical Reports Server (NTRS)

    Nagar, Shruti; Smith, Leslie E.; Morgan, William F.

    2003-01-01

    The detrimental effects associated with exposure to ionizing radiation have long been thought to result from the direct targeting of the nucleus leading to DNA damage; however, the emergence of concepts such as radiation-induced genomic instability and bystander effects have challenged this dogma. After cellular exposure to ionizing radiation, we have isolated a number of clones of Chinese hamster-human hybrid GM10115 cells that demonstrate genomic instability as measured by chromosomal destabilization. These clones show dynamic and persistent generation of chromosomal rearrangements multiple generations after the original insult. We hypothesize that these unstable clones maintain this delayed instability phenotype by secreting factors into the culture medium. To test this hypothesis we transferred filtered medium from unstable cells to unirradiated GM10115 cells. No GM10115 cells were able to survive this medium. This phenomenon by which GM10115 cells die when cultured in medium from chromosomally unstable GM10115 clones is the death-inducing effect. Medium transfer experiments indicate that a factor or factors is/are secreted by unstable cells within 8 h of growth in fresh medium and result in cell killing within 24 h. These factors are stable at ambient temperature but do not survive heating or freezing, and are biologically active when diluted with fresh medium. We present the initial description and characterization of the death-inducing effect. This novel epigenetic effect of radiation has implications for radiation risk assessment and for health risks associated with radiation exposure.

  16. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  17. Radiation-Induced Noncancer Risks in Interventional Cardiology: Optimisation of Procedures and Staff and Patient Dose Reduction

    PubMed Central

    Khairuddin Md Yusof, Ahmad

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted. PMID:24027768

  18. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  19. UV-Induced [2+2] Grafting-To Reactions for Polymer Modification of Cellulose.

    PubMed

    Conradi, Matthias; Ramakers, Gijs; Junkers, Thomas

    2016-01-01

    Benzaldehyde-functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p-hydroxy benzaldehyde. Via UV-induced Paterno-Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl-functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol(-1) , Đ = 1.12 and poly(N-isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol(-1) , Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV-induced grafting-to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of "smart" surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno-Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting-to approaches whereby its overall performance seems to be close to that of radical thiol-ene reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Efficient conversion of 3He(n,tp) and 10B(n, α7Li) reaction energies into far-ultraviolet radiation by noble gas excimers

    NASA Astrophysics Data System (ADS)

    Hughes, Patrick P.; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2011-03-01

    Previous work showed that the 3He(n , tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet (FUV) photons per reacted neutron. Here we report amplification of that signal by factors of 1000 when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to FUV radiation with efficiencies of up to 30 % . Our results have been placed on an absolute scale through calibrations at the NIST SURF III Synchrotron and Center for Neutron Research. We have also seen large neutron-induced FUV signals when the 3He gas in our system is replaced with a 10B film target; an experiment on substituting 3He with BF3 is underway. Our results suggest possibilities for high-efficiency, non-3He neutron detectors as an alternative to existing proportional counters.

  1. Salivary gland transfer to prevent radiation-induced xerostomia: a systematic review and meta-analysis.

    PubMed

    Sood, Amit J; Fox, Nyssa F; O'Connell, Brendan P; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand K; Hornig, Joshua D; Day, Terry A

    2014-02-01

    Salivary gland transfer (SGT) has the potential to prevent radiation-induced xerostomia. We attempt to analyze the efficacy of SGT in prevention of xerostomia and maintenance of salivary flow rates after radiation treatment (XRT). Systematic review and meta-analysis. Primary endpoint was efficacy of SGT in prevention of radiation-induced xerostomia. Secondary endpoint was change from baseline of unstimulated and stimulated salivary flow rates after XRT. Seven articles, accruing data from 12 institutions, met inclusion criteria. In a total of 177 patients at mean follow-up of 22.7months, SGT prevented radiation-induced xerostomia in 82.7% (95% CI, 76.6-87.7%) of patients. Twelve months after XRT, unstimulated and stimulated salivary flow rates rose to 88% and 76% of baseline values, respectively. In comparison to control subjects twelve months after XRT, SGT subjects' unstimulated (75% vs. 11%) and stimulated (86% vs. 8%) salivary flow rates were drastically higher in SGT patients. Salivary gland transfer appears to be highly effective in preventing the incidence of xerostomia in patients receiving definitive head and neck radiation therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Molecular aspects of ultraviolet radiation-induced apoptosis in the skin.

    PubMed

    Chow, Jeffrey; Tron, Victor A

    2005-12-01

    Apoptosis, or programmed cell death, is an essential physiological process that controls cell numbers during physiological processes, and eliminates abnormal cells that can potentially harm an organism. This review summarizes our current state of knowledge of apoptosis induction in skin by UV radiation. A review of the literature was undertaken focusing on cell death in the skin secondary to UV radiation. It is evident that a number of apoptotic pathways, both intrinsic and extrinsic, are induced following exposure to damaging UV radiation. Although our understanding of the apoptotic processes is gradually increasing, many important aspects remain obscure. These include interconnections between pathways, wavelength-specific differences and cell type differences.

  3. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  4. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory

  5. Activation cross sections of alpha-induced reactions on natIn for 117mSn production

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Saito, M.; Ukon, N.; Komori, Y.; Haba, H.

    2018-07-01

    The production of 117mSn by charged-particle induced reactions is an interesting topic for medical application. Production cross sections of α-induced reactions on natIn for 117mSn up to 50 MeV were measured using the stacked foil technique and activation method. The integral yield of 117mSn was estimated using the measured cross sections. The results were compared with experimental data investigated earlier and theoretical calculation. Measured cross sections for 113Sn and 116m,117,118mSb isotopes were also presented.

  6. Hyberbaric oxygen as sole treatment for severe radiation - induced haemorrhagic cystitis

    PubMed Central

    Dellis, Athanasios; Papatsoris, Athanasios; Kalentzos, Vasileios; Deliveliotis, Charalambos; Skolarikos, Andreas

    2017-01-01

    ABSTRACT Purpose To examine the safety and efficacy of hyperbaric oxygen as the primary and sole treatment for severe radiation-induced haemorrhagic cystitis. Materials and methods Hyperbaric oxygen was prospectively applied as primary treatment in 38 patients with severe radiation cystitis. Our primary endpoint was the incidence of complete and partial response to treatment, while the secondary endpoints included the duration of response, the correlation of treatment success-rate to the interval between the onset of haematuria and initiation of therapy, blood transfusion need and total radiation dose, the number of sessions to success, the avoidance of surgery and the overall survival. Results All patients completed therapy without complications with a mean follow-up of 29.33 months. Median number of sessions needed was 33. Complete and partial response rate was 86.8% and 13.2%, respectively. All 33 patients with complete response received therapy within 6 months of the haematuria onset. One patient needed cystectomy, while 33 patients were alive at the end of follow-up. Conclusions Our study suggests the early primary use of hyperbaric oxygen for radiation-induced severe cystitis as an effective and safe treatment option. PMID:28338304

  7. Radiation-Induced Liver Injury in Three-Dimensional Conformal Radiation Therapy (3D-CRT) for Postoperative or Locoregional Recurrent Gastric Cancer: Risk Factors and Dose Limitations.

    PubMed

    Li, Guichao; Wang, Jiazhou; Hu, Weigang; Zhang, Zhen

    2015-01-01

    This study examined the status of radiation-induced liver injury in adjuvant or palliative gastric cancer radiation therapy (RT), identified risk factors of radiation-induced liver injury in gastric cancer RT, analysed the dose-volume effects of liver injury, and developed a liver dose limitation reference for gastric cancer RT. Data for 56 post-operative gastric cancer patients and 6 locoregional recurrent gastric cancer patients treated with three-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) from Sep 2007 to Sep 2009 were analysed. Forty patients (65%) were administered concurrent chemotherapy. Pre- and post-radiation chemotherapy were given to 61 patients and 43 patients, respectively. The radiation dose was 45-50.4 Gy in 25-28 fractions. Clinical parameters, including gender, age, hepatic B virus status, concurrent chemotherapy, and the total number of chemotherapy cycles, were included in the analysis. Univariate analyses with a non-parametric rank test (Mann-Whitney test) and logistic regression test and a multivariate analysis using a logistic regression test were completed. We also analysed the correlation between RT and the changes in serum chemistry parameters [including total bilirubin, (TB), direct bilirubin (D-TB), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum albumin (ALB)] after RT. The Child-Pugh grade progressed from grade A to grade B after radiotherapy in 10 patients. A total of 16 cases of classic radiation-induced liver disease (RILD) were observed, and 2 patients had both Child-Pugh grade progression and classic RILD. No cases of non-classic radiation liver injury occurred in the study population. Among the tested clinical parameters, the total number of chemotherapy cycles correlated with liver function injury. V35 and ALP levels were significant predictive factors for radiation liver injury. In 3D-CRT for gastric cancer patients

  8. Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki

    2011-02-01

    Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.

  9. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  10. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  11. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  12. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  13. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  14. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  15. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors.

    PubMed

    Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan

    2011-10-07

    We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e.  AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.

  17. RADIATION-INDUCED ACUTE SEBORRHEIC MANIFESTATIONS AFTER RADIOTHERAPY FOR BASOCELLULAR EPITHELIOMA. CURE WITH ANTIBIOTICS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degos, R.; Duverne, J.; Picot, Ch.

    1961-04-01

    An unusual case of radiodermatitis in a 58-yr-old woman operated on for basocellular epithelioma of the inner aspect of the right eyelid is described. Postoperative radiation treatment was given as follows: 2000-r doses of unfiltered 50-kv x rays, three times, one week apart, for a total of 6000 r. After 15 days, slight ulceration of the irradiated portion and marked dermatitis of the surrounding skin area were noted. Local application of solution and ointments provided analgesia but did not cure the condition, which spread from the cheek to nose and chin, and was accompanied by seborrhea, over a period ofmore » 16 months. Bacterial examination revealed staphylococci, which promptly responded to antibiotic (erythromycin) treatment. A similarity was noted between this patient's condition and the more common reactions of children to scalp radiation treatment for ringworm. Other cases are cited to show occasional unusual side- effects of radiation treatment, and the possibility that the present case represents a unique type of skin response to radiation is discussed. Allergy alone, it is contended, probably does not explain the reaction observed, but a bacterial infection was involved in the reaction. It is concluded that this case and the two others mentioned indicate that other factors are of importance, the nature of which needs to be determined by further study. (BBB)« less

  18. Role of Ferulic Acid in the Amelioration of Ionizing Radiation Induced Inflammation: A Murine Model

    PubMed Central

    Das, Ujjal; Manna, Krishnendu; Sinha, Mahuya; Datta, Sanjukta; Das, Dipesh Kr; Chakraborty, Anindita; Ghosh, Mahua; Saha, Krishna Das; Dey, Sanjit

    2014-01-01

    Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation. PMID:24854039

  19. Radiation induces premature chromatid separation via the miR-142-3p/Bod1 pathway in carcinoma cells.

    PubMed

    Pan, Dong; Du, Yarong; Ren, Zhenxin; Chen, Yaxiong; Li, Xiaoman; Wang, Jufang; Hu, Burong

    2016-09-13

    Radiation-induced genomic instability plays a vital role in carcinogenesis. Bod1 is required for proper chromosome biorientation, and Bod1 depletion increases premature chromatid separation. MiR-142-3p influences cell cycle progression and inhibits proliferation and invasion in cervical carcinoma cells. We found that radiation induced premature chromatid separation and altered miR-142-3p and Bod1 expression in 786-O and A549 cells. Overexpression of miR-142-3p increased premature chromatid separation and G2/M cell cycle arrest in 786-O cells by suppressing Bod1 expression. We also found that either overexpression of miR-142-3p or knockdown of Bod1 sensitized 786-O and A549 cells to X-ray radiation. Overexpression of Bod1 inhibited radiation- and miR-142-3p-induced premature chromatid separation and increased resistance to radiation in 786-O and A549 cells. Taken together, these results suggest that radiation alters miR-142-3p and Bod1 expression in carcinoma cells, and thus contributes to early stages of radiation-induced genomic instability. Combining ionizing radiation with epigenetic regulation may help improve cancer therapies.

  20. Gemicitabine-induced radiation recall phenomenon in 2 distinctive sites on the same patient.

    PubMed

    Zhang, Lulu; Patel, Raina; Mehdi, Syed

    2014-05-01

    Radiation recall phenomenon is an acute inflammatory reaction that develops in previously irradiated areas after administration of inciting agents systemically. The most common agents are anticancer drugs. Gemcitabine, a fluorine-substituted deoxycytidine analog, is widely used as a chemotherapy medication. Its antitumor effect results from the blockade of DNA synthesis and DNA repair. It has been used in advanced pancreatic, non-small-cell lung, bladder, and ovarian cancers; soft-tissue sarcoma; and non-Hodgkin lymphoma. It has occasionally been reported to cause radiation recall phenomenon. The time between radiation and recall may range from weeks to almost a year.

  1. No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi

    Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less

  2. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    PubMed

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  3. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  4. Childhood reactions to terrorism-induced trauma: a review of the past 10 years.

    PubMed

    Fremont, Wanda P

    2004-04-01

    To summarize the literature about the clinical presentation and treatment interventions of childhood reactions to terrorism-induced trauma. The literature on children's responses to terrorist activities was reviewed. Over the past 10 years, more research has emerged on the subject of terrorism in children. Many of the effects of terrorism-induced trauma are similar to the effects of natural and man-made trauma. Children's responses include acute stress disorder, posttraumatic stress disorder, anxiety, depression, regressive behaviors, separation problems, sleep difficulties, and behavioral problems. However, several aspects of terrorist attacks result in unique stressors and reactions and pose specific challenges for treatment. The unpredictable, indefinite threat of terrorist events, the profound effect on adults and communities, and the effect of extensive terrorist-related media coverage exacerbates underlying anxieties and contributes to a continuous state of stress and anxiety. Intervention strategies include early community-based interventions, screening of children at risk, triage and referral, and trauma-loss-focused treatment programs. Advances have been made in the research of childhood reactions to terrorism-induced trauma. Further research is needed to identify children at risk and to determine the long-term impact on children's development. Although the preliminary results of interventions developed to help children are promising, outcome data have not been examined, and further research is needed to evaluate their effectiveness.

  5. Radiation-induced meningiomas: Experience at the Mount Sinai Hospital and review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, M.J.; Wolfe, D.E.; Lau, T.S.

    1991-10-01

    From the records of The Mount Sinai Hospital, seven cases which met established criteria for radiation-induced meningiomas were identified. This represents the largest series of radiogenic meningiomas documented in North America and includes both intracranial and intraspinal tumors. The records and pathological specimens were reviewed and these data analyzed with other cases retrieved from the world literature. This study reveals that radiation-induced meningiomas can be categorized into three groups based on the amount of radiation administered: (1) low dose; (2) moderate dose and miscellaneous; and (3) high dose. The overwhelming majority of cases had received low-dose irradiation (800 rad) tomore » the scalp for tinea capitis and the second largest group resulted from high-dose irradiation for primary brain tumors (greater than 2000 rad). The unique features distinguishing radiation-induced meningiomas from other meningiomas are reviewed. Although histologically atypical tumors were common in this series, overt malignancy was not encountered. The preoperative management of these lesions should include angiography to evaluate for large-vessel occlusive vasculopathy, a known association of meningiomas induced by high-dose irradiation. Given the propensity these tumors possess for recurrence, a wide bony and dural margin is recommended at surgical resection. 102 references.« less

  6. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Effect of radiation-induced amorphization on smectite dissolution.

    PubMed

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  8. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  9. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-03-05

    Exposure to high-energy particle radiation (HZE) may cause oxidative stress and cognitive impairment in the same manner that seen in aged mice. This phenomenon has raised the concerns about the safety of an extended manned mission into deep space where a significant portion of the radiation burden would come from HZE particle radiation. The present study aimed at investigating the role of alpha-lipoic acid against space radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body irradiation of mice with high-LET (56)Fe beams (500 MeV/nucleon, 1.5 Gy) substantially impaired the reference memory at 30 day post-irradiation; however, no significant effect was observed on motor activities of mice. Acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such memory dysfunction. Radiation-induced apoptotic damage in cerebellum was examined using a neuronal-specific terminal deoxynucleotidyl transferase-mediated nick end-labeling method (NeuroTACS). Radiation-induced apoptotic and necrotic cell death of granule cells and Purkinje cells were inhibited significantly by alpha-lipoic acid pretreatment. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of DNA damage (comet tail movement and serum 8-OHdG), lipid proxidation products (MDA+HAE) and protein carbonyls in mice cerebellum. Further, radiation-induced decline of non-protein sulfhydryl (NP-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Results clearly indicate that alpha-lipoic acid is a potent neuroprotective antioxidant. Moreover, present finding also support the idea suggesting the cerebellar

  10. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  11. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays.

    PubMed

    Chi, Cuiping; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Urano, Shiro; Anzai, Kazunori

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation.

  12. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  13. Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2017-10-01

    We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.

  14. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes.

    PubMed

    Katoch, Omika; Kumar, Arun; Adhikari, Jawahar S; Dwarakanath, Bilikere S; Agrawala, Paban K

    2013-12-12

    Sulforaphane, present in cruciferous vegetables such as broccoli, is a dietary anticancer agent. Sulforaphane, added 2 or 20 h following phytohemaglutinin stimulation to cultured peripheral blood lymphocytes of individuals accidentally exposed to mixed γ and β-radiation, reduced the micronucleus frequency by up to 70%. Studies with whole blood cultures obtained from healthy volunteers confirmed the ability of sulforaphane to ameliorate γ-radiation-induced genotoxicity and to reduce micronucleus induction by other DNA-damaging anticancer agents, such as bleomycin and doxorubicin. This reduction in genotoxicity in lymphocytes treated at the G(0) or G(1) stage suggests a role for sulforaphane in modulating DNA repair. Sulforaphane also countered the radiation-induced increase in lymphocyte HDAC activity, to control levels, when cells were treated 2 h after exposure, and enhanced histone H4 acetylation status. Sulforaphane post-irradiation treatment enhanced the CD 34(+)Lin(-) cell population in culture. Sulforaphane has therapeutic potential for management of the late effects of radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling

    PubMed Central

    Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony

    2013-01-01

    The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922

  16. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  17. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  18. Occupational therapy intervention with radiation-induced brachial plexopathy.

    PubMed

    Cooper, J

    1998-06-01

    Occupational therapy intervention minimizes disability and facilitates optimum functional independence. The range of dysfunction experienced by patients with radiation-induced brachial plexopathy includes physical, psychological, emotional and social difficulties. The occupational therapist works as part of the multiprofessional team to use a client-centred, problem-solving approach to address the problems and enable the patient to adapt to the altered body image and disabilities.

  19. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    NASA Astrophysics Data System (ADS)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  20. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa)

    NASA Astrophysics Data System (ADS)

    Shi, Jinming; Lu, Weihong; Sun, Yeqing

    2014-04-01

    Rice seeds, after space flight and low dose heavy ion radiation treatment were cultured on ground. Leaves of the mature plants were obtained for examination of genomic/epigenomic mutations by using amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) method, respectively. The mutation sites were identified by fragment recovery and sequencing. The heritability of the mutations was detected in the next generation. Results showed that both space flight and low dose heavy ion radiation can induce significant alterations on rice genome and epigenome (P < 0.05). For both genetic and epigenetic assays, while there was no significant difference in mutation rates and their ability to be inherited to the next generation, the site of mutations differed between the space flight and radiation treated groups. More than 50% of the mutation sites were shared by two radiation treated groups, radiated with different LET value and dose, while only about 20% of the mutation sites were shared by space flight group and radiation treated group. Moreover, in space flight group, we found that DNA methylation changes were more prone to occur on CNG sequence than CG sequence. Sequencing results proved that both space flight and heavy ion radiation induced mutations were widely spread on rice genome including coding region and repeated region. Our study described and compared the characters of space flight and low dose heavy ion radiation induced genomic/epigenomic mutations. Our data revealed the mechanisms of application of space environment for mutagenesis and crop breeding. Furthermore, this work implicated that the nature of mutations induced under space flight conditions may involve factors beyond ion radiation.

  1. The standardization of acupuncture treatment for radiation-induced xerostomia: A literature review.

    PubMed

    Li, Ling-Xin; Tian, Guang; He, Jing

    2016-07-01

    To assess the relative standardization of acupuncture protocols for radiation-induced xerostomia. A literature search was carried out up to November 10, 2012 in the databases PubMed/MEDLINE, EMBASE and China National Knowledge Infrastruction with the terms: radiation-induced xerostomia, acupuncture, acupuncture treatment, and acupuncture therapy. Five ancient Chinese classic acupuncture works were also reviewed with the keywords "dry mouth, thirst, dry tongue, dry eyes and dry lips" to search the effective acupuncture points for dry mouth-associated symptoms in ancient China. Twenty-two full-text articles relevant to acupuncture treatment for radiation-induced xerostomia were included and a total of 48 acupuncture points were searched in the 5 ancient Chinese classic acupuncture works, in which the most commonly used points were Chengjiang (CV24), Shuigou (GV 26), Duiduan (GV 27), Jinjin (EX-HN 12), and Yuye (EX-HN 13) on head and neck, Sanjian (LI 3), Shangyang (LI 1), Shaoshang (LU 11), Shaoze (SI 1), Xialian (LI 8) on hand, Fuliu (KI 7), Dazhong (KI 4), Zuqiaoyin (GB 44), Taichong (LR 3), Zhaohai (KI 6) on foot, Burong (ST 19), Zhangmen (LR 13), Tiantu (CV 22), Qimen (LR 14) on abdomen, Feishu (BL 13), Danshu (BL 19), Xiaochaogshu (BL 27), Ganshu (BL 18) on back, Shenmen (TF 4), Shen (CO10, Kidney), Yidan (CO11, Pancreas) and Pi (CO13, Spleen) on ear. There were considerable heterogeneities in the current acupuncture treatment protocols for radiation-induced xerostomia. Based on the results of the review and the personal perspectives, the authors provide a recommendation for manual acupuncture protocols in treating radiationinduced xerostomia patients with head and neck cancer.

  2. Thermal Reactions Between Sulfur Dioxide and H202 and Their Relevance to the Jovian Icy Satellites and Other Small Bodies

    NASA Technical Reports Server (NTRS)

    Loefler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions occurring between 50 and 130 K in solid H2O + H2O2 + SO2 samples. In our studies, we find that warming our three component mixtures induces a thermal reaction that produces SO4(2-), and this reaction appears to consume equal amounts of H2O2 and SO2. We suspect that the results may explain some of the observations related to the presence and distribution H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto. If other molecules prove to be reactive with H2O2 at these or at even lower temperatures, then it may also explain why H2O2 has been absent from surfaces of many of the small icy bodies that are known to be exposed to ionizing radiation.

  3. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.

    PubMed

    Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M

    2018-04-30

    Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.

  4. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  5. Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.

    2016-01-15

    On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less

  6. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis.

    PubMed

    Borab, Zachary; Mirmanesh, Michael D; Gantz, Madeleine; Cusano, Alessandro; Pu, Lee L Q

    2017-04-01

    Every year, 1.2 million cancer patients receive radiation therapy in the United States. Late radiation tissue injury occurs in an estimated 5-15% of these patients. Tissue injury can include skin necrosis, which can lead to chronic nonhealing wounds. Despite many treatments available to help heal skin necrosis such as hyperbaric oxygen therapy, no clinical guidelines exist and evidence is lacking. The purpose of this review is to identify and comprehensively summarize studies published to date to evaluate the effectiveness of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. Adhering to PRISMA guidelines, a systematic review of currently published articles was performed, evaluating the use of hyperbaric oxygen to treat skin necrosis. Eight articles were identified, including one observational cohort, five case series, and two case reports. The articles describe changes in symptoms and alteration in wound healing of radiation-induced skin necrosis after treatment with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is a safe intervention with promising outcomes; however, additional evidence is needed to endorse its application as a relevant therapy in the treatment of radiation-induced skin necrosis. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  8. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  9. Gutenberg-Richter-type relation for laboratory fracture-induced electromagnetic radiation.

    PubMed

    Rabinovitch, A; Frid, V; Bahat, D

    2002-01-01

    The fractal nature of electromagnetic radiation induced by uniaxial and triaxial rock fracture is considered. Both the well-known Gutenberg-Richter-type and the Benioff strain-release relationship, for earthquakes and starquakes, are shown to extend to the microscale (millimeters-centimeters). Results show that both the b value of the Gutenberg-Richter-type law and the slope of the Benioff strain-release relationship of the electromagnetic radiation signals are similar to values known for earthquakes. These results imply that a common mechanism is acting at all scales.

  10. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    PubMed

    Wang, Jingzi; Zhang, Youwei; Xu, Kai; Mao, Xiaobei; Xue, Lijun; Liu, Xiaobei; Yu, Hongjun; Chen, Longbang; Chu, Xiaoyuan

    2014-01-01

    Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR). Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays), and chronic exposure for 10 days (0.05Gy/d×10d). High-performance liquid chromatography (HPLC) and MeDIP-quantitative polymerase chain reaction (qPCR) were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP) and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15) were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  11. Tangeretin enhances radiosensitivity and inhibits the radiation-induced epithelial-mesenchymal transition of gastric cancer cells.

    PubMed

    Zhang, Xukui; Zheng, Luming; Sun, Yinggang; Wang, Tianxiao; Wang, Baocheng

    2015-07-01

    Irradiation has been reported to increase radioresistance and epithelial-mesenchymal transition (EMT) in gastric cancer (GC) cells. The Notch pathway is critically implicated in cancer EMT and radioresistance. In the present study, we investigated the use of a Notch-1 inhibiting compound as a novel therapeutic candidate to regulate radiation-induced EMT in GC cells. According to previous screening, tangeretin, a polymethoxylated flavonoid from citrus fruits was selected as a Notch-1 inhibitor. Tangeretin enhanced the radiosensitivity of GC cells as demonstrated by MTT and colony formation assays. Tangeretin also attenuated radiation-induced EMT, invasion and migration in GC cells, accompanied by a decrease in Notch-1, Jagged1/2, Hey-1 and Hes-1 expressions. Tangeretin triggered the upregulation of miR-410, a tumor-suppressive microRNA. Furthermore, re-expression of miR-410 prevented radiation-induced EMT and cell invasion. An in vivo tumor xenograft model confirmed the antimetastasis effect of tangeretin as we observed in vitro. In nude mice, tumor size was considerably diminished by radiation plus tangeretin co-treatment. Tangeretin almost completely inhibited lung metastasis induced by irradiation. Tangeretin may be a novel antimetastatic agent for radiotherapy.

  12. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  13. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.

    PubMed

    Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F

    2012-06-01

    Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims.  To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also

  14. Low dose radiation prevents doxorubicin-induced cardiotoxicity

    PubMed Central

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-01

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling. PMID:29416617

  15. Low dose radiation prevents doxorubicin-induced cardiotoxicity.

    PubMed

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-02

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.

  16. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  17. Amelioration of Radiation-Induced Hematopoietic and Gastrointestinal Damage by Ex-RAD (trademark) in Mice

    DTIC Science & Technology

    2012-06-06

    recovery from radiation-induced neutropenia Figure 3 shows the protective effects of Ex-RAD prophy- laxis on acute radiation-induced cytopenia. We used a... neutropenia on Day 4 post-TBI. For platelets, the nadir was observed between Days 7 to 17 post-TBI in the vehicle-treated group (Fig. 3d). Peripheral blood cell...recovery from neutropenia and restored blood Fig. 7. TUNEL staining in the jejunum sections from Ex-RAD-treated and vehicle-treated groups 24 h post

  18. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    PubMed

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2017-11-01

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP) + /vimentin + and EGFP + /α-smooth muscle actin (SMA) + coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.

  19. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice

    PubMed Central

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K.; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R.; Manda, Kailash; Raj, Hanumantharao G.; Parmar, Virinder S.; Dwarakanath, Bilikere S.

    2016-01-01

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages. PMID:27849061

  20. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    DTIC Science & Technology

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA