Sample records for radiation induced tissue

  1. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  2. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  3. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage.

    PubMed

    Chung, Yih-Lin; Pui, Newman N M

    2015-01-01

    We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.

  4. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  5. Radiation-induced changes in intestinal and tissue-nonspecific alkaline phosphatase: implications for recovery after radiation therapy.

    PubMed

    Rentea, Rebecca M; Lam, Vy; Biesterveld, Ben; Fredrich, Katherine M; Callison, Jennifer; Fish, Brian L; Baker, John E; Komorowski, Richard; Gourlay, David M; Otterson, Mary F

    2016-10-01

    Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle

    PubMed Central

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  7. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  8. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  9. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer.

    PubMed

    Son, Yeonghoon; Lee, Hae June; Rho, Jin Kyung; Chung, Soo Young; Lee, Chang Geun; Yang, Kwangmo; Kim, Sung Ho; Lee, Minyoung; Shin, In Sik; Kim, Joong Sun

    2015-07-05

    Silibinin has been known for its role in anti-cancer and radio-protective effect. Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. Thus, this study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model. In this study, we examined the ability of silibinin to mitigate lung injury in, and improve survival of, C57BL/6 mice given 13 Gy thoracic irradiation and silibinin treatments orally at 100 mg/kg/day for seven days after irradiation. In addition, Lewis lung cancer (LLC) cells were injected intravenously in C57BL/6 mice to generate lung tumor nodules. Lung tumor-bearing mice were treated with lung radiation therapy at 13 Gy and with silibinin at a dose of 100 mg/day for seven days after irradiation. Silibinin was shown to increase mouse survival, to ameliorate radiation-induced hemorrhage, inflammation and fibrosis in lung tissue, to reduce the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and to reduce inflammatory cell infiltration in the respiratory tract. In LLC tumor injected mice, lung tissue from mice treated with both radiation and silibinin showed no differences compared to lung tissue from mice treated with radiation alone. Silibinin treatment mitigated the radiation-induced lung injury possibly by reducing inflammation and fibrosis, which might be related with the improved survival rate. Silibinin might be a useful agent for lung cancer patients as a non-toxic complementary approach to alleviate the side effects by thorax irradiation.

  10. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak G.; Miller L.; Zorlu, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{submore » 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.« less

  11. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    PubMed

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    PubMed

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  13. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seied Rabi Mehdi

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-basedmore » treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal

  14. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    PubMed

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  15. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    PubMed Central

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  16. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats.

    PubMed

    Kale, Aydemir; Piskin, Özcan; Bas, Yilmaz; Aydin, Bengü Gülhan; Can, Murat; Elmas, Özlem; Büyükuysal, Çagatay

    2018-04-24

    Extensive research has been focused on radiation-induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of quercetin in an experimental radiation-induced brain injury. A total of 32 adult male Wistar-Albino rats were randomly divided into four groups (control, quercetin, radiation, and radiation+quercetin groups, with eight rats in each group). Doses (50 mg/kg) of quercetin were administered to the animals in the quercetin and radiation+quercetin groups; radiation and radiation+quercetin groups were exposed to a dose of 20 Gy to the cranium region. Tissue samples, and biochemical levels of tissue injury markers in the four groups were compared. In all measured parameters of oxidative stress, administration of quercetin significantly demonstrated favorable effects. Both plasma and tissue levels of malondialdehyde and total antioxidant status significantly changed in favor of antioxidant activity. Histopathological evaluation of the tissues also demonstrated a significant decrease in cellular degeneration and infiltration parameters after quercetin administration. Quercetin demonstrated significant neuroprotection after radiation-induced brain injury. Further studies of neurological outcomes under different experimental settings are required in order to achieve conclusive results.

  17. Radioiodide induces apoptosis in human thyroid tissue in culture.

    PubMed

    Russo, Eleonora; Guerra, Anna; Marotta, Vincenzo; Faggiano, Antongiulio; Colao, Annamaria; Del Vecchio, Silvana; Tonacchera, Massimo; Vitale, Mario

    2013-12-01

    Radioiodide ((131)I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest (131)I dose. We developed a method to study the effects of (131)I in human thyroid tissue in culture, by which we demonstrated that (131)I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm(3) were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. (131)I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that (131)I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by (131)I.

  18. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    PubMed

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  19. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  20. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  1. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  2. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  3. Radiation Effect on Human Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered

  4. Radiation-Induced Oral Mucositis

    PubMed Central

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment. PMID:28589080

  5. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.

    PubMed

    Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H

    2009-06-01

    In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.

  6. Cerenkov radiation-induced phototherapy for depth-independent cancer treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Achilefu, Samuel; Kotagiri, Nalinikanth

    2017-02-01

    Light emitted as the result of high-energy particle transport through biological tissues (Cerenkov radiation) can be exploited for noninvasive diagnostic imaging using high sensitivity scientific cameras. We have investigated the energy transfer potential of Cerenkov radiation, discovering a new phototherapeutic technique for treatment of localized and disseminated cancers. This technique, Cerenkov radiation-induced phototherapy (CRIT), like photodynamic therapy, requires the presence of both light and photosensitive agent together to induce cytotoxicity and effective cancer treatment. But unlike conventional phototherapy strategies in which tissue ablation or activation of photoactive molecules is limited to superficial structures, radiation-induced phototherapy enables phototherapy delivery to the tumor sites throughout the body. Titanium oxide nanoparticles, which produce cytotoxic reactive oxygen species upon irradiation with UV light, were targeted to tumor tissue by surface decoration with transferrin. Subsequent administration of tumor-avid radiotracer, 18-fluorodeoxyglucose (18FDG) provided localized UV light source via Cerenkov radiation. Treatment of tumor-bearing mice with the combination of Titanium nanoparticles and 18FDG resulted in effective reduction in tumor growth, while individual agents were not therapeutic. This new strategy in cancer therapy extends the reach of phototherapy beyond what was previously possible, with potential for treatment of cancer metastases and rescue from treatment resistance.

  7. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer

    PubMed Central

    King, Suzanne N.; Dunlap, Neal E.; Tennant, Paul A.; Pitts, Teresa

    2017-01-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia is comprised of a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  8. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.

  9. Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis

    PubMed Central

    Olcina, Monica M.; Giaccia, Amato J.

    2016-01-01

    Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail. PMID:27548524

  10. Measurement of Proton-induced Radiation in Animal Tissue

    NASA Astrophysics Data System (ADS)

    Sękowski, P.; Skwira-Chalot, I.; Matulewicz, T.

    Hadron therapy, because of the dosimetric and radiobiological advantages, is more and more often used in tumour treatment. This treatment method leads also to the radioactive effects induced by energetic protons on nuclei. Nuclear reactions may lead to the production of radioactive isotopes. In the present experiment, two animal (human-like) tissue samples were irradiated with 60 MeV protons. Gamma-ray spectroscopy and lifetime measurements allowed identifying isotopes produced during the irradiation, e.g. $^{18}$F and $^{34m}$Cl.

  11. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  12. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  13. Mechanics of the acoustic radiation force in tissue-like solids

    NASA Astrophysics Data System (ADS)

    Dontsov, Egor V.

    The acoustic radiation force (ARF) is a phenomenon affiliated with the nonlinear effects of high-intensity wave propagation. It represents the mean momentum transfer from the sound wave to the medium, and allows for an effective computation of the mean motion (e.g. acoustic streaming in fluids) induced by a high-intensity sound wave. Nowadays, the high-intensity focused ultrasound is frequently used in medical diagnosis applications due to its ability to "push" inside the tissue with the radiation body force and facilitate the local quantification of tissue's viscoelastic properties. The main objectives of this study include: i) the theoretical investigation of the ARF in fluids and tissue-like solids generated respectively by the amplitude modulated plane wave and focused ultrasound; ii) computation of the nonlinear acoustic wave propagation when the amplitude of the focused ultrasound field is modulated by a low-frequency signal, and iii) modeling of the ARF-induced motion in tissue-like solids for the purpose of quantifying their nonlinear elasticity via the magnitude of the ARF. Regarding the first part, a comparison with the existing theory of the ARF reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam. In the second part, the hybrid time-frequency domain algorithm for the numerical analysis of the nonlinear wave equation is proposed. The approach is validated by comparing the results to the finite-difference modeling in time domain. Regarding the third objective, the Fourier transform approach is used to compute the ARF-induced shear wave motion in tissue-mimicking phantoms. A comparison between the experiment (tests performed at the Mayo Clinic) and model permitted the estimation of a particular

  14. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  15. [Forensic medical implications of histomorphological changes in the bone and cartilage tissues under effect of radiation].

    PubMed

    Osipenkova-Vichtomova, T K

    2013-01-01

    The objective of the present work was to study roentgenological, microscopic, and histomorphological changes in the bone and cartilage tissues under effect of different doses of gamma-ray radiation from Gammatron-2 (GUT Co 400) and betatron bremsstrahlung radiation (25 MeV). The total radiation dose varied from 9.6 Gy to 120 Gy per unit area during 5-8 weeks. The study included 210 patients at the age from 7 to 82 years (97 men and 113 women). Histomorphological studies were carried out using samples of bone and cartilage tissues taken from different body regions immediately after irradiation and throughout the follow-up period of up to 4 years 6 months. Control samples were the unexposed bone and cartilage tissues from the same subjects (n = 14). The tissues were stained either with eosin and hematoxylin or by Van Gieson's and Mallory's methods. Gomori's nonspecific staining was used to detect acid and alkaline phosphatase activities. Moreover, argyrophilic substance was identified in the cartilaginous tissue. Best's carmine was used for glycogen staining and Weigert's stain for elastic fibers. Metachromasia was revealed by toluidine blue staining and fat by the sudan III staining technique. In addition, the ultrastructure of cartilaginous tissue was investigated. Taken together, these methods made it possible to identify the signs of radiation-induced damage to the bone and cartilage tissues in conjunction with complications that are likely to develop at different periods after irradiation including such ones as spontaneous fractures, deforming arthrosis and radiation-induced tumours.

  16. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    NASA Technical Reports Server (NTRS)

    Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

    2002-01-01

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

  17. Space Radiation Program Element Tissue Sharing Forum

    NASA Technical Reports Server (NTRS)

    Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.

    2016-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation

  18. Pravastatin reduces radiation-induced damage in normal tissues.

    PubMed

    Doi, Hiroshi; Matsumoto, Seiji; Odawara, Soichi; Shikata, Toshiyuki; Kitajima, Kazuhiro; Tanooka, Masao; Takada, Yasuhiro; Tsujimura, Tohru; Kamikonya, Norihiko; Hirota, Shozo

    2017-05-01

    Pravastatin is an inhibitor of 3-hydroxy-3-methyl- glutaryl-coenzyme A reductase that has been reported to have therapeutic applications in a range of inflammatory conditions. The aim of the present study was to assess the radioprotective effects of pravastatin in an experimental animal model. Mice were divided into two groups: The control group received ionizing radiation with no prior medication, while the pravastatin group received pravastatin prior to ionizing radiation. Pravastatin was administered orally at 30 mg/kg body weight in drinking water at 24 and 4 h before irradiation. Intestinal crypt epithelial cell survival and the incidence of apoptosis in the intestine and lung were measured post-irradiation. The effect of pravastatin on intestinal DNA damage was determined by immunohistochemistry. Finally, the effect of pravastatin on tumor response to radiotherapy was examined in a mouse mesothelioma xenograft model. Pravastatin increased the number of viable intestinal crypts and this effect was statistically significant in the ileum (P<0.0001). The pravastatin group showed significantly lower apoptotic indices in all examined parts of the intestine (P<0.0001) and tended to show reduced apoptosis in the lung. Pravastatin reduced the intestinal expression of ataxia-telangiectasia mutated and gamma-H2AX after irradiation. No apparent pravastatin-related differences were observed in the response of xenograft tumors to irradiation. In conclusion, pravastatin had radioprotective effects on the intestine and lung and reduced radiation-induced DNA double-strand breaks. Pravastatin may increase the therapeutic index of radiotherapy.

  19. Effects of soft X-ray radiation damage on paraffin-embedded rat tissues supported on ultralene: a chemical perspective.

    PubMed

    Bedolla, Diana E; Mantuano, Andrea; Pickler, Arissa; Mota, Carla Lemos; Braz, Delson; Salata, Camila; Almeida, Carlos Eduardo; Birarda, Giovanni; Vaccari, Lisa; Barroso, Regina Cély; Gianoncelli, Alessandra

    2018-05-01

    Radiation damage is an important aspect to be considered when analysing biological samples with X-ray techniques as it can induce chemical and structural changes in the specimens. This work aims to provide new insights into the soft X-ray induced radiation damage of the complete sample, including not only the biological tissue itself but also the substrate and embedding medium, and the tissue fixation procedure. Sample preparation and handling involves an unavoidable interaction with the sample matrix and could play an important role in the radiation-damage mechanism. To understand the influence of sample preparation and handling on radiation damage, the effects of soft X-ray exposure at different doses on ultralene, paraffin and on paraffin-embedded rat tissues were studied using Fourier-transform infrared (FTIR) microspectroscopy and X-ray microscopy. Tissues were preserved with three different commonly used fixatives: formalin, glutaraldehyde and Karnovsky. FTIR results showed that ultralene and paraffin undergo a dose-dependent degradation of their vibrational profiles, consistent with radiation-induced oxidative damage. In addition, formalin fixative has been shown to improve the preservation of the secondary structure of proteins in tissues compared with both glutaraldehyde and Karnovsky fixation. However, conclusive considerations cannot be drawn on the optimal fixation protocol because of the interference introduced by both substrate and embedding medium in the spectral regions specific to tissue lipids, nucleic acids and carbohydrates. Notably, despite the detected alterations affecting the chemical architecture of the sample as a whole, composed of tissue, substrate and embedding medium, the structural morphology of the tissues at the micrometre scale is essentially preserved even at the highest exposure dose.

  20. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  1. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  2. EFFECTS OF X RADIATION ON THE REPRODUCTION OF SMALLPOX VACCINE VIRUS IN TISSUE CULTURE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamalyan, L.A.; Ter-Pogosyan, R.A.

    1963-01-01

    Infectious and hemagglutinic properties of smallpox vaccine virus in chick embryo cutaneous-muscular tissue irradiated with 20-kr of x radiation were investigated. It was found that the radiation induced increased virus reproduction. Accumulation of hemagglutinin did not differ in irradiated and nonirradiated cultures. (R.V.J.)

  3. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  4. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  5. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced

  6. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.

    PubMed

    Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F

    2012-06-01

    Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims.  To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also

  7. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.

    PubMed

    Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin

    2014-01-01

    Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.

  8. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?

    PubMed

    Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur

    2016-09-01

    Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF

  9. Space Radiation Program Element Tissue Sharing Initiative

    NASA Technical Reports Server (NTRS)

    Wu, H.; Huff, J. L.; Simonsen, L. C.

    2014-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.

  10. Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients

    PubMed Central

    Jelonek, Karol; Pietrowska, Monika; Ros, Malgorzata; Zagdanski, Adam; Suchwalko, Agnieszka; Polanska, Joanna; Marczyk, Michal; Rutkowski, Tomasz; Skladowski, Krzysztof; Clench, Malcolm R.; Widlak, Piotr

    2014-01-01

    Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation. PMID:24747595

  11. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the

  12. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  13. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  14. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  15. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  16. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis.

    PubMed

    Borab, Zachary; Mirmanesh, Michael D; Gantz, Madeleine; Cusano, Alessandro; Pu, Lee L Q

    2017-04-01

    Every year, 1.2 million cancer patients receive radiation therapy in the United States. Late radiation tissue injury occurs in an estimated 5-15% of these patients. Tissue injury can include skin necrosis, which can lead to chronic nonhealing wounds. Despite many treatments available to help heal skin necrosis such as hyperbaric oxygen therapy, no clinical guidelines exist and evidence is lacking. The purpose of this review is to identify and comprehensively summarize studies published to date to evaluate the effectiveness of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. Adhering to PRISMA guidelines, a systematic review of currently published articles was performed, evaluating the use of hyperbaric oxygen to treat skin necrosis. Eight articles were identified, including one observational cohort, five case series, and two case reports. The articles describe changes in symptoms and alteration in wound healing of radiation-induced skin necrosis after treatment with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is a safe intervention with promising outcomes; however, additional evidence is needed to endorse its application as a relevant therapy in the treatment of radiation-induced skin necrosis. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Guidelines for Finite Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media

    PubMed Central

    Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.

    2017-01-01

    Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760

  18. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  19. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  20. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  1. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering.

    PubMed

    Moussa, Lara; Usunier, Benoît; Demarquay, Christelle; Benderitter, Marc; Tamarat, Radia; Sémont, Alexandra; Mathieu, Noëlle

    2016-10-01

    Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.

  2. RADIOFREQUENCY RADIATION-INDUCED CALCIUM-ION-EFFLUX ENHANCEMENT FROM HUMAN AND OTHER NEUROBLASTOMA CELLS IN CULTURE

    EPA Science Inventory

    In order to test the generality of radiofrequency-radiation-induced change in alteration 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption ra...

  3. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.

  4. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.

    1990-05-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the othermore » two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms.« less

  5. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE PAGES

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; ...

    2015-02-04

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  6. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  7. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  8. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less

  9. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.

    PubMed

    Su, Lei; Fonseca, Martina B; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B; Elson, Daniel S

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  10. The Chernobyl Tissue Bank: integrating research on radiation-induced thyroid cancer.

    PubMed

    Thomas, G A

    2012-03-01

    The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. Cancer is a complicated disease and it is unclear whether the mechanism by which radiation gives rise to cancer differs from that involved in the generation of cancers of the same type by other environmental stimuli. The Chernobyl Tissue Bank was established in response to the scientific interest in studying the molecular biology of thyroid cancer after Chernobyl to address this question. The project is supported by the governments of Ukraine and Russia, and financially supported (in total around US$3 million) by the European Commission, the National Cancer Institute of the USA and the Sasakawa Memorial Health Foundation of Japan. The project began collecting a variety of biological samples from patients on 1 October 1988, and has supplied material to 23 research projects in Japan, the USA and Europe. The establishment of the Chernobyl Tissue Bank has facilitated co-operation between these research projects and the combination of clinical and research data provides a paradigm for cancer research in the molecular biological age.

  11. Effects of Induced Electric Fields on Tissues and Cells

    NASA Astrophysics Data System (ADS)

    Sequin, Emily Katherine

    Cancer remains a substantial health burden in the United States. Traditional treatments for solid malignancies may include chemotherapy, radiation therapy, targeted therapies, or surgical resection. Improved surgical outcomes coincide with increased information regarding the tumor extent in the operating room. Furthermore, pathological examination and diagnosis is bettered when the pathologist has additional information about lesion locations on the large resected specimens from which they take a small sample for microscopic evaluation. Likewise, cancer metastasis is a leading cause of cancer death. Fully understanding why a particular tumor becomes metastatic as well as the mechanisms of cell migration are critical to both preventing metastasis and treating it. This dissertation utilizes the complex interactions of induced electric fields with tissues and cells to meet two complementary research goals. First, eddy currents are induced in tissues using a coaxial eddy current probe (8mm diameter) in order to distinguish tumor tissue from surrounding normal tissue to address the needs of surgeons performing curative cancer resections. Measurements on animal tissue phantoms characterize the eddy current measurement finding that the effective probing area corresponds to about twice the diameter of the probe and that the specimen temperature must be constant for reliable measurements. Measurements on ten fresh tissue specimens from human patients undergoing surgical resection for liver metastases from colorectal cancer showed that the eddy current measurement technique can be used to differentiate tumors from surrounding liver tissue in a non-destructive, non-invasive manner. Furthermore, the differentiation between the tumor and normal tissues required no use of contrast agents. Statistically significant differences between eddy current measurements in three tissue categories, tumor, normal, and interface, were found across patients using a Tukey's pairwise comparison

  12. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. Tolerance doses of cutaneous and mucosal tissues in ring-necked parakeets (Psittacula krameri) for external beam megavoltage radiation.

    PubMed

    Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C

    2009-03-01

    Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.

  14. Protective effects of β-glucan against oxidative injury induced by 2.45-GHz electromagnetic radiation in the skin tissue of rats.

    PubMed

    Ceyhan, Ali Murat; Akkaya, Vahide Baysal; Güleçol, Şeyma Celik; Ceyhan, Betül Mermi; Özgüner, Fehmi; Chen, WenChieh

    2012-09-01

    In recent times, there is widespread use of 2.45-GHz irradiation-emitting devices in industrial, medical, military and domestic application. The aim of the present study was to investigate the effect of 2.45-GHz electromagnetic radiation (EMR) on the oxidant and antioxidant status of skin and to examine the possible protective effects of β-glucans against the oxidative injury. Thirty-two male Wistar albino rats were randomly divided into four equal groups: control; sham exposed; EMR; and EMR + β-glucan. A 2.45-GHz EMR emitted device from the experimental exposure was applied to the EMR group and EMR + β-glucan group for 60 min daily, respectively, for 4 weeks. β-glucan was administered via gavage at a dose of 50 mg/kg/day before each exposure to radiation in the treatment group. The activities of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), as well as the concentration of malondialdehyde (MDA) were measured in tissue homogenates of the skin. Exposure to 2.45-GHz EMR caused a significant increase in MDA levels and CAT activity, while the activities of SOD and GSH-Px decreased in skin tissues. Systemic β-glucan significantly reversed the elevation of MDA levels and the reduction of SOD activities. β-glucan treatment also slightly enhanced the activity of CAT and prevented the depletion of GSH-Px activity caused by EMR, but not statistically significantly. The present study demonstrated the role of oxidative mechanisms in EMR-induced skin tissue damages and that β-glucan could ameliorate oxidative skin injury via its antioxidant properties.

  15. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation.

    PubMed

    Azimzadeh, Omid; Scherthan, Harry; Yentrapalli, Ramesh; Barjaktarovic, Zarko; Ueffing, Marius; Conrad, Marcus; Neff, Frauke; Calzada-Wack, Julia; Aubele, Michaela; Buske, Christian; Atkinson, Michael J; Hauck, Stefanie M; Tapio, Soile

    2012-04-18

    Qualitative proteome profiling of formalin-fixed, paraffin-embedded (FFPE) tissue is advancing the field of clinical proteomics. However, quantitative proteome analysis of FFPE tissue is hampered by the lack of an efficient labelling method. The usage of conventional protein labelling on FFPE tissue has turned out to be inefficient. Classical labelling targets lysine residues that are blocked by the formalin treatment. The aim of this study was to establish a quantitative proteomics analysis of FFPE tissue by combining the label-free approach with optimised protein extraction and separation conditions. As a model system we used FFPE heart tissue of control and exposed C57BL/6 mice after total body irradiation using a gamma ray dose of 3 gray. We identified 32 deregulated proteins (p≤0.05) in irradiated hearts 24h after the exposure. The proteomics data were further evaluated and validated by bioinformatics and immunoblotting investigation. In good agreement with our previous results using fresh-frozen tissue, the analysis indicated radiation-induced alterations in three main biological pathways: respiratory chain, lipid metabolism and pyruvate metabolism. The label-free approach enables the quantitative measurement of radiation-induced alterations in FFPE tissue and facilitates retrospective biomarker identification using clinical archives. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A non-human primate model of radiation-induced cachexia.

    PubMed

    Cui, Wanchang; Bennett, Alexander W; Zhang, Pei; Barrow, Kory R; Kearney, Sean R; Hankey, Kim G; Taylor-Howell, Cheryl; Gibbs, Allison M; Smith, Cassandra P; MacVittie, Thomas J

    2016-03-31

    Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.

  17. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays,more » were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.« less

  18. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.

    PubMed

    Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E

    2000-01-01

    The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.

  19. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  20. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  1. A prospective cohort study on radiation-induced hypothyroidism: development of an NTCP model.

    PubMed

    Boomsma, Marjolein J; Bijl, Hendrik P; Christianen, Miranda E M C; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J H M; van der Laan, Bernard F A M; Wolffenbuttel, Bruce H R; Oosting, Sjoukje F; Schilstra, Cornelis; Langendijk, Johannes A

    2012-11-01

    To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm(3)). Model performance was good with an area under the curve (AUC) of 0.85. This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroidmore » gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.« less

  3. INTERACTION OF LASER RADIATION WITH MATTER: Calculation of the kinetics of heating and structural changes in the cartilaginous tissue under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sobol', E. N.; Kitai, M. S.

    1998-07-01

    A theoretical model is developed for the calculation of the temperature fields and determination of the size of a zone with structural changes in the cartilaginous tissue. The model is based on a simultaneous analysis of the heat and mass transfer processes and it takes into account the bulk absorption of laser radiation by the tissue, surface evaporation of water, and temperature dependences of the diffusion coefficients. It is assumed that under the influence of a phase transition between free and bound water, caused by heating of the cartilage to 70°C, the proteoglycans of the cartilage matrix become mobile and, as a result of such mass transfer, structural changes are induced in the cartilaginous tissue causing relaxation of stresses or denaturation. It is shown that the maximum temperature is then reached not on the irradiated surface but at some distance from it, and that the size of the zones of structural changes (denaturation depth) depends strongly on the energy density of the laser radiation and its wavelength, on the duration of the irradiation, and on the cartilage thickness. This model makes it possible to calculate the temperature fields and the depth of structural changes in laser-induced relaxation of stresses and changes in the shape of the cartilaginous tissue.

  4. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  5. Radiation sterilization of tissue allografts: A review.

    PubMed

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-04-28

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.

  6. Radiation sterilization of tissue allografts: A review

    PubMed Central

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-01-01

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  7. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells

    PubMed Central

    Nagarajan, Devipriya; Wang, Lei; Zhao, Weiling; Han, Xiaochen

    2017-01-01

    Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling. PMID:29254201

  8. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy.

    PubMed

    Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S

    2010-04-01

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.

  9. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom.

    PubMed

    Suomi, Visa; Edwards, David; Cleveland, Robin

    2015-12-01

    Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Radiation-induced impairment in lung lymphatic vasculature.

    PubMed

    Cui, Ye; Wilder, Julie; Rietz, Cecilia; Gigliotti, Andrew; Tang, Xiaomeng; Shi, Yuanyuan; Guilmette, Raymond; Wang, Hao; George, Gautam; Nilo de Magaldi, Eduarda; Chu, Sarah G; Doyle-Eisele, Melanie; McDonald, Jacob D; Rosas, Ivan O; El-Chemaly, Souheil

    2014-12-01

    The lymphatic vasculature has been shown to play important roles in lung injury and repair, particularly in lung fibrosis. The effects of ionizing radiation on lung lymphatic vasculature have not been previously reported. C57Bl/6 mice were immobilized in a lead shield exposing only the thoracic cavity, and were irradiated with a single dose of 14 Gy. Animals were sacrificed and lungs collected at different time points (1, 4, 8, and 16 weeks) following radiation. To identify lymphatic vessels in lung tissue sections, we used antibodies that are specific for lymphatic vessel endothelial receptor 1 (LYVE-1), a marker of lymphatic endothelial cells (LEC). To evaluate LEC cell death and oxidative damage, lung tissue sections were stained for LYVE-1 and with TUNEL staining, or 8-oxo-dG respectively. Images were imported into ImageJ v1.36b and analyzed. Compared to a non-irradiated control group, we observed a durable and progressive decrease in the density, perimeter, and area of lymphatic vessels over the study period. The decline in the density of lymphatic vessels was observed in both subpleural and interstitial lymphatics. Histopathologically discernible pulmonary fibrosis was not apparent until 16 weeks after irradiation. Furthermore, there was significantly increased LEC apoptosis and oxidative damage at one week post-irradiation that persisted at 16 weeks. There is impairment of lymphatic vasculature after a single dose of ionizing radiation that precedes architectural distortion and fibrosis, suggesting important roles for the lymphatic circulation in the pathogenesis of the radiation-induced lung injury.

  11. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  12. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage.

    PubMed

    Salem, Ahmed M; Mohammaden, Tarek F; Ali, Mohamed A M; Mohamed, Enas A; Hasan, Hesham F

    2016-09-01

    Ionizing radiation interacts with biological systems through the generation of free radicals, which induce oxidative stress. Aluminium (Al) can negatively impact human health by direct interaction with antioxidant enzymes. Ellagic acid (EA) and Ferulic acid (FA) are plant polyphenolic compounds, have gained attention due to their multiple biological activities. To date, no studies investigating the antioxidant effect of EA/FA in a model involving both γ radiation and aluminium chloride (AlCl3) have been reported. Herein, we investigated the protective effect of EA and FA against oxidative stress induced by γ radiation and AlCl3 in rats. Rats were divided into thirteen groups: a negative control group, 3 positive control groups (γ-irradiated, AlCl3-treated and γ-irradiated+AlCl3-treated) and 9 groups (3 γ-irradiated, 3 AlCl3-treated and 3 γ-irradiated+AlCl3-treated) treated with EA and/or FA. Liver function and lipid profile were assessed. Levels of lipid peroxidation, protein oxidation and endogenous antioxidants as well as the concentrations of copper, iron and zinc were estimated in liver tissue homogenate. Furthermore, liver tissue sections were histologically examined. Oral administration of EA and/or FA resulted in 1) amelioration of AlCl3 and/or γ-radiation-induced hepatic function impairment, dyslipidemia and hepatic histological alterations; 2) reduction in liver MDA and PCC levels; 3) elevation of liver CAT, GPx and SOD activity as well as GSH level; 4) elevation in liver Cu concentrations which was accompanied by a reduction in Fe and Zn concentrations. Oral administration of EA and/or FA may be useful for ameliorating γ radiation and/or AlCl3-induced oxidative damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    PubMed

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  15. Physical-mathematical model of optical radiation interaction with biological tissues

    NASA Astrophysics Data System (ADS)

    Kozlovska, Tetyana I.; Kolisnik, Peter F.; Zlepko, Sergey M.; Titova, Natalia V.; Pavlov, Volodymyr S.; Wójcik, Waldemar; Omiotek, Zbigniew; Kozhambardiyeva, Miergul; Zhanpeisova, Aizhan

    2017-08-01

    Remote photoplethysmography (PPG) imaging is an optical technique to remotely assess the local coetaneous microcirculation. In this paper, we present a model and supporting experiments confirming the contribution of skin inhomogeneity to the morphology of PPG waveforms. The physical-mathematical model of distribution of optical radiation in biological tissues was developed. It allows determining the change of intensity of optical radiation depending on such parameters as installation angle of the sensor, biological tissue thickness and the wavelength. We obtained graphics which represent changes of the optical radiation intensity that is registered by photodetector depending on installation angle of the sensor, biological tissue thickness and the extinction coefficient.

  16. Variation of normal tissue complication probability (NTCP) estimates of radiation-induced hypothyroidism in relation to changes in delineation of the thyroid gland.

    PubMed

    Rønjom, Marianne F; Brink, Carsten; Lorenzen, Ebbe L; Hegedüs, Laszlo; Johansen, Jørgen

    2015-01-01

    To examine the variations of risk-estimates of radiation-induced hypothyroidism (HT) from our previously developed normal tissue complication probability (NTCP) model in patients with head and neck squamous cell carcinoma (HNSCC) in relation to variability of delineation of the thyroid gland. In a previous study for development of an NTCP model for HT, the thyroid gland was delineated in 246 treatment plans of patients with HNSCC. Fifty of these plans were randomly chosen for re-delineation for a study of the intra- and inter-observer variability of thyroid volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Intra-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter-observer variations were insignificantly small, -0.4% (SD ± 6.0) and -0.7% (SD ± 4.8), respectively, but as the SDs show, for some patients the difference in estimated NTCP was large. For the entire study population, the variation in predicted risk of radiation-induced HT in head and neck cancer was small and our NTCP model was robust against observer variations in delineation of the thyroid gland. However, for the individual patient, there may be large differences in estimated risk which calls for precise delineation of the thyroid gland to obtain correct dose and NTCP estimates for optimized treatment planning in the individual patient.

  17. Radiation-induced leukemia: lessons from history.

    PubMed

    Finch, Stuart C

    2007-03-01

    Beginning in 1895, with the discovery of x-rays, alpha and beta radiation, uranium, radium, thorium, and polonium, the fascinating story of the beginning of knowledge concerning the existence of ionizing radiation unfolds. This brief history of radiation and leukemia is divided into two main parts: the first 50 years, which deals with the confusion regarding radiation effects and the failure to clearly recognize that exposure to ionizing radiation may induce leukemia. The second part focuses on the last 60 years, when the radiation induction of leukemia was accepted and some progress achieved in understanding the clinical and pathophysiological characteristics of radiation-induced leukemia. Particular attention in this is paid to the effects of radiation on the survivors of Hiroshima and Nagasaki. The discussion in this section also covers some concepts of radiation-induced cell damage and ruminations on unanswered questions.

  18. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  19. Facial reconstruction for radiation-induced skin cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panje, W.R.; Dobleman, T.J.

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  20. Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An Overview

    PubMed Central

    Pirayesh Islamian, Jalil; Mehrali, Habib

    2015-01-01

    Radio-protectors are agents that protect human cells and tissues from undesirable effects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ionizing radiation may be an effective approach in diminishing undesirable effects of radiation byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects. PMID:25685729

  1. Radiobiology of the acute radiation syndrome.

    PubMed

    Macià I Garau, Miquel; Lucas Calduch, Anna; López, Enric Casanovas

    2011-07-06

    ACUTE RADIATION SYNDROME OR ACUTE RADIATION SICKNESS IS CLASSICALLY SUBDIVIDED INTO THREE SUBSYNDROMES: the hematopoietic, gastrointestinal and neurovascular syndrome but many other tissues can be damaged. The time course and severity of clinical signs and symptoms are a function of the overall body volume irradiated, the inhomogeneity of dose exposure, the particle type, the absorbed dose and the dose rate. Classical pathophysiology explain the failure of each of these organs and the timing of appearance of their signs and symptoms due to radiation-induced cytocidal effects of a great number of parenchymal cells of hierarchically organized tissues. Contemporaneously, many other radiation-induced effects has been described and all of them may lead to tissue injury with their corresponding signs and symptoms that can be expressed after short or long period of time. Radiation-induced multi-organ involvement is thought to be due to radiation-induced systemic inflammatory response mediated by released pro-inflammatory cytokines.

  2. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  3. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, E.

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the

  4. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    PubMed

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly

  5. Proteomic overview and perspectives of the radiation-induced bystander effects.

    PubMed

    Chevalier, François; Hamdi, Dounia Houria; Saintigny, Yannick; Lefaix, Jean-Louis

    2015-01-01

    Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue

    DOE PAGES

    Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel; ...

    2015-03-03

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of

  7. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  8. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of

  9. Prevention of radiation-induced salivary gland dysfunction utilizing a CDK inhibitor in a mouse model.

    PubMed

    Martin, Katie L; Hill, Grace A; Klein, Rob R; Arnett, Deborah G; Burd, Randy; Limesand, Kirsten H

    2012-01-01

    Treatment of head and neck cancer with radiation often results in damage to surrounding normal tissues such as salivary glands. Permanent loss of function in the salivary glands often leads patients to discontinue treatment due to incapacitating side effects. It has previously been shown that IGF-1 suppresses radiation-induced apoptosis and enhances G2/M arrest leading to preservation of salivary gland function. In an effort to recapitulate the effects of IGF-1, as well as increase the likelihood of translating these findings to the clinic, the small molecule therapeutic Roscovitine, is being tested. Roscovitine is a cyclin-dependent kinase inhibitor that acts to transiently inhibit cell cycle progression and allow for DNA repair in damaged tissues. Treatment with Roscovitine prior to irradiation induced a significant increase in the percentage of cells in the G(2)/M phase, as demonstrated by flow cytometry. In contrast, mice treated with radiation exhibit no differences in the percentage of cells in G(2)/M when compared to unirradiated controls. Similar to previous studies utilizing IGF-1, pretreatment with Roscovitine leads to a significant up-regulation of p21 expression and a significant decrease in the number of PCNA positive cells. Radiation treatment leads to a significant increase in activated caspase-3 positive salivary acinar cells, which is suppressed by pretreatment with Roscovitine. Administration of Roscovitine prior to targeted head and neck irradiation preserves normal tissue function in mouse parotid salivary glands, both acutely and chronically, as measured by salivary output. These studies suggest that induction of transient G(2)/M cell cycle arrest by Roscovitine allows for suppression of apoptosis, thus preserving normal salivary function following targeted head and neck irradiation. This could have an important clinical impact by preventing the negative side effects of radiation therapy in surrounding normal tissues.

  10. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis.

    PubMed

    Nawroth, Isabel; Alsner, Jan; Behlke, Mark A; Besenbacher, Flemming; Overgaard, Jens; Howard, Kenneth A; Kjems, Jørgen

    2010-10-01

    One of the most common and dose-limiting long-term adverse effects of radiation therapy is radiation-induced fibrosis (RIF), which is characterized by restricted tissue flexibility, reduced compliance or strictures, pain and in severe cases, ulceration and necrosis. Several strategies have been proposed to ameliorate RIF but presently no effective one is available. Recent studies have reported that tumor necrosis factor-α (TNFα) plays a role in fibrogenesis. Male CDF1 mice were radiated with a single dose of 45 Gy. Chitosan/DsiRNA nanoparticles targeting TNFα were intraperitoneal injected and late radiation-induced fibrosis (RIF) was assessed using a modification of the leg contracture model. Additionally, the effect of these nanoparticles on tumor growth and tumor control probability in the absence of radiation was examined in a C3H mammary carcinoma model. We show in this work, that targeting TNFα in macrophages by intraperitoneal administration of chitosan/DsiRNA nanoparticles completely prevented radiation-induced fibrosis in CDF1 mice without revealing any cytotoxic side-effects after a long-term administration. Furthermore, such TNFα targeting was selective without any significant influence on tumor growth or irradiation-related tumor control probability. This nanoparticle-based RNAi approach represents a novel approach to prevent RIF with potential application to improve clinical radiation therapeutic strategies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity

    PubMed Central

    Sottili, Mariangela; Gerini, Chiara; Desideri, Isacco; Bastida, Cinzia; Pallotta, Stefania; Castiglione, Francesca; Bonomo, Pierluigi; Meattini, Icro; Greto, Daniela; Cappelli, Sabrina; Di Brina, Lucia; Loi, Mauro; Biti, Giampaolo; Livi, Lorenzo

    2016-01-01

    Objective Because of its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-neoplastic properties, the PPAR-γ agonist rosiglitazone is an interesting drug for investigating for use in the prevention and treatment of radiation-induced intestinal damage. We aimed to evaluate the radioprotective effect of rosiglitazone in a murine model of acute intestinal damage, assessing whether radioprotection is selective for normal tissues or also occurs in tumour cells. Methods Mice were total-body irradiated (12 Gy), with or without rosiglitazone (5 mg/kg/day). After 24 and 72 hours, mice were sacrificed and the jejunum was collected. HT-29 human colon cancer cells were irradiated with a single dose of 2 (1000 cells), 4 (1500 cells) or 6 (2000 cells) Gy, with or without adding rosiglitazone (20 µM) 1 hour before irradiation. HT-29-xenografted CD1 mice were irradiated (16 Gy) with or without rosiglitazone; tumour volumes were measured for 33 days. Results Rosiglitazone markedly reduced histological signs of altered bowel structures, that is, villi shortening, submucosal thickening, necrotic changes in crypts, oedema, apoptosis, and inflammatory infiltrate induced by irradiation. Rosiglitazone significantly decreased p-NF-kB p65 phosphorylation and TGFβ protein expression at 24 and 72 hours post-irradiation and significantly decreased gene expression of Collagen1, Mmp13, Tnfα and Bax at 24 hours and p53 at 72 hours post-irradiation. Rosiglitazone reduced HT-29 clonogenic survival, but only produced a slight reduction of xenograft tumour growth. Conclusion Rosiglitazone exerts a protective effect on normal tissues and reduces alterations in bowel structures and inflammation in a radiation-induced bowel toxicity model, without interfering with the radiation effect on HT-29 cancer cells. PPAR-γ agonists should be further investigated for their application in abdominal and pelvic irradiation. PMID:28344789

  12. Local changes in arterial oxygen saturation induced by visible and near-infrared light radiation.

    PubMed

    Yesman, S S; Mamilov, S O; Veligotsky, D V; Gisbrecht, A I

    2016-01-01

    In this study, we investigate the efficiency of laser radiation on oxyhemoglobin (HbO2) rate in blood vessels and its wavelength dependence. The results of in vivo experimental measurements of the laser-induced photodissociation of HbO2 in cutaneous blood vessels in the visible and near-infrared (IR) spectral range are presented. Arterial oxygen saturation (SpO2) was measured by a method of fingertip pulse oximetry, which is based on the measurement of the modulated pulse wave of the blood. The light irradiating the finger was provided by corresponding light-emitting diodes (LED) at 15 wavelengths in the 400-940 nm spectrum range. Statistical results with a value of p < 0.05 were viewed as being significant for all volunteers. The results show that there is a decrease in SpO2 in the blood under the influence of the transcutaneous laser irradiation. Three maxima in the spectral range (530, 600, and 850 nm) are revealed, wherein decrease in the relative concentration of SpO2 reaches 5 % ± 0.5 %. Near-IR radiation plays a dominant role in absorption of laser radiation by oxyhemoglobin in deeper layers of tissue blood vessels. The obtained data correlate with the processes of light propagation in biological tissue. The observed reduction in SpO2 indicates the process of photodissociation of HbO2 in vivo and may result in local increase in O2 in the tissue. Such laser-induced enrichment of tissue oxygenation can be used in phototherapy of pathologies, where the elimination of local tissue hypoxia is critical.

  13. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.

  14. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome

    PubMed Central

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  15. Carcinogen-Induced Microenvironment in Breast Cancer

    DTIC Science & Technology

    2000-04-01

    unknown, the ability of radiation to induce TGF-P3 activation may gens , such as ionizing radiation, is to modify paracrine interactions indeed play a...radiation of the basement membrane proteins laminin and colla- induced proteases. In particular, tissue-type plasmino- gen IV were unchanged during the week...following gen activator is induced in a variety of irradiated cells radiation, marked changes in the periepithelial and and tissues (33) while plasmin

  16. Dietary Supplement Attenuates Radiation-Induced Osteoclastogenic and Oxidative Stress-Related Responses and Protects Adult Mice from Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Schreurs, Ann-Sofie; Tahimic, Candice; Shirazi-Fard, Yasaman; Alwood, Joshua; Shahnazari, Mohammed; Halloran, Bernard

    2015-01-01

    Our central hypothesis is that oxidative stress plays a key role in cell dysfunction and progressive bone loss caused by radiation exposure during spaceflight. In animal studies, excess free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. We previously reported that exposure to low or high-LET radiation rapidly increases expression levels of pro-osteoclastogenic and oxidative stress-related genes in bone and marrow, followed by pathological changes in skeletal structure. To screen various antioxidants for radioprotective effects on bone, 4 month old, male C57Bl6/J mice were treated with a dietary antioxidant cocktail, injectable alpha-lipoic acid, or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs total body radiation and one day later marrow cells were collected and the relevant genes analyzed for expression levels. Of the candidates tested, DP was most effective in reducing bone resorption-related gene expression. Microcomputed tomography revealed that DP also prevented the radiation-induced deterioration of skeletal microarchitecture, as indicated by percent bone volume, trabecular spacing and trabecular number. DP had similar protective effects on skeletal structure after sequential exposure to protons (0.5 Gy, 150MeV/n) and 56Fe 0.5Gy, 600 MeV/n). When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerted pro-osteogenic effects apart from previously identified anti-resorptive actions, which may contribute to radioprotection of skeletal tissue. In conclusion, a diet enriched in certain types of antioxidants and polyphenols such as DP may be useful as an intervention to protect tissues from degenerative effects of ionizing radiation.

  17. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  18. Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.

    PubMed

    Kumar, Vijay; Vats, R P; Pathak, P P

    2008-08-01

    Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.

  19. Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.

    PubMed

    Wilson, R E; Hoey, B; Margison, G P

    1993-04-01

    The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.

  20. Effect of laser UV radiation on the eye scleral tissue in patients with open-angle glaucoma

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Iskakov, I. A.; Churkin, D. S.; Orishich, A. M.; Maslov, N. A.; Tsibul'skaya, E. O.; Lomzov, A. A.; Ermakova, O. V.; Trunov, A. N.; Chernykh, V. V.

    2018-05-01

    We report the results of an experimental study of the effect of short-pulse laser UV radiation on the eye scleral tissue. As samples, we used isolated flaps of the eye scleral tissue from the patients with open-angle glaucoma of the second and third stages. The impact was implemented using the radiation of an excimer XeCl laser with a wavelength of 308 nm and a laser with a wavelength tunable within from 210 to 355 nm. Depending on the problem to be solved, the energy density on the surface of the irradiated tissue varied from a fraction of mJ cm-2 to 15 J cm-2. For the first time we studied the optical properties of the intraocular fluid in the UV and blue spectral range. The study of the ablation process under the action of radiation with a wavelength of 308 nm showed that the rate of material evaporation can vary within 24%–30% at an energy density above 7 J cm-2, depending on the glaucoma stage and the individual features of a patient. The excitation–emission matrices of laser-induced fluorescence (LIF) of the eye scleral tissue were studied experimentally using a laser with a wavelength tuned in the range 210–355 nm. We found the differences in the LIF spectra caused by the excitation wavelength and the openangle glaucoma stage.

  1. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    PubMed

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.

  2. The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuss, M. C.; Ellis-Gibbings, L.; Jones, D. B.

    Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium tomore » describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared.« less

  3. Arginine glutamate improves healing of radiation-induced skin ulcers in guinea pigs.

    PubMed

    Khalin, Igor; Kocherga, Ganna

    2013-12-01

    The increase in the incidence of the radiation-induced skin injury cases and the absence of standard treatments escalate the interest in finding new and effective drugs for these lesions. We studied the effect of a 40% solution of arginine glutamate on the healing of radiation-induced skin ulcers in guinea pigs. Radiation skin injury was produced on the thigh of guinea pigs by 60 Gy local X-ray irradiation. Treatment was started 6 weeks after the irradiation when ulcers had been formed. Arginine glutamate was administered by subcutaneous injections around the wound edge. Methyluracil was chosen as the comparison drug. The animals were sacrificed on day 21 after the start of treatment and the irradiated skin tissues were subjected to histological evaluation, cytokines analysis, lipid peroxidation and antioxidant enzymes analysis. We have shown that arginine glutamate significantly (p < 0.05) decreased levels of pro-inflammatory cytokines in the wound, restored the balance between lipid peroxidation formation and antioxidant enzymes activity and promoted cell proliferation as well as collagen synthesis. These results demonstrate that arginine glutamate successfully improves the healing of radiation-induced skin ulcers. In all probability, the curative effect is associated with the interaction of arginine with nitric oxide synthase II and arginase I, but further investigations are needed to validate this.

  4. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  5. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  6. Radiation-induced dental caries, prevention and treatment - A systematic review

    PubMed Central

    Gupta, Nishtha; Pal, Manoj; Rawat, Sheh; Grewal, Mandeep S.; Garg, Himani; Chauhan, Deepika; Ahlawat, Parveen; Tandon, Sarthak; Khurana, Ruparna; Pahuja, Anjali K.; Mayank, Mayur; Devnani, Bharti

    2015-01-01

    Treatment of head and neck cancers (HNCs) involves radiotherapy. Patients undergoing radiotherapy for HNCs are prone to dental complications. Radiotherapy to the head and neck region causes xerostomia and salivary gland dysfunction which dramatically increases the risk of dental caries and its sequelae. Radiation therapy (RT) also affects the dental hard tissues increasing their susceptibility to demineralization following RT. Postradiation caries is a rapidly progressing and highly destructive type of dental caries. Radiation-related caries and other dental hard tissue changes can appear within the first 3 months following RT. Hence, every effort should be focused on prevention to manage patients with severe caries. This can be accomplished through good preoperative dental treatment, frequent dental evaluation and treatment after RT (with the exception of extractions), and consistent home care that includes self-applied fluoride. Restorative management of radiation caries can be challenging. The restorative dentist must consider the altered dental substrate and a hostile oral environment when selecting restorative materials. Radiation-induced changes in enamel and dentine may compromise bonding of adhesive materials. Consequently, glass ionomer cements have proved to be a better alternative to composite resins in irradiated patients. Counseling of patients before and after radiotherapy can be done to make them aware of the complications of radiotherapy and thus can help in preventing them. PMID:27390489

  7. Radiation-induced dental caries, prevention and treatment - A systematic review.

    PubMed

    Gupta, Nishtha; Pal, Manoj; Rawat, Sheh; Grewal, Mandeep S; Garg, Himani; Chauhan, Deepika; Ahlawat, Parveen; Tandon, Sarthak; Khurana, Ruparna; Pahuja, Anjali K; Mayank, Mayur; Devnani, Bharti

    2015-01-01

    Treatment of head and neck cancers (HNCs) involves radiotherapy. Patients undergoing radiotherapy for HNCs are prone to dental complications. Radiotherapy to the head and neck region causes xerostomia and salivary gland dysfunction which dramatically increases the risk of dental caries and its sequelae. Radiation therapy (RT) also affects the dental hard tissues increasing their susceptibility to demineralization following RT. Postradiation caries is a rapidly progressing and highly destructive type of dental caries. Radiation-related caries and other dental hard tissue changes can appear within the first 3 months following RT. Hence, every effort should be focused on prevention to manage patients with severe caries. This can be accomplished through good preoperative dental treatment, frequent dental evaluation and treatment after RT (with the exception of extractions), and consistent home care that includes self-applied fluoride. Restorative management of radiation caries can be challenging. The restorative dentist must consider the altered dental substrate and a hostile oral environment when selecting restorative materials. Radiation-induced changes in enamel and dentine may compromise bonding of adhesive materials. Consequently, glass ionomer cements have proved to be a better alternative to composite resins in irradiated patients. Counseling of patients before and after radiotherapy can be done to make them aware of the complications of radiotherapy and thus can help in preventing them.

  8. Soft tissue tumors induced by monomeric {sup 239}Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, R.D.; Angus, W.; Taylor, G.N.

    1995-10-01

    Individual records of soft tissue tumor occurrence (lifetime incidence) among 236 beagles injected with {sup 239}Pu citrate as young adults and 131 comparable control beagles given no radioactivity enabled us to analyze the possible effects on soft tissue tumor induction resulting from internal exposure to {sup 239}Pu. A significant trend was identified in the proportion of animals having malignant liver tumors with increasing radiation dose from {sup 239}. There was also a significant difference in the relative numbers of both malignant liver tumors (18.1 expected, 66 observed). Malignant tumors of the mouth, pancreas, and skin were more frequent among controlsmore » than among the dogs given {sup 239}Pu as well as tumors (malignant plus benign) of the mouth, pancreas, testis, and vagina. For all other tumor sites or types, there was no significant difference for both malignant and all (malignant plus benign) tumors. Mammary tumor occurrence appeared not to be associated with {sup 239}Pu incorporation. We conclude that the only soft-tissue neoplasia induced by the intake of {sup 239}Pu directly into blood is probably a liver tumor. 20 refs., 6 tabs.« less

  9. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  10. ROLE FOR THE MAGNETIC FIELD IN THE RADIATION-INDUCED EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE 'IN VITRO'

    EPA Science Inventory

    Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...

  11. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  13. Epidemiology of radiation-induced cancer.

    PubMed Central

    Radford, E P

    1983-01-01

    The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538

  14. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    PubMed Central

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  15. MiR-21 plays an Important Role in Radiation Induced Carcinogenesis in BALB/c Mice by Directly Targeting the Tumor Suppressor Gene Big-h3

    PubMed Central

    Liu, Cong; Li, Bailong; Cheng, Ying; Lin, Jing; Hao, Jun; Zhang, Shuyu; Mitchel, R.E.J.; Sun, Ding; Ni, Jin; Zhao, Luqian; Gao, Fu; Cai, Jianming

    2011-01-01

    Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling. PMID:21494432

  16. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  18. Sensitive Detection of Radiation-Induced Medulloblastomas after Acute or Protracted Gamma-Ray Exposures in Ptch1 Heterozygous Mice Using a Radiation-Specific Molecular Signature.

    PubMed

    Tsuruoka, Chizuru; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shinagawa, Mayumi; Shimada, Yoshiya; Kakinuma, Shizuko

    2016-10-01

    Recently reported studies have led to a heightened awareness of the risks of cancer induced by diagnostic radiological imaging, and in particular, the risk of brain cancer after childhood CT scans. One feature of Ptch1 +/- mice is their sensitivity to radiation-induced medulloblastomas (an embryonic cerebellar tumor) during a narrow window of time centered on the days around birth. Little is known about the dynamics of how dose protraction interacts with such narrow windows of sensitivity in individual tissues. Using medulloblastomas from irradiated Ptch1 +/- mice with a hybrid C3H × C57BL/6 F1 genetic background, we previously showed that the alleles retained on chromosome 13 (which harbors the Ptch1 gene) reveal two major mechanisms of loss of the wild-type allele. The loss of parental alleles from the telomere extending up to or past the Ptch1 locus by recombination (spontaneous type) accounts for almost all medulloblastomas in nonirradiated mice, while tumors in irradiated mice often exhibited interstitial deletions, which start downstream of the wild-type Ptch1 and extend up varying lengths towards the centromere (radiation type). In this study, Ptch1 +/- mice were exposed to an acute dose of either 100 or 500 mGy gamma rays in utero or postnatally, or the same radiation doses protracted over a four-day period, and were monitored for medulloblastoma development. The results showed dose- and age-dependent radiation-induced type tumors. Furthermore, the size of the radiation-induced deletion differed with the dose rate. The results of this work suggest that tumor latency may be related to the size of the deletion. In this study, 500 mGy exposure produced radiation-induced type tumors at all ages and dose rates, while 100 mGy exposure did not significantly produce radiation-induced type tumors. The radiation signature allows for unique mechanistic insight into the action of radiation to induce DNA lesions with known causal relationship to a specific tumor type

  19. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients.

    PubMed

    Alfotih, Gobran Taha Ahmed; Zheng, Mei Guang; Cai, Wang Qing; Xu, Xin Ke; Hu, Zhen; Li, Fang Cheng

    2016-01-01

    Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  1. Radiation-induced immune responses: mechanisms and therapeutic perspectives.

    PubMed

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok; Ahn, G-One

    2016-09-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field.

  2. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.

    PubMed

    Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M

    2018-04-30

    Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.

  3. Prospective Study Validating Inter- and Intraobserver Variability of Tissue Compliance Meter in Breast Tissue of Healthy Volunteers: Potential Implications for Patients With Radiation-Induced Fibrosis of the Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernicke, A. Gabriella, E-mail: gaw9008@med.cornell.ed; Parashar, Bhupesh; Kulidzhanov, Fridon

    2011-05-01

    Purpose: Accurate detection of radiation-induced fibrosis (RIF) is crucial in management of breast cancer survivors. Tissue compliance meter (TCM) has been validated in musculature. We validate TCM in healthy breast tissue with respect to interobserver and intraobserver variability before applying it in RIF. Methods and Materials: Three medical professionals obtained three consecutive TCM measurements in each of the four quadrants of the right and left breasts of 40 women with no breast disease or surgical intervention. The intraclass correlation coefficient (ICC) assessed interobserver variability. The paired t test and Pearson correlation coefficient (r) were used to assess intraobserver variability withinmore » each rater. Results: The median age was 45 years (range, 24-68 years). The median bra size was 35C (range, 32A-40DD). Of the participants, 27 were white (67%), 4 black (10%), 5 Asian (13%), and 4 Hispanic (10%). ICCs indicated excellent interrater reliability (low interobserver variability) among the three raters, by breast and quadrant (all ICC {>=}0.99). The paired t test and Pearson correlation coefficient both indicated low intraobserver variability within each rater (right vs. left breast), stratified by quadrant (all r{>=} 0.94, p < 0.0001). Conclusions: The interobserver and intraobserver variability is small using TCM in healthy mammary tissue. We are now embarking on a prospective study using TCM in women with breast cancer at risk of developing RIF that may guide early detection, timely therapeutic intervention, and assessment of success of therapy for RIF.« less

  4. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  5. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    PubMed Central

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  6. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  7. Radiation-induced complications in prostate cancer patients treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.

    2014-09-01

    The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.

  8. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali, E-mail: Gholamrezaei@med.mui.ac.ir; Poursina Hakim Research Institution, Isfahan

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data.more » Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.« less

  9. Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.

    PubMed

    Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M

    2013-01-01

    Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.

  10. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  11. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    PubMed Central

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h before irradiation. Irradiated groups received a single dose of 5 Gy on whole-body using Cesium-137 source and were sacrificed 3 or 30 days after irradiation. Tissues were removed, fixed, stained with hematoxylin and eosin or PAS staining and histological characteristics were evaluated. Proliferative and apoptotic markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate DNA damage. Submandibular gland (SMG) function was evaluated by methacholine-induced salivation. Results indicate that JNJ7777120 treatment diminished mucosal atrophy and preserved villi and the number of crypts after radiation exposure (240±8 vs. 165±10, P<0.01). This effect was associated to a reduced apoptosis and DNA damage in intestinal crypts. JNJ7777120 reduced radiation-induced aplasia, preserving medullar components and reducing formation of micronucleus and also it accelerated bone marrow repopulation. Furthermore, it reduced micronucleus frequency in peripheral blood (27±8 vs. 149±22, in 1,000 erythrocytes, P<0.01). JNJ7777120 completely reversed radiation-induced reduced salivation, conserving glandular mass with normal histological appearance and reducing apoptosis and atrophy of SMG. JNJ7777120 exhibits radioprotective effects against radiation-induced cytotoxic and genotoxic damages in small intestine, SMG and hematopoietic tissues and, thus, could be of clinical value for patients undergoing radiotherapy. PMID:23922686

  12. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated onmore » days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.« less

  13. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited themore » radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.« less

  14. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  15. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    PubMed Central

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  16. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    PubMed

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2017-11-01

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP) + /vimentin + and EGFP + /α-smooth muscle actin (SMA) + coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.

  17. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  18. Radiation-induced vaginal stenosis: current perspectives

    PubMed Central

    Morris, Lucinda; Do, Viet; Chard, Jennifer; Brand, Alison H

    2017-01-01

    Treatment of gynecological cancer commonly involves pelvic radiation therapy (RT) and/or brachytherapy. A commonly observed side effect of such treatment is radiation-induced vaginal stenosis (VS). This review analyzed the incidence, pathogenesis, clinical manifestation(s) and assessment and grading of radiation-induced VS. In addition, risk factors, prevention and treatment options and follow-up schedules are also discussed. The limited available literature on many of these aspects suggests that additional studies are required to more precisely determine the best management strategy of this prevalent group after RT. PMID:28496367

  19. Dynamic PET/CT measurements of induced positron activity in a prostate cancer patient after 50-MV photon radiation therapy.

    PubMed

    Janek Strååt, Sara; Jacobsson, Hans; Noz, Marilyn E; Andreassen, Björn; Näslund, Ingemar; Jonsson, Cathrine

    2013-01-23

    The purpose of this work was to reveal the research interest value of positron emission tomography (PET) imaging in visualizing the induced tissue activity post high-energy photon radiation treatment. More specifically, the focus was on the possibility of retrieving data such as tissue composition and physical half-lives from dynamic PET acquisitions, as positron-emitting radionuclides such as 15O, 11C, and 13N are produced in vivo during radiation treatment with high-energy photons (>15 MeV). The type, amount, and distribution of induced positron-emitting radionuclides depend on the irradiated tissue cross section, the photon spectrum, and the possible perfusion-driven washout. A 62-year-old man diagnosed with prostate cancer was referred for palliative radiation treatment of the pelvis minor. A total dose of 8 Gy was given using high-energy photon beams (50 MV) with a racetrack microtron, and 7 min after the end of irradiation, the patient was positioned in a PET/computed tomography (CT) camera, and a list-mode acquisition was performed for 30 min. Two volumes of interests (VOIs) were positioned on the dynamic PET/CT images, one in the urinary bladder and the other in the subcutaneous fat. Analysis of the measured relative count rate was performed in order to compute the tissue compositions and physical half-lives in the two regions. Dynamic analysis from the two VOIs showed that the decay constants of activated oxygen and carbon could be deduced. Calculation of tissue composition from analyzing the VOI containing subcutaneous fat only moderately agreed with that of the tabulated International Commission on Radiation Units & Measurements (ICRU) data of the adipose tissue. However, the same analysis for the bladder showed a good agreement with that of the tabulated ICRU data. PET can be used in visualizing the induced activity post high-energy photon radiation treatment. Despite the very low count rate in this specific application, wherein 7 min after treatment

  20. Role of neurotensin in radiation-induced hypothermia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H.

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  1. Role of drugs in the prevention and amelioration of radiation induced toxic effects.

    PubMed

    Patyar, Rakesh Raman; Patyar, Sazal

    2018-01-15

    As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  3. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  4. Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Jeffrey; Almarzouki, Hani; Department of Otolaryngology-Head and Neck Surgery, King Abdulaziz University, Jeddah

    Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection,more » hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.« less

  5. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  6. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  7. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less

  8. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice.

    PubMed

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves

    NASA Astrophysics Data System (ADS)

    Greenleaf, James F.; Chen, Shigao

    2007-03-01

    Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.

  10. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  11. Development of a normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism in nasopharyngeal carcinoma patients.

    PubMed

    Luo, Ren; Wu, Vincent W C; He, Binghui; Gao, Xiaoying; Xu, Zhenxi; Wang, Dandan; Yang, Zhining; Li, Mei; Lin, Zhixiong

    2018-05-18

    The objectives of this study were to build a normal tissue complication probability (NTCP) model of radiation-induced hypothyroidism (RHT) for nasopharyngeal carcinoma (NPC) patients and to compare it with other four published NTCP models to evaluate its efficacy. Medical notes of 174 NPC patients after radiotherapy were reviewed. Biochemical hypothyroidism was defined as an elevated level of serum thyroid-stimulating hormone (TSH) value with a normal or decreased level of serum free thyroxine (fT4) after radiotherapy. Logistic regression with leave-one-out cross-validation was performed to establish the NTCP model. Model performance was evaluated and compared by the area under the receiver operating characteristic curve (AUC) in our NPC cohort. With a median follow-up of 24 months, 39 (22.4%) patients developed biochemical hypothyroidism. Gender, chemotherapy, the percentage thyroid volume receiving more than 50 Gy (V 50 ), and the maximum dose of the pituitary (P max ) were identified as the most predictive factors for RHT. A NTCP model based on these four parameters were developed. The model comparison was made in our NPC cohort and our NTCP model performed better in RHT prediction than the other four models. This study developed a four-variable NTCP model for biochemical hypothyroidism in NPC patients post-radiotherapy. Our NTCP model for RHT presents a high prediction capability. This is a retrospective study without registration.

  12. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  13. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less

  14. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  15. Radiation-induced transgenerational instability.

    PubMed

    Dubrova, Yuri E

    2003-10-13

    To date, the analysis of mutation induction has provided an irrefutable evidence for an elevated germline mutation rate in the parents directly exposed to ionizing radiation and a number of chemical mutagens. However, the results of numerous publications suggest that radiation may also have an indirect effect on genome stability, which is transmitted through the germ line of irradiated parents to their offspring. This review describes the phenomenon of transgenerational instability and focuses on the data showing increased cancer incidence and elevated mutation rates in the germ line and somatic tissues of the offspring of irradiated parents. The possible mechanisms of transgenerational instability are also discussed.

  16. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.

    2014-07-01

    The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.

  17. Apatinib in refractory radiation-induced brain edema

    PubMed Central

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-01-01

    Abstract Rationale: Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Patient concerns: Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Diagnoses: Two patients were both diagnosed as refractory radiation-induced brain edema. Interventions: Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Outcomes: Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Lessons: Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study. PMID:29145238

  18. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    PubMed

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  19. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    PubMed Central

    Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.

    2012-01-01

    Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697

  20. p53 deficiency alters the yield and spectrum of radiation-induced lacZ mutants in the brain of transgenic mice

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R. A.

    2001-01-01

    Exposure to heavy particle radiation in the galacto-cosmic environment poses a significant risk in space exploration and the evaluation of radiation-induced genetic damage in tissues, especially in the central nervous system, is an important consideration in long-term manned space missions. We used a plasmid-based transgenic mouse model system, with the pUR288 lacZ transgene integrated in the genome of every cell of C57Bl/6(lacZ) mice, to evaluate the genetic damage induced by iron particle radiation. In order to examine the importance of genetic background on the radiation sensitivity of individuals, we cross-bred p53 wild-type lacZ transgenic mice with p53 nullizygous mice, producing lacZ transgenic mice that were either hemizygous or nullizygous for the p53 tumor suppressor gene. Animals were exposed to an acute dose of 1 Gy of iron particles and the lacZ mutation frequency (MF) in the brain was measured at time intervals from 1 to 16 weeks post-irradiation. Our results suggest that iron particles induced an increase in lacZ MF (2.4-fold increase in p53+/+ mice, 1.3-fold increase in p53+/- mice and 2.1-fold increase in p53-/- mice) and that this induction is both temporally regulated and p53 genotype dependent. Characterization of mutants based on their restriction patterns showed that the majority of the mutants arising spontaneously are derived from point mutations or small deletions in all three genotypes. Radiation induced alterations in the spectrum of deletion mutants and reorganization of the genome, as evidenced by the selection of mutants containing mouse genomic DNA. These observations are unique in that mutations in brain tissue after particle radiation exposure have never before been reported owing to technical limitations in most other mutation assays.

  1. Radiation-induced sarcoma of the thyroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  2. The effect of 6 and 15 MV on intensity-modulated radiation therapy prostate cancer treatment: plan evaluation, tumour control probability and normal tissue complication probability analysis, and the theoretical risk of secondary induced malignancies

    PubMed Central

    Hussein, M; Aldridge, S; Guerrero Urbano, T; Nisbet, A

    2012-01-01

    Objective The aim of this study was to investigate the effect of 6 and 15-MV photon energies on intensity-modulated radiation therapy (IMRT) prostate cancer treatment plan outcome and to compare the theoretical risks of secondary induced malignancies. Methods Separate prostate cancer IMRT plans were prepared for 6 and 15-MV beams. Organ-equivalent doses were obtained through thermoluminescent dosemeter measurements in an anthropomorphic Aldersen radiation therapy human phantom. The neutron dose contribution at 15 MV was measured using polyallyl-diglycol-carbonate neutron track etch detectors. Risk coefficients from the International Commission on Radiological Protection Report 103 were used to compare the risk of fatal secondary induced malignancies in out-of-field organs and tissues for 6 and 15 MV. For the bladder and the rectum, a comparative evaluation of the risk using three separate models was carried out. Dose–volume parameters for the rectum, bladder and prostate planning target volume were evaluated, as well as normal tissue complication probability (NTCP) and tumour control probability calculations. Results There is a small increased theoretical risk of developing a fatal cancer from 6 MV compared with 15 MV, taking into account all the organs. Dose–volume parameters for the rectum and bladder show that 15 MV results in better volume sparing in the regions below 70 Gy, but the volume exposed increases slightly beyond this in comparison with 6 MV, resulting in a higher NTCP for the rectum of 3.6% vs 3.0% (p=0.166). Conclusion The choice to treat using IMRT at 15 MV should not be excluded, but should be based on risk vs benefit while considering the age and life expectancy of the patient together with the relative risk of radiation-induced cancer and NTCPs. PMID:22010028

  3. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  4. Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury.

    PubMed

    Jones, Jace W; Jackson, Isabel L; Vujaskovic, Zeljko; Kaytor, Michael D; Kane, Maureen A

    2017-12-01

    Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.

  5. Radiation-induced effects and the immune system in cancer.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.

  6. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  7. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver ofmore » SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.« less

  8. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity.

    PubMed

    Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr

    2017-07-01

    Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.

  9. Surgical management of the radiated chest wall and its complications

    PubMed Central

    Clancy, Sharon L.; Erhunmwunsee, Loretta J.

    2017-01-01

    Synopsis Radiation to the chest wall is common before resection of tumors. History of radiation does not necessarily change the surgical approach of soft tissue coverage needed for reconstruction. Osteoradionecrosis can occur after radiation treatment, particularly after high dose radiation treatment. Radical resection and reconstruction is feasible and can be life saving. Soft tissue coverage using myocutaneous flap or omental flap is determined by the quality of soft tissue available and the status of the vascular pedicle supplying available myocutaneous flaps. Radiation induced sarcomas of the chest wall occur most commonly after radiation therapy for breast cancer. While angiosarcomas are the most common histology of radiation induced sarcoma, osteosarcoma, myosarcomas, rhabdomyosarcoma, and undifferentiated sarcomas also occur. The most effective treatment is surgical resection. Tumors not amenable to surgical resection are treated with chemotherapy with low response rates. PMID:28363372

  10. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway.

    PubMed

    Durante, Marco; Formenti, Silvia C

    2018-01-01

    Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.

  11. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  12. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimatemore » human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.« less

  13. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  14. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less

  15. Gemcitabine-induced rectus abdominus radiation recall.

    PubMed

    Fakih, Marwan G

    2006-05-09

    Radiation recall has been described in the context of gemcitabine chemotherapy. However, this phenomenon has been largely limited to skin. We hereby report a case of radiation recall dermatitis and myositis occurring on gemcitabine monotherapy, five months after completing chemoradiation for locally advanced pancreatic cancer. Radiation recall resolved spontaneously with withdrawal of gemcitabine. This is the second case report that describes gemcitabine-induced radiation recall in rectus abdominus muscles after gemcitabine-based radiation therapy. Given the wide use of gemcitabine following chemoradiation for pancreatic cancer, providers should be aware of this potential complication.

  16. Treatment of radiation-induced cystitis with hyperbaric oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Boland, F.P.; Mori, H.

    The effects of hyperbaric oxygen on radiation cystitis have been documented in 3 patients with radiation-induced hemorrhagic cystitis refractory to conventional therapy. Cessation of gross hematuria and reversal of cystoscopic bladder changes were seen in response to a series of hyperbaric oxygen treatments of 2 atmosphere absolute pressure for 2 hours. To our knowledge this is the first report of cystoscopically documented healing of radiation-induced bladder injury.

  17. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu; Barthold, H. Joseph; Beth Israel Deaconess Medical Center, Boston, MA

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The followingmore » were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.« less

  18. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage.

    PubMed

    Moussa, Lara; Pattappa, Girish; Doix, Bastien; Benselama, Sarra-Louiza; Demarquay, Christelle; Benderitter, Marc; Sémont, Alexandra; Tamarat, Radia; Guicheux, Jérôme; Weiss, Pierre; Réthoré, Gildas; Mathieu, Noëlle

    2017-01-01

    Healthy tissues surrounding abdomino-pelvic tumours can be impaired by radiotherapy, leading to chronic gastrointestinal complications with substantial mortality. Adipose-derived Mesenchymal Stromal Cells (Ad-MSCs) represent a promising strategy to reduce intestinal lesions. However, systemic administration of Ad-MSCs results in low cell engraftment within the injured tissue. Biomaterials, able to encapsulate and withstand Ad-MSCs, can overcome these limitations. A silanized hydroxypropylmethyl cellulose (Si-HPMC) hydrogel has been designed and characterized for injectable cell delivery using the operative catheter of a colonoscope. We demonstrated that hydrogel loaded-Ad-MSCs were viable, able to secrete trophic factors and responsive to the inflammatory environment. In a rat model of radiation-induced severe colonic damage, Ad-MSC + Si-HPMC improve colonic epithelial structure and hyperpermeability compared with Ad-MSCs injected intravenously or locally. This therapeutic benefit is associated with greater engraftment of Si-HPMC-embedded Ad-MSCs in the irradiated colonic mucosa. Moreover, macrophage infiltration near the injection site was less pronounced when Ad-MSCs were embedded in the hydrogel. Si-HPMC induces modulation of chemoattractant secretion by Ad-MSCs that could contribute to the decrease in macrophage infiltrate. Si-HPMC is suitable for cell delivery by colonoscopy and induces protection of Ad-MSCs in the tissue potentiating their therapeutic effect and could be proposed to patients suffering from colon diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mary, E-mail: maryfeng@umich.edu; Normolle, Daniel; Pan, Charlie C.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at amore » median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.« less

  20. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation induced myeloproliferative disease

    PubMed Central

    Iskander, Karim; Barrios, Roberto J.; Jaiswal, Anil K.

    2008-01-01

    NAD(P)H:quinone oxidoreductase1-null (NQO1-/-) mice exposed to 3 grays of γ-radiation demonstrated an increase in neutrophils, bone marrow hypercellularity, and enlarged lymph nodes and spleen. The spleen showed disrupted follicular structure, loss of red pulp, and granulocyte and megakarocyte invasion. Blood and histological analysis did not show any sign of infection in mice. These results suggested that exposure of NQO1-/- mice to γ-radiation led to myeloproliferative disease. Radiation-induced myeloproliferative disease was observed in 74% of NQO1-/- mice as compared to none in wild type mice. NQO1-/- mice exposed to γ-radiation also demonstrated tissues lymphoma (32%) and lung adenocarcinoma (84%). In contrast, only 11% wild type mice showed lymphoma and none showed lung adenocarcinoma. Exposure of NQO1-/- mice to γ-radiation resulted in reduced apoptosis in granulocytes and lack of induction of p53, p21, and Bax. NQO1-/- mice also demonstrated increased expression of myeloid differentiation factors C/EBPα and Pu.1. Intriguingly, exposure of NQO1-/- mice to γ-radiation failed to induce C/EBPα and Pu.1, as was observed in wild type mice. These results suggest that decreased p53/apoptosis and increased Pu.1 and C/EBPα led to myeloid hyperplasia in NQO1-/- mice. The lack of induction of apoptosis and differentiation contributed to radiation-induced myeloproliferative disease in NQO1-/- mice. PMID:18829548

  1. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  2. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  3. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Jessica; Haston, Christina K., E-mail: christina.haston@mcgill.ca

    2013-01-01

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receivingmore » sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.« less

  4. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.

    PubMed

    Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun

    2011-09-01

    Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Use of Human Cadaveric Mesenchymal Stem Cells for Cell Therapy of a Chronic Radiation-Induced Skin Lesion: A Case Report.

    PubMed

    Portas, M; Mansilla, E; Drago, H; Dubner, D; Radl, A; Coppola, A; Di Giorgio, M

    2016-09-01

    Acute and late radiation-induced injury on skin and subcutaneous tissues are associated with substantial morbidity in radiation therapy, interventional procedures and also are of concern in the context of nuclear or radiological accidents. Pathogenesis is initiated by depletion of acutely responding epithelial tissues and damage to vascular endothelial microvessels. Efforts for medical management of severe radiation-induced lesions have been made. Nevertheless, the development of strategies to promote wound healing, including stem cell therapy, is required. From 1997 to 2014, over 248 patients were referred to the Radiopathology Committee of Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Burns Hospital) for the diagnosis and therapy of radiation-induced localized lesions. As part of the strategies for the management of severe cases, there is an ongoing research and development protocol on 'Translational Clinical Trial phases I/II to evaluate the safety and efficacy of adult mesenchymal stem cells from bone marrow for the treatment of large burns and radiological lesions'. The object of this work was to describe the actions carried out by the Radiopathology Committee of the Burns Hospital in a chronic case with more than 30 years of evolution without positive response to conventional treatments. The approach involved the evaluation of the tissular compromise of the lesion, the prognosis and the personalized treatment, including regenerative therapy. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  6. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate

  7. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature).

    PubMed

    Abbaszadeh, A; Haddadi, G H; Haddadi, Z

    2017-06-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.

  8. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

    PubMed Central

    Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.

    2017-01-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334

  9. ALA-induced PpIX fluorescence in epileptogenic tissue

    NASA Astrophysics Data System (ADS)

    Kleen, Jonathan K.; Valdes, Pablo A.; Harris, Brent T.; Holmes, Gregory L.; Paulsen, Keith D.; Roberts, David W.

    2011-03-01

    Astrogliotic tissue displays markedly increased levels of ALA-induced PpIX fluorescence, making it useful for fluorescence-guided resection in glioma surgery. In patients with temporal lobe epilepsy (TLE) and corresponding animal models, there are areas of astrogliosis that often co-localize with the epileptic focus, which can be resected to eliminate seizures in the majority of treated patients. If this epileptogenic tissue can exhibit PpIX fluorescence that is sufficiently localized, it could potentially help identify margins in epilepsy surgery. We tested the hypothesis that ALA-induced PpIX fluorescence could visually accentuate epileptogenic tissue, using an established animal model of chronic TLE. An acute dose of pilocarpine was used to induce chronic seizure activity in a rat. This rat and a normal control were given ALA, euthanized, and brains examined post-mortem for PpIX fluorescence and neuropathology. Preliminary evidence indicates increased PpIX fluorescence in areas associated with chronic epileptic changes and seizure generation in TLE, including the hippocampus and parahippocampal areas. In addition, strong PpIX fluorescence was clearly observed in layer II of the piriform cortex, a region known for epileptic reorganization and involvement in the generation of seizures in animal studies. We are further investigating whether ALA-induced PpIX fluorescence can consistently identify epileptogenic zones, which could warrant the extension of this technique to clinical studies for use as an adjuvant guidance technology in the resection of epileptic tissue.

  10. Normal tissue studies in radiation oncology: A systematic review of highly cited articles and citation patterns.

    PubMed

    Nieder, Carsten; Andratschke, Nicolaus H; Grosu, Anca L

    2014-09-01

    Radiation therapy is one of the cornerstones of modern multidisciplinary cancer treatment. Normal tissue tolerance is critical as radiation-induced side effects may compromise organ function and quality of life. The importance of normal tissue research is reflected by the large number of scientific articles, which have been published between 2006 and 2010. The present study identified important areas of research as well as seminal publications. The article citation rate is among the potential indicators of scientific impact. Highly cited articles, arbitrarily defined as those with ≥15 citations, were identified via a systematic search of the citation database, Scopus. Up to 608 articles per year were published between 2006 and 2010, however, <10% of publications in each year accumulated ≥15 citations. This figure is notably low, when compared with other oncology studies. A large variety of preclinical and clinical topics, including toxicity prediction, the dose-volume relationship and radioprotectors, accumulated ≥15 citations. However, clinical prevention or mitigation studies were underrepresented. The following conclusion may be drawn from the present study; despite the improved technology that has resulted in superior dose distribution, clinical prevention or mitigation studies are critical and must receive higher priority, funding and attention.

  11. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  12. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  13. Effects on Periocular Tissues after Proton Beam Radiation Therapy for Intraocular Tumors

    PubMed Central

    2018-01-01

    Background To present our experience on orbital and periorbital tissue changes after proton beam radiation therapy (PBRT) in patients with intraocular tumors, apart from treatment outcomes and disease control. Methods Medical records of 6 patients with intraocular tumors who had been treated with PBRT and referred to oculoplasty clinics of two medical centers (Seoul National University Hospital and Seoul Metropolitan Government-Seoul National University Boramae Medical Center) from October 2007 to September 2014 were retrospectively reviewed. The types of adverse effects associated with PBRT, their management, and progression were analyzed. In anophthalmic patients who eventually underwent enucleation after PBRT due to disease progression, orbital volume (OV) was assessed from magnetic resonance (MR) images using the Pinnacle3 program. Results Among the six patients with PBRT history, three had uveal melanoma, and three children had retinoblastoma. Two eyes were treated with PBRT only, while the other four eyes ultimately underwent enucleation. Two eyes with PBRT only suffered from radiation dermatitis and intractable epiphora due to canaliculitis or punctal obstruction. All four anophthalmic patients showed severe enophthalmic features with periorbital hollowness. OV analysis showed that the difference between both orbits was less than 0.1 cm before enucleation, but increased to more than 2 cm3 after enucleation. Conclusion PBRT for intraocular tumors can induce various orbital and periorbital tissue changes. More specifically, when enucleation is performed after PBRT due to disease progression, significant enophthalmos and OV decrease can develop and can cause poor facial cosmesis as treatment sequelae. PMID:29651818

  14. Whole-Body Imaging of High-Dose Ionizing Irradiation-Induced Tissue Injuries Using 99mTc-Duramycin

    PubMed Central

    Johnson, Steven E.; Li, Zhixin; Liu, Yu; Moulder, John E.; Zhao, Ming

    2013-01-01

    High-dose ionizing irradiation can cause extensive injuries in susceptible tissues. A noninvasive imaging technique that detects a surrogate marker of apoptosis may help characterize the dynamics of radiation-induced tissue damage. The goal of this study was to prove the concept of imaging the temporal and spatial distribution of damage in susceptible tissues after high-dose radiation exposure, using 99mTc-duramycin as a phosphatidylethanolamine-binding radiopharmaceutical. Methods Rats were subjected to 15 Gy of total-body irradiation with x-rays. Planar whole-body 99mTc-duramycin scanning (n = 4 per time point) was conducted at 24, 48, and 72 h using a clinical γ-camera. On the basis of findings from planar imaging, preclinical SPECT data were acquired on control rats and on irradiated rats at 6 and 24 h after irradiation (n = 4 per time point). Imaging data were validated by γ-counting and histology, using harvested tissues in parallel groups of animals (n = 4). Results Prominent focal uptake was detected in the thymus as early as 6 h after irradiation, followed by a gradual decline in 99mTc-duramycin binding accompanied by extensive thymic atrophy. Early (6–24 h) radioactivity uptake in the gastrointestinal region was detected. Significant signal was seen in major bones in a slightly delayed fashion, at 24 h, which persisted for at least 2 d. This finding was paralleled by an elevation in signal intensity in the kidneys, spleen, and liver. The imaging results were consistent with ex vivo γ-counting results and histology. Relatively high levels of apoptosis were detected from histology in the thymus, guts, and bones, with the thymus undergoing substantial atrophy. Conclusion As a proof of principle, this study demonstrated a noninvasive imaging technique that allows characterization of the temporal and spatial dynamics of injuries in susceptible tissues during the acute phase after high-dose ionizing irradiation. Such an imaging capability will potentially

  15. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Effectiveness of the herbal medicine daikenchuto for radiation-induced enteritis.

    PubMed

    Takeda, Takashi; Kamiura, Shouji; Kimura, Tadashi

    2008-07-01

    Radiation-induced enteritis is a serious clinical problem for which there is currently no recommended standard management. Daikenchuto (DKT) is a Japanese herbal medicine that has been used to treat adhesive bowel obstruction in Japan. This report describes a patient with radiation-induced enteritis whose clinical symptoms were much improved by treatment with DKT. The patient was administered DKT, a traditional Japanese herbal formula, orally (2.5 g 3 times daily). Abdominal distention was evaluated objectively with computed tomography. Gastrointestinal symptoms associated with radiation-induced enteritis were controlled successfully with DKT treatment. DKT treatment may be useful for the management of radiation-induced enteritis.

  17. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  18. Radiation induced detwinning in nanotwinned Cu

    DOE PAGES

    Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; ...

    2016-11-15

    Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.

  19. [Morinda Officinalis How improves cellphone radiation-induced abnormality of LH and LHR in male rats].

    PubMed

    Li, Rong; Yang, Wei-qun; Chen, Hui-qin; Zhang, Yong-hong

    2015-09-01

    To investigate the effects of Morina Officinalis How (MOH) on the abnormal levels of serum luteotrophic hormone (LH) and LH receptor (LHR) in the testis tissue induced by cellphone radiation (CPR) in rats. Fifty adult male SD rats were randomly divided into five groups of equal number: sham CPR, untreated CPR, negative double distilled water (DDW) control, aqueous MOH extract, and alcohol MOH extract. All the animals were exposed to mobile phone radiation except those of the sham CPR group. Then, the rats of the latter two groups were treated intragastrically with MOH at 20 g per kg of the body weight per day in water and alcohol, respectively. After 2. weeks of treatment, all the rats were sacrificed for measurement of the levels of serum LH and LHR in the testis tissue. The levels of serum LH and LHR were 30.15 ± 8.71 and 33.28 ± 6.61 in the aqueous MOH group and 0.96 ± 0.06 and 0.94 ± 0.08 in the alcohol MOH group, both significantly decreased as compared with the negative DDW controls (P < 0.05), but with no remarkable difference between the two MOH groups (P > 0.05). MOH can improve CPR-induced abnormality of LH and LHR in adult male rats.

  20. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  1. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW's oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  2. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    PubMed

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  3. Barbiturate euthanasia solution-induced tissue artifact in nonhuman primates.

    PubMed

    Grieves, J L; Dick, E J; Schlabritz-Loutsevich, N E; Butler, S D; Leland, M M; Price, S E; Schmidt, C R; Nathanielsz, P W; Hubbard, G B

    2008-06-01

    Barbiturate euthanasia solutions are a humane and approved means of euthanasia. Overdosing causes significant tissue damage in a variety of laboratory animals. One hundred seventeen non-human primates (NHP) representing 7 species including 12 fetuses euthanized for humane and research reasons by various vascular routes with Euthasol, Sodium Pentobarbital, Fatal Plus, Beuthanasia D, or Euthanasia 5 were evaluated for euthanasia-induced tissue damage. Lungs and livers were histologically graded for hemolysis, vascular damage, edema, and necrosis. Severity of tissue damage was analyzed for differences on the basis of agent, age, sex, dose, and injection route. Severity of tissue damage was directly related to dose and the intracardiac injection route, but did not differ by species, sex, and agent used. When the recommended dose of agent was used, tissue damage was generally reduced, minimal, or undetectable. Barbiturate-induced artifacts in NHPs are essentially the same as in other laboratory species.

  4. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes].

    PubMed

    Ma, Hui-rong; Cao, Xiao-hui; Ma, Xue-lian; Chen, Jin-jin; Chen, Jing-wei; Yang, Hui; Liu, Yun-xiao

    2015-08-01

    To observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis. Thirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry. Compared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P < 0.01) and bax expression (P < 0.01) but decreases in the GSH level (P < 0.01) and bcl-2 expression (P < 0.01) in the testis issue of the radiated rats. In comparison with the radiated rats, those of the Liuweidihuang group exhibited nearly normal testicular structure, significantly lower MDA level (P < 0.05), bax expression (P < 0.01), and bcl-2 expression (P < 0.01). Liuweidihuang Pills can improve cellphone electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.

  5. Melatonin prevents radiation-induced oxidative stress and periodontal tissue breakdown in irradiated rats with experimental periodontitis.

    PubMed

    Köse, O; Arabaci, T; Kizildag, A; Erdemci, B; Özkal Eminoğlu, D; Gedikli, S; Özkanlar, S; Zihni, M; Albayrak, M; Kara, A; Kermen, E

    2017-06-01

    The aim of this study was to analyze the biochemical and histochemical effects of radiation therapy and protective melatonin administration on periodontal tissues in rats with experimental periodontitis. Sixty male Sprague Dawley rats were divided into six groups, as follows: control; experimental periodontitis (Ped); radiotherapy administration (Rt); experimental periodontitis and exposure to irradiation (Ped-Rt); radiotherapy and protective melatonin administration (Rt-Mel); and periodontitis, radiation therapy and protective melatonin administration (Ped-Rt-Mel). The rats were killed at the end of the experimental procedure, and the oxidative stress level and periodontal destruction were compared among the groups. The oxidative stress index and the levels of 8-hydroxy-2'-deoxyguanosine, malondialdehyde and C-terminal telopeptide of type I collagen were found to be significantly higher in the Ped-Rt group compared with the Ped group (p < 0.05), and the levels were lower in the Ped-Rt-Mel group than in the Ped-Rt group (p < 0.05). Alveolar bone destruction and attachment level were also significantly lower in the Ped-Rt-Mel group than in the Ped-Rt group (p < 0.05). It was found that radiotherapy increased oxidative stress, the periodontal attachment level and alveolar bone loss, and protective melatonin administration significantly reduced the oxidative parameters and prevented periodontal damage in irradiated rats with experimental periodontitis. Further research is needed regarding the use of systemic melatonin administration before radiation therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    PubMed

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    PubMed

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  8. RADIATION INDUCED AGING IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, H.J.; Gebhard, K.L.

    1958-10-31

    . Experiments were undertaken in an effort to determine the degree of similarity between natural and radiation induced aging, and to determine the causes for the latter. Several severe non-specific stresses were applied to mice either as single massive doses or as smaller doses administered over a large fraction of the life span of the animals. Stresses used included typhoid vaccine, tetanus toxin and tetanus toxoid and turpentine. None of these produced any premature aging comparable to that produced by radiation. The somatic mutation theory of aging and expecially radiationinduced aging has been tested by applying the chemical mutatgen, nitrogenmore » mustard, either as a massive single dose or as smaller single doses repeated over long periods of time. No shortening of the life span has been observed and it is concluded that the somatic mutation theory is untenable. Experiments designed to determine the organ system responsible for radiation induced aging have demonstrated that the hematopoietic system is not primarily involved in this phenomenon. (auth)« less

  9. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  10. Radiation-induced schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  11. NAD+ administration significantly attenuates synchrotron radiation X-ray-induced DNA damage and structural alterations of rodent testes

    PubMed Central

    Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Hong, Yunyi; Shao, Jiaxiang; He, Xin; Ma, Yingxin; Nie, Hui; Liu, Na; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has great potential for its applications in medical imaging and cancer treatment. In order to apply SR X-ray in clinical settings, it is necessary to elucidate the mechanisms underlying the damaging effects of SR X-ray on normal tissues, and to search for the strategies to reduce the detrimental effects of SR X-ray on normal tissues. However, so far there has been little information on these topics. In this study we used the testes of rats as a model to characterize SR X-ray-induced tissue damage, and to test our hypothesis that NAD+ administration can prevent SR X-ray-induced injury of the testes. We first determined the effects of SR X-ray at the doses of 0, 0.5, 1.3, 4 and 40 Gy on the biochemical and structural properties of the testes one day after SR X-ray exposures. We found that 40 Gy of SR X-ray induced a massive increase in double-strand DNA damage, as assessed by both immunostaining and Western blot of phosphorylated H2AX levels, which was significantly decreased by intraperitoneally (i.p.) administered NAD+ at doses of 125 and 625 mg/kg. Forty Gy of SR X-ray can also induce marked increases in abnormal cell nuclei as well as significant decreases in the cell layers of the seminiferous tubules one day after SR X-ray exposures, which were also ameliorated by the NAD+ administration. In summary, our study has shown that SR X-ray can produce both molecular and structural alterations of the testes, which can be significantly attenuated by NAD+ administration. These results have provided not only the first evidence that SR X-ray-induced tissue damage can be ameliorated by certain approaches, but also a valuable basis for elucidating the mechanisms underlying SR X-ray-induced tissue injury. PMID:22518270

  12. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, William F.; Sowa, Marianne B.

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculationmore » on how these observations might lead to and impact long-term human health outcomes.« less

  13. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  14. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    PubMed

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  15. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

    PubMed Central

    Abney, Kristin R.; Kopsell, Dean A.; Sams, Carl E.; Zivanovic, Svetlana; Kopsell, David E.

    2013-01-01

    Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2 ·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817

  16. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  17. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (P<0.05). We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in

  18. Professor Glyn O. Phillip's legacy within the IAEA programme on radiation and tissue banking.

    PubMed

    Morales Pedraza, Jorge

    2017-08-19

    Professor Phillips began his involvement in the implementation of this important IAEA programme, insisting that there were advantages to be gained by using the ionizing radiation technique to sterilize human and animal tissues, based on the IAEA experience gained in the sterilization of medical products. The outcome of the implementation of the IAEA programme on radiation and tissue banking demonstrated that Professor Phillips was right in his opinion.

  19. Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning

    DTIC Science & Technology

    1986-01-01

    to Walter A. Hunt. 86 4 21 144 . J Jr -.W U *’ = 7 . 7 .: M: W. ,WLW;i , .-, -’ .’P. %k T .- - ’ .: ’W ; .a --,.-" -. t .:-. , 56 RABIN AND HUNT can...8217. 7m. U RADIATION-INDUCED TASTE AVERSIONS 57 induced CTA 11021. Alternatively, when the antihistamine is [ 21 . A radiation-induced CTA can be...in rats. Pharmmad psychioactive drugs. J (omp Phvsiod Pvchld .;’: 21 -26. 1972. Biochem Behav 17: 305-311. 1982. 4. Berger. B. D.. C. D. Wise and L

  20. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  1. A report on radiation-induced gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvati, M.; Artico, M.; Caruso, R.

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  2. Do no harm--normal tissue effects

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    Radiation therapy confers enormous benefits that must be balanced against the possibilities for harm including late toxicity in normal tissues and radiation-induced second malignancies. A small percentage of patients experience severe late complications. The question is, do these late sequelae occur randomly, or are they confined to individuals who are genetically predisposed to radiosensitivity. Experiments with knockout mice and with patients demonstrate that individuals heterozygous for a number of genes appear to be radiosensitive. If radiosensitive patients were identified prospectively by genetic analysis, they could be spared the trauma of late sequelae. Several large studies have shown a statistically significant excess of radiation-induced malignancies in radiotherapy patients. Most second cancers are carcinomas, developing in the lining cells of the body often remote from the treatment site. Radiation-induced sarcomas appear only in the heavily irradiated areas. These are small in number but appear with a very high relative risk.

  3. Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis

    PubMed Central

    Anwar, Mumtaz; Ahmad, Shabeer; Akhtar, Reyhan; Mahmood, Akhtar

    2017-01-01

    Radiation enteritis is one of the most feared complications of abdominal and pelvic regions. Thus, radiation to abdominal or pelvic malignancies unavoidably injures the intestine. Because of rapid cell turnover, the intestine is highly sensitive to radiation injury, which is the limiting factor in the permissible dosage of irradiation. Bowel injuries such as fistulas, strictures, and chronic malabsorption are potentially life-threatening complications and have an impact on patient quality of life. The incidence of radiation enteritis is increasing because of the current trend of combined chemotherapy and radiation. The consequences of radiation damage to the intestine may result in considerable morbidity and even mortality. The observed effects of ionizing radiation are mediated mainly by oxygen-free radicals that are generated by its action on water and are involved in several steps of signal transduction cascade, leading to apoptosis. The oxyradicals also induce DNA strand breaks and protein oxidation. An important line of defense against free radical damage is the presence of antioxidants. Therefore, administration of antioxidants may ameliorate the radiation-induced damage to the intestine. PMID:28532242

  4. Exercise-induced adaptations to white and brown adipose tissue.

    PubMed

    Lehnig, Adam C; Stanford, Kristin I

    2018-03-07

    The beneficial effects of exercise on skeletal muscle and the cardiovascular system have long been known. Recent studies have focused on investigating the effects of exercise on adipose tissue and the effects that these exercise-induced adaptations have on overall metabolic health. Examination of exercise-induced adaptations in both white adipose tissue (WAT) and brown adipose tissue (BAT) has revealed marked differences in each tissue with exercise. In WAT, there are changes to both subcutaneous WAT (scWAT) and visceral WAT (vWAT), including decreased adipocyte size and lipid content, increased expression of metabolic genes, altered secretion of adipokines and increased mitochondrial activity. Adaptations specific to scWAT include lipidomic remodeling of phospholipids and, in rodents, the beiging of scWAT. The changes to BAT are less clear: studies evaluating the effect of exercise on the BAT of humans and rodents have revealed contradictory data, making this an important area of current investigation. In this Review, we discuss the exercise-induced changes to WAT and BAT that have been reported by different studies and highlight the current questions in this field. © 2018. Published by The Company of Biologists Ltd.

  5. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  6. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy.

    PubMed

    Kobashi, Keiji; Prayongrat, Anussara; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-03-01

    Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance-covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold.

  7. Deep Space Gateway as a Platform to Study Synergistic Radiation and Microgravity-Induced Tissue Degeneration Using the Bioculture System Single Cassette Hardware Design

    NASA Astrophysics Data System (ADS)

    Almeida, E. A. C.

    2018-02-01

    A major unknown for human exploration of deep space is the question of how the degenerative effects of microgravity unloading of cells and tissues may synergize with radiation. Here we describe cell culture hardware to study those combined effects.

  8. [Radiobiological Human Tissue repository: progress and perspectives for solving the problems of radiation safety and health protection of personnel and population].

    PubMed

    Kirillova, E N; Romanov, S A; Loffredo, C A; Zakharova, M L; Revina, V S; Sokolova, S N; Goerlitz, D S; Zubkova, O V; Lukianova, T V; Uriadnitzkaia, T I; Pavlova, O S; Slukinova, U V; Kolosova, A V; Muksinova, K N

    2014-01-01

    Radiobiological Human Tissue repository was established in order to obtain and store biological material from Mayak PA workers occupationally exposed to ionizing (α- and/or γ-) radiation in a wide dose range, from the residents exposed to long term radiation due to radiation accidents and transfer of the samples to scientists for the purpose of studying the effects of radiation for people and their offspring. The accumulated biomaterial is the informational and research potential that form the basis for the work of the scientists in different spheres of biology and medicine. The repository comprises 5 sections: tumor and non-tumor tissues obtained in the course of autopsies, biopsies, surgeries, samples of blood and its components, of DNA, induced sputum, saliva, and other from people exposed or unexposed (control) to radiation. The biomaterial is stored in formalin, in paraffin blocks, slides, as well as in the freezers under low temperatures. All the information on the samples and the registrants (medical, dosimetry, demographic, and occupational data) was obtained and entered into the electronic database. A constantly updated website of the repository was developed in order to provide a possibility to get acquainted with the material and proceed with application for biosamples for scientists from Russia and abroad. Some data obtained in the course of scientific research works on the basis of the biomaterial from the Repository are briefly introduced in the review.

  9. Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Moritake, Takashi; Anzai, Kazunori

    2007-02-12

    Reactive oxygen species are implicated in neurodegeneration and cognitive disorders due to higher vulnerability of neuronal tissues. The cerebellum is recently reported to be involved in cognitive function. Therefore, present study aimed at investigating the role alpha-lipoic acid against radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body X-irradiation (6 Gy) of mice substantially impaired the reference memory and motor activities of mice. However, acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such cognitive dysfunction. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of protein carbonyls and thiobarbituric acid reactive substance (TBARS) in mice cerebellum. Further, radiation-induced deficit of total, nonprotein and protein-bound sulfhydryl (T-SH, NP-SH, PB-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Moreover, alpha-lipoic acid treated mice showed an intact cytoarchitecture of cerebellum, higher counts of intact Purkinje cells and granular cells in comparison to untreated irradiated mice. Results clearly indicate that alpha-lipoic acid is potent neuroprotective antioxidant.

  10. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory

  11. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  12. Normal tissue toxicity after small field hypofractionated stereotactic body radiation.

    PubMed

    Milano, Michael T; Constine, Louis S; Okunieff, Paul

    2008-10-31

    Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics.

  13. A Novel In Vivo Protocol for Molecular Study of Radiation-Induced Fibrosis in Head and Neck Cancer Patients.

    PubMed

    Krisciunas, Gintas P; Platt, Michael; Trojanowska, Maria; Grillone, Gregory A; Haines, Paul C; Langmore, Susan E

    2016-03-01

    Radiation-induced fibrosis is a common complication for patients following head and neck cancer treatment. This study presents a novel minimally invasive protocol for molecular study of fibrosis in the stromal tissues. Subjects with radiation-induced fibrosis in the head and neck who were at least 6 months post treatment received submental core needle biopsies, followed by molecular processing and quantification of gene expression for 14 select pro-inflammatory and pro-fibrotic genes. Control biopsies from the upper arm were obtained from the same subjects. Patients were followed up at 1 and 2 weeks to monitor for safety and adverse outcomes. Six subjects were enrolled and completed the study. No subjects experienced adverse outcomes or complication. An 18 gauge core biopsy needle with a 10 mm notch inserted for up to 60 seconds was needed. Subcutaneous tissue yielded 3 ng of RNA, amplified to 6 µg of cDNA, allowing for adequately sensitive quantitative polymerase chain reaction (qPCR) analysis of approximately 28 genes. This study demonstrates the safety and utility of a novel technique for the molecular study of fibrosis in head and neck cancer patients. Longitudinal studies of patients undergoing radiation therapy will allow for identification of molecular targets that contribute to the process of fibrosis in the head and neck. © The Author(s) 2015.

  14. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  15. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100%more » mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.« less

  16. Evidence for radiation-induced disseminated intravascular coagulation as a major cause of radiation-induced death in ferrets.

    PubMed

    Krigsfeld, Gabriel S; Savage, Alexandria R; Billings, Paul C; Lin, Liyong; Kennedy, Ann R

    2014-03-15

    The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    PubMed

    Wang, Jingzi; Zhang, Youwei; Xu, Kai; Mao, Xiaobei; Xue, Lijun; Liu, Xiaobei; Yu, Hongjun; Chen, Longbang; Chu, Xiaoyuan

    2014-01-01

    Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR). Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays), and chronic exposure for 10 days (0.05Gy/d×10d). High-performance liquid chromatography (HPLC) and MeDIP-quantitative polymerase chain reaction (qPCR) were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP) and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15) were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  18. [The occupational radiation-induced cataract in five industrial radiographers].

    PubMed

    Benzarti Mezni, A; Loukil, I; Hriz, N; Kallel, K; Mlaiki, N; Ben Jemaâ, A

    2012-04-01

    The industrial uses of ionizing radiation in Tunisia are expanding, especially in industry and most particularly in the nondestructive testing of welds. Thus workers operating in the non-destructive testing of welds may develop a radiation-induced cataract varying in time to onset depending on the dose. To describe the characteristics of the radiation-induced cataract in patients exposed to ionizing radiation, determine the risk factors of radiation-induced cataracts. This was an anamnestic, clinical, and environmental study of five cases of radiation-induced cataract in workers employed in non-destructive testing of welds. This series of five cases had a mean age of 30.2 years and 5.53 years of work experience, ranging from 14 months to 15 years. All the patients were male and industrial radiographers specialized in nondestructive testing of welds. The average duration of exposure to ionizing radiation was 5.53 years. None of the patients had worn protective gear such as eye goggles. The ophthalmic check-up for the five special industrial radiographers showed punctuate opacities in three cases, punctiform opacities in one eye in one case, and phacosclerosis with bilateral lens multiple crystalline stromal opacities in a case of micro-lens opacities in both eyes with opalescence of both eyes in one case. These cataracts had been declared as occupational diseases. The value of a specialized ophthalmologic surveillance among these workers and the early diagnosis of lens opacities must be emphasized. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the

  20. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglan, R.J.; Marks, J.E.

    1981-04-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less

  1. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  2. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  3. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  4. PD-1 Modulates Radiation-Induced Cardiac Toxicity through Cytotoxic T Lymphocytes.

    PubMed

    Du, Shisuo; Zhou, Lin; Alexander, Gregory S; Park, Kyewon; Yang, Lifeng; Wang, Nadan; Zaorsky, Nicholas G; Ma, Xinliang; Wang, Yajing; Dicker, Adam P; Lu, Bo

    2018-04-01

    Combined immune checkpoint blockade has led to rare autoimmune complications, such as fatal myocarditis. Recent approvals of several anti-programmed death 1 (anti-PD-1) drugs for lung cancer treatment prompted ongoing clinical trials that directly combine PD-1 inhibitors with thoracic radiotherapy for locally advanced lung cancer. Overlapping toxicities from either modality have the potential to increase the risk for radiation-induced cardiotoxicity (RICT), which is well documented among patients with Hodgkin's disease and breast cancer. To investigate cardiotoxicity without the compounding pulmonary toxicity from thoracic radiotherapy, we developed a technique to deliver cardiac irradiation (CIR) in a mouse model concurrently with PD-1 blockade to determine the presence of cardiac toxicity by using physiological testing and mortality as end points along with histological analysis. We observed an acute mortality of 30% within 2 weeks after CIR plus anti-PD-1 antibody compared with 0% from CIR plus immunoglobulin G (p = 0.023). Physiological testing demonstrated a reduced left ventricular ejection fraction (p < 0.01) by echocardiogram. Tissue analyses revealed increased immune cell infiltrates within cardiac tissue. Depletion of CD8-positive lymphocytes with anti-CD8 antibody reversed the acute mortality, suggesting that the toxicity is CD8-positive cell-mediated. To validate these findings using a clinically relevant fractionated radiotherapy regimen, we repeated the study by delivering five daily fractions of 6 Gy. Similar mortality, cardiac dysfunction, and histological changes were observed in mice receiving fractionated radiotherapy with concurrent anti-PD-1 therapy. This study provides strong preclinical evidence that radiation-induced cardiotoxicity is modulated by the PD-1 axis and that PD-1 blockade should be administered with careful radiotherapy planning with an effort of reducing cardiac dose. Copyright © 2017 International Association for the Study of

  5. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  6. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  7. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  8. Real-space analysis of radiation-induced specific changes with independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borek, Dominika; Bromberg, Raquel; Hattne, Johan

    A method of analysis is presented that allows for the separation of specific radiation-induced changes into distinct components in real space. The method relies on independent component analysis (ICA) and can be effectively applied to electron density maps and other types of maps, provided that they can be represented as sets of numbers on a grid. Here, for glucose isomerase crystals, ICA was used in a proof-of-concept analysis to separate temperature-dependent and temperature-independent components of specific radiation-induced changes for data sets acquired from multiple crystals across multiple temperatures. ICA identified two components, with the temperature-independent component being responsible for themore » majority of specific radiation-induced changes at temperatures below 130 K. The patterns of specific temperature-independent radiation-induced changes suggest a contribution from the tunnelling of electron holes as a possible explanation. In the second case, where a group of 22 data sets was collected on a single thaumatin crystal, ICA was used in another type of analysis to separate specific radiation-induced effects happening on different exposure-level scales. Here, ICA identified two components of specific radiation-induced changes that likely result from radiation-induced chemical reactions progressing with different rates at different locations in the structure. In addition, ICA unexpectedly identified the radiation-damage state corresponding to reduced disulfide bridges rather than the zero-dose extrapolated state as the highest contrast structure. The application of ICA to the analysis of specific radiation-induced changes in real space and the data pre-processing for ICA that relies on singular value decomposition, which was used previously in data space to validate a two-component physical model of X-ray radiation-induced changes, are discussed in detail. This work lays a foundation for a better understanding of protein-specific radiation

  9. Principals Of Radiation Toxicology: Important Aspects.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    “All things are poison, and nothing is without poison; only the dose permits something not to be poisonous.” Paracelsus Key Words: Radiation Toxins (RT), Radiation Toxicants (RTc), Radiation Poisons (RP), Radiation Exposure (RE), Radiation Toxicology is the science about radiation poisons. [D.Popov et al. 2012,J.Zhou et al. 2007,] Radiation Toxins is a specific proteins with high enzymatic activity produced by living irradiated mammals. [D.Popov et al. 2012,] Radiation Toxicants is a substances that produce radiomimetics effects, adverse biological effects which specific for radiation. [D.Popov et al. 2012,] Radiation Toxic agent is specific proteins that can produce pathological biological effects specific for physical form of radiation.[D.Popov et al. 1990,2012,V. Maliev 2007] Different Toxic Substances isolated from cells or from blood or lymph circulation. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007,] Radiation Toxins may affects many organs or specific organ, tissue, specific group of cells. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007] For example: Radiation Toxins could induce collective toxic clinical states to include: systemic inflammatory response syndrome (SIRS),toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [T. Azizova et al. 2005, Konchalovsky et al., 2005, D. Popov et al 2012] However, Radiation Toxins could induce specific injury of organs or tissue and induce Acute Radiation Syndromes such as Acute Radiation Cerebrovascular Syndrome, Acute Radiation Cardiovascular Syndrome, Acute Radiation Hematopoietic Syndrome, Acute Radiation GastroIntestinal Syndrome. [ D.Popov et al. 1990, 2012, V. Maliev et al. 2007] Radiation Toxins correlates with Radiation Exposure and the dose-response relationship is a fundamental and essential concept in classic Toxicology and Radiation Toxicology.[ D.Popov et al

  10. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  11. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    PubMed

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  12. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  13. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  14. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  15. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  16. Late effects from particulate radiations in primate and rabbit tissues

    NASA Astrophysics Data System (ADS)

    Lett, J. T.; Cox, A. B.; Bergtold, D. S.; Lee, A. C.; Pickering, J. E.

    Optic tissues in groups of New Zealand white rabbits were irradiated locally at different stages throughout the median life span of the species with a single dose (9 Gy) of 425 MeV/amu Ne ions (LET∞~30 keV/μm) and then inspected routinely for the progression of radiation cataracts. The level of early cataracts was found to be highest in the youngest group of animals irradiated (8 weeks old) but both the onset of late cataracts and loss of vision occurred earlier when animals were irradiated during the second half of the median life span. This age response can have serious implications in terms of space radiation hazards to man. Rhesus monkeys that had been subjected to whole-body skin irradiation (2.8 and 5.6 Gy) by 32 MeV protons (range in tissue ~ 1 cm) some twenty years previously were analysed for radiation damage by the propagation of skin fibroblasts in primary cultures. Such propagation from skin biopsies in MEM-α medium (serial cultivation) or in supplemented Ham's F-10 medium (cultivation without dilution) revealed late damage in the stem (precursor) cells of the skins of the animals. The proton fluxes employed in this experiment are representative of those occurring in major solar flares.

  17. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  18. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Cyrus Tang Hematology Center, Soochow University, Suzhou; Luo, Judong

    Purpose: To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. Methods and Materials: Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injurymore » scale. Results: We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. Conclusion: Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.« less

  19. Radiation-induced cerebrovascular disease in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, T.L.; Bresnan, M.J.

    1976-06-01

    Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma.

  20. microRNA alterations driving acute and late stages of radiation-induced fibrosis in a murine skin model.

    PubMed

    Simone, Brittany A; Ly, David; Savage, Jason E; Hewitt, Stephen M; Dan, Tu D; Ylaya, Kris; Shankavaram, Uma; Lim, Meng; Jin, Lianjin; Camphausen, Kevin; Mitchell, James B; Simone, Nicole L

    2014-09-01

    Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation. Published by Elsevier Inc.

  1. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas

    PubMed Central

    Showler, Kaye; Nishimura, Mayumi; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J.; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro

    2017-01-01

    Abstract The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. PMID:27738081

  2. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples

  3. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy

    PubMed Central

    Kobashi, Keiji; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-01-01

    Abstract Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold. PMID:29538699

  4. Strategies for optimizing the response of cancer and normal tissues to radiation

    PubMed Central

    Moding, Everett J.; Kastan, Michael B.; Kirsch, David G.

    2014-01-01

    Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity. PMID:23812271

  5. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    PubMed

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  7. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone

    PubMed Central

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-01-01

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy. PMID:28952535

  8. Radiation-induced chondrosarcoma of the maxilla 7-year after combined chemoradiation for tonsillar lymphoma.

    PubMed

    Mohammadianpanah, M; Gramizadeh, B; Omidvari, Sh; Mosalaei, A

    2004-01-01

    Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.

  9. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research.

    PubMed

    Ainsbury, Elizabeth A; Barnard, Stephen; Bright, Scott; Dalke, Claudia; Jarrin, Miguel; Kunze, Sarah; Tanner, Rick; Dynlacht, Joseph R; Quinlan, Roy A; Graw, Jochen; Kadhim, Munira; Hamada, Nobuyuki

    The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  11. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  12. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  13. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  14. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation.

    PubMed

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  15. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues.

    PubMed

    Kochan, David Z; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H; McDonald, Robert J; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed.

  16. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  17. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, G.; Matzinger, E.; Gange, R.W.

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areasmore » were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.« less

  18. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.

    PubMed

    Kawasaki, Noritaka; Asada, Rie; Saito, Atsushi; Kanemoto, Soshi; Imaizumi, Kazunori

    2012-01-01

    Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.

  19. Hyperbaric oxygen: Primary treatment of radiation-induced hemorrhagic cystitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Neville, E.C.

    Of 8 patients with symptoms of advanced cystitis due to pelvic radiation treated with hyperbaric oxygen 7 are persistently improved during followup. All 6 patients treated for gross hematuria requiring hospitalization have been free of symptoms for an average of 24 months (range 6 to 43 months). One patient treated for stress incontinence currently is dry despite little change in bladder capacity, implying salutary effect from hyperbaric oxygen on the sphincter mechanism. One patient with radiation-induced prostatitis failed to respond. This experience suggests that hyperbaric oxygen should be considered the primary treatment for patients with symptomatic radiation-induced hemorrhagic cystitis.

  20. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-06-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral /sup 60/Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously ormore » subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  1. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenouslymore » or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  2. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: an in vitro and in vivo assessment.

    PubMed

    Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of

  3. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective,more » Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.« less

  4. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    PubMed

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  5. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evaluation of laser radiation regimes at thermal tissue destruction

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.

    1996-01-01

    The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.

  7. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    PubMed

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  9. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

    PubMed

    Pegoraro, Natháli S; Barbieri, Allanna V; Camponogara, Camila; Mattiazzi, Juliane; Brum, Evelyne S; Marchiori, Marila C L; Oliveira, Sara M; Cruz, Letícia

    2017-02-01

    This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    PubMed

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  11. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  12. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  13. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  14. Apatinib in refractory radiation-induced brain edema: A case report.

    PubMed

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-11-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Two patients were both diagnosed as refractory radiation-induced brain edema. Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study.

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  17. A Systems Approach to Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hlatky, Lynn

    Understanding carcinogenesis risk is complicated by a number of factors, among these the lack of a common platform to integrate and analyze the available data, and the inherently systemsbiologic nature of the problem. We have investigated mechanistic approaches to radiogenic risk estimation that draw on unifying biological principles and incorporate data from multiscale sources. The resultant modeling takes into account that carcinogenesis is a multi-scale phenomenon, critically influenced by determinants not only at the molecular level, but at the cell and tissue-levels as well. To account for cell-level carcinogenesis progression as influenced by inter-tissue signaling, we have developed a dynamic carrying capacity construct that couples the growth of a tumor with the degree of induced vascularization. We have also characterized the molecular responses to radiation incorporating tissue-level angiogenesis implications, and have found striking radiation-quality-dependent responses. The molecular-level events of initiation and promotion are considered in our Two-Stage Logistic model, while incorporating in a rudimentary way the larger-scale growth-limiting role of cell-cell interactions. These and other recent studies undertaken to elaborate radiation-induced carcinogenesis are discussed, in pursuit of a more complete paradigm for understanding radiation induction of cancer and the consequent risk.

  18. Comparative investigation of the penetration of different wavelength visible LED radiation into dental tissue

    NASA Astrophysics Data System (ADS)

    Uzunov, Tz.; Uzunova, P.; Angelov, I.; Gisbrecht, A.

    2008-12-01

    In this paper we report the results of measurement of the penetration of the radiation from different visible light emitting diodes (LEDs) inside dental tissue. The experiments are made using several different LEDs with wavelengths between 450 nm and 800 nm and power densities between 50 and 250 mW/cm2, which are the most frequently used in the clinical practice with proved clinical effect. The experimental results show that the penetration depends on the wavelength and the type of tissue. The results can be employed in the clinical practice for determining radiation dosage in the treatment of periodontal diseases.

  19. Tissue damage negatively regulates LPS-induced macrophage necroptosis.

    PubMed

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-09-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules.

  20. Tissue damage negatively regulates LPS-induced macrophage necroptosis

    PubMed Central

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-01-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules. PMID:26943325

  1. IAEA activities related to radiation biology and health effects of radiation.

    PubMed

    Wondergem, Jan; Rosenblatt, Eduardo

    2012-03-01

    The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states.

  2. Generation of radicals in hard biological tissues under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  3. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    PubMed Central

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. PMID:26019540

  4. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome.

    PubMed

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-05-04

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 - dose that kills 100% of the mice at 30 days) from 137 Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery.

  5. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  6. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    PubMed

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  7. Modulating factors in the expression of radiation-induced oncogenic transformation.

    PubMed Central

    Hall, E J; Hei, T K

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitative are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing alpha-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene. Images FIGURE 4. PMID:2272310

  8. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.

    PubMed

    Moison, R M; Beijersbergen Van Henegouwen, G M

    2001-07-01

    Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.

  9. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  10. THE EFFECTS OF IONIZING RADIATIONS ON THE BIOCHEMISTRY OF MAMMALIAN TISSUES.

    DTIC Science & Technology

    Contents: The effects of Ionizing Radiations on the Biochemistry of Mammalian Tissues: (1) Studies on the Effect of X-irradiation on Coenzyme A ... Levels of the Livers of Mice; (2) Influence of X-irradiation on the Development of a Detoxification System for Phosphorothioates in the Livers of Rats

  11. Radiation effects on bovine taste bud membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less

  12. Role of cells in freezing-induced cell-fluid-matrix interactions within engineered tissues.

    PubMed

    Seawright, Angela; Ozcelikkale, Altug; Dutton, Craig; Han, Bumsoo

    2013-09-01

    During cryopreservation, ice forms in the extracellular space resulting in freezing-induced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezing-induced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was, therefore, determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.

  13. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.

  14. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  15. Low-dose γ-radiation-induced oxidative stress response in mouse brain and gut: regulation by NFκB-MnSOD cross-signaling.

    PubMed

    Veeraraghavan, Jamunarani; Natarajan, Mohan; Herman, Terence S; Aravindan, Natarajan

    2011-01-10

    Radiation-induced amplification of reactive oxygen species (ROS) may be a sensing mechanism for activation of signaling cascades that influence cell fate. However, the regulated intrinsic mechanisms and targets of low-dose ionizing radiation (LDIR) are still unclear. Accordingly, we investigated the effects of LDIR on NFκB signal transduction and manganese superoxide dismutase (SOD2) activity in mice brain and gut. LDIR resulted in both dose-dependent and persistent NFκB activation in gut and brain. QPCR displayed a dose- and tissue-dependent differential modulation of 88 signaling molecules. With stringent criteria, a total of 15 (2cGy), 43 (10cGy) and 19 (50cGy) genes were found to be commonly upregulated between brain and gut. SOD2 immunostaining showed a LDIR-dose dependent increase. Consistent with the NFκB results, we observed a persistent increase in SOD2 activity after LDIR. Moreover, muting of LDIR-induced NFκB attenuated SOD2 transactivation and cellular localization. These results imply that exposure of healthy tissues to LDIR results in induced NFκB and SOD2 activity and transcriptional activation of NFκB-signal transduction/target molecules. More importantly, the results suggest that NFκB initiates a feedback response through transcriptional activation of SOD2 that may play a key role in the LDIR-induced oxidative stress response and may control the switch that directs cell fate. 2010 Elsevier B.V. All rights reserved.

  16. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  17. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  18. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  19. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  20. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    PubMed Central

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  1. Fetal Radiation Exposure Induces Testicular Cancer in Genetically Susceptible Mice

    PubMed Central

    Shetty, Gunapala; Comish, Paul B.; Weng, Connie C. Y.; Matin, Angabin; Meistrich, Marvin L.

    2012-01-01

    The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5–6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis. PMID:22348147

  2. Prototype Biology-Based Radiation Risk Module Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  3. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  4. Clinical and dosimetric factors of radiation-induced esophageal injury: radiation-induced esophageal toxicity.

    PubMed

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-05-07

    To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus > or =60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). Concurrent chemotherapy and the maximal esophageal point dose > or =60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.

  5. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes.

    PubMed

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; Ruiz de Almodóvar, José Mariano

    2005-01-01

    Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify

  6. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    PubMed Central

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; de Almodóvar, José Mariano Ruiz

    2005-01-01

    Introduction Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Methods Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Results Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. Conclusion After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity

  7. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis.

    PubMed

    Shaban, Nadia Z; Ahmed Zahran, Ahmed M; El-Rashidy, Fatma H; Abdo Kodous, Ahmad S

    2017-12-01

    Gamma (γ) ray, an electromagnetic radiation, is occasionally accompanying the emission of an alpha or beta particle. Exposure to such radiation can cause cellular changes such as mutations, chromosome aberration and cellular damage which depend upon the total amount of energy, duration of exposure and the dose. Ionizing radiation can impair spermatogenesis and can cause mutations in germ cells. In general, type B spermatogonia are sensitive to this type of radiation. The current study was carried out to evaluate the protective role of hesperidin (H), as a polyphenolic compound, on rat testis injury induced by γ-radiation. Rats were divided into groups including C group (control rats), R (irradiated) group (rats irradiated with γ-radiation), Vehicle (V) group (rats administered with dimethylsulfoxide "DMSO"), H group (rats administered with H only), HR and RH groups (rats treated with H before and after exposure to γ-radiation, respectively). Malondialdehyde (MDA: the end product of lipid peroxidation "LPO") and xanthine oxidase (XO: it generates reactive oxygen species "ROS") in testes homogenate as well as nitric oxide (NO: as ROS) in mitochondrial matrix were determined. The apoptotic markers including DNA-fragmentation (DNAF) in testes homogenate and calcium ions (Ca 2+ ) in mitochondrial matrix were determined. Superoxide dismutase (SOD) and catalase (CAT) activities in testes homogenate, while reduced glutathione "GSH" in nuclear matrix were determined. Also histopathological examination for testes tissues through electron microscope was studied. Exposure of rats to γ-radiation (R group) increased the levels of MDA, NO, DNAF, Ca 2+ and XO activity, while it decreased GSH level, SOD and CAT activities as compared to the C groups; γ-radiation increased oxidative stress (OS), LPO, apoptosis and induced testes injuries. These results are in agreement with the histopathological examination. In contrast, treatment with H before or after exposure to γ-radiation

  8. Autologous transplantation of cryopreserved ovarian tissue to induce puberty-the endocrinologists' view.

    PubMed

    von Wolff, Michael; Stute, Petra; Flück, Christa

    2016-12-01

    Transplantation of cryopreserved ovarian tissue has been shown to successfully induce pregnancies. Furthermore, puberty may be induced by transplanted ovarian tissue in girls suffering from premature primary ovarian insufficiency (PPOI) due to gonadotoxic therapy. Therefore, the question arises if ovarian tissue cryopreservation should be recommended for puberty induction in prepubertal girls with cancer prior to gonadotoxic therapies. Although this strategy seems to be more natural than administering exogenous steroid sex hormones, there are some disadvantages from the endocrinological point of view. During physiologic puberty, serum estradiol levels increase very slowly, followed by irregular and finally regular ovulations with progesterone production during the luteal phase. PPOI presents as hypergonadotrophic hypogonadism. When transplanting ovarian tissue in girls with PPOI, the elevated gonadotrophins will promote a sudden follicular growth of one or several follicles with a sharp increase of serum estrogen levels and regular ovulations. This will result into an accelerated pubertal development with the risk of overt weight gain, cutaneous striae and premature growth stop possibly leading to psychological implications. Transplantation of cryopreserved ovarian tissue should not be recommended as an alternative to medically induced puberty.

  9. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunieff, Paul; Xu Jianhua; Hu Dongping

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to themore » hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.« less

  10. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry andmore » risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies

  11. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

    PubMed

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V

    2013-08-01

    To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied. Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily during five consecutive days beginning the first day after the inoculation of tumor cells). Fatty acid composition of various organs and tissues of mice were determined using a gas chromatography. It was shown that the exposure of normal mice to EHF EMR or tumor growth significantly increased the content of monounsaturated FA (MUFA) and decreased the content of polyunsaturated FA (PUFA) in all tissues examined. Exposure of tumor-bearing mice to EHF EMR led to the recovery of FA composition in thymocytes to the state that is typical for normal animals. In other tissues of tumor-bearing mice, the exposure to EHF EMR did not induce considerable changes that would be significantly distinguished between disturbances caused by EHF EMR exposure or tumor growth separately. In tumor tissue which is characterized by elevated level of MUFA, the exposure to EHF EMR significantly decreased the summary content of MUFA and increased the summary content of PUFA. The recovery of the FA composition in thymocytes and the modification of the FA composition in the tumor under the influence of EHF EMR on tumor-bearing animals may have crucial importance for elucidating the mechanisms of antitumor effects of the electromagnetic radiation.

  12. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  13. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    NASA Technical Reports Server (NTRS)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  14. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-08-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004 +H P = 0.049 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure.

  16. Non-radiation induced signals in TL dosimetry.

    PubMed

    German, U; Weinstein, M

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.

  17. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Acute Radiation Disease : Cutaneous Syndrome and Toxic properties of Radiomimetics -Radiation Neurotoxins and Hematotoxins.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Cutaneous injury is an important complication of a general or local acute irradiation. A type of a skin and tissues lesions depends on a type, intensity, and period of irradiation. Also, the clinical picture, signs, and manifestations of the cutaneous syndrome depend on a type of the radiation toxins circulated in lymph and blood of irradiated mammals. Radiation Toxins were isolated from lymph of the mammals that were irradiated and developed different forms of the Acute Radiation Syndromes (ARS) -Cerebrovascular, Cardiovascular, Gastrointestinal, and Hematopoietic. Radiation Toxins can be divided into the two important types of toxins (Neu-rotoxins and Hematotoxins) or four groups. The effects of Radiation Neurotoxins include severe damages and cell death of brain, heart, gastrointestinal tissues and endothelial cells of blood and lymphatic vessels. The hematotoxicity of Hematotoxic Radiation Toxins includes lym-phopenia, leukopenia, thrombocytopenia, and anemia in the blood circulation and transitory lymphocytosis and leukocytosis in the Central Lymphatic System. In all cases, administration of the Radiomimetics (Radiation Toxins) intramuscularly or intravenously to healthy, radiation naive mammals had induced and developed the typical clinical manifestations of the ARS. In all cases, administration of Radiomimetics by subtoxic doses had demonstrated development of typical clinical signs of the cutaneous syndrome such as hair loss, erythema, swelling, desqua-mation, blistering and skin necrosis. In animal-toxic models, we have activated development of the local skin and tissue injury after injection of Radiation Toxins with cytoxic properties.

  19. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal

  1. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  2. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  3. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  4. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  5. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  6. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  7. Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.

    PubMed

    Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G

    2018-06-01

    Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.

  8. Photo- and radiation chemical induced degradation of lignin model compounds.

    PubMed

    Lanzalunga; Bietti, M

    2000-07-01

    The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.

  9. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  10. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  11. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration.

    PubMed

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema.

  12. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  13. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    PubMed Central

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and

  14. Visual sensations induced by Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1975-08-01

    Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space. (auth)

  15. Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases

    PubMed Central

    Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.

    2014-01-01

    Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070

  16. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in Peru.

    PubMed

    Gamero, Emma Castro; Morales Pedraza, Jorge

    2009-05-01

    The tissue bank "Rosa Guerzoni Chambergo" (RGCTB) located at the Child's Health Institute was inaugurated in 1996, with the financial and technical support of the IAEA program on radiation and tissue banking. Since 1998, the biological bandage of fresh and lyophilised pigskin, amnion and bone tissue is processed routinely in this bank. In all cases, the tissue is sterilised with the use of Cobalt-60 radiation, process carried out at the Laboratories of Irradiation of the Peruvian Institute of Nuclear Energy (IPEN). The tissue bank in the Child's Health Institute helped to save lives in an accident occurred in Lima, when a New Year's fireworks celebration ran out of control in January 2002. Nearly 300 people died in the tragic blaze and hundreds more were seriously burned and injured. Eight Lima hospitals and clinics suddenly were faced with saving the lives of severely burned men, women and children. Fortunately, authorities were ready to respond to the emergency. More than 1,600 dressings were sterilised and supplied to Lima surgeons. The efforts helped save the lives of patients who otherwise might not have survived the Lima fire. Between 1998 and September 2007, 35,012 tissue grafts were produced and irradiated. Radiation sterilised tissues are used by 20 national medical institutions as well as 17 private health institutions. The tissue bank established in Peru with the support of the IAEA is now producing the following tissues: pigskin dressings, fresh and freeze-dried; bone allografts, chips, wedges and powdered, and amnion dressings air-dried. It is also now leading the elaboration of national standards, assignment being entrusted by ONDT (Organización Nacional de Donación y Transplantes; National Organisation on Donation and Transplant). This among other will permit the accreditation of the tissue bank. In this task is also participating IPEN.

  17. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the

  18. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  19. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  20. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  1. Modulation of Mortality by Tissue Trauma and Sepsis in Mice after Radiation Injury

    DTIC Science & Technology

    1992-01-01

    at Hiroshima, Nagasaki, and Chernobyl underscore the need for useful animal models to (a) evaluate the combined effects of radiation and tissue trauma...States, and Chernobyl , U.S.S.R.) and from abandoned medical radiation devices (Juarez, Mexico, and Goiania, Brazil). Th ;nceased risk to human health as...well as the loss of life in Chernobyl and Goiania have had sobering influences upon the world. 202 92-19333 92 o J1 I l ~l ,,TIIII,1 .\\hodtatlon Of

  2. Final Report - Epigenetics of low dose radiation effects in an animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchuk, Olga

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis ofmore » induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their

  3. Ganoderma lucidum total triterpenes prevent γ-radiation induced oxidative stress in Swiss albino mice in vivo.

    PubMed

    Smina, T P; Joseph, Jini; Janardhanan, K K

    2016-11-01

    The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay. Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks. The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.

  4. Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis.

    PubMed

    Deshpande, Sagar S; Gallagher, Katherine K; Donneys, Alexis; Tchanque-Fossuo, Catherine N; Sarhaddi, Deniz; Nelson, Noah S; Chepeha, Douglas B; Buchman, Steven R

    2013-07-01

    Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 µg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Parathyroid hormone-treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration-approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction.

  5. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  6. Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation?

    PubMed

    Ramasubramaniam, Rajagopal; Roy, Arindam; Sharma, Bharati; Nagalakshmi, Surendra

    2011-12-01

    Most of the studies on sunlight-induced pigmentation of skin are mainly focused on ultraviolet (UV) radiation-induced pigmentation and ways to prevent it. Recent studies have shown that the visible component of sunlight can also cause significant skin pigmentation. In the current study, the extent of pigmentation induced by UV and visible regions of sunlight in subjects with Fitzpatrick skin type IV-V was measured and compared with pigmentation induced by total sunlight. The immediate pigment darkening (IPD) induced by the visible fraction of sunlight is not significantly different from that induced by the UV fraction. However, the persistent pigment darkening (PPD) induced by visible fraction of sunlight in significantly lower than that induced by the UV fraction. The dose responses of IPD induced by UV, visible light and total sunlight suggest that both UV and visible light interact with the same precursor although UV is 25 times more efficient in inducing pigmentation per J cm(-2) of irradiation compared to visible radiation. The measured diffused reflection spectra and decay kinetics of UV and visible radiation-induced pigmentation are very similar, indicating that the nature of the transient and persistent species involved in both the processes are also likely to be same.

  7. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  8. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  9. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  10. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, J.; Mancuso, A.; Beck, R.

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence ofmore » both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.« less

  11. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  12. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, weremore » significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.« less

  13. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  14. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  15. Weight loss induced by bariatric surgery restores adipose tissue PNPLA3 expression.

    PubMed

    Wieser, Verena; Adolph, Timon E; Enrich, Barbara; Moser, Patrizia; Moschen, Alexander R; Tilg, Herbert

    2017-02-01

    Obesity and its related co-morbidities such as non-alcoholic fatty liver disease (NAFLD) are increasing dramatically worldwide. The genetic variation in Patatin-like phospholipase domain-containing protein 3 (PNPLA3), which is also called adiponutrin (ADPN), in residue 148 (I148M, rs738409) has been associated with NAFLD. However, the regulation and function of PNPLA3 in metabolic diseases remains unclear. Laparoscopic gastric banding (LAGB) of severely obese patients reduces body weight, liver and adipose tissue inflammation. In this study, we investigated whether weight loss induced by LAGB affected PNPLA3 expression in hepatic and adipose tissue. Liver and subcutaneous adipose tissue samples were collected from 28 severely obese patients before and 6 months after LAGB. PNPLA3 expression was assessed by quantitative real-time PCR. To understand whether inflammatory stimuli regulated PNPLA3 expression, we studied the effect of tumour necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) on PNPLA3 expression in human adipocytes and hepatocytes. PNPLA3 was strongly expressed in the liver and clearly detectable in subcutaneous adipose tissue of obese patients. Weight loss induced by LAGB of severely obese patients led to significantly increased adipose, but not hepatic, tissue expression of PNPLA3. Subcutaneous PNPLA3 expression negatively correlated with body-mass-index, fasting glucose and fasting insulin. TNFα potently suppressed PNPLA3 expression in adipocytes but not hepatocytes. Weight loss induced by LAGB restored adipose tissue PNPLA3 expression which is suppressed by TNFα. Further studies will be required to determine the functional impact of PNPLA3 and its related genetic variation on adipose tissue inflammation and NAFLD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota

    PubMed Central

    Xiao, Hui-wen; Li, Yuan; Luo, Dan; Dong, Jia-li; Zhou, Li-xin; Zhao, Shu-yi; Zheng, Qi-sheng; Wang, Hai-chao; Cui, Ming; Fan, Sai-jun

    2018-01-01

    Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings. PMID:29371696

  17. Cinnamon extract ameliorates ionizing radiation-induced cellular injury in rats.

    PubMed

    Azab, Khaled Sh; Mostafa, Abdel-Halem A; Ali, Ehab M M; Abdel-Aziz, Mohamed A S

    2011-11-01

    The present study aimed to investigate the protective role of cinnamon extract against inflammatory and oxidative injuries in gamma irradiated rats. Rats were subjected to fractionated doses of gamma radiation. Cinnamon extract were daily administrated before starting irradiation and continued after radiation exposure. The results obtained revealed that the administration of cinnamon extract to irradiated rats significantly ameliorated the changes induced in liver antioxidant system; catalase, superoxide dismutase and glutathione peroxidase activities as well as reduced glutathione concentration. The liver's lipid peroxidation and protein oxidation indices were significantly decreased when compared with their equivalent values in irradiated rats. Furthermore, the changes induces in xanthine oxidoreductase system were significantly diminished. In addition, the changes in liver nitric oxide contents, serum tumor necrosis factor alpha and C-reactive protein levels were markedly improved. In conclusion, the administration of cinnamon extract might provide substantial protection against radiation-induced oxidative and inflammatory damages. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Comparative study of the calculated risk of radiation-induced cancer after photon- and proton-beam based radiosurgery of liver metastases.

    PubMed

    Mondlane, Gracinda; Gubanski, Michael; Lind, Pehr A; Ureba, Ana; Siegbahn, Albert

    2017-10-01

    The potential of proton therapy to improve the sparing of the healthy tissue has been demonstrated in several studies. However, even small doses delivered to the organs at risk (OAR) may induce long-term detriments after radiotherapy. In this study, we investigated the possibility to reduce the risk of radiation-induced secondary cancers with intensity modulated proton therapy (IMPT), when used for radiosurgery of liver metastases. Ten patients, previously treated for liver metastases with photon-beam based stereotactic body radiation therapy (SBRT) were retrospectively planned for radiosurgery with IMPT. A treatment plan comparison was then performed in terms of calculated risk of radiation-induced secondary cancer. The risks were estimated using two distinct models (Dasu et al., 2005; Schneider et al., 2005, 2009). The plans were compared pairwise with a two-sided Wilcoxon signed-rank test with a significance level of 0.05. Reduced risks for induction of fatal and other types of cancers were estimated for the IMPT plans (p<0.05) with the Dasu et al. Using the Schneider et al. model, lower risks for carcinoma-induction with IMPT were estimated for the skin, lungs, healthy part of the liver, esophagus and the remaining part of the body (p<0.05). The risk of observing sarcomas in the bone was also reduced with IMPT (p<0.05). The findings of this study indicate that the risks of radiation-induced secondary cancers after radiosurgery of liver metastases may be reduced, if IMPT is used instead of photon-beam based SBRT. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury.

    PubMed

    Cao, Shuo; Wu, Rong

    2012-12-01

    Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentrations of TGF-β1, angiotensin II, and aldosterone were determined via enzyme-linked immunosorbent assay. Statistical differences were observed in the expression levels of angiotensin II and aldosterone between the non-irradiation and irradiation groups. Moreover, the expression level of the angiotensin II-aldosterone system increased with increasing doses, and the difference was still observed as time progressed. Angiotensin II-aldosterone system has an important pathophysiological function in the progression of RILI.

  20. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  1. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  2. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    PubMed

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  3. MSC/ECM Cellular Complexes Induce Periodontal Tissue Regeneration.

    PubMed

    Takewaki, M; Kajiya, M; Takeda, K; Sasaki, S; Motoike, S; Komatsu, N; Matsuda, S; Ouhara, K; Mizuno, N; Fujita, T; Kurihara, H

    2017-08-01

    Transplantation of mesenchymal stem cells (MSCs), which possess self-renewing properties and multipotency, into a periodontal defect is thought to be a useful option for periodontal tissue regeneration. However, developing more reliable and predictable implantation techniques is still needed. Recently, we generated clumps of an MSC/extracellular matrix (ECM) complex (C-MSC), which consisted of cells and self-produced ECM. C-MSCs can regulate their cellular functions in vitro and can be grafted into a defect site, without any artificial scaffold, to induce bone regeneration. Accordingly, this study aimed to evaluate the effect of C-MSC transplantation on periodontal tissue regeneration in beagle dogs. Seven beagle dogs were employed to generate a premolar class III furcation defect model. MSCs isolated from dog ilium were seeded at a density of 7.0 × 10 4 cells/well into 24-well plates and cultured in growth medium supplemented with 50 µg/mL ascorbic acid for 4 d. To obtain C-MSCs, confluent cells were scratched using a micropipette tip and were then torn off as a cellular sheet. The sheet was rolled up to make round clumps of cells. C-MSCs were maintained in growth medium or osteoinductive medium (OIM) for 5 or 10 d. The biological properties of C-MSCs were evaluated in vitro, and their periodontal tissue regenerative activity was tested by using a dog class III furcation defect model. Immunofluorescence analysis revealed that type I collagen fabricated the form of C-MSCs. OIM markedly elevated calcium deposition in C-MSCs at day 10, suggesting its osteogenic differentiation capacity. Both C-MSCs and C-MSCs cultured with OIM transplantation without an artificial scaffold into the dog furcation defect induced periodontal tissue regeneration successfully compared with no graft, whereas osteogenic-differentiated C-MSCs led to rapid alveolar bone regeneration. These findings suggested that the use of C-MSCs refined by self-produced ECM may represent a novel

  4. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  5. Some of the ball lightning observations could be phosphenes induced by energetic radiation from thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Cooray, G. K.; Cooray, G. V.; Dwyer, J. R.

    2011-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. However, so far no one has managed to generate them in the laboratory. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. One such phenomenon could be the phosphenes induced in humans by energetic radiation and particles from lightning and thunderstorms. A phosphene is a visual sensation that is characterized by perceiving luminous phenomena without light entering the eye. Phosphenes are generated when electrical signals are created in the retina or the optical nerve by other means in the absence of light stimuli. The fact that energetic radiation produced by radium can give rise to phosphenes was first noted by Giesel in 1899 [1]. A resurge of studies related to the creation of phosphenes by energetic radiation took place after the reports of phosphenes observed in space by Apollo astronauts and first reported by Buzz Aldrin after the Apollo 11 flight to the moon in 1969 [2]. The shapes of the phosphenes observed by astronauts were either rods, comet shaped, or comprised of a single dot, several dots or blobs. The colors were mostly white, but some had been colored yellow, orange, blue, green or red. The majority of the astronauts had perceived some kind of motion in association with the phosphenes. Most of the time, they were moving horizontally (from the periphery of the vision to the center) and sometimes diagonally, but never vertically. Subsequent studies conducted in space and ground confirmed the creation of phosphenes by energetic radiation. From these studies the threshold energy dissipation in the eye tissue necessary for phosphenes induction was estimated to be 10 MeV/cm. In the present study a quantitative analysis of the energetic radiation generated in the form of X-rays, Gamma rays and relativistic electrons by thunderstorms and lightning was made to investigate whether this radiation is strong enough to induce

  6. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    PubMed

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald

    2014-08-01

    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation

  7. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  8. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.

    PubMed

    Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga

    2013-04-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).

  9. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  10. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates.

    PubMed

    Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M; Hanbury, David B; Tooze, Janet A; Bourland, J Daniel; Hampson, Robert E; Deadwyler, Samuel A; Cline, J Mark

    2017-05-01

    Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that

  12. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  13. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  14. Radiation-induced hemopoietic death in mice as a function of photon energy and dose rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gengozian, N.; Taylor, T.; Jameson, H.

    1986-03-01

    Radiation-induced hemopoietic death was measured in mice exposed to photons of four different energies: 250-kVp X rays, /sup 60/Co gamma rays (1.25 MeV), and 6- and 25-MV photons from a linear accelerator. For each radiation source, the lethal dose which killed 50% of the population in 30 days (LD50/30) associated with the hemopoietic syndrome was determined in groups of mice exposed to graded doses from 600 to 1150 cGy at dose rates of 20, 40, and 80 cGy/min. The calculated LD50/30 values for 25 and 6 MV were significantly different from each other at all exposure rates while no differencemore » was observed between 6 MV and /sup 60/Co. Using /sup 60/Co gamma rays as the standard, the relative biologic effectiveness was as follows: 250 kVp greater than 25 MV greater than 6 MV = /sup 60/Co. The data suggest that there may be a greater damage to tissue within the marrow cavities following exposure to very high megavoltage radiation, a factor which must be considered with the increasing utilization of linear accelerators in the clinic and laboratory.« less

  15. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  16. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  17. IL-33 induces protective effects in adipose tissue inflammation during obesity in mice

    PubMed Central

    Miller, Ashley M.; Asquith, Darren L.; Hueber, Axel J.; Anderson, Lesley A.; Holmes, William M.; McKenzie, Andrew N.; Xu, Damo; Sattar, Naveed; McInnes, Iain B.; Liew, Foo Y.

    2014-01-01

    Rationale Chronic low-grade inflammation involving adipose tissue likely contributes to the metabolic consequences of obesity. The cytokine IL-33 and its receptor ST2 are expressed in adipose tissue but their role in adipose tissue inflammation during obesity is unclear. Objective To examine the functional role of IL-33 in adipose tissues, and investigate the effects on adipose tissue inflammation and obesity in vivo. Methods and Results We demonstrate that treatment of adipose tissue cultures in vitro with IL-33 induced production of Th2 cytokines (IL-5, IL-13, IL-10), and reduced expression of adipogenic and metabolic genes. Administration of recombinant IL-33 to genetically obese diabetic (ob/ob) mice led to reduced adiposity, reduced fasting glucose and improved glucose and insulin tolerance. IL-33 also induced accumulation of Th2 cells in adipose tissue and polarization of adipose tissue macrophages towards an M2 alternatively activated phenotype (CD206+), a lineage associated with protection against obesity-related metabolic events. Furthermore, mice lacking endogenous ST2 fed HFD had increased body weight and fat mass, impaired insulin secretion and glucose regulation compared to WT controls fed HFD. Conclusions In conclusion, IL-33 may play a protective role in the development of adipose tissue inflammation during obesity. PMID:20634488

  18. Stromal Progenitor Cells in Mitigation of Non-Hematopoietic Radiation Injuries

    PubMed Central

    Kulkarni, Shilpa; Wang, Timothy C.; Guha, Chandan

    2016-01-01

    Purpose of review Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries. Recent findings We have developed stem cell based therapies for the mitigation of acute radiation syndrome (ARS) and radiation-induced gastrointestinal syndrome (RIGS). This is a promising option because of the robustness of standardized isolation and transplantation of stromal cells protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet derived growth factors (PDGF), keratinocyte growth factor (KGF), R-spondins (Rspo), and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases. Summary This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and

  19. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  20. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9,more » and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.« less

  1. Mobilization of tissue cadmium in mice and calves and reversal of cadmium induced tissue damage in calves by zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, C.S.; Mohammad, F.K.; Ganjam, V.K.

    1987-08-01

    Earlier studies demonstrated that simultaneous dietary Zn supplementation to calves fed Cd, significantly decreased the accumulation of Cd in liver, kidney and muscle. However, studies are lacking in evaluating the effectiveness of zinc in reducing Cd-burden in animals with pre-existing tissue Cd-load, a situation encountered in chronic Cd intoxication. This study examined the effects of oral Zn (AnO) on tissue Cd levels in mice. N-acetylcysteine (NAC) and sodium sulfate (SS) were also used to evaluate the effects of providing organic and inorganic sources of sulfur on tissue Cd levels. Following demonstration of reduced Cd levels in tissues of mice receivingmore » antidotal Zn, subsequent investigation was aimed at studying the reversal of Cd-induced changes by Zn. The authors also examined whether Cd-induced reduction in epididymal 5 ..cap alpha..-reductase activity could explain previously reported low levels of circulating dihydrotestosterone (DHT) following Cd treatment. The ability of Zn to reverse the inhibition of 5 ..cap alpha..-reductase activity by Cd was also examined.« less

  2. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    PubMed

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  3. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  4. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  5. Parathyroid Hormone Therapy Mollifies Radiation-Induced Biomechanical Degradation in Murine Distraction Osteogenesis

    PubMed Central

    Deshpande, Sagar S.; Gallagher, Katherine K.; Donneys, Alexis; Tchanque-Fossuo, Catherine N.; Sarhaddi, Deniz; Nelson, Noah S.; Chepeha, Douglas B.; Buchman, Steven R.

    2015-01-01

    Objective Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Methods Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 μg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Results Parathyroid hormone–treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. Conclusions The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration–approved drug on formulary, significantly improve outcomes in a model of

  6. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularlymore » when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.« less

  7. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  8. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  9. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.)

    PubMed Central

    Bednarek, Piotr T; Orłowska, Renata; Koebner, Robert MD; Zimny, Janusz

    2007-01-01

    Background When plant tissue is passaged through in vitro culture, many regenerated plants appear to be no longer clonal copies of their donor genotype. Among the factors that affect this so-called tissue culture induced variation are explant genotype, explant tissue origin, medium composition, and the length of time in culture. Variation is understood to be generated via a combination of genetic and/or epigenetic changes. A lack of any phenotypic variation between regenerants does not necessarily imply a concomitant lack of genetic (or epigenetic) change, and it is therefore of interest to assay the outcomes of tissue culture at the genotypic level. Results A variant of methylation sensitive AFLP, based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze, at both the sequence and methylation levels, the outcomes of regeneration from tissue culture in barley. Both sequence mutation and alteration in methylation pattern were detected. Two sets of regenerants from each of five DH donor lines were compared. One set was derived via androgenesis, and the other via somatic embryogenesis, developed from immature embryos. These comparisons delivered a quantitative assessment of the various types of somaclonal variation induced. The average level of variation was 6%, of which almost 1.7% could be accounted for by nucleotide mutation, and the remainder by changes in methylation state. The nucleotide mutation rates and the rate of epimutations were substantially similar between the andro- and embryo-derived sets of regenerants across all the donors. Conclusion We have developed an AFLP based approach that is capable of describing the qualitative and quantitative characteristics of the tissue culture-induced variation. We believe that this approach will find particular value in the study of patterns of inheritance of somaclonal variation, since non-heritable variation is of little interest for the improvement of plant species which are sexually

  10. Complete prevention of radiation-induced dermatitis using topical adrenergic vasoconstrictors.

    PubMed

    Fahl, William E

    2016-12-01

    Radiation dermatitis is a commonly occurring, painful, side effect of cancer radiotherapy that causes some patients to withdraw from the radiotherapy course. Our goal was to test and optimize topical application of an adrenergic vasoconstrictor to rat skin in a preclinical test to prevent radiation-induced dermatitis. A radiation dermatitis assay was developed in which 17.2 Gy to a 1.5 × 3.0 cm rectangle on the clipped dorsal back of rats yielded Grade 3 radiation dermatitis over the irradiated area 13 days later. Single, topical applications of each of three adrenergic vasoconstrictors, epinephrine, norepinephrine, or phenylephrine, in various vehicle formulations, doses, and application schedules, were tested to determine their efficacy in preventing radiation dermatitis. Each of the three adrenergic agonists conferred 100 % prevention of radiation dermatitis in linear, dose-dependent manners and their EC 50 potencies in preventing radiation dermatitis correlated well with their individual K d association constants for binding to mammalian α-adrenergic receptors. Topical vasoconstrictor application as little as 3-12 min before irradiation gave 80-100 % prevention, respectively, of radiation dermatitis. There was a strong correlation between the extent (0-100 %) of skin blanch present in skin immediately before irradiation and prevention of radiation dermatitis scored 13 days after irradiation. The data presented here demonstrate that topical application of adrenergic vasoconstrictors to rat skin before a large, 17.2 Gy, radiation insult confers 100 % protection against radiation dermatitis and support ongoing clinical trials and commercial development of a vasoconstrictor-based product to prevent radiotherapy-induced dermatitis.

  11. Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries

    PubMed Central

    Antonic, Vlado; Jackson, Isabel L.; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko

    2017-01-01

    Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation

  12. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  13. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  14. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  15. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.

    PubMed

    Chang, Jae Won; Park, Keun Hyung; Hwang, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-03-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.

  16. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  18. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  19. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  20. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Enhancement of ultraweak photon emission with 3 MHz ultrasonic irradiation on transplanted tumor tissues of mice.

    PubMed

    Kim, Hongbae; Ahn, Saeyoung; Kim, Jungdae; Soh, Kwang-Sup

    2008-07-01

    We investigated photon emissions of various bio-samples which were induced by ultrasonic stimulation. It has been reported that ultrasonic stimulations induced the thermal excitation of the bio-tissues. After ultrasonic stimulation, any measurement of photon radiation in the visible spectral range has not been carried out yet. The instruments consisted of electronic devices for an ultrasonic generator of the frequency 3 MHz and a photomultiplier tube (PMT) system counting photons from bio-tissues. The transplanted tumor tissues of mice were prepared for the experiments and their liver and spleen tissues were also used for the controls. It was found that the continuous ultrasonic stimulations with the electrical power 2300 mW induced ultraweak photon emissions from the tumor tissues. The number of induced photon was dependent of the type of the tissues and the stimulation time intervals. The level of photon emission was increased from the mouse tumor exposed to the ultrasonic stimulations, and the changes were discriminated from those of the spleens and livers.

  2. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  3. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  4. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice.

    PubMed

    Wang, Lijun; Ye, Xiao; Hua, Yanyin; Song, Yingxiang

    2018-05-28

    Adipose tissue fibrosis is a novel mechanism for the development of obesity related insulin resistance. Berberine (BBR) has been shown to relieve several metabolic disorders, including obesity and type 2 diabetes. However, the effects of BBR on obesity related adipose fibrosis remain poorly understood. The objective of this study was to assess the effects of BBR on adipose tissue fibrosis in high fat diet (HFD)-induced obese mice. The results showed that BBR reduced animal body weight and significantly improved glucose tolerance in HFD mice. In addition, BBR treatment markedly attenuated collagen deposition and reversed the up-regulation of fibrosis associated genes in the adipose tissue of HFD mice. Moreover, BBR treatment activated AMP-activated kinase signaling and reduced TGF-β1 and Smad3 phosphorylation. Of note, the inhibitory effects of BBR on adipose tissue fibrosis were significantly blocked by AMPK inhibition with compound C, an AMPK inhibitor. Macrophage infiltration and polarization induced by HFD were also reversed after BBR administration. These findings suggest that BBR displays beneficial effects in the treatment of obesity, in part via improvement of adipose tissue fibrosis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gridley, Daila S.

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset ofmore » lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes

  6. Radiation injury to the temporal bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, R.A.; Finn, D.G.; Buchalter, I.H.

    1990-01-01

    Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditorymore » canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit.« less

  7. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied

  8. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  9. Radiation-induced skin carcinomas of the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron, E.; Modan, B.; Preston, D.

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenicmore » skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.« less

  10. Pathological Evaluation of Radiation-Induced Vascular Lesions of the Brain: Distinct from De Novo Cavernous Hemangioma

    PubMed Central

    Cha, Yoon Jin; Nahm, Ji Hae; Ko, Ji Eun; Shin, Hyun Joo; Chang, Jong-Hee; Cho, Nam Hoon

    2015-01-01

    Purpose We aimed to evaluate the histologic and radiologic findings of vascular lesions after stereotactic radiosurgery (SRS) categorized as radiation-induced cavernous hemangioma (RICH). Materials and Methods Among 89 patients who underwent neurosurgery for cavernous hemangioma, eight RICHs from 7 patients and 10 de novo CHs from 10 patients were selected for histopathological and radiological comparison. Results Histologically, RICHs showed hematoma-like gross appearance. Microscopically, RICH exhibited a hematoma-like area accompanied by proliferation of thin-walled vasculature with fibrin deposits and infiltrating foamy macrophages. In contrast, CHs demonstrated localized malformed vasculature containing fresh and old clotted blood on gross examination. Typically, CHs consisted of thick, ectatic hyalinized vessels lined by endothelium under a light microscope. Magnetic resonance imaging of RICHs revealed some overlapping but distinct features with CHs, including enhancing cystic and solid components with absence or incomplete popcorn-like appearance and partial hemosiderin rims. Conclusion Together with histologic and radiologic findings, RICH may result from blood-filled space after tissue destruction by SRS, accompanied with radiation-induced reactive changes rather than vascular malformation. Thus, the term "RICH" would be inappropriate, because it is more likely to be an inactive organizing hematoma rather than proliferation of malformed vasculature. PMID:26446658

  11. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudinsmore » were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.« less

  12. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  13. Three case reports of radiation-induced glioblastoma after complete remission of acute lymphoblastic leukemia.

    PubMed

    Kajitani, Takumi; Kanamori, Masayuki; Saito, Ryuta; Watanabe, Yuko; Suzuki, Hiroyoshi; Watanabe, Mika; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.

  14. B-DIM impairs radiation-induced survival pathways independently of androgen receptor expression and augments radiation efficacy in prostate cancer.

    PubMed

    Singh-Gupta, Vinita; Banerjee, Sanjeev; Yunker, Christopher K; Rakowski, Joseph T; Joiner, Michael C; Konski, Andre A; Sarkar, Fazlul H; Hillman, Gilda G

    2012-05-01

    Increased consumption of cruciferous vegetables is associated with decreased risk in prostate cancer (PCa). The active compound in cruciferous vegetables appears to be the self dimerized product [3,3'-diindolylmethane (DIM)] of indole-3-carbinol (I3C). Nutritional grade B-DIM (absorption-enhanced) has proven safe in a Phase I trial in PCa. We investigated the anti-cancer activity of B-DIM as a new biological approach to improve the effects of radiotherapy for hormone refractory prostate cancer cells, which were either positive or negative for androgen receptor (AR) expression. B-DIM inhibited cell growth in a dose-dependent manner in both PC-3 (AR-) and C4-2B (AR+) cell lines. B-DIM was effective at increasing radiation-induced cell killing in both cell lines, independently of AR expression. B-DIM inhibited NF-κB and HIF-1α DNA activities and blocked radiation-induced activation of these transcription factors in both PC-3 and C4-2B cells. In C4-2B (AR+) cells, AR expression and nuclear localization were significantly increased by radiation. However, B-DIM abrogated the radiation-induced AR increased expression and trafficking to the nucleus, which was consistent with decreased PSA secretion. In vivo, treatment of PC-3 prostate tumors in nude mice with B-DIM and radiation resulted in significant primary tumor growth inhibition and control of metastasis to para-aortic lymph nodes. These studies demonstrate that B-DIM augments radiation-induced cell killing and tumor growth inhibition. B-DIM impairs critical survival signaling pathways activated by radiation, leading to enhanced cell killing. These novel observations suggest that B-DIM could be used as a safe compound to enhance the efficacy of radiotherapy for castrate-resistant PCa. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  16. Thyroxine Induced Resorption of Xenopus Laevis Tail Tissue in Vitro.

    ERIC Educational Resources Information Center

    Scadding, Steven R.

    1984-01-01

    A simple method of studying thyroxine-induced resorption of tadpole tails in vitro is described. This procedure demonstrates that resorption is dependent on thyroxine and requires protein synthesis. It introduces students to the use of tissue culture methods. (Author)

  17. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  18. Hyperbaric Oxygen Treatment in Radiation-Induced Cystitis and Proctitis: A Prospective Cohort Study on Patient-Perceived Quality of Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oscarsson, Nicklas, E-mail: nicklas.oscarsson@vgregion.se; Arnell, Per; Lodding, Pär

    Purpose: In this prospective cohort study, the effects of hyperbaric oxygen treatment (HBOT) were evaluated concerning patient-perceived symptoms of late radiation-induced cystitis and proctitis secondary to radiation therapy for pelvic cancer. Methods and Materials: Thirty-nine patients, 35 men and 4 women with a mean age of 71 (range, 35-84) years were included after informed consent and institutional ethics approval. They had all been treated with radiation therapy for prostate (n=34), cervix (n=2), or rectal (n=3) cancer using external beam radiation at a dose of 25 to 75 Gy. Patients with hematuria requiring blood transfusion were excluded. The HBOT was deliveredmore » with 100% oxygen for 90 minutes at 2.0 to 2.4 atmospheres (ATA). Mean number of treatments was 36 (28-40). Symptoms were prospectively assessed using the Expanded Prostate Index Composite score before, during, and 6 to 12 months after HBOT. Results: The HBOT was successfully conducted, and symptoms were alleviated in 76% for patients with radiation cystitis, 89% for patients with radiation proctitis, and 88% of patients with combined cystitis and proctitis. Symptom reduction was demonstrated by an increased Expanded Prostate Index Composite score in the urinary domain from 50 ± 16 to 66 ± 20 after treatment (P<.001) and in the bowel domain from 48 ± 18 to 68 ± 18 after treatment (P<.001). For 31% of the patients with cystitis and 22% with proctitis, there were only trivial symptoms after HBOT. The improvement was sustained at follow-up in both domains 6 to 12 months after HBOT. No severe side effects were observed related to HBOT, and treatment compliance was high. Conclusions: HBOT can be an effective and safe treatment modality for late radiation therapy-induced soft tissue injuries in the pelvic region.« less

  19. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    PubMed

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  1. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jong Cheol; Department of Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan; Lee, Won Hyeok

    2014-04-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry weremore » used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation.« less

  2. Linear lesions in heart tissue using diffused laser radiation

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Lardo, Albert C.; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.

    2000-05-01

    Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.

  3. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  4. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    PubMed

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  5. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751; Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissuesmore » that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes.

  6. Butyric acid retention in gingival tissue induces oxidative stress in jugular blood mitochondria.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Matsukawa, Noriko; Tsukahara, Takamitsu; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2013-09-01

    Butyric acid (BA) is a major extracellular metabolite produced by anaerobic periodontopathic bacteria and is commonly deposited in the gingival tissue. BA induces mitochondrial oxidative stress in vitro; however, its effects in vivo were never elucidated. Here, we determined the effects of butyric acid retention in the gingival tissues on oxidative stress induction in the jugular blood mitochondria. We established that BA injected in the rat gingival tissue has prolonged retention in gingival tissues. Blood taken at 0, 60, and 180 min after BA injection was used for further analysis. We isolated blood mitochondria, verified its purity, and measured hydrogen peroxide (H2O2), heme, superoxide (SOD), and catalase (CAT) to determine BA effects. We found that H2O2, heme, SOD, and CAT levels all increased after BA injection. This would insinuate that mitochondrial oxidative stress was induced ascribable to BA.

  7. Investigation of stress-induced birefringence of tissue determined with polarisation sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Li, Qingyun; Villiger, Martin; Sampson, David D.

    2017-02-01

    Polarisation sensitive optical coherence tomography (PS-OCT) offers additional intrinsic contrast to probe differences between healthy tissue and cancer that are often barely visible due to limited scattering contrast in an OCT image. PS-OCT reconstructs tissue birefringence from phase-sensitive measurements of orthogonal polarisation components of backscattering. In material science, polarisation has been used to study stress distribution, including the birefringence induced by stress in an otherwise isotropic material. Similar effects in biological tissues have not been well studied yet; however, may have application to tissues subjected to stress, e.g., tendons, muscles, lens, cornea or airway smooth muscle (ASM). The objective of this work is to explore stress-induced birefringence in tissue. We employ an advanced swept source-based PS-OCT system capable of measurement of tissue local polarisation properties. The sample in both cases is illuminated with orthogonal, passively depth-encoded polarisation states. Light returning from the tissue is detected via a polarisation-diversity detection module and a Mueller formalism is used to reconstruct polarisation properties (including retardation, diattenuation, and depolarisation) of the tissue. In this study, we demonstrate the measurement of stress-induced birefringence in phantoms and in soft tissues with polarisation sensitive optical coherence tomography.

  8. Comparison of Radiation-Induced Normal Lung Tissue Density Changes for Patients From Multiple Institutions Receiving Conventional or Hypofractionated Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Marks, Lawrence B.; Bentzen, Soren M.

    Purpose: To quantitatively assess changes in computed tomography (CT)–defined normal lung tissue density after conventional and hypofractionated radiation therapy (RT). Methods and Materials: The pre-RT and post-RT CT scans from 118 and 111 patients receiving conventional and hypofractionated RT, respectively, at 3 institutions were registered to each other and to the 3-dimensional dose distribution to quantify dose-dependent changes in normal lung tissue density. Dose-response curves (DRC) for groups of patients receiving conventional and hypofractionated RT were generated for each institution, and the frequency of density changes >80 Hounsfield Units (HU) was modeled depending on the fractionation type using a Probitmore » model for different follow-up times. Results: For the pooled data from all institutions, there were significant differences in the DRC between the conventional and hypofractionated groups; the respective doses resulting in 50% complication risk (TD{sub 50}) were 62 Gy (95% confidence interval [CI] 57-67) versus 36 Gy (CI 33-39) at <6 months, 48 Gy (CI 46-51) versus 31 Gy (CI 28-33) at 6-12 months, and 47 Gy (CI 45-49) versus 35 Gy (32-37) at >12 months. The corresponding m values (slope of the DRC) were 0.52 (CI 0.46-0.59) versus 0.31 (CI 0.28-0.34) at <6 months, 0.46 (CI 0.42-0.51) versus 0.30 (CI 0.26-0.34) at 6-12 months, and 0.45 (CI 0.42-0.50) versus 0.31 (CI 0.27-0.35) at >12 months (P<.05 for all comparisons). Conclusion: Compared with conventional fractionation, hypofractionation has a lower TD{sub 50} and m value, both suggesting an increased degree of normal tissue density sensitivity with hypofractionation.« less

  9. [Biomarkers of radiation-induced DNA repair processes].

    PubMed

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  11. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem

    PubMed Central

    Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, MH; Hoseinpourfard, MJ

    2018-01-01

    Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified. PMID:29067921

  12. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem.

    PubMed

    Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, M H; Hoseinpourfard, M J

    2018-01-01

    Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified.

  13. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  14. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Torres, M; Rossi, P

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacementmore » is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain

  15. Study of a number of biochemical indices of the blood and tissue of dogs after prolonged gamma-radiation

    NASA Technical Reports Server (NTRS)

    Alers, I.; Alersova, E.; Praslichka, T.; Mishurova, E.; Sedlakova, A.; Malatova, Z.; Akhunov, A. A.; Markelov, B. A.

    1974-01-01

    The glucose content in blood and the lipid content in serum and tissues of dogs exposed to chronic radiation for 3 and 5 years were studied. In tissues of these animals, the concentration of soluble DNA and DNA contained in DNP was studied in the spleen, lymph node (deep cervical node) and bone marrow of thigh bones. Results indicate that chronic gamma irradiation significantly changes concentrations of glucose in the blood, and that of several lipids in serum and tissues. A reduction in the concentration of DNP in tested organs reflects changes in the relative number of cells with various nuclear cytoplasmic ratios; most pronounced changes in biochemical indices occur in dogs exposed to chronic gamma radiation in doses of 125 rad per year.

  16. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  17. Visible and near-infrared laser radiation in a biological tissue. A forward model for medical imaging by optical tomography.

    PubMed

    Trabelsi, H; Gantri, M; Sediki, E

    2010-01-01

    We present a numerical model for the study of a general, two-dimensional, time-dependent, laser radiation transfer problem in a biological tissue. The model is suitable for many situations, especially when the external laser source is pulsed or continuous. We used a control volume discrete-ordinate method associated with an implicit, three-level, second-order, time-differencing scheme. In medical imaging by laser techniques, this could be an optical tomography forward model. We considered a very thin rectangular biological tissue-like medium submitted to a visible or a near-infrared laser source. Different cases were treated numerically. The source was assumed to be monochromatic and collimated. We used either a continuous source or a short-pulsed source. The transmitted radiance was computed in detector points on the boundaries. Also, the distribution of the internal radiation intensity for different instants is presented. According to the source type, we examined either the steady-state response or the transient response of the medium. First, our model was validated by experimental results from the literature for a homogeneous biological tissue. The space and angular grid independency of our results is shown. Next, the proposed model was used to study changes in transmitted radiation for a homogeneous background medium in which were imbedded two heterogeneous objects. As a last investigation, we studied a multilayered biological tissue. We simulated near-infrared radiation in human skin, fat and muscle. Some results concerning the effects of fat thickness and positions of the detector source on the reflected radiation are presented.

  18. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems

    Treesearch

    Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova

    2006-01-01

    A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...

  19. Probing collagen-enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep

    PubMed Central

    Zareian, Ramin; Church, Kelli P.; Saeidi, Nima; Flynn, Brendan P.; Beale, John W.; Ruberti, Jeffrey W.

    2012-01-01

    Mechanical strain or stretch of collagen has been shown to be protective of fibrils against both thermal and enzymatic degradation. The details of this mechanochemical relationship could change our understanding of load-bearing tissue formation, growth, maintenance and disease in vertebrate animals. However, extracting a quantitative relationship between strain and the rate of enzymatic degradation is extremely difficult in bulk tissue due to confounding diffusion effects. In this investigation, we develop a dynamic, enzyme-induced creep assay and diffusion/reaction rate scaling arguments to extract a lower bound on the relationship between strain and the cutting rate of bacterial collagenase (BC) at low strains. The assay method permits continuous, forced probing of enzyme-induced strain which is very sensitive to degradation rate differences between specimens at low initial strain. The results, obtained on uniaxially-loaded strips of bovine corneal tissue (0.1, 0.25 or 0.5 N), demonstrate that small differences in strain alter the enzymatic cutting rate of the BC substantially. It was estimated that a change in tissue elongation of only 1.5% (at ~5% strain) reduces the maximum cutting-rate of the enzyme by more than half. Estimation of the average load per monomer in the tissue strips indicates that this protective “cutoff” occurs when the collagen monomers are transitioning from an entropic to an energetic mechanical regime. The continuous tracking of the enzymatic cleavage rate as a function of strain during the initial creep response indicates that the decrease in the cleavage rate of the BC is non-linear (initially-steep between 4.5 and 6.5% then flattens out from 6.5–9.5%). The high sensitivity to strain at low strain implies that even lightly-loaded collagenous tissue may exhibit significant strain-protection. The dynamic, enzyme-induced creep assay described herein has the potential to permit the rapid characterization of collagen

  20. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  1. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: a systematic review.

    PubMed

    Fox, Nyssa F; Xiao, Christopher; Sood, Amit J; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand; Day, Terry A

    2015-07-01

    Radiation-induced xerostomia is one of the most common morbidities of radiation therapy in patients with head and neck cancer. However, in spite of its high rate of occurrence, there are few effective therapies available for its management. The aim of this study was to assess the efficacy of hyperbaric oxygen on the treatment of radiation-induced xerostomia and xerostomia-related quality of life. PubMed, Google Scholar, and the Cochrane Library were searched for retrospective or prospective trials assessing subjective xerostomia, objective xerostomia, or xerostomia-related quality of life. To be included, patients had to have received radiation therapy for head and neck cancer, but not hyperbaric oxygen therapy (HBOT). The systematic review initially identified 293 potential articles. Seven studies, comprising 246 patients, qualified for inclusion. Of the included studies, 6 of 7 were prospective in nature, and 1 was a retrospective study; and 2 of the 7 were controlled studies. HBOT may have utility for treating radiation-induced xerostomia refractory to other therapies. Additionally, HBOT may induce long-term improvement in subjective assessments of xerostomia, whereas other therapies currently available only provide short-term relief. The strength of these conclusions is limited by the lack of randomized controlled clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.

    PubMed

    Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A

    2002-12-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  3. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  4. Radiation induced fracture of the scapula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.H. III; Schultz, G.D.; Hanes, S.A.

    A case of radiation induced osteonecrosis resulting in a fracture of the scapula in a 76-yr-old female patient with a history of breast carcinoma is presented. Diagnostic imaging, laboratory recommendations and clinical findings are discussed along with an algorithm for the safe management of patients with a history of cancer and musculoskeletal complaints. This case demonstrates the necessity of a thorough investigation of musculoskeletal complaints in patients with previous bone-seeking carcinomas.

  5. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature

    NASA Astrophysics Data System (ADS)

    Welch, Ashley J.; van Gemert, Martin J. C.

    The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.

  6. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  7. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  8. Distribution of lead in the brain tissues from DNTC patients using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Ota, Yukihide; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2005-12-01

    Diffuse neurofibrillary tangles with calcification (DNTC) is a form of dementia with certain characteristics. Its pathology is characterized by cerebrum atrophy, calcification on globus pallidus and dentate nucleus and diffuse neurofibrillary tangles without senile plaques. In the present study brain tissues were prepared from patients with patients DNTC, calcified and non-calcified Alzheimer's disease (AD) patients. The brain tissues were examined non-destructively by X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) microbeams for trace metallic elements Ca, Fe, Cu, Zn and Pb. The XRF analysis showed that there were Pb concentrations in the calcified areas in the brain tissues with both DNTC and AD but there was none in those with non-calcified AD.

  9. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  10. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    PubMed

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  11. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    PubMed

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  13. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  14. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  15. Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues

    PubMed Central

    Han, Bumsoo; Teo, Ka Yaw; Ghosh, Soham; Dutton, J. Craig; Grinnell, Frederick

    2012-01-01

    Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs. PMID:23246556

  16. A Therapeutic Role for Survivin in Mitigating the Harmful Effects of Ionizing Radiation

    PubMed Central

    Carruthers, Katherine H.; Metzger, Gregory; Choi, Eugene; During, Matthew J.; Kocak, Ergun

    2016-01-01

    Background. Radiation therapy is a form of adjuvant care used in many oncological treatment protocols. However, nonmalignant neighboring tissues are harmed as a result of this treatment. Therefore, the goal of this study was to induce the production of survivin, an antiapoptotic protein, to determine if this protein could provide protection to noncancerous cells during radiation exposure. Methods. Using a murine model, a recombinant adenoassociated virus (rAAV) was used to deliver survivin to the treatment group and yellow fluorescence protein (YFP) to the control group. Both groups received targeted radiation. Visual inspection, gait analysis, and tissue histology were used to determine the extent of damage caused by the radiation. Results. The YFP group demonstrated ulceration of the irradiated area while the survivin treated mice exhibited only hair loss. Histology showed that the YFP treated mice experienced dermal thickening, as well as an increase in collagen that was not present in the survivin treated mice. Gait analysis demonstrated a difference between the two groups, with the YFP mice averaging a lower speed. Conclusions. The use of gene-modification to induce survivin expression in normal tissues allows for the protection of nontarget areas from the negative side effects normally associated with ionizing radiation. PMID:27190495

  17. Assessment of cone beam CT registration for prostate radiation therapy: fiducial marker and soft tissue methods.

    PubMed

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Fielding, Andrew; Biggs, Jennifer; Parfitt, Matthew; Coates, Alicia; Roberts, Lisa

    2015-02-01

    This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM ) and the soft tissue prostate (CBCTST ). Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland-Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean ) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST . Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM ) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM . CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of -4.9 to 2.6, -1.6 to 2.5 and -4.7 to 1.9 mm in the superior-inferior, left-right and anterior-posterior planes, respectively. Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy. © 2014 The Royal Australian and New Zealand College of Radiologists.

  18. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  19. Thermoacoustic Emission Induced by Deeply-Penetrating Radiation and its Application to Biomedical Imaging.

    NASA Astrophysics Data System (ADS)

    Liew, Soo Chin

    Thermoacoustic emissions induced by 2450 MHz microwave pulses in water, tissue-simulating phantoms and dog kidneys have been detected. The analytic signal magnitude has been employed in generating 'A-mode' images with excellent depth resolution. Thermoacoustic emissions have also been detected from the dose-gradient at the beam edges of a 4 MeV x-ray beam in water. These results establish the feasibility of employing thermoacoustic signals in generating diagnostic images, and in locating x-ray beam edges during radiation therapy. A theoretical model for thermoacoustic imaging using a directional transducer has been developed, which may be used in the design of future thermoacoustic imaging system, and in facilitating comparisons with other types of imaging systems. A method of characterizing biological tissues has been proposed, which relates the power spectrum of the detected thermoacoustic signals to the autocorrelation function of the thermoacoustic source distribution in the tissues. The temperature dependence of acoustic signals induced by microwave pulses in water has been investigated. The signal amplitudes vary with temperature as the thermal expansion of water, except near 4^circ C. The signal waveforms show a gradual phase change as the temperature changes from below 4^ circ to above 4^circ C. This anomaly is due to the presence of a nonthermal component detected near 4^circC, whose waveform is similar to the derivative of the room temperature signal. The results are compared to a model based on a nonequilibrium relaxation mechanism proposed by Pierce and Hsieh. The relaxation time was found to be (0.20 +/- 0.02) ns and (0.13 +/- 0.02) ns for 200 ns and 400 ns microwave pulse widths, respectively. A microwave-induced thermoacoustic source capable of launching large aperture, unipolar ultrasonic plane wave pulses in water has been constructed. This source consists of a thin water layer trapped between two dielectric media. Due to the large mismatch in the

  20. Resectable Pediatric Nonrhabdomyosarcoma Soft Tissue Sarcoma: Which Patients Benefit from Adjuvant Radiation Therapy and How Much?

    PubMed Central

    Million, Lynn; Donaldson, Sarah S.

    2012-01-01

    It remains unclear which children and adolescents with resected nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) benefit from radiation therapy, as well as the optimal dose, volume, and timing of radiotherapy when used with primary surgical resection. This paper reviews the sparse literature from clinical trials and retrospective studies of resected pediatric NRSTS to discern local recurrence rates in relationship to the use of radiation therapy. PMID:22523704