Sample records for radiation monitoring technology

  1. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less

  2. Web design and development for centralize area radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman

    2017-01-01

    One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.

  3. The development of remote wireless radiation dose monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-woo; Chonbuk National University, Jeonjoo-Si; Jeong, Kyu-hwan

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Somemore » of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)« less

  4. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1989-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  5. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1992-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  6. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activitymore » data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.« less

  7. Current methods of monitoring radiation exposure from CT.

    PubMed

    Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H

    2013-09-01

    Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.

  8. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  9. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  10. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Earlymore » Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)« less

  11. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  12. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  13. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  14. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  15. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  16. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor...

  17. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor...

  18. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor...

  19. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor...

  20. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor...

  1. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  2. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  3. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  4. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  5. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  6. Organic Scintillation Detectors for Spectroscopic Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit

    Thousands of radiation portal monitors have been deployed worldwide to detect and deter the smuggling of nuclear and radiological materials that could be used in nefarious acts. Radiation portal monitors are often installed at bottlenecks where large amounts of people or goods must traverse. Examples of use include scanning cargo containers at shipping ports, vehicles at border crossings, and people at high profile functions and events. Traditional radiation portal monitors contain separate detectors for passively measuring neutron and gamma ray count rates. 3He tubes embedded in polyethylene and slabs of plastic scintillators are the most common detector materials used in radiation portal monitors. The radiation portal monitor alarm mechanism relies on measuring radiation count rates above user defined alarm thresholds. These alarm thresholds are set above natural background count rates. Minimizing false alarms caused by natural background and maximizing sensitivity to weakly emitting threat sources must be balanced when setting these alarm thresholds. Current radiation portal monitor designs suffer from frequent nuisance radiation alarms. These radiation nuisance alarms are most frequently caused by shipments of large quantities of naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans who have recently undergone a nuclear medicine procedure, particularly 99mTc treatments. Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms must be screened out in time-intensive secondary inspections with handheld radiation detectors. Radiation portal monitors using organic liquid scintillation detectors were designed, built, and tested. A number of algorithms were developed to perform on-the-fly radionuclide identification of single and combination radiation sources moving past the portal monitor at speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of

  7. Straddle Carrier Radiation Portal Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include themore » following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.« less

  8. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  9. Packet personal radiation monitor

    DOEpatents

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  10. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  11. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yussup, F., E-mail: nolida@nm.gov.my; Ibrahim, M. M., E-mail: maslina-i@nm.gov.my; Soh, S. C.

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves devicemore » configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.« less

  12. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  13. Audible radiation monitor

    DOEpatents

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  14. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  15. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  16. Monitoring cosmic radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.

    2002-03-01

    The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.

  17. Increase in Efficiency of Use of Pedestrian Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    Most international airports in the world use radiation portal monitors (RPM) for primary radiation control organization. During the exploitation pedestrian radiation portal monitors operators (in the Russian Federation it is a special subdivision of customs officials) have certain problems related to the search of an ionizing radiation source causing the alarm signal of a radiation monitor. Radiation portal monitors at standard (factory) settings have to find out the illegal moving of the radioisotopes moved by physical persons passing through a controlled zone and having a steady radiation by the gamma or neutron channel. The problem is that recently the number of the ownerships who underwent treatment or medical diagnostics with the use of radio pharmaceuticals considerably increased, i.e,. ownerships represent such an ionizing radiation source. The operator of the radiation portal monitor has to define very quickly whether the ownership is a violator (takes unsolved radioisotopes illegally) or is just a patient of the clinic who underwent treatment/diagnostics with the use of radio pharmaceuticals. The research showing the radioisotopes which are most often used in the medical purposes are given in article, it is offered to use the new software developed by the authors allowing the operator of the radiation portal monitor to define the location of the ownership which has such ionizing radiation source by the activity of radiation similar to the radiation from radio pharmaceuticals.

  18. Technology for Innovation in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Indrin J.; Martel, Mary K., E-mail: mmartel@mdanderson.org; Jaffray, David A.

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14,more » 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.« less

  19. Technology for Innovation in Radiation Oncology.

    PubMed

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Measuring the Galactic Cosmic Ray flux with the LISA Pathfinder radiation monitor

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; Lopez-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshskar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-03-01

    Test mass charging caused by cosmic rays will be a significant source of acceleration noise for space-based gravitational wave detectors like LISA. Operating between December 2015 and July 2017, the technology demonstration mission LISA Pathfinder included a bespoke monitor to help characterise the relationship between test mass charging and the local radiation environment. The radiation monitor made in situ measurements of the cosmic ray flux while also providing information about its energy spectrum. We describe the monitor and present measurements which show a gradual 40% increase in count rate coinciding with the declining phase of the solar cycle. Modulations of up to 10% were also observed with periods of 13 and 26 days that are associated with co-rotating interaction regions and heliospheric current sheet crossings. These variations in the flux above the monitor detection threshold ( ≈ 70 MeV) are shown to be coherent with measurements made by the IREM monitor on-board the Earth orbiting INTEGRAL spacecraft. Finally we use the measured deposited energy spectra, in combination with a GEANT4 model, to estimate the galactic cosmic ray differential energy spectrum over the course of the mission.

  1. International Radiation Monitoring and Information System (IRMIS)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Baciu, Florian; Stowisek, Jan; Saluja, Gurdeep; Kenny, Patrick; Albinet, Franck

    2017-09-01

    This article describes the International Radiation Monitoring Information System (IRMIS) which was developed by the International Atomic Energy Agency (IAEA) with the goal to provide Competent Authorities, the IAEA and other international organizations with a client server based web application to share and visualize large quantities of radiation monitoring data. The data maps the areas of potential impact that can assist countries to take appropriate protective actions in an emergency. Ever since the Chernobyl nuclear power plant accident in April of 19861 European Community (EC) has worked towards collecting routine environmental radiological monitoring data from national networked monitoring systems. European Radiological Data Exchange Platform (EURDEP) was created in 19952 to that end - to provide radiation monitoring data from most European countries reported in nearly real-time. During the response operations for the Fukushima Dai-ichi nuclear power plant accident (March 2011) the IAEA Incident and Emergency Centre (IEC) managed, harmonized and shared the large amount of data that was being generated from different organizations. This task underscored the need for a system which allows sharing large volumes of radiation monitoring data in an emergency. In 2014 EURDEP started the submission of the European radiological data to the International Radiation Monitoring Information System (IRMIS) as a European Regional HUB for IRMIS. IRMIS supports the implementation of the Convention on Early Notification of a Nuclear Accident by providing a web application for the reporting, sharing, visualizing and analysing of large quantities of environmental radiation monitoring data during nuclear or radiological emergencies. IRMIS is not an early warning system that automatically reports when there are significant deviations in radiation levels or when values are detected above certain levels. However, the configuration of the visualization features offered by IRMIS may

  2. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  3. GSM module for wireless radiation monitoring system via SMS

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  4. Radiation Monitor,IV-TEPC

    NASA Image and Video Library

    2012-12-30

    View of radiation monitor,Intra-Vehicular Tissue Equivalent Proportional Counter (IV-TEPC),relocated to NOD2 P3,Part Number (P/N): SEG33120960-301,Serial Number (S/N): 1002,in the Node 2. Photo was taken during Expedition 34.

  5. Monitoring of fetal radiation exposure during pregnancy.

    PubMed

    Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei

    2013-09-01

    One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.

  6. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated aboutmore » the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  7. Monitoring Technological Change.

    ERIC Educational Resources Information Center

    Brinkworth, B. J.; Eckersall, K. E.

    A project was conducted to design and pilot a scheme for monitoring trade/industry/commerce technological changes and reporting them to Technical and Further Education (TAFE) teachers and authorities. A matrix of information categories was used to facilitate the collection and storage of information relative to technological advancements in the…

  8. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor having a directional radiation sensing capability; a rotation mechanism operable for selectively rotating the radiation sensor such that the directional radiation sensing capability selectively sweeps an area of interest; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the directional radiation sensing capability selectively sweeps the area of interest. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor; and amore » second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  9. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  10. Radiation monitoring in interventional cardiology: a requirement

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Uruchurtu, E. S.

    2017-01-01

    The increasing of procedures using fluoroscopy in interventional cardiology procedures may increase medical and patients to levels of radiation that manifest in unintended outcomes. Such outcomes may include skin injury and cancer. The cardiologists and other staff members in interventional cardiology are usually working close to the area under examination and they receive the dose primarily from scattered radiation from the patient. Mexico does not have a formal policy for monitoring and recording the radiation dose delivered in hemodynamic establishments. Deterministic risk management can be improved by monitoring the radiation delivered from X-ray devices. The objective of this paper is to provide cardiologist, techniques, nurses, and all medical staff an information on DR levels, about X-ray risks and a simple a reliable method to control cumulative dose.

  11. Observations from Juno's Radiation Monitoring Investigation during Juno's Early Orbits

    NASA Astrophysics Data System (ADS)

    Becker, Heidi N.; Jorgensen, John L.; Adriani, Alberto; Mura, Alessandro; Connerney, John E. P.; Santos-Costa, Daniel; Bolton, Scott J.; Levin, Steven M.; Alexander, James W.; Adumitroaie, Virgil; Manor-Chapman, Emily A.; Daubar, Ingrid J.; Lee, Clifford; Benn, Mathias; Denver, Troelz; Sushkova, Julia; Cicchetti, Andrea; Noschese, Raffaella; Thorne, Richard M.

    2017-04-01

    Juno's Radiation Monitoring (RM) Investigation profiles Jupiter's >10-MeV electron environment throughout unexplored regions of the Jovian magnetosphere. RM's measurement approach involves active retrieval of the characteristic noise signatures from penetrating radiation in images obtained by Juno's heavily shielded star cameras and science instruments. Collaborative observation campaigns of "radiation image" collection and penetrating particle counts are conducted at targeted opportunities within the magnetosphere during each of Juno's perijove passes using the spacecraft Stellar Reference Unit, the Magnetic Field Investigation's Advanced Stellar Compass Imagers, and the JIRAM infrared imager. Simultaneous observations gathered from these very different instruments provide comparative spectral information due to substantial differences in instrument shielding. Juno's orbit provides a unique sampling of energetic particles within Jupiter's innermost radiation belts and polar regions. We present a survey of observations of the high energy radiation environment made by Juno's SRU and ASC star cameras and the JIRAM infrared imager during Juno's early perijove passes on August 27 and December 11, 2016; and February 2 and March 27, 2017. The JPL author's copyright for this publication is held by the California Institute of Technology. Government Sponsorship acknowledged.

  12. 77 FR 55199 - Radiation Detection Technologies, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... DEPARTMENT OF ENERGY Radiation Detection Technologies, Inc. AGENCY: Office of the General Counsel... given to an intent to grant to Radiation Detection Technologies, Inc., of Manhattan, Kansas, an... Assistant General Counsel for Technology Transfer and Intellectual Property, U.S. Department of Energy, 1000...

  13. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.

    PubMed

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-04-01

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.

  14. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING

    PubMed Central

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-01-01

    Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154

  15. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  16. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  17. Characterization monitoring & sensor technology crosscutting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  18. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  19. Radiation curing: Science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, S.P.

    1992-01-01

    The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chaptersmore » 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems.« less

  20. Bedload-surrogate monitoring technologies

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Advances in technologies for quantifying bedload fluxes and in some cases bedload size distributions in rivers show promise toward supplanting traditional physical samplers and sampling methods predicated on the collection and analysis of physical bedload samples. Four workshops held from 2002 to 2007 directly or peripherally addressed bedload-surrogate technologies, and results from these workshops have been compiled to evaluate the state-of-the-art in bedload monitoring. Papers from the 2007 workshop are published for the first time with this report. Selected research and publications since the 2007 workshop also are presented. Traditional samplers used for some or all of the last eight decades include box or basket samplers, pan or tray samplers, pressure-difference samplers, and trough or pit samplers. Although still useful, the future niche of these devices may be as a means for calibrating bedload-surrogate technologies operating with active- and passive-type sensors, in many cases continuously and automatically at a river site. Active sensors include acoustic Doppler current profilers (ADCPs), sonar, radar, and smart sensors. Passive sensors include geophones (pipes or plates) in direct contact with the streambed, hydrophones deployed in the water column, impact columns, and magnetic detection. The ADCP for sand and geophones for gravel are currently the most developed techniques, several of which have been calibrated under both laboratory and field conditions. Although none of the bedload-surrogate technologies described herein are broadly accepted for use in large-scale monitoring programs, several are under evaluation. The benefits of verifying and operationally deploying selected bedload-surrogate monitoring technologies could be considerable, providing for more frequent and consistent, less expensive, and arguably more accurate bedload data obtained with reduced personal risk for use in managing the world's sedimentary resources. Twenty-six papers are

  1. Sample size allocation for food item radiation monitoring and safety inspection.

    PubMed

    Seto, Mayumi; Uriu, Koichiro

    2015-03-01

    The objective of this study is to identify a procedure for determining sample size allocation for food radiation inspections of more than one food item to minimize the potential risk to consumers of internal radiation exposure. We consider a simplified case of food radiation monitoring and safety inspection in which a risk manager is required to monitor two food items, milk and spinach, in a contaminated area. Three protocols for food radiation monitoring with different sample size allocations were assessed by simulating random sampling and inspections of milk and spinach in a conceptual monitoring site. Distributions of (131)I and radiocesium concentrations were determined in reference to (131)I and radiocesium concentrations detected in Fukushima prefecture, Japan, for March and April 2011. The results of the simulations suggested that a protocol that allocates sample size to milk and spinach based on the estimation of (131)I and radiocesium concentrations using the apparent decay rate constants sequentially calculated from past monitoring data can most effectively minimize the potential risks of internal radiation exposure. © 2014 Society for Risk Analysis.

  2. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  3. IAEA programme in the field of radiation technology

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  4. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KINKEL, C.C.

    1999-12-14

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected tomore » the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).« less

  5. [Technological innovations in radiation oncology require specific quality controls].

    PubMed

    Lenaerts, E; Mathot, M

    2014-01-01

    During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.

  6. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtainedmore » from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment

  7. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  8. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  9. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1983

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Is Technology-Mediated Parental Monitoring Related to Adolescent Substance Use?

    PubMed

    Rudi, Jessie; Dworkin, Jodi

    2018-01-03

    Prevention researchers have identified parental monitoring leading to parental knowledge to be a protective factor against adolescent substance use. In today's digital society, parental monitoring can occur using technology-mediated communication methods, such as text messaging, email, and social networking sites. The current study aimed to identify patterns, or clusters, of in-person and technology-mediated monitoring behaviors, and examine differences between the patterns (clusters) in adolescent substance use. Cross-sectional survey data were collected from 289 parents of adolescents using Facebook and Amazon Mechanical Turk (MTurk). Cluster analyses were computed to identify patterns of in-person and technology-mediated monitoring behaviors, and chi-square analyses were computed to examine differences in substance use between the identified clusters. Three monitoring clusters were identified: a moderate in-person and moderate technology-mediated monitoring cluster (moderate-moderate), a high in-person and high technology-mediated monitoring cluster (high-high), and a high in-person and low technology-mediated monitoring cluster (high-low). Higher frequency of technology-mediated parental monitoring was not associated with lower levels of substance use. Results show that higher levels of technology-mediated parental monitoring may not be associated with adolescent substance use.

  14. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plumemore » Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.« less

  15. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  16. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  17. ICRP publication 112. A report of preventing accidental exposures from new external beam radiation therapy technologies.

    PubMed

    Ortiz López, P; Cosset, J M; Dunscombe, P; Holmberg, O; Rosenwald, J C; Pinillos Ashton, L; Vilaragut Llanes, J J; Vatnitsky, S

    2009-08-01

    Disseminating the knowledge and lessons learned from accidental exposures is crucial in preventing re-occurrence. This is particularly important in radiation therapy; the only application of radiation in which very high radiation doses are deliberately given to patients to achieve cure or palliation of disease. Lessons from accidental exposures are, therefore, an invaluable resource for revealing vulnerable aspects of the practice of radiotherapy, and for providing guidance for the prevention of future occurrences. These lessons have successfully been applied to avoid catastrophic events with conventional technologies and techniques. Recommendations, for example, include the independent verification of beam calibration and independent calculation of the treatment times and monitor units for external beam radiotherapy, and the monitoring of patients and their clothes immediately after brachytherapy. New technologies are meant to bring substantial improvement to radiation therapy. However, this is often achieved with a considerable increase in complexity, which in turn brings opportunities for new types of human error and problems with equipment. Dissemination of information on these errors or mistakes as soon as it becomes available is crucial in radiation therapy with new technologies. In addition, information on circumstances that almost resulted in serious consequences (near-misses) is also important, as the same type of events may occur elsewhere. Sharing information about near-misses is thus a complementary important aspect of prevention. Lessons from retrospective information are provided in Sections 2 and 4 of this report. Disseminating lessons learned for serious incidents is necessary but not sufficient when dealing with new technologies. It is of utmost importance to be proactive and continually strive to answer questions such as 'What else can go wrong', 'How likely is it?' and 'What kind of cost-effective choices do I have for prevention?'. These

  18. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  19. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Bourdarie, S.; Khotyaintsev, Y.; Santolik, O.; Horne, R.; Mann, I.; Turner, D.; Anastasiadis, A.; Angelopoulos, V.; Balasis, G.; Chatzichristou, E.; Cully, C.; Georgiou, M.; Glauert, S.; Grison, B.; Kolmasova, I.; Lazaro, D.; Macusova, E.; Maget, V.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Usanova, M.

    2012-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Furthermore, we will incorporate multi-spacecraft particle measurements into data assimilation tools, aiming at a new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven to be a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system.

  20. Development of an alpha/beta/gamma detector for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  1. Development of an alpha/beta/gamma detector for radiation monitoring.

    PubMed

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics

  2. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1984

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  3. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1987

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  4. Environmental Technology Verification (ETV) Program: Site Characterization and Monitoring Technologies Center

    EPA Pesticide Factsheets

    The ETV Site Characterization and Monitoring Technology Pilot is composed of EPA, DoD, DOE, other Federal agencies, state regulators, technology evaluation and verification entities, and potential end users of these technologies to facilitate independent..

  5. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  6. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  7. Evidence based radiation oncology with existing technology

    PubMed Central

    Isa, Nicolas

    2013-01-01

    Aim To assess the real contribution of modern radiation therapy (RT) technology in the more common tumoral types in Central America, Caribbean and South America. Background RT is an essential tool in the management of cancer. RT can be either palliative or of curative intent. In general, for palliative radiotherapy, major technologies are not needed. Materials and methods We analyzed the contribution of RT technology based on published evidence for breast, lung, gastric, gallbladder, colorectal, prostate and cervix cancer in terms of disease control, survival or toxicity with especial focus on Latin America. Results Findings indicate that three dimensional conformal radiation therapy (3D RT) is the gold standard in most common type of cancer in the studied regions. Prostate cancer is probably the pathology that has more benefits when using new RT technology such as intensity modulated radiation therapy (IMRT) versus 3DRT in terms of toxicity and biochemical progression-free survival. Conclusions In light of the changes in technology, the ever-increasing access of developing countries to such technology, and its current coverage in Latin America, any efforts in this area should be aimed at improving the quality of the radiotherapy departments and centers that are already in place. PMID:25061519

  8. Noncontacting measurement technologies for space propulsion condition monitoring

    NASA Technical Reports Server (NTRS)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  9. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  10. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  11. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  12. The Juno Radiation Monitoring (RM) Investigation

    NASA Astrophysics Data System (ADS)

    Becker, H. N.; Alexander, J. W.; Adriani, A.; Mura, A.; Cicchetti, A.; Noschese, R.; Jørgensen, J. L.; Denver, T.; Sushkova, J.; Jørgensen, A.; Benn, M.; Connerney, J. E. P.; Bolton, S. J.; Allison, J.; Watts, S.; Adumitroaie, V.; Manor-Chapman, E. A.; Daubar, I. J.; Lee, C.; Kang, S.; McAlpine, W. J.; Di Iorio, T.; Pasqui, C.; Barbis, A.; Lawton, P.; Spalsbury, L.; Loftin, S.; Sun, J.

    2017-11-01

    The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno's star cameras and science instruments at Jupiter. The investigation's objective is to profile Jupiter's >10-MeV electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation's data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno's first science orbit, and how the measurements may be used to infer the external relativistic electron environment.

  13. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  14. Real-time colour pictorial radiation monitoring during coronary angiography: effect on patient peak skin and total dose during coronary angiography.

    PubMed

    Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C

    2016-10-10

    The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.

  15. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  16. Effective technologies for noninvasive remote monitoring in heart failure.

    PubMed

    Conway, Aaron; Inglis, Sally C; Clark, Robyn A

    2014-06-01

    Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.

  17. Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Krenek, Sam

    2008-01-01

    This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.

  18. Radiation technology for environmental conservation

    NASA Astrophysics Data System (ADS)

    Machi, S.

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NO x can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NO x in flue gas from coal burning power stations.

  19. Investigation of Moving Belt Radiator Technology Issues

    NASA Technical Reports Server (NTRS)

    Teagan, W. Peter; Aguilar, Jerry L.

    1994-01-01

    The development of an advanced spacecraft radiator technology is reported. The moving belt radiator is a thermal radiator concept with the promise of lower specific mass (per kW rejected) than that afforded by existing technologies. The results of a parametric study to estimate radiator mass for future space power systems is presented. It is shown that this technology can be scaled up to 200 MW for higher rejection temperatures. Several aspects of the design concept are discussed, including the dynamics of a large rotating belt in microgravity. The results of a computer code developed to model the belt dynamics are presented. A series of one-g experiments to investigate the dynamics of small belts is described. A comprehensive test program to investigate belt dynamics in microgravity aboard the NASA KC-135 aircraft is discussed. It was found that the desired circular shape can readily be achieved in microgravity. It is also shown that a rotating belt is stable when subjected to simulated attitude control maneuvers. Heat exchanger design is also investigated. Several sealing concepts were examined experimentally, and are discussed. Overall heat transfer coefficients to the rotating belt are presented. Material properties for various belt materials, including screen meshes, are also presented. The results presented in this report indicate that the moving belt radiator concept is technically feasible.

  20. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  1. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  2. Survey of instrumentation for environmental monitoring: major update. Volume 3. Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    This is the third volume of a four-volume (seven-part) series, the culmination of a comprehensive survey of instrumentation for environmental monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to radiation monitoring. The results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored, their characteristics and forms, their sources and pathways, their effects on themore » ecosystem, and the means of controlling them through process and regulatory controls. The discussion is presented under sections entitled radiation sources; instrumentation: by type of radiation or instrument type; and, instrumentation for specific radionuclides. (JGB)« less

  3. Blue sensors : technology and cooperative monitoring in UN peacekeeping.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorn, A. Walter Dr.

    2004-04-01

    For over a half-century, the soldiers and civilians deployed to conflict areas in UN peacekeeping operations have monitored ceasefires and peace agreements of many types with varying degrees of effectiveness. Though there has been a significant evolution of peacekeeping, especially in the 1990s, with many new monitoring functions, the UN has yet to incorporate monitoring technologies into its operations in a systematic fashion. Rather, the level of technology depends largely on the contributing nations and the individual field commanders. In most missions, sensor technology has not been used at all. So the UN has not been able to fully benefitmore » from the sensor technology revolution that has seen effectiveness greatly amplified and costs plummet. This paper argues that monitoring technologies need not replace the human factor, which is essential for confidence building in conflict areas, but they can make peacekeepers more effective, more knowledgeable and safer. Airborne, ground and underground sensors can allow peacekeepers to do better monitoring over larger areas, in rugged terrain, at night (when most infractions occur) and in adverse weather conditions. Technology also allows new ways to share gathered information with the parties to create confidence and, hence, better pre-conditions for peace. In the future sensors should become 'tools of the trade' to help the UN keep the peace in war-torn areas.« less

  4. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  5. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  6. UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.

    PubMed

    Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J

    2017-11-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Onion skin as a radiation monitor

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the dry, outer skin of onion, red onion, garlic, and shallot were measured before and after irradiation. In all spectra only a single resonance (g = 2.00) was observed. The ESR signal intensity increased with absorbed dose, however, the radiation-induced signal decayed slowly with time. It was concluded that the outer skin of these foods are not suitable as a long-term postirradiation monitor.

  8. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  9. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

  10. Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy.

    PubMed

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W

    2010-11-15

    In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Characterization, monitoring, and sensor technology catalogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less

  12. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less

  13. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Radiation evaluation study of LSI RAM technologies

    NASA Astrophysics Data System (ADS)

    Dinger, G. L.; Knoll, M. G.

    1980-01-01

    Five commercial LSI static random access memory technologies having a 1 kilobit capacity were radiation characterized. Arrays from the transistor-transistor-logic (TTL), Schottky TTL, n-channel metal oxide semiconductor, complementary metal oxide semiconductor (CMOS), and CMOS/silicon on sapphire families were evaluated. Radiation failure thresholds for gamma doserate logic upset, total gamma dose survivability, and neutron fluence survivability were determined. A brief analysis of the radiation failure mechanism for each of the logic families tested is included.

  15. Status of eye lens radiation dose monitoring in European hospitals.

    PubMed

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers.

  16. Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC.

    PubMed

    Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H

    2005-01-01

    Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

  17. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  18. Review of radiation effects on ReRAM devices and technology

    NASA Astrophysics Data System (ADS)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  19. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals andmore » objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.« less

  20. Radiation and Reliability Concerns for Modern Nonvolatile Memory Technology

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Friendlich, Mark R.; Kim, Hak S.; Berg, Melanie D.; LaBel, Kenneth A.; Buchner, S. P.; McMorrow, D.; Mavis, D. G.; Eaton, P. H.; Castillo, J.

    2011-01-01

    Commercial nonvolatile memory technology is attractive for space applications, but radiation issues are serious concerns. In addition, we discuss combined radiation/reliability concerns which are only beginning to be addressed.

  1. Individual Radiation Protection Monitoring in the Marshall Islands: Utrok Atoll (2003-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are

  2. Review of advanced radiator technologies for spacecraft power systems and space thermal control

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Peterson, George P.

    1994-01-01

    A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.

  3. Literature review on monitoring technologies and their outcomes in independently living elderly people.

    PubMed

    Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P

    2015-07-01

    To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].

  4. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  5. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  6. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  7. Data-based Considerations in Portal Radiation Monitoring of Cargo Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; O'Brien, Robert F.; Ely, James H.

    2004-07-01

    Radiation portal monitoring of cargo vehicles often includes a configuration of four-panel monitors that record gamma and neutron counts from vehicles transporting cargo. As vehicles pass the portal monitors, they generate a count profile over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations, as well as in experimental settings using known sources and cargos. Several considerations have a bearing on how alarm thresholds are setmore » in order to maintain sensitivity to radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. False alarms are statistical anomalies while nuisance alarms occur due to the presence of naturally occurring radioactive material (NORM) in cargo, for example, kitty litter. Considerations to be discussed include: • Background radiation suppression due to the shadow shielding from the vehicle. • The impact of the relative placement of the four panels on alarm decision criteria. • Use of plastic scintillators to separate gamma counts into energy windows. • The utility of using ratio criteria for the energy window counts rather than simply using total window counts. • Detection likelihood for these various decision criteria based on computer simulated injections of sources into vehicle profiles.« less

  8. Network-Oriented Radiation Monitoring System (NORMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/benchmore » tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.« less

  9. Migration monitoring with automated technology

    Treesearch

    Rhonda L. Millikin

    2005-01-01

    Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...

  10. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar J.; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald E.; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modeling and the development of solar energy techniques. Measurements cover the downward solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an altitude range between about 200 m a.s.l (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, utilizing manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations, using the methodology specified by the Guide to the Expression of Uncertainty in Measurement indicates that relative accuracies range from 1.5 to 2.9 % for large signals (global, direct: 1000 W m-2, diffuse: 500 W m-2) and from 1.7 to 23 % (or 0.9 to 11.5 W m-2) for small signals (50 W m-2) (expanded uncertainties corresponding to the 95 % confidence level). If the directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) are corrected, this expanded uncertainty reduces to 1.4 to 2.8 % for large signals and to 1.7 to 5.2 % (or 0.9-2.6 W m-2) for small signals. Thus, for large signals of global and diffuse radiation, BSRN target accuracies are met or nearly met (missed by less than 0.2 percentage points, pps) for 70 % of the ARAD measurements after this correction. For small signals of direct radiation, BSRN targets are achieved at two sites and nearly met (also missed by less than 0.2 pps) at the other sites. For small signals of global and diffuse radiation, targets are achieved

  11. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  12. New technologies in radiation therapy: ensuring patient safety, radiation safety and regulatory issues in radiation oncology.

    PubMed

    Amols, Howard I

    2008-11-01

    New technologies such as intensity modulated and image guided radiation therapy, computer controlled linear accelerators, record and verify systems, electronic charts, and digital imaging have revolutionized radiation therapy over the past 10-15 y. Quality assurance (QA) as historically practiced and as recommended in reports such as American Association of Physicists in Medicine Task Groups 40 and 53 needs to be updated to address the increasing complexity and computerization of radiotherapy equipment, and the increased quantity of data defining a treatment plan and treatment delivery. While new technology has reduced the probability of many types of medical events, seeing new types of errors caused by improper use of new technology, communication failures between computers, corrupted or erroneous computer data files, and "software bugs" are now being seen. The increased use of computed tomography, magnetic resonance, and positron emission tomography imaging has become routine for many types of radiotherapy treatment planning, and QA for imaging modalities is beyond the expertise of most radiotherapy physicists. Errors in radiotherapy rarely result solely from hardware failures. More commonly they are a combination of computer and human errors. The increased use of radiosurgery, hypofractionation, more complex intensity modulated treatment plans, image guided radiation therapy, and increasing financial pressures to treat more patients in less time will continue to fuel this reliance on high technology and complex computer software. Clinical practitioners and regulatory agencies are beginning to realize that QA for new technologies is a major challenge and poses dangers different in nature than what are historically familiar.

  13. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  14. The NOAA Integrated Surface Irradiance Study (ISIS)-A New Surface Radiation Monitoring Program.

    NASA Astrophysics Data System (ADS)

    Hicks, B. B.; Deluisi, J. J.; Matt, D. R.

    1996-12-01

    This paper describes a new radiation monitoring program, the Integrated Surface Irradiance Study (ISIS), that builds upon and takes over from earlier NOAA networks monitoring components of solar radiation [both the visible component (SOLRAD) and the shortwave component that causes sunburn, UV-B] across the continental United States. ISIS is implemented in two levels. Level 1 addresses incoming radiation only, and level 2 addresses the surface radiation balance. Level 2 also constitutes the SURFRAD (Surface Radiation) program of the NOAA Office of Global Programs, specifically intended to provide radiation data to support large-scale hydrologic studies that will be conducted under the Global Energy and Water Cycle Experiment. Eventually, it is planned for level 2 sites to monitor all components of the surface energy balance. Both levels of ISIS will eventually measure both visible and UV radiation components. At present, there are nine sites that are considered to be at ISIS level 1 standard and an additional four level 2 SURFRAD sites. A 10th level 1 site will be in operation soon. Plans call for an increase in the number of sites of both kinds, up to about 15 ISIS sites, of which 6 will be at the SURFRAD level. Data are available via FTP at ftp.atdd.noaa.govlpublisis or at http://www.srrb.noaa.gov (level 2).

  15. Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.

    2017-01-01

    Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.

  16. Health technology assessment to optimize health technology utilization: using implementation initiatives and monitoring processes.

    PubMed

    Frønsdal, Katrine B; Facey, Karen; Klemp, Marianne; Norderhaug, Inger Natvig; Mørland, Berit; Røttingen, John-Arne

    2010-07-01

    The way in which a health technology is used in any particular health system depends on the decisions and actions of a variety of stakeholders, the local culture, and context. In 2009, the HTAi Policy Forum considered how health technology assessment (HTA) could be improved to optimize the use of technologies (in terms of uptake, change in use, or disinvestment) in such complex systems. In scoping, it was agreed to focus on initiatives to implement evidence-based guidance and monitoring activities. A review identified systematic reviews of implementation initiatives and monitoring activities. A two-day deliberative workshop was held to discuss key papers, members' experiences, and collectively address key questions. This consensus paper was developed by email and finalized at a postworkshop meeting. Evidence suggests that the impact and use of HTA could be increased by ensuring timely delivery of relevant reports to clearly determined policy receptor (decision-making) points. To achieve this, the breadth of assessment, implementation initiatives such as incentives and targeted, intelligent dissemination of HTA result, needs to be considered. HTA stakeholders undertake a variety of monitoring activities, which could inform optimal use of a technology. However, the quality of these data varies and is often not submitted to an HTA. Monitoring data should be sufficiently robust so that they can be used in HTA to inform optimal use of technology. Evidence-based implementation initiatives should be developed for HTA, to better inform decision makers at all levels in a health system about the optimal use of technology.

  17. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological

  18. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and

  19. The World Radiation Monitoring Center of the Baseline Surface Radiation Network: Status 2017

    NASA Astrophysics Data System (ADS)

    Driemel, Amelie; König-Langlo, Gert; Sieger, Rainer; Long, Charles N.

    2017-04-01

    The World Radiation Monitoring Center (WRMC) is the central archive of the Baseline Surface Radiation Network (BSRN). The BSRN was initiated by the World Climate Research Programme (WCRP) Working Group on Radiative Fluxes and began operations in 1992. One of its aims is to provide short and long-wave surface radiation fluxes of the best possible quality to support the research projects of the WCRP and other scientific projects. The high quality, uniform and consistent measurements of the BSRN network can be used to monitor the short- and long-wave radiative components and their changes with the best methods currently available, to validate and evaluate satellite-based estimates of the surface radiative fluxes, and to verify the results of global climate models. In 1992 the BSRN/WRMC started at ETH Zurich, Switzerland with 9 stations. Since 2007 the archive is hosted by the Alfred-Wegener-Institut (AWI) in Bremerhaven, Germany (http://www.bsrn.awi.de/) and comprises a network of currently 59 stations in contrasting climatic zones, covering a latitude range from 80°N to 90°S. Of the 59 stations, 23 offer the complete radiation budget (down- and upwelling short- and long-wave data). In addition to the ftp-service access instituted at ETH Zurich, the archive at AWI offers data access via PANGAEA - Data Publisher for Earth & Environmental Science (https://www.pangaea.de). PANGAEA guarantees the long-term availability of its content through a commitment of the operating institutions. Within PANGAEA, the metadata of the stations are freely available. To access the data itself an account is required. If the scientist accepts to follow the data release guidelines of the archive (http://bsrn.awi.de/data/conditions-of-data-release/) he or she can get an account from amelie.driemel@awi.de. Currently, more than 9,400 station months (>780 years) are available for interested scientists (see also https://dataportals.pangaea.de/bsrn/?q=LR0100 for an overview on available data

  20. Analysis of the use of fiber optic technology for the monitoring heart rate of the pregnant and fetus

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Jargus, Jan; Zboril, Ondrej; Vasinek, Vladimir

    2017-10-01

    This article describes an analysis of the use of fiber-optic technology in biomedical applications, specifically for the monitoring heart rate of the pregnant (mHR) and fetal (fHR). Authors focused on the use of Fiber Bragg Grating (FBG) and Fiber-Optic Interferometers (FOI). Thanks to the utilization of conventional method so-called cardiotocography (CTG), the mortality of newborn babies during delivery has decreased. Generally, among disadvantages of this method, there is a high sensitivity to noises caused by the movement of a mother, and it is connected with the frequent transfer of ultrasonic converters. This method is not suitable for a long-term continuous monitoring due to a possible influence of ultrasonic radiation on the fetus. Use of fiber-optic technology offers many advantages, for example, use measuring probes based FBG or FOI does not represent any additional radiation burden for the pregnant woman or fetus, fiber-optic measurement probes are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use classic methods, e.g. examination by magnetic resonance (MR) or in case of delivery in water. The article describes the first experimental knowledge of based on real measurements.

  1. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  2. Frequency and quality of radiation monitoring of construction workers at two gaseous diffusion plants.

    PubMed

    Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia

    2006-09-01

    Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how

  3. Smart homes and home health monitoring technologies for older adults: A systematic review.

    PubMed

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  5. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The contribution outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  6. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, M.; Baumgartner, D. J.; Obleitner, F.; Bichler, C.; Foelsche, U.; Pietsch, H.; Rieder, H. E.; Weihs, P.; Geyer, F.; Haiden, T.; Schöner, W.

    2015-10-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  7. Application of Insar Technology in Geographical Situation Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tian, Q.

    2018-04-01

    In this paper, based on the geographical situation monitoring project of the earthquake zone of ludian county, zhaotong city, yunnan province,using the data of the radarsat-2 satellite (time frame is 20140304-20150416), InSAR technology is used to monitor the topography of the earthquake zone(about 420 square kilometers of monitoring area). Through the analysis of topographic deformation results, the scope of the terrain change is obtained, and the application and problems of InSAR technique in topographic geomorphological monitoring are discussed.

  8. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  9. Towards a Long-Term Strategy for Voluntary-Based Internal Radiation Contamination Monitoring: A Population-Level Analysis of Monitoring Prevalence and Factors Associated with Monitoring Participation Behavior in Fukushima, Japan.

    PubMed

    Nomura, Shuhei; Tsubokura, Masaharu; Ozaki, Akihiko; Murakami, Michio; Hodgson, Susan; Blangiardo, Marta; Nishikawa, Yoshitaka; Morita, Tomohiro; Oikawa, Tomoyoshi

    2017-04-09

    Following Japan's 2011 Fukushima nuclear incident, we assessed voluntary-based monitoring behavior in Minamisoma City-located 10-40 km from the Fukushima nuclear plant-to inform future monitoring strategies. The monitoring in Minamisoma included occasional free of charge internal-radiation-exposure measurements. Out of around 70,000 individuals residing in the city before the incident, a total of 45,788 residents (female: 52.1%) aged ≥21 were evaluated. The monitoring prevalence in 2011-2012 was only 30.2%, and this decreased to 17.9% in 2013-2014. Regression analyses were performed to estimate factors associated with the monitoring prevalence and participation behavior. The results show that, in comparison with the age cohort of 21-30 years, the cohort of 71-80 and ≥81 years demonstrated significantly lower monitoring prevalence; female residents had higher monitoring prevalence than male residents; those who were living in evacuation zones at the time of the incident had higher monitoring prevalence than those who lived outside any of the evacuation zones; for those living outside Fukushima and neighboring Prefectures post-incident monitoring prevalence decreased significantly in 2013-2014. Our findings inform the discussion on the concepts of radiation risk perception and accessibility to monitoring and societal decision-making regarding the maintenance of the monitoring program with low monitoring prevalence. We also stress the possibility that the monitoring can work both to check that internal contamination levels are within acceptable limits, and as a risk communication tool, alleviating individuals' concern and anxiety over radiation contamination.

  10. Towards a Long-Term Strategy for Voluntary-Based Internal Radiation Contamination Monitoring: A Population-Level Analysis of Monitoring Prevalence and Factors Associated with Monitoring Participation Behavior in Fukushima, Japan

    PubMed Central

    Nomura, Shuhei; Tsubokura, Masaharu; Ozaki, Akihiko; Murakami, Michio; Hodgson, Susan; Blangiardo, Marta; Nishikawa, Yoshitaka; Morita, Tomohiro; Oikawa, Tomoyoshi

    2017-01-01

    Following Japan’s 2011 Fukushima nuclear incident, we assessed voluntary-based monitoring behavior in Minamisoma City—located 10–40 km from the Fukushima nuclear plant—to inform future monitoring strategies. The monitoring in Minamisoma included occasional free of charge internal-radiation-exposure measurements. Out of around 70,000 individuals residing in the city before the incident, a total of 45,788 residents (female: 52.1%) aged ≥21 were evaluated. The monitoring prevalence in 2011–2012 was only 30.2%, and this decreased to 17.9% in 2013–2014. Regression analyses were performed to estimate factors associated with the monitoring prevalence and participation behavior. The results show that, in comparison with the age cohort of 21–30 years, the cohort of 71–80 and ≥81 years demonstrated significantly lower monitoring prevalence; female residents had higher monitoring prevalence than male residents; those who were living in evacuation zones at the time of the incident had higher monitoring prevalence than those who lived outside any of the evacuation zones; for those living outside Fukushima and neighboring Prefectures post-incident monitoring prevalence decreased significantly in 2013–2014. Our findings inform the discussion on the concepts of radiation risk perception and accessibility to monitoring and societal decision-making regarding the maintenance of the monitoring program with low monitoring prevalence. We also stress the possibility that the monitoring can work both to check that internal contamination levels are within acceptable limits, and as a risk communication tool, alleviating individuals’ concern and anxiety over radiation contamination. PMID:28397769

  11. [Survey and analysis of radiation safety education at radiological technology schools].

    PubMed

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2004-10-01

    We carried out a questionnaire survey of all radiological technology schools, to investigate the status of radiation safety education. The questionnaire consisted of questions concerning full-time teachers, measures being taken for the Radiation Protection Supervisor Qualifying Examination, equipment available for radiation safety education, radiation safety education for other departments, curriculum of radiation safety education, and related problems. The returned questionnaires were analyzed according to different groups categorized by form of education and type of establishment. The overall response rate was 55%, and there were statistically significant differences in the response rates among the different forms of education. No statistically significant differences were found in the items relating to full-time teachers, measures for Radiation Protection Supervisor Qualifying Examination, and radiation safety education for other departments, either for the form of education or type of establishment. Queries on the equipment used for radiation safety education revealed a statistically significant difference in unsealed radioisotope institutes among the forms of education. In terms of curriculum, the percentage of radiological technology schools which dealt with neither the shielding calculation method for radiation facilities nor with the control of medical waste was found to be approximately 10%. Other educational problems that were indicated included shortages of full-time teachers and equipment for radiation safety education. In the future, in order to improve radiation safety education at radiological technology schools, we consider it necessary to develop unsealed radioisotope institutes, to appoint more full-time teachers, and to educate students about risk communication.

  12. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0234] Monitoring Criteria and Methods To Calculate... regulatory guide (DG), DG-8031, ``Monitoring Criteria and Methods to Calculate Occupational Radiation Doses.'' This guide describes methods that the NRC staff considers acceptable for licensees to use to determine...

  13. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1982

    EPA Science Inventory

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify tre...

  14. Technological advances in perioperative monitoring: Current concepts and clinical perspectives

    PubMed Central

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any. PMID:25788767

  15. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    PubMed

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  16. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  17. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    NASA Astrophysics Data System (ADS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  18. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  19. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  20. Remote monitoring technologies for the prevention of metabolic syndrome: the Diabetes and Technology for Increased Activity (DaTA) study.

    PubMed

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-07-01

    Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.

  1. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring.

    PubMed

    Parodi, Katia

    2015-12-01

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  2. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less

  3. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  4. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  5. Quality management system and accreditation of the in vivo monitoring laboratory at Karslruhe Institute of Technology.

    PubMed

    Breustedt, B; Mohr, U; Biegard, N; Cordes, G

    2011-03-01

    The in vivo monitoring laboratory (IVM) at Karlsruhe Institute of Technology (KIT), with one whole body counter and three partial-body counters, is an approved lab for individual monitoring according to German regulation. These approved labs are required to prove their competencies by accreditation to ISO/IEC 17025:2005. In 2007 a quality management system (QMS), which was successfully audited and granted accreditation, was set up at the IVM. The system is based on the ISO 9001 certified QMS of the central safety department of the Research Centre Karlsruhe the IVM belonged to at that time. The system itself was set up to be flexible and could be adapted to the recent organisational changes (e.g. founding of KIT and an institute for radiation research) with only minor effort.

  6. [A wireless mobile monitoring system based on bluetooth technology].

    PubMed

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  7. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  8. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  9. SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION (SITE) PROGRAM FOR MONITORING AND CHARACTERIZATION TECHNOLOGIES

    EPA Science Inventory

    This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to d...

  10. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  11. RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology

    NASA Technical Reports Server (NTRS)

    McLeod, Catherine D.

    2015-01-01

    The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.

  12. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  14. Testing telehealth using technology-enhanced nurse monitoring.

    PubMed

    Grant, Leslie A; Rockwood, Todd; Stennes, Leif

    2014-10-01

    Technology-enhanced nurse monitoring is a telehealth solution that helps nurses with assessment, diagnosis, and triage of older adults living in community-based settings. This technology links biometric and nonbiometric sensors to a data management system that is monitored remotely by RNs and unlicensed support staff. Nurses faced a number of challenges related to data interpretation, including making clinical inferences from nonbiometric data, integrating data generated by three different telehealth applications into a clinically meaningful cognitive framework, and figuring out how best to use nursing judgment to make valid inferences from online reporting systems. Nurses developed expertise over the course of the current study. The sponsoring organization achieved a high degree of organizational knowledge about how to use these systems more effectively. Nurses saw tremendous value in the telehealth applications. The challenges, learning curve, and organizational improvements are described. Copyright 2014, SLACK Incorporated.

  15. Citizen Monitoring during Hazards: The Case of Fukushima Radiation after the 2011 Japanese Earthquake

    NASA Astrophysics Data System (ADS)

    Hultquist, C.; Cervone, G.

    2015-12-01

    Citizen-led movements producing scientific environmental information are increasingly common during hazards. After the Japanese earthquake-triggered tsunami in 2011, the government produced airborne remote sensing data of the radiation levels after the Fukushima nuclear reactor failures. Advances in technology enabled citizens to monitor radiation by innovative mobile devices built from components bought on the Internet. The citizen-led Safecast project measured on-ground levels of radiation in the Fukushima prefecture which total 14 million entries to date in Japan. This non-authoritative citizen science collection recorded radiation levels at specific coordinates and times is available online, yet the reliability and validity of the data had not been assessed. The nuclear incident provided a case for assessment with comparable dimensions of citizen science and authoritative data. To perform a comparison of the datasets, standardization was required. The sensors were calibrated scientifically but collected using different units of measure. Radiation decays over time so temporal interpolation was necessary for comparison of measurements as being the same time frame. Finally, the GPS located points were selected within the overlapping spatial extent of 500 meters. This study spatially analyzes and statistically compares citizen-volunteered and government-generated radiation data. Quantitative measures are used to assess the similarity and difference in the datasets. Radiation measurements from the same geographic extents show similar spatial variations which suggests that citizen science data can be comparable with government-generated measurements. Validation of Safecast demonstrates that we can infer scientific data from unstructured and not vested data. Citizen science can provide real-time data for situational awareness which is crucial for decision making during disasters. This project provides a methodology for comparing datasets of radiological measurements

  16. Healthcare personnel perceptions of hand hygiene monitoring technology.

    PubMed

    Ellingson, Katherine; Polgreen, Philip M; Schneider, Amy; Shinkunas, Laura; Kaldjian, Lauris C; Wright, Donald; Thomas, Geb W; Segre, Alberto M; Herman, Ted; McDonald, L Clifford; Sinkowitz-Cochran, Ronda

    2011-11-01

    To assess healthcare personnel (HCP) perceptions regarding implementation of sensor-based electronic systems for automated hand hygiene adherence monitoring. Using a mixed-methods approach, structured focus groups were designed to elicit quantitative and qualitative responses on familiarity, comfort level, and perceived impact of sensor-based hand hygiene adherence monitoring. A university hospital, a Veterans Affairs hospital, and a community hospital in the Midwest. Focus groups were homogenous by HCP type, with separate groups held for leadership, midlevel management, and frontline personnel at each hospital. Overall, 89 HCP participated in 10 focus groups. Levels of familiarity and comfort with electronic oversight technology varied by HCP type; when compared with frontline HCP, those in leadership positions were significantly more familiar with ([Formula: see text]) and more comfortable with ([Formula: see text]) the technology. The most common concerns cited by participants across groups included lack of accuracy in the data produced, such as the inability of the technology to assess the situational context of hand hygiene opportunities, and the potential punitive use of data produced. Across groups, HCP had decreased tolerance for electronic collection of spatial-temporal data, describing such oversight as Big Brother. While substantial concerns were expressed by all types of HCP, participants' recommendations for effective implementation of electronic oversight technologies for hand hygiene monitoring included addressing accuracy issues before implementation and transparent communication with frontline HCP about the intended use of the data.

  17. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  18. Remote Monitoring Technologies for the Prevention of Metabolic Syndrome: The Diabetes and Technology for Increased Activity (DaTA) Study

    PubMed Central

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-01-01

    Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237

  19. Design of wideband solar ultraviolet radiation intensity monitoring and control system

    NASA Astrophysics Data System (ADS)

    Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi

    2009-08-01

    According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.

  20. SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS

    EPA Science Inventory

    The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...

  1. Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.

    PubMed

    Townsend, Daphne; Knoefel, Frank; Goubran, Rafik

    2011-01-01

    Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.

  2. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  3. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  4. Radiation-Triggered Surveillance for UF6 Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Michael M.

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  5. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  6. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  7. Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    Emerging Electronics Technologies include: 1) Changes in the commercial semiconductor world; 2) Radiation Effects Sources (A sample test constraint); and 3) Challenges to Radiation Testing and Modeling: a) IC Attributes-Radiation Effects Implication b) Fault Isolation c) Scaled Geometry d) Speed e) Modeling Shortfall f) Knowledge Status

  8. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  9. Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology

    NASA Astrophysics Data System (ADS)

    Sun, N.; Wang, Y. J.

    2018-04-01

    Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, KMC CONTROLS, INC. SLE-1001 SIGHT GLASS MONITOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the KMC SLE-1001 Sight Glass Monitor manufactured by KMC Controls, Inc. The sight glass monitor (SGM) fits over the sight glass that may be installed in a refrigeration system for the pur...

  11. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  12. Space Photovoltaic Research and Technology 1983. High Efficiency, Radiation Damage, and Blanket Technology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.

  13. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  14. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  15. Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun

    2010-03-01

    Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.

  16. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  17. Polymer recycling: potential application of radiation technology

    NASA Astrophysics Data System (ADS)

    Burillo, Guillermina; Clough, Roger L.; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu, Weiwei; Singh, Ajit; Yang, Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  18. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  19. Online fault diagnostics and testing of area gamma radiation monitor using wireless network

    NASA Astrophysics Data System (ADS)

    Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.

    2017-07-01

    Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.

  20. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    PubMed

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  1. Overview of Emerging Air Quality Monitoring Technologies and Their Data

    EPA Science Inventory

    This is a webinar presentation as part of a series on Air Quality Planning for Wildland Smoke. The purpose of the talk is to provide a basic overview of monitoring technologies and specifically focus on emerging technologies for PM2.5.

  2. Understanding Monitoring Technologies for Adults With Pain: Systematic Literature Review

    PubMed Central

    Rodríguez, Iyubanit; Gerea, Carmen; Fuentes, Carolina; Rossel, Pedro O; Marques, Maíra; Campos, Mauricio

    2017-01-01

    Background Monitoring of patients may decrease treatment costs and improve quality of care. Pain is the most common health problem that people seek help for in hospitals. Therefore, monitoring patients with pain may have significant impact in improving treatment. Several studies have studied factors affecting pain; however, no previous study has reviewed the contextual information that a monitoring system may capture to characterize a patient’s situation. Objective The objective of this study was to conduct a systematic review to (1) determine what types of technologies have been used to monitor adults with pain, and (2) construct a model of the context information that may be used to implement apps and devices aimed at monitoring adults with pain. Methods A literature search (2005-2015) was conducted in electronic databases pertaining to medical and computer science literature (PubMed, Science Direct, ACM Digital Library, and IEEE Xplore) using a defined search string. Article selection was done through a process of removing duplicates, analyzing title and abstract, and then reviewing the full text of the article. Results In the final analysis, 87 articles were included and 53 of them (61%) used technologies to collect contextual information. A total of 49 types of context information were found and a five-dimension (activity, identity, wellness, environment, physiological) model of context information to monitor adults with pain was proposed, expanding on a previous model. Most technological interfaces for pain monitoring were wearable, possibly because they can be used in more realistic contexts. Few studies focused on older adults, creating a relevant avenue of research on how to create devices for users that may have impaired cognitive skills or low digital literacy. Conclusions The design of monitoring devices and interfaces for adults with pain must deal with the challenge of selecting relevant contextual information to understand the user’s situation

  3. [Nephro-urological monitoring technology based on radionuclide functional tests (tasks of an automated workplace)].

    PubMed

    Averinova, S G; Kashkadaeva, A V; Shiriaev, S V; Nechipaĭ, A M; Dmitrieva, G D

    1999-01-01

    The paper deals with a diagnostic informational and analytical system (DIAS). The system is based on the current concept of a dynamic model of nephro-urological clearance macroregulation under retention factors at the pre-, intra-, and postrenal levels during drug load tests. DIAS includes a package of dynamic renoscintigraphic techniques, as well as original software support. A system for parameters of renal clearance regulation has been developed, which is effective at nephro-urological screening and monitoring at all treatment stages for cancer patients. A two-detector chamber which permits the mounting of a detector at an angle to the patient's body is the optimum diagnostic apparatus for a cancer clinic. The use of functional tests makes it possible to examine the regulatory reserves for each kidney, followed up by the choice of adequate corrective measures to prevent renal failure during treatment. In some cases, DIAS monitoring frequently shows a higher sensitivity to the signs of latent renal failure than does routine clinical and laboratory monitoring. The effective radiation dose taken by a patient during a study by the DIAS technology aimed at reducing radioopaque doses is 100-150 times higher than that at an X-ray study and is an order less than during routine urinary tests.

  4. New paradigms and future challenges in Radiation Oncology: An Update of Biological Targets and Technology*

    PubMed Central

    Liauw, Stanley L.; Connell, Philip P.; Weichselbaum, Ralph R.

    2013-01-01

    The primary objective of radiation oncology is to exploit the biological interaction of radiation within tissue to promote tumor death while minimizing damage to surrounding normal tissue. The clinical delivery of radiation relies on principles of radiation physics that define how radiation energy is deposited in the body, as well as technology that facilitates accurate tumor targeting. This review will summarize the current landscape of recent biological and technological advances in radiation oncology, describe the challenges that exist, and offer potential avenues for improvement. PMID:23427246

  5. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-11-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.

  6. On the optimisation of the use of 3He in radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Tomanin, Alice; Peerani, Paolo; Janssens-Maenhout, Greet

    2013-02-01

    Radiation Portal Monitors (RPMs) are used to detect illicit trafficking of nuclear or other radioactive material concealed in vehicles, cargo containers or people at strategic check points, such as borders, seaports and airports. Most of them include neutron detectors for the interception of potential plutonium smuggling. The most common technology used for neutron detection in RPMs is based on 3He proportional counters. The recent severe shortage of this rare and expensive gas has created a problem of capacity for manufacturers to provide enough detectors to satisfy the market demand. In this paper we analyse the design of typical commercial RPMs and try to optimise the detector parameters in order either to maximise the efficiency using the same amount of 3He or minimise the amount of gas needed to reach the same detection performance: by reducing the volume or gas pressure in an optimised design.

  7. Development of ship structure health monitoring system based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  8. Land border monitoring with remote sensing technologies

    NASA Astrophysics Data System (ADS)

    Malinowski, Radoslaw

    2010-09-01

    The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.

  9. Monitoring the radiation dose to a multiprogrammable pacemaker during radical radiation therapy: A case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P.

    1990-11-01

    Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 monthsmore » after completion of treatment. The relevant electrocardiograms (ECGs) are presented.« less

  10. A review of electrostatic monitoring technology: The state of the art and future research directions

    NASA Astrophysics Data System (ADS)

    Wen, Zhenhua; Hou, Junxing; Atkin, Jason

    2017-10-01

    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.

  11. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  12. New monitoring by thermogravimetry for radiation degradation of EVA

    NASA Astrophysics Data System (ADS)

    Boguski, J.; Przybytniak, G.; Łyczko, K.

    2014-07-01

    The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

  13. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  14. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  15. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  16. Study of orifice fabrication technologies for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Wallace, David B.; Hayes, Donald J.; Bush, J. Michael

    1991-01-01

    Eleven orifice fabrication technologies potentially applicable for a liquid droplet radiator are discussed. The evaluation is focused on technologies capable of yielding 25-150 microns diameter orifices with trajectory accuracies below 5 milliradians, ultimately in arrays of up to 4000 orifices. An initial analytical screening considering factors such as trajectory accuracy, manufacturability, and hydrodynamics of orifice flow is presented. Based on this screening, four technologies were selected for experimental evaluation. A jet straightness system used to test 50-orifice arrays made by electro-discharge machining (EDM), Fotoceram, and mechanical drilling is discussed. Measurements on orifice diameter control and jet trajectory accuracy are presented and discussed. Trajectory standard deviations are in the 4.6-10.0 milliradian range. Electroforming and EDM appear to have the greatest potential for Liquid Droplet Radiator applications. The direction of a future development effort is discussed.

  17. Survey of Technologies for Monitoring Containment Liners and Covers

    EPA Pesticide Factsheets

    The report provides information on innovative long-term monitoring technologies to detect contaminant releases beneath a liner containment system and identify potential problems with the integrity of final containment covers.

  18. Radiation chemistry related to nuclear power technology

    NASA Astrophysics Data System (ADS)

    Ishigure, Kenkichi

    A brief review is given to the radiation chemical problems, especially with the emphasis on water radiolysis, in the nuclear power technology. Radiation chemistry in aqueous system is pointed out to be closely related to the problems such as corrosion of Zircaloy, the formation of insoluble corrosion products or crud, stress corrosion cracking of stainless steel in BWR and the radioactive waste managements. The results of the constant extention rate tests on sensitized 304 stainless steel under irradiation are shown, and the computer calculations were carried out to simulate the model experiments on the release of crud from the corroding surface under irradiation and also the water radiolysis in core of BWR.

  19. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  20. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study.

    PubMed

    Leuraud, Klervi; Richardson, David B; Cardis, Elisabeth; Daniels, Robert D; Gillies, Michael; O'Hagan, Jacqueline A; Hamra, Ghassan B; Haylock, Richard; Laurier, Dominique; Moissonnier, Monika; Schubauer-Berigan, Mary K; Thierry-Chef, Isabelle; Kesminiene, Ausrele

    2015-07-01

    There is much uncertainty about the risks of leukaemia and lymphoma after repeated or protracted low-dose radiation exposure typical of occupational, environmental, and diagnostic medical settings. We quantified associations between protracted low-dose radiation exposures and leukaemia, lymphoma, and multiple myeloma mortality among radiation-monitored adults employed in France, the UK, and the USA. We assembled a cohort of 308,297 radiation-monitored workers employed for at least 1 year by the Atomic Energy Commission, AREVA Nuclear Cycle, or the National Electricity Company in France, the Departments of Energy and Defence in the USA, and nuclear industry employers included in the National Registry for Radiation Workers in the UK. The cohort was followed up for a total of 8.22 million person-years. We ascertained deaths caused by leukaemia, lymphoma, and multiple myeloma. We used Poisson regression to quantify associations between estimated red bone marrow absorbed dose and leukaemia and lymphoma mortality. Doses were accrued at very low rates (mean 1.1 mGy per year, SD 2.6). The excess relative risk of leukaemia mortality (excluding chronic lymphocytic leukaemia) was 2.96 per Gy (90% CI 1.17-5.21; lagged 2 years), most notably because of an association between radiation dose and mortality from chronic myeloid leukaemia (excess relative risk per Gy 10.45, 90% CI 4.48-19.65). This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukaemia. Centers for Disease Control and Prevention, Ministry of Health, Labour and Welfare of Japan, Institut de Radioprotection et de Sûreté Nucléaire, AREVA, Electricité de France, National Institute for Occupational Safety and Health, US Department of Energy, US Department of Health and Human Services, University of North Carolina, Public Health England. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Silicon carbide semiconductor technology for high temperature and radiation environments

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.

    1993-01-01

    Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.

  2. Understanding Monitoring Technologies for Adults With Pain: Systematic Literature Review.

    PubMed

    Rodríguez, Iyubanit; Herskovic, Valeria; Gerea, Carmen; Fuentes, Carolina; Rossel, Pedro O; Marques, Maíra; Campos, Mauricio

    2017-10-27

    Monitoring of patients may decrease treatment costs and improve quality of care. Pain is the most common health problem that people seek help for in hospitals. Therefore, monitoring patients with pain may have significant impact in improving treatment. Several studies have studied factors affecting pain; however, no previous study has reviewed the contextual information that a monitoring system may capture to characterize a patient's situation. The objective of this study was to conduct a systematic review to (1) determine what types of technologies have been used to monitor adults with pain, and (2) construct a model of the context information that may be used to implement apps and devices aimed at monitoring adults with pain. A literature search (2005-2015) was conducted in electronic databases pertaining to medical and computer science literature (PubMed, Science Direct, ACM Digital Library, and IEEE Xplore) using a defined search string. Article selection was done through a process of removing duplicates, analyzing title and abstract, and then reviewing the full text of the article. In the final analysis, 87 articles were included and 53 of them (61%) used technologies to collect contextual information. A total of 49 types of context information were found and a five-dimension (activity, identity, wellness, environment, physiological) model of context information to monitor adults with pain was proposed, expanding on a previous model. Most technological interfaces for pain monitoring were wearable, possibly because they can be used in more realistic contexts. Few studies focused on older adults, creating a relevant avenue of research on how to create devices for users that may have impaired cognitive skills or low digital literacy. The design of monitoring devices and interfaces for adults with pain must deal with the challenge of selecting relevant contextual information to understand the user's situation, and not overburdening or inconveniencing users with

  3. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  4. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    NASA Astrophysics Data System (ADS)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end-to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  5. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  6. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  7. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  8. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  9. Radiation Response of Emerging FeRAM Technology

    NASA Technical Reports Server (NTRS)

    Nguyen, D. N.; Scheick, L. Z.

    2001-01-01

    The test results of measurements performed on two different sizes of ferroelectric random access memory (FeRAM) suggest the degradation is due to the low radiation tolerance of sense amplifiers and reference voltage generators which are based on commercial complementary metal oxide semiconductor (CMOS) technology. This paper presents total ionizing dose (TID) testing of 64Kb Ramtron FM1608 and 256Kb Ramtron FM1808.

  10. Study on the biological effect of cosmic radiation and the development of radiation protection technology (L-11)

    NASA Technical Reports Server (NTRS)

    Nagaoka, Shunji

    1993-01-01

    NASDA is now participating in a series of flight experiments on Spacelab missions. The first experiment was carried out on the first International Microgravity Laboratory Mission (IML-1) January 1992, and the second experiment will be conducted on the Spacelab-J Mission, First Materials Processing Test (FMPT). The equipment or Radiation Monitoring Container Devices (RMCD) includes passive dosimeter systems and biological specimens. The experiments using this hardware are designed by NASDA to measure and investigate the radiation levels inside spacecraft like space shuttle and to look at the basic effects of the space environment from the aspect of radiation biology. The data gathered will be analyzed to understand the details of biological effects as well as the physical nature of space radiation registered in the sensitive Solid-State Track Detectors (SSTD).

  11. Technology and application of 3D tunnel information monitoring

    NASA Astrophysics Data System (ADS)

    Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin

    2015-12-01

    It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.

  12. Technology platforms for remote monitoring of vital signs in the new era of telemedicine.

    PubMed

    Zhao, Fang; Li, Meng; Tsien, Joe Z

    2015-07-01

    Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.

  13. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  14. Technological advances in suspended-sediment surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Gray, John R.; Gartner, Jeffrey W.

    2009-04-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  15. Technological advances in suspended‐sediment surrogate monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric‐concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium‐to‐large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single‐frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of

  16. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    PubMed Central

    Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz

    2008-01-01

    The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746

  17. Field testing of new-technology ambient air ozone monitors.

    PubMed

    Ollison, Will M; Crow, Walt; Spicer, Chester W

    2013-07-01

    Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with

  18. Radiation therapy patient education using VERT: combination of technology with human care.

    PubMed

    Jimenez, Yobelli A; Lewis, Sarah J

    2018-06-01

    The Virtual Environment for Radiotherapy Training (VERT) system is a recently available tool for radiation therapy education. The majority of research regarding VERT-based education is focused on students, with a growing area of research being VERT's role in patient education. Because large differences in educational requirements exist between students and patients, focused resources and subsequent evaluations are necessary to provide solid justification for the unique benefits and challenges posed by VERT in a patient education context. This commentary article examines VERT's role in patient education, with a focus on salient visual features, VERT's ability to address some of the spatial challenges associated with RT patient education and how to combine technology with human care. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  19. Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura

    PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to proceduremore » type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.« less

  20. Application of GIS technologies to monitor secondary radioactive contamination in the Delegen mountain massif

    NASA Astrophysics Data System (ADS)

    Alipbeki, O.; Kabzhanova, G.; Kurmanova, G.; Alipbekova, Ch.

    2016-06-01

    The territory of the Degelen mountain massif is located within territory of the former Semipalatinsk nuclear test site and it is an area of ecological disaster. Currently there is a process of secondary radioactive contamination that is caused by geodynamic processes activated at the Degelen array, violation of underground hydrological cycles and as a consequence, water seepage into the tunnels. One of the methods of monitoring of geodynamic processes is the modern technology of geographic information systems (GIS), methods of satellite radar interferometry and high accuracy satellite navigation system in conjunction with radioecological methods. This paper discusses on the creation of a GIS-project for the Degelen array, facilitated by quality geospatial analysis of the situation and simulation of the phenomena, in order to maximize an objective assessment of the radiation situation in this protected area.

  1. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    PubMed Central

    Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR

    2014-01-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778

  2. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  3. Overview of the atmospheric ionizing radiation environment monitoring by Bulgarian build instruments

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Spurny, Frantisek; Ploc, Ondrej; Uchihori, Yukio; Flueckiger, Erwin; Kudela, Karel; Benton, Eric

    2012-10-01

    Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic radiation of galactic and solar origin and to secondary radiation produced in the atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required by the following recommendations of the International Commission on Radiological Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic radiation. This approach has been also adopted in other official documents (NCRP 2002). In this overview we present the results of ground based, mountain peaks, aircraft, balloon and rocket radiation environment monitoring by means of a Si-diode energy deposition spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the purposes of the space radiation monitoring at MIR and International Space Station (ISS). These spectrometers-dosemeters are further developed, calibrated and used by scientific groups in different countries. Calibration procedures of them are performed at different accelerators including runs in the CERN high-energy reference field, simulating the radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan HIMAC accelerator were performed also. The long term aircraft data base were accumulated using specially developed battery operated instrument in 2001-2009 years onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. The obtained experimental data are compared with computational models like CARI and EPCARD. The

  4. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  5. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  6. Overview of Microbial Monitoring Technologies Considered for Use Inside Long Duration Spaceflights and Planetary Habitats

    NASA Astrophysics Data System (ADS)

    Roman, M. C.; Ott, C. M.

    2015-03-01

    NASA has been looking at microbial monitoring technologies that could be used in long duration missions. This presentation will provide an overview of the microbial monitoring technologies that are been considered for use inside spacecrafts and planetary habitats.

  7. Emerging Technologies for Real-Time Continuous Monitoring of Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.

    2017-12-01

    Assessment of a well's integrity has traditionally been carried out through periodic wireline logging, often performed only when an operational problem was noted at the surface. There are several emerging technologies that can be installed permanently as part of the well completion and offer the ability to monitor operations while providing continuous indicators to evaluate the structural health of a well. Permanent behind casing instrumentation, such as pressure and temperature gauges can monitor for behind casing leakage. Similarly, fiber-optic distributed temperature and acoustic sensing provide additional information for assessing unwanted movement of fluid, which is indicative of problems either inside or outside of casing. Furthermore, these technologies offer the benefit of providing real-time continuous streams of information that serve as leading-indicators of wellbore problems to allow for early intervention. Additional research is still needed to develop best practices for the installation and operation of these technologies, as they increase cost and add additional risks that must be managed.

  8. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  9. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  10. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    NASA Technical Reports Server (NTRS)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  11. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  12. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  13. Tweets, Texts, and Tablets:The Emergence of Technology-Based Self-Monitoring

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Waller, LaNeisha; Hasselbring, Ted S.

    2016-01-01

    Students with behavior problems often lack the self-regulation skills necessary for success. One strategy shown to improve these skills is self-monitoring. Traditionally, self-monitoring has been done using paper and pencil, with some sort of prompt to complete the procedures. Prompts have involved teacher cues as well as technology. Current…

  14. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  15. Radiation effects in advanced microelectronics technologies

    NASA Astrophysics Data System (ADS)

    Johnston, A. H.

    1998-06-01

    The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.

  16. Education technology with continuous real time monitoring of the current functional and emotional students' states

    NASA Astrophysics Data System (ADS)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  17. Technologies for Metabolic Monitoring Military Section Editorials in Diabetes Technologies and Therapeutics

    DTIC Science & Technology

    2004-12-01

    monitoring, diabetes, IGF-I, patient decision assist, hyperspectral imaging, actigraphy, accelerometry, foot contact time, Con A-glucose sensing, lactate...was reduced in both con - mottling, and rebound of a skin fold could all ditions. contribute to a diagnosis. Current technologies Hyperspectral imaging...information such as ambient con - responses in the context of various external ditions, meals and recent activity, and specific challenges ("green light

  18. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  19. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  20. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  1. New site characterization and monitoring technology

    NASA Astrophysics Data System (ADS)

    Nielsen, Bruce J.; Gillispie, Gregory D.; Bohne, David A.; Lindstrom, David R.

    1995-10-01

    The cost of characterizing and monitoring U.S. government hazardous waste sites could exceed $500 billion utilizing traditional methods and technology. New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the U.S. Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with U.S. Air Force funding a North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies Inc., and NDSU submitted a proposal to the advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from the analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France an several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations. The use of the ROST system to find hydrocarbon contamination is now being offered as a service by Loral Corporation.

  2. [Intelligent watch system for health monitoring based on Bluetooth low energy technology].

    PubMed

    Wang, Ji; Guo, Hailiang; Ren, Xiaoli

    2017-08-01

    According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.

  3. Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory

    NASA Technical Reports Server (NTRS)

    Hanna, W. A.; Panagos, P.

    1983-01-01

    This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.

  4. Automatic radiation dose monitoring for CT of trauma patients with different protocols: feasibility and accuracy.

    PubMed

    Higashigaito, K; Becker, A S; Sprengel, K; Simmen, H-P; Wanner, G; Alkadhi, H

    2016-09-01

    To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current-time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current-time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDIvol; p=0.62), dose-length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both -38%, p<0.017). Compared to cohort 1, CTDIvol, DLP, and ED in cohort 3 were significantly lower (all -25%, p<0.017), similar to the noise in the chest (-32%) and abdomen (-27%, both p<0.017). Compared to cohort 2, CTDIvol (-28%), DLP, and ED (both -26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  6. Radiation Detection Center on the Front Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R&D) programs. These effortsmore » involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''« less

  7. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  8. Using Data to Individualize a Multicomponent, Technology-Based Self-Monitoring Intervention

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Vogelgesang, Kari; Fernando, Josephine; Lugo, Wilbeth

    2016-01-01

    Technology in schools is abundant as is the call for evidence-based interventions for students who need additional support to be successful. One promising use of technology is for self-monitoring interventions aimed at improving classroom behavior. In this study, two middle school students with disabilities used a multicomponent, self-monitoring…

  9. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  10. Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.

    2000-01-01

    As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.

  11. Technology transfer potential of an automated water monitoring system. [market research

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  12. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  13. Perspectives on micropole undulators in synchrotron radiation technology

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  14. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  15. Experiences with SCRAMx alcohol monitoring technology in 100 alcohol treatment outpatients.

    PubMed

    Alessi, Sheila M; Barnett, Nancy P; Petry, Nancy M

    2017-09-01

    Transdermal alcohol monitoring technology allows for new research on alcohol use disorders. This study assessed feasibility, acceptability, and adherence with this technology in the context of two clinical research trials. Participants were the first 100 community-based alcohol treatment outpatients enrolled in randomized studies that monitored drinking with the secure continuous remote alcohol monitor (SCRAMx ® ) for 12 weeks. Study 1 participants were randomized to usual care (n=36) or usual care with contingency management incentives for treatment attendance (CM-Att; n=30). Study 2 participants were randomized to usual care (n=17) or usual care with CM for each day of no drinking per SCRAMx (CM-Abst; n=17). After 12 weeks, participants completed a survey about the bracelet. Nine percent of individuals screened (54 of 595) declined participation because of the bracelet. Of participants, 84% provided 12weeks of data, and 96% of bracelets were returned fully intact. Ninety-four equipment tampers occurred, affecting 2% of monitoring days; 56% (67) of tampers coincided with detected drinking. Common concerns reported by participants were skin marks (58%), irritation (54%), and interfered with clothing choices (51%), but severity ratings were generally mild (60%-94%). Eighty-one percent of participants reported that the bracelet helped them reduce drinking, and 75% indicated that they would wear it for longer. A common suggestion for improvement was to reduce the size of the bracelet. Results support the viability of transdermal monitoring in voluntary substance abuse treatment participants for an extended duration. Issues to consider for future applications of this technology are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; hide

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  17. Radiation Detection for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  18. The use of modern technologies in carbon dioxide monitoring

    NASA Astrophysics Data System (ADS)

    Komínek, Petr; Weyr, Jan; Hirš, Jiří

    2017-12-01

    Indoor environment has huge influence on person's health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2) level. The CO2 levels, measured in prefab apartment buildings, indicates substantial indoor air quality issues. Therefore, a proper education of the occupants is of utmost importance. Also, great care should be directed towards technical and technological solutions that would ensure meeting the normative indoor environment criteria, especially indoor air CO2 levels. Thanks to the implementation of new emerging autonomous technologies, such as Internet of Things (IoT), monitoring in real-time is enhanced. An area where IoT plays a major role is in the monitoring of indoor environment. IoT technology (e.g. smart meters and sensors) provide awareness of information about the quality of indoor environment. There is a huge potential for influencing behaviour of the users. Through the web application, it is possible to educate people and ensure fresh air supply.

  19. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  20. Recent developments in radiation field control technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.J.

    1995-03-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for specialmore » maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.« less

  1. Comparison of transient measurements of infrared radiation and stress waves for practical ablation monitoring during photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Kikuchi, Makoto; Nakano, Hironori; Kawauchi, Satoko; Obara, Minoru

    1998-05-01

    We compared infrared radiation measurement with stress wave measurement for real-time ablation monitoring during photorefractive keratectomy (PRK). We estimated temperature elevation which may be one of the most effective parameter for PRK monitoring, because the ablation mechanism is mainly attributed to thermal kinetics. The temperature elevation of ablated cornea was evaluated by the infrared radiation and the stress wave. The thermal radiation from irradiated cornea was detected by a MCT detector. The measured signal increased sharply just after the laser irradiation and decreased quasi- exponentially. We could calculate the temperature elevation by observed signal using Stefan-Boltzmann radiation law. In the case of the gelatin gel (15% wt) ablation in vitro, the temperature elevation was 97 deg. at 208 mJ/cm2 in the laser fluence. We also measured transient stress wave by the acoustic transducer which was made by polyvinylidene fluoride (PVDF) film. The temperature elevation could be calculated from the peak stress amplitude based on the short pulsed laser ablation theory. The good agreement on the temperature elevation was obtained between the infrared and the stress based estimations. Due to non-contact and non-invasive method, our infrared measurements for temperature elevation monitoring may be available to accomplish the feedback control on the PRK.

  2. Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.

    2017-04-01

    The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.

  3. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology

    PubMed Central

    Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping

    2015-01-01

    Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716

  4. Emerging Point-of-Care Technologies for Sickle Cell Disease Screening and Monitoring

    PubMed Central

    Alapan, Yunus; Fraiwan, Arwa; Kucukal, Erdem; Hasan, M. Noman; Ung, Ryan; Kim, Myeongseop; Odame, Isaac; Little, Jane A.; Gurkan, Umut A.

    2016-01-01

    Introduction Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas Covered Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state-of-the-art, potential challenges associated with these technologies, and future directions. Expert Commentary Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies. PMID:27785945

  5. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  6. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  7. Calibration of the radiation monitor onboard Akebono using Geant4

    NASA Astrophysics Data System (ADS)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  8. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  9. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    PubMed Central

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  10. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To

  11. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  12. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    PubMed

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  14. Reply to comment by Rainer Facius et al. on "U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm"

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-05-01

    The premise of this comment perpetuates an unfortunate trend among some radiation researchers to minimize potential risks to human tissue from low-radiation sources. In fact, this discussion on the risk uncertainties of low-dose radiation further illustrates the need for more measurements and a program of active monitoring, especially when solar eruptive events can substantially elevate the radiation environment. This debate also highlights the context of a bigger problem; i.e., how do we as professionals act with due diligence to take the immense body of knowledge of space weather radiation effects on human tissue and distil it into ideas that regulatory agencies can use to maximize the safety of a population at risk. The focus of our article on radiation risks due to solar energetic particle events starts with our best assessment of risks and is based on the body of scientific knowledge while, at the same time, erring on the side of public safety. The uncertainty inherent in our assessment is accepted and described with this same philosophy in mind.

  15. An intelligent health monitoring system using radio-frequency identification technology.

    PubMed

    Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi

    2015-01-01

    Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes.

  16. Optical Spectroscopy and Multivariate Analysis for Biodosimetry and Monitoring of Radiation Injury to the Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Bryan, Samuel A.; Creim, Jeffrey A.

    2012-08-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for the radiation exposure is critical. In particular, a significant number of the victims may sustain cutaneous radiation injury, which increases the mortality and worsens the overall prognosis of the victims suffered from combined thermal/mechanical and radiation trauma. Diagnosis of the cutaneous radiation injury is challenging, and established methods largely rely on visual manifestations, presence of the skin contamination, and a high degree of recall by the victim. Availability of a high throughput non-invasive inmore » vivo biodosimetry tool for assessment of the radiation exposure of the skin is of particular importance for the timely diagnosis of the cutaneous injury. In the reported investigation, we have tested the potential of an optical reflectance spectroscopy for the evaluation of the radiation injury to the skin. This is technically attractive because optical spectroscopy relies on well-established and routinely used for various applications instrumentation, one example being pulse oximetry which uses selected wavelengths for the quantification of the blood oxygenation. Our method relies on a broad spectral region ranging from the locally absorbed, shallow-penetrating ultraviolet and visible (250 to 800 nm) to more deeply penetrating near-Infrared (800 – 1600 nm) light for the monitoring of multiple physiological changes in the skin upon irradiation. Chemometrics is a multivariate methodology that allows the information from entire spectral region to be used to generate predictive regression models. In this report we demonstrate that simple spectroscopic method, such as the optical reflectance spectroscopy, in combination with multivariate data analysis, offers the promise of rapid and non-invasive in vivo diagnosis and monitoring of the cutaneous radiation exposure, and is able accurately

  17. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  18. Technical aspects of quality assurance in radiation oncology

    PubMed Central

    Saw, CB; Ferenci, MS; Wanger, H

    2008-01-01

    The technical aspects of quality assurance (QA) in radiation oncology as practice in the United States will be reviewed and updated in the spirit of offering the experience to the radiation oncology communities in the Asia-Pacific region. The word “technical” is used to express the organisational components or processes and not the materials within the QA program. A comprehensive QA program in radiation oncology will have an official statement declaring the quality plan for effective patient care services it provides in a document. The QA program will include all aspects of patient care: physical, clinical, and medical aspects of the services. The document will describe the organisational structure, responsibilities, checks and procedures, and resources allocated to ensure the successful implementation of the quality of patient management. Regulatory guidelines and guidelines from accreditation agencies should be incorporated in the QA program to ensure compliance. The organisational structure will have a multidisciplinary QA committee that has the authority to evaluate continuously the effectiveness of the QA program to provide prompt corrective recommendations and to request feedback as needed to monitor the response. The continuous monitoring aspects require meetings to be held at regular intervals with the minutes of the meetings officially recorded and documented. To ensure that a QA program is effective, the program itself should be audited for quality at regular intervals at least annually. It has been recognised that the current QA program has not kept abreast with the rapid implementation of new and advanced radiation therapy technologies with the most recent in image-based radiation therapy technology. The societal bodies (ASTRO and AAPM) and federal agency (NCI) acknowledge this inadequacy and have held workshops to address this issue. The challenges for the societal bodies and federal agency are numerous that include (a) the prescriptive methodology

  19. New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment: Benefits of Time Series Data

    DTIC Science & Technology

    2011-03-31

    00-00-2011 4. TITLE AND SUBTITLE New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of Time...Std Z39-18 Dr Peter Morris, Geoff Hewitt New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of...but which poses a greater risk ? V O C p p m Acetone Industrial facility with VOC Leak Site characterisation and Real time monitoring of Remediation

  20. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: A randomized pilot study.

    PubMed

    Ross, Kathryn M; Wing, Rena R

    2016-08-01

    Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n = 26), technology-based self-monitoring tools (TECH, n = 27), or technology-based tools combined with phone-based intervention (TECH + PHONE, n = 27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Weight loss from baseline to 6 months differed significantly between groups P = 0.042; there was a trend for TECH + PHONE (-6.4 ± 1.2 kg) to lose more weight than ST (-1.3 ± 1.2 kg); weight loss in TECH (-4.1 ± 1.4 kg) was between ST and TECH + PHONE. Fewer ST (15%) achieved ≥5% weight losses compared with TECH and TECH + PHONE (44%), P = 0.039. Adherence to self-monitoring caloric intake was higher in TECH + PHONE than TECH or ST, Ps < 0.05. These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared with traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. © 2016 The Obesity Society.

  1. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: a randomized pilot study

    PubMed Central

    Ross, Kathryn M.; Wing, Rena R.

    2016-01-01

    Objective Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. Methods A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n=26), technology-based self-monitoring tools (TECH, n=27), or technology-based tools combined with phone-based intervention (TECH+PHONE, n=27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Results Weight loss from baseline to 6 months differed significantly between groups p=.042; there was a trend for TECH+PHONE (−6.4±1.2kg) to lose more weight than ST (−1.3±1.2kg); weight loss in TECH (−4.1±1.4kg) was between ST and TECH+PHONE. Fewer ST (15%) achieved ≥5% weight losses compared to TECH and TECH+PHONE (44%), p=.039. Adherence to self-monitoring caloric intake was higher in TECH+PHONE than TECH or ST, ps<.05. Conclusion These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared to traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. PMID:27367614

  2. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  3. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  4. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  5. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  6. MR-guided radiation therapy: transformative technology and its role in the central nervous system

    PubMed Central

    Tseng, Chia-Lin; Balter, James M.; Teng, Feifei; Parmar, Hemant A.; Sahgal, Arjun

    2017-01-01

    Abstract This review article describes advancement of magnetic resonance imaging technologies in radiation therapy planning, guidance, and adaptation of brain tumors. The potential for MR-guided radiation therapy to improve outcomes and the challenges in its adoption are discussed. PMID:28380637

  7. Wearable physiological systems and technologies for metabolic monitoring.

    PubMed

    Gao, Wei; Brooks, George A; Klonoff, David C

    2018-03-01

    Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.

  8. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    PubMed

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Promoting the Appropriate Use of Advanced Radiation Technologies in Oncology: Summary of a National Cancer Policy Forum Workshop.

    PubMed

    Smith, Grace L; Ganz, Patricia A; Bekelman, Justin E; Chmura, Steven J; Dignam, James J; Efstathiou, Jason A; Jagsi, Reshma; Johnstone, Peter A; Steinberg, Michael L; Williams, Stephen B; Yu, James B; Zietman, Anthony L; Weichselbaum, Ralph R; Tina Shih, Ya-Chen

    2017-03-01

    Leaders in the oncology community are sounding a clarion call to promote "value" in cancer care decisions. Value in cancer care considers the clinical effectiveness, along with the costs, when selecting a treatment. To discuss possible solutions to the current obstacles to achieving value in the use of advanced technologies in oncology, the National Cancer Policy Forum of the National Academies of Sciences, Engineering, and Medicine held a workshop, "Appropriate Use of Advanced Technologies for Radiation Therapy and Surgery in Oncology" in July 2015. The present report summarizes the discussions related to radiation oncology. The workshop convened stakeholders, including oncologists, researchers, payers, policymakers, and patients. Speakers presented on key themes, including the rationale for a value discussion on advanced technology use in radiation oncology, the generation of scientific evidence for value of advanced radiation technologies, the effect of both scientific evidence and "marketplace" (or economic) factors on the adoption of technologies, and newer approaches to improving value in the practice of radiation oncology. The presentations were followed by a panel discussion with dialogue among the stakeholders. Challenges to generating evidence for the value of advanced technologies include obtaining contemporary, prospective, randomized, and representative comparative effectiveness data. Proposed solutions include the use of prospective registry data; integrating radiation oncology treatment, outcomes, and quality benchmark data; and encouraging insurance coverage with evidence development. Challenges to improving value in practice include the slow adoption of higher value and the de-adoption of lower value treatments. The proposed solutions focused on engaging stakeholders in iterative, collaborative, and evidence-based efforts to define value and promote change in radiation oncology practice. Recent examples of ongoing or successful responses to the

  10. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  11. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  12. Client-Server Connection Status Monitoring Using Ajax Push Technology

    NASA Technical Reports Server (NTRS)

    Lamongie, Julien R.

    2008-01-01

    This paper describes how simple client-server connection status monitoring can be implemented using Ajax (Asynchronous JavaScript and XML), JSF (Java Server Faces) and ICEfaces technologies. This functionality is required for NASA LCS (Launch Control System) displays used in the firing room for the Constellation project. Two separate implementations based on two distinct approaches are detailed and analyzed.

  13. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  14. Standardisation of radiation portal monitor controls and readouts.

    PubMed

    Tinker, M

    2010-10-01

    There is an urgent need to standardise the numbering configuration of radiation portal monitor sensing panels. Currently, manufacturers use conflicting numbering schemes that may confuse operators of these varied systems. There is a similar problem encountered with the varied choices of coloured indicator lights and coloured print lines designated for gamma and neutron alarms. In addition, second-party software that changes the alarm colour scheme may also have been installed. Furthermore, no provision exists for the colour blind or to provide work stations with only black ink on alarm printouts. These inconsistencies and confusing set-ups could inadvertently cause a misinterpretation of the alarm, resulting in the potential release of a radiological hazard into a sovereign country. These issues are discussed, and a proposed solution is offered.

  15. Implementing monitoring technologies in care homes for people with dementia: A qualitative exploration using Normalization Process Theory.

    PubMed

    Hall, Alex; Wilson, Christine Brown; Stanmore, Emma; Todd, Chris

    2017-07-01

    Ageing societies and a rising prevalence of dementia are associated with increasing demand for care home places. Monitoring technologies (e.g. bed-monitoring systems; wearable location-tracking devices) are appealing to care homes as they may enhance safety, increase resident freedom, and reduce staff burden. However, there are ethical concerns about the use of such technologies, and it is unclear how they might be implemented to deliver their full range of potential benefits. This study explored facilitators and barriers to the implementation of monitoring technologies in care homes. Embedded multiple-case study with qualitative methods. Three dementia-specialist care homes in North-West England. Purposive sample of 24 staff (including registered nurses, clinical specialists, senior managers and care workers), 9 relatives and 9 residents. 36 semi-structured interviews with staff, relatives and residents; 175h of observation; resident care record review. Data collection informed by Normalization Process Theory, which seeks to account for how novel interventions become routine practice. Data analysed using Framework Analysis. Findings are presented under three main themes: 1. Reasons for using technologies: The primary reason for using monitoring technologies was to enhance safety. This often seemed to override consideration of other potential benefits (e.g. increased resident freedom) or ethical concerns (e.g. resident privacy); 2. Ways in which technologies were implemented: Some staff, relatives and residents were not involved in discussions and decision-making, which seemed to limit understandings of the potential benefits and challenges from the technologies. Involvement of residents appeared particularly challenging. Staff highlighted the importance of training, but staff training appeared mainly informal which did not seem sufficient to ensure that staff fully understood the technologies; 3. Use of technologies in practice: Technologies generated frequent

  16. The Monitoring of Technology Transfer to the USSR.

    DTIC Science & Technology

    1982-08-01

    nizational options for improving the present system for monitor- ing technology transfer. (Cont. on reverse side) DO ,FN 1473 EDITION OF INOV SS...imposition of military control in Poland , a further curtailment of the exchange activi- ties followed. In particular, three agreements (in existence in 1981...its own, P. Poland is also in a separate Country Group W. North Korea, Vietnam, Cambodia, and Cuba are in Country Group Z. Department of Commerce

  17. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Treesearch

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  18. Breathing Room in Monitored Space: The Impact of Passive Monitoring Technology on Privacy in Independent Living.

    PubMed

    Berridge, Clara

    2016-10-01

    This study examines articulations of the relationship between privacy and passive monitoring by users and former users of a sensor-based remote monitoring system. A new conceptualization of privacy provides a framework for a constructive analysis of the study's findings with practical implications. Forty-nine in-depth semistructured interviews were conducted with elder residents, family members, and staff of 6 low-income independent living residence apartment buildings where the passive monitoring system had been offered for 6 years. Transcribed interviews were coded into the Dedoose software service and were analyzed using methods of grounded theory. Five diverse articulations of the relationship between privacy and passive monitoring emerged. The system produced new knowledge about residents and enabled staff to decide how much of that knowledge to disclose to residents. They chose not to disclose to residents their reason for following up on system-generated alerts for 2 reasons: concern that feelings of privacy invasion may arise and cause dissatisfaction with the technology, and the knowledge that many resident users did not comprehend the extent of its features and would be alarmed. This research reveals the importance and challenges of obtaining informed consent. It identifies where boundary intrusion can occur in the use of passive monitoring as well as how changes to technology design and practice could create opportunities for residents to manage their own boundaries according to their privacy needs. The diversity of approaches to privacy supports the need for "opportunity for boundary management" to be employed as both a design and practice principle. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Personalized Technologies in Chronic Gastrointestinal Disorders: Self-monitoring and Remote Sensor Technologies

    PubMed Central

    Riaz, Muhammad Safwan; Atreja, Ashish

    2016-01-01

    With increased access to high-speed Internet and smartphone devices, patients have started to use mobile applications (apps) for various health needs. These mobile apps are now increasingly used in integration with telemedicine and wearables to support fitness, health education, symptom tracking, and collaborative disease management and care coordination. More recently, evidence (especially around remote patient monitoring) has started to build in some chronic diseases, and some of the digital health technologies have received approval from the Food and Drug Administration. With the changing healthcare landscape and push for value-based care, adoption of these digital health initiatives among providers is bound to increase. Although so far there is a dearth of published evidence about effectiveness of these apps in gastroenterology care, there are ongoing trials to determine whether remote patient monitoring can lead to improvement in process metrics or outcome metrics for patients with chronic gastrointestinal diseases. PMID:27189911

  20. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology

    PubMed Central

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-01-01

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176

  1. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

    PubMed

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-10-26

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.

  2. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  3. EPA-developed, patented technologies related to water monitoring and remediation that are available for licensing

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace. These technologies relate to water monitoring and treatment technologies.

  4. Radiation monitoring systems as a tool for assessment of accidental releases at the Chernobyl and Fukushima NPPs

    NASA Astrophysics Data System (ADS)

    Shershakov, Vjacheslav; Bulgakov, Vladimir

    2013-04-01

    approach was used for assessing the consequences at the Fukushima NPP. These results are also provided in the presentation. References 1. Kelly G.N., Ehrhardt J., Shershakov V.M.. Decision Support for Off-Site Emergency Preparedness in Europe. Radiation Protection Dosimetry, Vol. 64 Nos. 1-2, 1996, pp. 129-142. 2. Ehrhardt J., Shershakov V.M. Real-time on-line decision support systems (RODOS) for off-site emergency management following a nuclear accident. EUR 16533, 1996 3. Kelly G.N., Shershakov V.M. (Editors). Environmental contamination, radiation doses and health consequences after the ?hernobyl accident. Radiation Protection Dosimetry. Special Commemorative Issue.Vol. 64, 1996 4. Shershakov V.M. Computer information technology for support of radiation monitoring problems. OECD Proceedings of an International Workshop «Nuclear Emergency Data Management», Zurich, Switzerland, 1998, pp. 377-388 5. Pitkevich V.A., Duba V.V., Ivanov V.K., Tsyb A.F., Shershakov V.M., Golubenkov A.V., Borodin R.V., V.A., Kosykh V.S. Reconstruction of External Dose to the Inhabitants Living in the Contaminated Territory of Russia by the Results of the Accident at the Chernobyl NPP. Health Phys., Vol. 30, No. 1, pp. 54-68, 1995. 6. Shershakov V., Fesenko S., Kryshev I., Semioshkina T. Decision-Aiding Tools for Remediation Strategies. In: Radioactivity in the Environment, Volume 14, Remediation of Contaminated Environments, 2009, pp 41- 120, Elsevier Ltd.

  5. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  6. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  7. A review on architectures and communications technologies for wearable health-monitoring systems.

    PubMed

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  8. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    PubMed Central

    Custodio, Víctor; Herrera, Francisco J.; López, Gregorio; Moreno, José Ignacio

    2012-01-01

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications. PMID:23202028

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  10. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  11. The opinions of radiographers, nuclear medicine technologists and radiation therapists regarding technology in health care: a qualitative study.

    PubMed

    Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline

    2017-03-01

    New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might

  12. Informed Decision Making for In-Home Use of Motion Sensor-Based Monitoring Technologies

    ERIC Educational Resources Information Center

    Bruce, Courtenay R.

    2012-01-01

    Motion sensor-based monitoring technologies are designed to maintain independence and safety of older individuals living alone. These technologies use motion sensors that are placed throughout older individuals' homes in order to derive information about eating, sleeping, and leaving/returning home habits. Deviations from normal behavioral…

  13. Information technologies in optimization process of monitoring of software and hardware status

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  14. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  15. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  16. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  17. Development of Technologies to Utilize Laser Plasma Radiations Sources for Radiation Effects Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J F

    2007-01-31

    This final report will cover work performed over the period of November 11, 2005 to September 30, 2006 on the contract to develop technologies using laser sources for radiation effects sciences. The report will discuss four topic areas; the laser source experiments on the Gekko Laser at Osaka, Japan, planning for the Charge State Freeze Out experiments to be performed in calendar year 2007, a review of previous xenon gasbags on the LANL Trident laser to provide planning support to the May-June 2007 HELEN experiments.

  18. Remote monitoring of lower-limb prosthetic socket fit using wireless technologies.

    PubMed

    Sahandi, R; Sewell, P; Noroozi, S; Hewitt, M

    2012-01-01

    Accurate fitting of a lower-limb prosthetic socket is the most important factor affecting amputee satisfaction and rehabilitation. The technology is now available to allow real-time monitoring of in-service pressure distribution of prosthetic limbs. This paper proposes a remote interfacial pressure monitoring system necessary for the assessment of fit. The suitability of a wireless ZigBee network due to its relevant technical specification is investigated. The system enables remote monitoring of a prosthetic socket and its fit under different operating conditions thereby improving design, efficiency and effectiveness. The data can be used by prosthetists and may also be recorded for future training or for patient progress monitoring. This can minimize the number of iterations by getting it right first time, thereby minimizing the number of replacement prostheses. Copyright © 2012 Informa UK, Ltd.

  19. Development of optical monitor of alpha radiations based on CR-39.

    PubMed

    Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K

    2013-11-01

    Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment. © 2013 Elsevier Ltd. All rights reserved.

  20. Future technologies for monitoring HIV drug resistance and cure.

    PubMed

    Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W

    2017-03-01

    Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.

  1. Community Environmental Monitoring Program: a case study of public education and involvement in radiological monitoring.

    PubMed

    Shafer, David S; Hartwell, William T

    2011-11-01

    The public's trust in the source of information about radiation is a key element of its acceptance. The public tends to trust two groups where risk communication is concerned: (1) scientists with expertise who are viewed as acting independently; and (2) friends, family, and other close associates who are viewed as sharing the same interests and concern, even if they have less knowledge of the subject. The Community Environmental Monitoring Program (CEMP) bridges both of these groups by having members of the public help operate and communicate results of a network of 29 radiation monitoring stations around the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS), the principal continental location where the United States conducted nuclear tests. The CEMP stations, spread across a 160,000 km area, help provide evidence to the public that no releases of radiation of health concern are occurring from the NNSS to public receptors. The stations provide continuous measurements of gamma radiation and collect air particulate samples that are analyzed for radioactivity and meteorological measurements that aid in interpreting variations in background radiation. A public website (http://cemp.dri.edu) provides data for most instruments. Twenty-three of the 29 stations upload their data in near-real time to a public website as well as to digital readout displays at the stations, both of which are key elements in the CEMP's transparency. The remaining six stations upload their data hourly. Public stakeholders who are direct participants provide the most significant element of the CEMP. The "Community Environmental Monitors," who are residents of towns where the stations are located, are part of the chain-of-custody for the air samples, perform minor station maintenance, and most significantly in terms of trust, serve as lay experts on issues concerning the NNSS and on ionizing radiation and nuclear technologies in general. The CEMP meets nearly all

  2. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    PubMed

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between

  3. An overview of ecological monitoring based on geographic information system (GIS) and remote sensing (RS) technology in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan

    2017-11-01

    Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.

  4. Effect of Technology-Enhanced Continuous Progress Monitoring on Math Achievement

    ERIC Educational Resources Information Center

    Ysseldyke, Jim; Bolt, Daniel M.

    2007-01-01

    We examined the extent to which use of a technology-enhanced continuous progress monitoring system would enhance the results of math instruction, examined variability in teacher implementation of the program, and compared math results in classrooms in which teachers did and did not use the system. Classrooms were randomly assigned to within-school…

  5. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  6. Comparison of curricula in radiation technology in the field of radiotherapy in selected European Union countries.

    PubMed

    Janaszczyk, Agnieszka; Bogusz-Czerniewicz, Marta

    2011-01-01

    Radiation technology is a discipline of medical science which deals with diagnostics, imaging and radiotherapy, that is treatment by ionizing radiation. To present and compare the existing curricula of radiation technology in selected EU countries. The research work done for the purpose of the comparative analysis was based on the methods of diagnostic test and document analysis. The comparison of curricula in selected countries, namely Austria, France, the Netherlands and Poland, showed that admission criteria to radiation technology courses are varied and depend on regulations of respective Ministries of Health. The most restrictive conditions, including written tests in biology, chemistry and physics, and psychometric test, are those in France. Contents of basic and specialist subject groups are very similar in all the countries. The difference is in the number of ECT points assigned to particular subjects and the number of course hours offered. The longest practical training is provided in the Netherlands and the shortest one in Poland. The duration of studies in the Netherlands is 4 years, while in Poland it is 3 years. Austria is the only country to offer extra practical training in quality management. Graduates in the compared EU countries have similar level of qualifications in the fields of operation of radiological equipment, radiotherapy, nuclear medicine, foreign language and specialist terminology in the field of medical and physical sciences, general knowledge of medical and physical sciences, and detailed knowledge of radiation technology.

  7. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, S; Jaffray, D; Chetty, I

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologiesmore » in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  9. Using mHealth Technology to Enhance Self-Monitoring for Weight Loss A Randomized Trial

    PubMed Central

    Burke, Lora E.; Styn, Mindi A.; Sereika, Susan M.; Conroy, Molly B.; Ye, Lei; Glanz, Karen; Sevick, Mary Ann; Ewing, Linda J.

    2012-01-01

    Background Self-monitoring for weight loss has traditionally been performed with paper diaries. Technologic advances could reduce the burden of self-monitoring and provide feedback to enhance adherence. Purpose To determine if self-monitoring diet using a PDA only or the PDA with daily tailored feedback (PDA+FB), was superior to using a paper diary on weight loss and maintenance. Design The Self-Monitoring and Recording Using Technology (SMART) Trial was a 24-month RCCT; participants were randomly assigned to one of three self-monitoring groups. Setting/participants From 2006 to 2008, 210 overweight/obese adults (84.8% female, 78.1% white) were recruited from the community. Data were analyzed in 2011. Intervention Participants received standard behavioral treatment for weight loss which included dietary and physical activity goals, encouraged the use of self-monitoring, and was delivered in group sessions. Main outcome measures Percentage weight change at 24 months, adherence to self-monitoring over time. Results Study retention was 85.6%. The mean percentage weight loss at 24 months was not different among groups (paper diary: −1.94% [95% CI= −3.88, 0.01], PDA: −1.38% [95% CI= – 3.38, 0.62], PDA+FB: –2.32% [95% CI= –4.29, −0.35]); only the PDA+FB group (p=0.02) demonstrated a significant loss. For adherence to self-monitoring, there was a time-by-treatment group interaction between the combined PDA groups and the paper diary group (p=0.03) but no difference between PDA and PDA+FB groups (p=0.49). Across all groups, weight loss was greater for those who were adherent ≥60% versus <30% of the time, p<0.001. Conclusions PDA+FB use resulted in a small weight loss at 24 months; PDA use resulted in greater adherence to dietary self-monitoring over time. However, for sustained weight loss, adherence to self-monitoring is more important than the method used to self-monitor. A daily feedback message delivered remotely enhanced adherence and improved weight

  10. Using mobile health technology to deliver decision support for self-monitoring after lung transplantation.

    PubMed

    Jiang, Yun; Sereika, Susan M; DeVito Dabbs, Annette; Handler, Steven M; Schlenk, Elizabeth A

    2016-10-01

    Lung transplant recipients (LTR) experience problems recognizing and reporting critical condition changes during their daily health self-monitoring. Pocket PATH(®), a mobile health application, was designed to provide automatic feedback messages to LTR to guide decisions for detecting and reporting critical values of health indicators. To examine the degree to which LTR followed decision support messages to report recorded critical values, and to explore predictors of appropriately following technology decision support by reporting critical values during the first year after transplantation. A cross-sectional correlational study was conducted to analyze existing data from 96 LTR who used the Pocket PATH for daily health self-monitoring. When a critical value is entered, the device automatically generated a feedback message to guide LTR about when and what to report to their transplant coordinators. Their socio-demographics and clinical characteristics were obtained before discharge. Their use of Pocket PATH for health self-monitoring during 12 months was categorized as low (≤25% of days), moderate (>25% to ≤75% of days), and high (>75% of days) use. Following technology decision support was defined by the total number of critical feedback messages appropriately handled divided by the total number of critical feedback messages generated. This variable was dichotomized by whether or not all (100%) feedback messages were appropriately followed. Binary logistic regression was used to explore predictors of appropriately following decision support. Of the 96 participants, 53 had at least 1 critical feedback message generated during 12 months. Of these 53 participants, the average message response rate was 90% and 33 (62%) followed 100% decision support. LTR who moderately used Pocket PATH (n=23) were less likely to follow technology decision support than the high (odds ratio [OR]=0.11, p=0.02) and low (OR=0.04, p=0.02) use groups. The odds of following decision

  11. Designing a patient monitoring system for bipolar disorder using Semantic Web technologies.

    PubMed

    Thermolia, Chryssa; Bei, Ekaterini S; Petrakis, Euripides G M; Kritsotakis, Vangelis; Tsiknakis, Manolis; Sakkalis, Vangelis

    2015-01-01

    The new movement to personalize treatment plans and improve prediction capabilities is greatly facilitated by intelligent remote patient monitoring and risk prevention. This paper focuses on patients suffering from bipolar disorder, a mental illness characterized by severe mood swings. We exploit the advantages of Semantic Web and Electronic Health Record Technologies to develop a patient monitoring platform to support clinicians. Relying on intelligently filtering of clinical evidence-based information and individual-specific knowledge, we aim to provide recommendations for treatment and monitoring at appropriate time or concluding into alerts for serious shifts in mood and patients' non response to treatment.

  12. Technologies for physical activity self-monitoring: a study of differences between users and non-users

    PubMed Central

    Åkerberg, Anna; Söderlund, Anne; Lindén, Maria

    2017-01-01

    Background Different kinds of physical activity (PA) self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007), measures with high precision (p=0.024), measures distance (p=0.020), measures speed (p=0.003), shows minutes of activity (p=0.004), and shows geographical position (p=0.000). Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001) and has long-term memory (p=0.019). Significant differences between the groups were also shown for level of education (p=0.030) and level of physical exercise (p=0.037). Conclusion With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate than differences in opinions about the PA self-monitoring technologies. PMID:28280399

  13. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  14. Examining Korean and Korean American older adults' perceived acceptability of home-based monitoring technologies in the context of culture.

    PubMed

    Chung, Jane; Thompson, Hilaire J; Joe, Jonathan; Hall, Amanda; Demiris, George

    2017-01-01

    Despite the increasing use of home-based monitoring technologies by older adults, few studies have examined older adults' acceptance of these technologies, especially among people from diverse cultural groups. The purpose of this study was to explore Korean and Korean American older adults' attitudes toward and perceptions of home-based monitoring technologies in a cultural context. A qualitative analysis of focus groups and individual interviews using inductive coding methods and a constant comparative approach for emerging themes was conducted. Several cultural factors that determine the acceptability of home-based monitoring technologies were identified. Most notably, the necessity of living alone due to loosened filial tradition and immigration was a main motivator for adopting these technologies for both Korean and Korean Americans. The level of satisfaction with the health care system or therapeutic interaction affected participants' perceived need for technologies. Compared with the Korean American group, Korean older adults regarded the government's role as more important in increasing adoption and use of new technologies. Contextual factors need to be considered when explaining perceptions of home-based monitoring technologies among older adults from various ethnic groups and developing diffusion strategies according to end users' attitudes, experiences, and cultural backgrounds.

  15. Concept of information technology of monitoring and decision-making support

    NASA Astrophysics Data System (ADS)

    Kovalenko, Aleksandr S.; Tymchyk, Sergey V.; Kostyshyn, Sergey V.; Zlepko, Sergey M.; Wójcik, Waldemar; Kalizhanova, Aliya; Burlibay, Aron; Kozbekova, Ainur

    2017-08-01

    Presented concept of information technology monitoring and decision support to determine the health of students. The preconditions of a concept formulated its goal and purpose. Subject area concepts proposed to consider a set of problems, grouped into 8 categories, which in turn necessitates the application when creating technology basic principles from the principles of "first head" and "systems approach" to the principles of "interoperability" and "system integration ". The content of the information providing IT, its position in the segment of single information space, stages of creation. To evaluate the efficiency of the IT system developed proposed criteria.

  16. Feasibility of interactive technology for symptom monitoring in patients with fibromyalgia.

    PubMed

    Vanderboom, Catherine E; Vincent, Ann; Luedtke, Connie A; Rhudy, Lori M; Bowles, Kathryn H

    2014-09-01

    Use of health information technology (IT) integrated with clinical services has the potential to empower self-management and decrease health care utilization for chronic disorders such as fibromyalgia (FM). However, the appropriate methodology that systematically facilitates the integration of health IT with clinical services between patients and nurses partnering to manage FM is unclear. The purpose of this study was to determine the feasibility of technology-enhanced monitoring that engages FM patients using a mobile device. A quantitative and qualitative descriptive design was used in a convenience sample of 20 FM patients. Patients used a mobile monitoring device for one week; nurses responded to patient e-mailed symptom reports on a daily basis. Analysis was primarily descriptive-percent, frequencies, and means for individual questionnaire items and subscales were calculated. For qualitative data, a 1 hour focus group was audio-recorded, transcribed verbatim, and then analyzed using content analysis. All participants used a mobile phone in their daily lives; half used a smart phone. Participants were interested in using a smart phone to monitor their health and to communicate with health care providers. Participants used the study mobile device an average of 5.2 days out of the 7 day study period. Most participants (80%) reported that monitoring symptoms using the device was easy to do. Sixty-five percent felt that using the device helped them to promptly address their symptoms. Results from this study indicated that health IT integrated with clinical services is feasible to monitor FM symptoms and to communicate with the care team. Copyright © 2014 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  17. NASDA technicians test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians from the National Space Development Agency of Japan (NASDA) test the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  18. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  19. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.

    PubMed

    Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W

    2016-05-01

    Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.

  20. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  1. Nurse adoption of continuous patient monitoring on acute post-surgical units: managing technology implementation.

    PubMed

    Jeskey, Mary; Card, Elizabeth; Nelson, Donna; Mercaldo, Nathaniel D; Sanders, Neal; Higgins, Michael S; Shi, Yaping; Michaels, Damon; Miller, Anne

    2011-10-01

    To report an exploratory action-research process used during the implementation of continuous patient monitoring in acute post-surgical nursing units. Substantial US Federal funding has been committed to implementing new health care technology, but failure to manage implementation processes may limit successful adoption and the realisation of proposed benefits. Effective approaches for managing barriers to new technology implementation are needed. Continuous patient monitoring was implemented in three of 13 medical/surgical units. An exploratory action-feedback approach, using time-series nurse surveys, was used to identify barriers and develop and evaluate responses. Post-hoc interviews and document analysis were used to describe the change implementation process. Significant differences were identified in night- and dayshift nurses' perceptions of technology benefits. Research nurses' facilitated the change process by evolving 'clinical nurse implementation specialist' expertise. Health information technology (HIT)-related patient outcomes are mediated through nurses' acting on new information but HIT designed for critical care may not transfer to acute care settings. Exploratory action-feedback approaches can assist nurse managers in assessing and mitigating the real-world effects of HIT implementations. It is strongly recommended that nurse managers identify stakeholders and develop comprehensive plans for monitoring the effects of HIT in their units. © 2011 Blackwell Publishing Ltd.

  2. Characterizations of and Radiation Effects in Several Emerging CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Shufeng Ren

    As the conventional scaling of Si based CMOS is approaching its limit at 7 nm technology node, many perceive that the adoption of novel materials and/or device structures are inevitable to keep Moore's law going. High mobility channel materials such as III-V compound semiconductors or Ge are considered promising to replace Si in order to achieve high performance as well as low power consumption. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, GaAs, InGaAs, GaSb, etc) to replace Si CMOS technology. Therefore novel high-k dielectrics, such as epitaxially grown crystalline oxides, have been explored to be incorporated onto the high mobility channel materials. Moreover, to enable continued scaling, extremely scaled devices structures such as nanowire gate-all-around structure are needed in the near future. Moreover, as the CMOS industry moves into the 7 nm node and beyond, novel lithography techniques such as EUV are believed to be adopted soon, which can bring radiation damage to CMOS devices and circuit during the fabrication process. Therefore radiation hardening technology in future generations of CMOS devices has again become an interesting research topic to deal with the possible process-induced damage as well as damage caused by operating in radiation harsh environment such as outer space, nuclear plant, etc. In this thesis, the electrical properties of a few selected emerging novel CMOS devices are investigated, which include InGaAs based extremely scaled ultra-thin body nanowire gate-all-around MOSFETs, GOI (Ge On Insulator) CMOS with recessed channel and source/drain, GaAs MOSFETs with crystalline La based gate stack, and crystalline SrTiO3, are investigated to extend our understanding of their electrical characteristics, underlying physical mechanisms, and material properties. Furthermore, the radiation responses of these aforementioned novel devices are thoroughly investigated, with a focus on

  3. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    PubMed

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  4. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Pete; Carmichael, Mary-Ann; Brady, Carole

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories.more » This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation.« less

  5. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  6. Role of body-worn movement monitor technology for balance and gait rehabilitation.

    PubMed

    Horak, Fay; King, Laurie; Mancini, Martina

    2015-03-01

    This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability. © 2015 American Physical Therapy Association.

  7. Role of Body-Worn Movement Monitor Technology for Balance and Gait Rehabilitation

    PubMed Central

    King, Laurie; Mancini, Martina

    2015-01-01

    This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability. PMID:25504484

  8. Continuous glucose monitoring: A review of the technology and clinical use.

    PubMed

    Klonoff, David C; Ahn, David; Drincic, Andjela

    2017-11-01

    Continuous glucose monitoring (CGM) is an increasingly adopted technology for insulin-requiring patients that provides insights into glycemic fluctuations. CGM can assist patients in managing their diabetes with lifestyle and medication adjustments. This article provides an overview of the technical and clinical features of CGM based on a review of articles in PubMed on CGM from 1999 through January 31, 2017. A detailed description is presented of three professional (retrospective), three personal (real-time) continuous glucose monitors, and three sensor integrated pumps (consisting of a sensor and pump that communicate with each other to determine an optimal insulin dose and adjust the delivery of insulin) that are currently available in United States. We have reviewed outpatient CGM outcomes, focusing on hemoglobin A1c (A1C), hypoglycemia, and quality of life. Issues affecting accuracy, detection of glycemic variability, strategies for optimal use, as well as cybersecurity and future directions for sensor design and use are discussed. In conclusion, CGM is an important tool for monitoring diabetes that has been shown to improve outcomes in patients with type 1 diabetes mellitus. Given currently available data and technological developments, we believe that with appropriate patient education, CGM can also be considered for other patient populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Investigation of the application of remote sensing technology to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Rader, M. L. (Principal Investigator)

    1980-01-01

    Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.

  10. Historical Radiological Event Monitoring

    EPA Pesticide Factsheets

    During and after radiological events EPA's RadNet monitors the environment for radiation. EPA monitored environmental radiation levels during and after Chernobyl, Fukushima and other international and domestic radiological incidents.

  11. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areasmore » of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at

  12. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    PubMed

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.

  13. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: MERCURY CONTINUOUS EMISSION MONITORS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  14. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  15. Gamma radiation influence on technological characteristics of wheat flour

    NASA Astrophysics Data System (ADS)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  16. The monitoring results of electromagnetic radiation of 110-kV high-voltage lines in one urban location in Chongqing P.R. China.

    PubMed

    Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao

    2012-03-01

    To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.

  17. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  18. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?

    PubMed

    Morawska, Lidia; Thai, Phong K; Liu, Xiaoting; Asumadu-Sakyi, Akwasi; Ayoko, Godwin; Bartonova, Alena; Bedini, Andrea; Chai, Fahe; Christensen, Bryce; Dunbabin, Matthew; Gao, Jian; Hagler, Gayle S W; Jayaratne, Rohan; Kumar, Prashant; Lau, Alexis K H; Louie, Peter K K; Mazaheri, Mandana; Ning, Zhi; Motta, Nunzio; Mullins, Ben; Rahman, Md Mahmudur; Ristovski, Zoran; Shafiei, Mahnaz; Tjondronegoro, Dian; Westerdahl, Dane; Williams, Ron

    2018-07-01

    Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applications have opened up. In particular, broader participation in air quality discussion and utilisation of information on air pollution by communities has become possible. However, many questions have been also asked about the actual benefits of these technologies. To address this issue, we conducted a comprehensive literature search including both the scientific and grey literature. We focused upon two questions: (1) Are these technologies fit for the various purposes envisaged? and (2) How far have these technologies and their applications progressed to provide answers and solutions? Regarding the former, we concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use. Numerous studies have assessed and reported sensor/monitor performance under a range of specific conditions, and in many cases the performance was concluded to be satisfactory. The specific use cases for sensors/monitors included outdoor in a stationary mode, outdoor in a mobile mode, indoor environments and personal monitoring. Under certain conditions of application, project goals, and monitoring environments, some sensors/monitors were fit for a specific purpose. Based on analysis of 17 large projects, which reached applied outcome stage, and typically conducted by consortia of organizations, we observed that a sizable fraction of them (~ 30%) were commercial and/or crowd-funded. This fact by itself signals a

  19. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  20. Probe sampling strategies for traffic monitoring systems based on wireless location technology.

    DOT National Transportation Integrated Search

    2007-01-01

    Transportation agencies have become very interested in traffic monitoring systems based on wireless location technology (WLT) since they offer the potential of collecting travel time data across a wide portion of the road system. Prior tests of WLT-b...

  1. The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology.

    PubMed

    Cournane, S; Sheehy, N; Cooke, J

    2014-06-01

    Benford's law is an empirical observation which predicts the expected frequency of digits in naturally occurring datasets spanning multiple orders of magnitude, with the law having been most successfully applied as an audit tool in accountancy. This study investigated the sensitivity of the technique in identifying system output changes using simulated changes in interventional radiology Dose-Area-Product (DAP) data, with any deviations from Benford's distribution identified using z-statistics. The radiation output for interventional radiology X-ray equipment is monitored annually during quality control testing; however, for a considerable portion of the year an increased output of the system, potentially caused by engineering adjustments or spontaneous system faults may go unnoticed, leading to a potential increase in the radiation dose to patients. In normal operation recorded examination radiation outputs vary over multiple orders of magnitude rendering the application of normal statistics ineffective for detecting systematic changes in the output. In this work, the annual DAP datasets complied with Benford's first order law for first, second and combinations of the first and second digits. Further, a continuous 'rolling' second order technique was devised for trending simulated changes over shorter timescales. This distribution analysis, the first employment of the method for radiation output trending, detected significant changes simulated on the original data, proving the technique useful in this case. The potential is demonstrated for implementation of this novel analysis for monitoring and identifying change in suitable datasets for the purpose of system process control. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Research and realization implementation of monitor technology on illegal external link of classified computer

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2017-06-01

    In recent years, with the continuous development and application of network technology, network security has gradually entered people's field of vision. The host computer network external network of violations is an important reason for the threat of network security. At present, most of the work units have a certain degree of attention to network security, has taken a lot of means and methods to prevent network security problems such as the physical isolation of the internal network, install the firewall at the exit. However, these measures and methods to improve network security are often not comply with the safety rules of human behavior damage. For example, the host to wireless Internet access and dual-network card to access the Internet, inadvertently formed a two-way network of external networks and computer connections [1]. As a result, it is possible to cause some important documents and confidentiality leak even in the the circumstances of user unaware completely. Secrecy Computer Violation Out-of-band monitoring technology can largely prevent the violation by monitoring the behavior of the offending connection. In this paper, we mainly research and discuss the technology of secret computer monitoring.

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  4. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At an earlier conference we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art CMOS technologies. In this presentation, we extend this discussion focusing on the following areas: (1) Device packaging, (2) Evolving physical single even upset mechanisms, (3) Device complexity, and (4) the goal of understanding the limitations and interpretation of radiation testing results.

  5. Monitoring based maintenance utilizing actual stress sensory technology

    NASA Astrophysics Data System (ADS)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables

  6. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specificmore » context of protection from the biological effects of x-rays and radium in medical use.« less

  7. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  8. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  9. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  10. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  11. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  12. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  13. Space Technology for Patient Monitoring

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A contract for the development of an astronaut monitoring system in the early days of the space program provided Mennen Medical, Inc. with a foundation in telemetry that led to the development of a computerized medical electronic system used by hospitals. Mennen was the first company to adopt solid state design in patient monitoring and to offer multipatient telemetry monitoring. Telemetry converts instrument data to electrical signals and relays them to a remote receiver where they are displayed. From a central station, a nurse can monitor several patients. Company products include VISTA systems and Horizon 2000 Monitor.

  14. Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile

    NASA Astrophysics Data System (ADS)

    Rodríguez-Benito, C.; Haag, C.; Alvial, A.

    2004-05-01

    A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.

  15. Post-marketing health technology monitoring. The analysis of an experience from a clinical perspective.

    PubMed

    Ibargoyen-Roteta, Nora; Cabriada-Nuño, Jose Luis; Gutiérrez-Ibarluzea, Iñaki; Hernández-Ramírez, Vicent; Clofent-Vilaplana, Juan; Domènech-Morral, Eugeni; Ginard-Vicens, Daniel; Oliva-Oliva, Gloria; Queiro-Verdes, Teresa

    2011-01-01

    A system for monitoring the use of aphaeresis in the treatment of ulcerative colitis (UC), named system for monitoring aphaeresis in ulcerative colitis (SiMAC), was designed in 2006 in the Basque Country. In the present study, the opinion of the clinicians who participated in SiMAC was evaluated, in order to identify the barriers and gather suggestions that could improve implementation of this kind of system. A mixed questionnaire was designed, in order to gather clinicians' assessments of the SiMAC monitoring system. The response rate was 73.9% (17/23). The data from 40.96% (159/388) of patients with UC treated with aphaeresis was recorded. The main reasons for not including the data from all treated patients were a lack of required data or not meeting the study inclusion criteria. Positive aspects of the SiMAC were identified, as the simplicity of data collection and its systematic, multi-center approach. The negative aspects mentioned were the use of a local computer application and the lack of time for health professionals to enter data. The use of monitoring systems helps to formalize the introduction of technologies of little-known effectiveness; involve clinicians and medical societies in coming to agreement and obtaining information about the safety, effectiveness or efficiency of new technologies; and provide relevant information to healthcare administrations for making decisions about the introduction of new technologies into healthcare practice. In order for a monitoring system to work, the process must be straightforward. A minimum set of key variables that are easy to collect must be selected, and an effort made to involve a range of stakeholders, especially institutions and scientific societies, to support the work group.

  16. New concepts and technologies in home care and ambulatory monitoring.

    PubMed

    Dittmar, A; Axisa, F; Delhomme, G; Gehin, C

    2004-01-01

    The world is becoming more and more health conscious. Society, health policy and patients' needs are all changing dramatically. The challenges society is currently facing are related to the increase in the aging population, changes in lifestyle, the need for healthcare cost containment and the need for improvement and monitoring of healthcare quality. The emphasis is put on prevention rather than on treatment. In addition, patients and health consumers are waiting for non-invasive or minimally-invasive diagnosis and treatment methods, for home care, short stays in hospital, enhancement of rehabilitation, information and involvement in their own treatment. Progress in science and technology offers, today, miniaturization, speed, intelligence, sophistication and new materials at lower cost. In this new landscape, microtechnologies, information technologies and telecommunications are key factors. Telemedicine has also evolved. Used initially to exchange patients' files, radiographic data and other information between health providers, today telemedicine contributes to new trends in "hospital extension" through all-day monitoring of vital signs, professional activities, entertainment and home-based activities. The new possibilities for home care and ambulatory monitoring are provided at 4 levels: a) Microsensors. Microtechnologies offer the possibility of small size, but also of intelligent, active devices, working with low energy, wireless and non-invasive or minimally-invasive; b) Wrist devices are particularly user friendly and combine sensors, circuits, supply, display and wireless transmission in a single box, very convenient for common physical activities; c) Health smart clothes make contact with 90 % of the skin and offer many possibilities for the location of sensors. These sensors have to be thin, flexible and compatible with textiles, or made using textile technologies, such as new fibers with specific (mechanical, electrical and optical) properties; d

  17. Wearable and low-stress ambulatory blood pressure monitoring technology for hypertension diagnosis.

    PubMed

    Altintas, Ersin; Takoh, Kimiyasu; Ohno, Yuji; Abe, Katsumi; Akagawa, Takeshi; Ariyama, Tetsuri; Kubo, Masahiro; Tsuda, Kenichiro; Tochikubo, Osamu

    2015-01-01

    We propose a highly wearable, upper-arm type, oscillometric-based blood pressure monitoring technology with low-stress. The low-stress is realized by new developments in the hardware and software design. In the hardware design, conventional armband; cuff, is almost halved in volume thanks to a flexible plastic core and a liquid bag which enhances the fitness and pressure uniformity over the arm. Reduced air bag volume enables smaller motor pump size and battery leading to a thinner, more compact and more wearable unified device. In the software design, a new prediction algorithm enabled to apply less stress (and less pain) on arm of the patient. Proof-of-concept experiments on volunteers show a high accuracy on both technologies. This paper mainly introduces hardware developments. The system is promising for less-painful and less-stressful 24-hour blood pressure monitoring in hypertension managements and related healthcare solutions.

  18. [Development of wireless monitoring system based on Zigbee technology in blood and bacterin cold chain].

    PubMed

    Zhao, Peng; Sun, Jian-Jun; Wu, Tai-Hu

    2008-11-01

    Real-time monitoring for temperature is required in cold chain for the medical products that are sensible with temperature, such as blood and bacterin, to guarantee the quality and reduce their wastage. This wireless monitoring system in cold chain is developed with Zigbee technology. Functions such as real-time monitoring, analyzing, alarming are realized. The system boasts such characteristics as low power consumption, low cost, big capacity and high reliability, and could improve the capability of real-time monitoring and management in cold chain effectively.

  19. Study of thermal management for space platform applications: Unmanned modular thermal management and radiator technologies

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1981-01-01

    Candidate techniques for thermal management of unmanned modules docked to a large 250 kW platform were evaluated. Both automatically deployed and space constructed radiator systems were studied to identify characteristics and potential problems. Radiator coating requirements and current state-of-the-art were identified. An assessment of the technology needs was made and advancements were recommended.

  20. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    NASA Astrophysics Data System (ADS)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  1. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  2. Overview of selected surrogate technologies for continuous suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, J.R.; Gartner, J.W.

    2006-01-01

    Surrogate technologies for inferring selected characteristics of suspended sediments in surface waters are being tested by the U.S. Geological Survey and several partners with the ultimate goal of augmenting or replacing traditional monitoring methods. Optical properties of water such as turbidity and optical backscatter are the most commonly used surrogates for suspended-sediment concentration, but use of other techniques such as those based on acoustic backscatter, laser diffraction, digital photo-optic, and pressure-difference principles is increasing for concentration and, in some cases, particle-size distribution and flux determinations. The potential benefits of these technologies include acquisition of automated, continuous, quantifiably accurate data obtained with increased safety and at less expense. When suspended-sediment surrogate data meet consensus accuracy criteria and appropriate sediment-record computation techniques are applied, these technologies have the potential to revolutionize the way fluvial-sediment data are collected, analyzed, and disseminated.

  3. Supervised versus unsupervised technology-based levodopa monitoring in Parkinson's disease: an intrasubject comparison.

    PubMed

    Lopane, Giovanna; Mellone, Sabato; Corzani, Mattia; Chiari, Lorenzo; Cortelli, Pietro; Calandra-Buonaura, Giovanna; Contin, Manuela

    2018-06-01

    We aimed to assess the intrasubject reproducibility of a technology-based levodopa (LD) therapeutic monitoring protocol administered in supervised versus unsupervised conditions in patients with Parkinson's disease (PD). The study design was pilot, intrasubject, single center, open and prospective. Twenty patients were recruited. Patients performed a standardized monitoring protocol instrumented by an ad hoc embedded platform after their usual first morning LD dose in two different randomized ambulatory sessions: one under a physician's supervision, the other self-administered. The protocol is made up of serial motor and non-motor tests, including alternate finger tapping, Timed Up and Go test, and measurement of blood pressure. Primary motor outcomes included comparisons of intrasubject LD subacute motor response patterns over the 3-h test in the two experimental conditions. Secondary outcomes were the number of intrasession serial test repetitions due to technical or handling errors and patients' satisfaction with the unsupervised LD monitoring protocol. Intrasubject LD motor response patterns were concordant between the two study sessions in all patients but one. Platform handling problems averaged 4% of total planned serial tests for both sessions. Ninety-five percent of patients were satisfied with the self-administered LD monitoring protocol. To our knowledge, this study is the first to explore the potential of unsupervised technology-based objective motor and non-motor tasks to monitor subacute LD dosing effects in PD patients. The results are promising for future telemedicine applications.

  4. Pervasive technology in Neonatal Intensive Care Unit: a prototype for newborns unobtrusive monitoring.

    PubMed

    Ciani, Oriana; Piccini, Luca; Parini, Sergio; Rullo, Alessia; Bagnoli, Franco; Marti, Patrizia; Andreoni, Giuseppe

    2008-01-01

    Pervasive computing research is introducing new perspectives in a wide range of applications, including healthcare domain. In this study we explore the possibility to realize a prototype of a system for unobtrusive recording and monitoring of multiple biological parameters on premature newborns hospitalized in the Neonatal Intensive Care Unit (NICU). It consists of three different units: a sensitized belt for Electrocardiogram (ECG) and chest dilatation monitoring, augmented with extrinsic transducers for temperature and respiratory activity measure, a device for signals pre-processing, sampling and transmission through Bluetooth(R) (BT) technology to a remote PC station and a software for data capture and post-processing. Preliminary results obtained by monitoring babies just discharged from the ward demonstrated the feasibility of the unobtrusive monitoring on this kind of subjects and open a new scenario for premature newborns monitoring and developmental cares practice in NICU.

  5. Roadside Tracker Portal-less Portal Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig

    2013-07-01

    This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.

  6. Significant Radiation Dose Reduction in the Hybrid Operating Room Using a Novel X-ray Imaging Technology.

    PubMed

    van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J

    2015-10-01

    To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p < .01]); and in median DAP it was 57% (ALX = 224.4 Gycm(2) and CIQ = 95.8 Gycm(2) [p < .01]). Patient radiation dose reduction in the AIOD group, in median AK, was 76% (ALX = 1,011.0 mGy; CIQ = 248.0 mGy [p < .01]); and in median DAP it was 73% (ALX = 138.1 Gycm(2); CIQ = 38.0 Gycm(2) [p < .01]). Staff dose reduction in the EVAR group was 16% (ALX = 70.1 μSv; CIQ = 59.2 μSv [p = .43]) and in the AIOD group it was 69% (ALX = 96.2 μSv; CIQ = 30.1 μSv [p < .01]). There was no statistically significant difference between patient demographics, procedure time, fluoroscopy time, and iodinated contrast medium use in the two treatment groups before and after installation. A novel X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and

  7. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  8. Operation of commercially-based microcomputer technology in a space radiation environment

    NASA Astrophysics Data System (ADS)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  9. Temperature monitoring by infrared radiation measurements during ArF excimer laser ablation with cornea

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Sato, Shunichi; Nakano, Hironori; Obara, Minoru; Kikuchi, Makoto

    1999-06-01

    We measured infrared thermal radiation from porcine cornea during various fluences ArF excimer laser ablations with 1 microsecond(s) rise time. To obtain absolute temperature by means of Stefan-Boltzman law of radiation, we carried out a collection efficiency and detective sensitivity by a pre-experiment using panel heater. We measured the time course of the thermal radiation intensity with various laser fluences. We studied the relation between the peak cornea temperature during the ablation and irradiation fluences. We found the ablation situations, i.e., sub-ablation threshold, normal thermal ablation, and over-heated ablation, may be judged by both of the measured temperature transient waveforms and peak temperature. The boundary fluences corresponding to normal thermal ablation were 90 and 160 mJ/cm2. Our fast remote temperature monitoring during cornea ablation might be useful to control ablation quality/quantity of the cornea ArF laser ablation, that is PRK.

  10. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  11. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  12. Effects of computer monitor-emitted radiation on oxidant/antioxidant balance in cornea and lens from rats

    PubMed Central

    Namuslu, Mehmet; Devrim, Erdinç; Durak, İlker

    2009-01-01

    Purpose This study aims to investigate the possible effects of computer monitor-emitted radiation on the oxidant/antioxidant balance in corneal and lens tissues and to observe any protective effects of vitamin C (vit C). Methods Four groups (PC monitor, PC monitor plus vitamin C, vitamin C, and control) each consisting of ten Wistar rats were studied. The study lasted for three weeks. Vitamin C was administered in oral doses of 250 mg/kg/day. The computer and computer plus vitamin C groups were exposed to computer monitors while the other groups were not. Malondialdehyde (MDA) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities were measured in corneal and lens tissues of the rats. Results In corneal tissue, MDA levels and CAT activity were found to increase in the computer group compared with the control group. In the computer plus vitamin C group, MDA level, SOD, and GSH-Px activities were higher and CAT activity lower than those in the computer and control groups. Regarding lens tissue, in the computer group, MDA levels and GSH-Px activity were found to increase, as compared to the control and computer plus vitamin C groups, and SOD activity was higher than that of the control group. In the computer plus vitamin C group, SOD activity was found to be higher and CAT activity to be lower than those in the control group. Conclusion The results of this study suggest that computer-monitor radiation leads to oxidative stress in the corneal and lens tissues, and that vitamin C may prevent oxidative effects in the lens. PMID:19960068

  13. Lack of irrefutable validation does not negate clinical utility of near-infrared spectroscopy monitoring: learning to trust new technology.

    PubMed

    Kane, Jason M; Steinhorn, David M

    2009-09-01

    Reliance on new monitoring device technology is based upon an understanding of how the device operates and its reliability in a specific clinical setting. The introduction of new monitoring devices will therefore elicit either distrust of the new technology and the data presented or adoption of new devices. The use of near-infrared spectroscopy (NIRS) technology to monitor vital organs in postoperative pediatric cardiac surgery patients has been extensively described yet controversy remains as to the use of this monitoring device. The following retrospective case series demonstrates how learning from trends in data elicited from 2-site NIRS monitoring provided important bedside insights. These insights led to changes in clinician behavior and reliance on NIRS monitoring for early recognition of clinically silent deteriorations. Disregard for the NIRS data may have led to a fatal outcome in an unstable patient who might have received more timely intervention if the NIRS data had been acknowledged earlier. This case series demonstrates that 2-site NIRS monitoring accurately reflects situations in which poor clinical outcomes may occur when declining trends in somatic tissue oxygen saturations are not corrected. Physician management of the postoperative pediatric cardiac surgery patient can change based upon the insights gained through the application of NIRS monitoring.

  14. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator.

    PubMed

    Lee, Hyun Cheol; Shin, Wook-Geun; Park, Hyo Jun; Yoo, Do Hyun; Choi, Chang-Il; Park, Chang-Su; Kim, Hong-Suk; Min, Chul Hee

    2016-01-01

    To prevent illicit tracking of radionuclides, radiation portal monitor (RPM) systems employing plastic scintillators have been used in ports and airports. However, their poor energy resolution makes the discrimination of radioactive material inaccurate. In this study, an energy weight algorithm was validated to determine (133)Ba, (22)Na, (137)Cs, and (60)Co by using a plastic scintillator. The Compton edges of energy spectra were converted to peaks based on the algorithm. The peaks have a maximum error of 6% towards the theoretical Compton edge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  16. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    PubMed

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  17. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test

  18. New and emerging technologies for the diagnosis and monitoring of chronic obstructive pulmonary disease: A horizon scanning review.

    PubMed

    Dixon, Louise C; Ward, Derek J; Smith, Joanna; Holmes, Steve; Mahadeva, Ravi

    2016-03-11

    There is a need for straightforward, novel diagnostic and monitoring technologies to enable the early diagnosis of COPD and its differentiation from other respiratory diseases, to establish the cause of acute exacerbations and to monitor disease progression. We sought to establish whether technologies already in development could potentially address these needs. A systematic horizon scanning review was undertaken to identify technologies in development from a wide range of commercial and non-commercial sources. Technologies were restricted to those likely to be available within 18 months, and then evaluated for degree of innovation, potential for impact, acceptability to users and likelihood of adoption by clinicians and patients with COPD. Eighty technologies were identified, of which 25 were considered particularly promising. Biomarker tests, particularly those using sputum or saliva samples and/or available at the point of care, were positively evaluated, with many offering novel approaches to early diagnosis and to determining the cause for acute exacerbations. Several wrist-worn devices and smartphone-based spirometers offering the facility for self-monitoring and early detection of exacerbations were also considered promising. The most promising identified technologies have the potential to improve COPD care and patient outcomes. Further research and evaluation activities should be focused on these technologies. © The Author(s) 2016.

  19. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Advanced Monitoring Technology: Opportunities and Challenges - A Path Forward for EPA and States

    EPA Science Inventory

    Rapid changes in monitoring technology have the potential to dramatically improve environmental protection by providing industry, government, and the public with more complete and real-time information on pollution releases and environmental conditions. With more real-time monito...

  1. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review

    PubMed Central

    Tran, Melody; Angelaccio, Michele; Arcona, Steve

    2017-01-01

    Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181

  2. Feasibility and usability of a home monitoring concept based on mobile phones and near field communication (NFC) technology.

    PubMed

    Morak, Jürgen; Kollmann, Alexander; Schreier, Günter

    2007-01-01

    Utilization of mobile information and communication technologies in home monitoring applications is becoming more and more common. The mobile phone, acting as a patient terminal for patients suffering from chronic diseases, provides an active link to the caregiver to transmit health status information and receive feedback. In such a concept the usability is still limited by the necessity of entering the values via the mobile phone's small keypad. The near field communication technology (NFC), a touch-based wireless interface that became available recently, may improve the usability level of such applications significantly. The focus of this paper is to describe the development of a prototype application based on this technology embedded in a home monitoring system. The feasibility and usability of this approach are evaluated and compared with concepts used in previous approaches. The high quantifier with respect to overall usability indicates that NFC may be the technology of choice for some tasks in home monitoring applications.

  3. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    PubMed

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider

  4. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  5. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  6. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  7. Video Monitoring and Analysis System for Vivarium Cage Racks | NCI Technology Transfer Center | TTC

    Cancer.gov

    This invention pertains to a system for continuous observation of rodents in home-cage environments with the specific aim to facilitate the quantification of activity levels and behavioral patterns for mice housed in a commercial ventilated cage rack.  The National Cancer Institute’s Radiation Biology Branch seeks partners interested in collaborative research to co-develop a video monitoring system for laboratory animals.

  8. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  9. Advanced sensors and applications : commercial motor vehicle tire pressure monitoring and maintenance : [technology brief].

    DOT National Transportation Integrated Search

    2014-04-01

    Tire pressure monitoring and automatic tire inflation technologies show significant promise for improving safety and reducing costs in the commercial vehicle industry. Improved tire pressure management directly relates to improved vehicle stability, ...

  10. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    PubMed

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  11. Reduced Healthcare Use and Apparent Savings with Passive Home Monitoring Technology: A Pilot Study.

    PubMed

    Finch, Michael; Griffin, Kristen; Pacala, James T

    2017-06-01

    To conduct a cost analysis of ambient assisted living technology, which is promising for improving the ability of individuals and care providers to monitor daily activities and gain better awareness through proactive management of health and safety. Three-arm cohort study. Homes of enrollees of a state-based healthcare plan for older adults. Enrollees dually eligible for Medicare and Medicaid (N = 268). Health and safety passive remote patient monitoring (PRPM) systems were installed in enrollees' homes (the intervention group) with monitoring and proactive intervention of a case manager when deviation from baseline subject behavior was detected. Claims data were collected over 12 months to assess healthcare use and costs in the intervention group and to compare use and costs with those of two control groups: a concurrent group of enrollees who declined the technology and a historical cohort matched on age to the participation group. Although the small sample size precluded cost differences that were statistically significant, the participant group used substantially less custodial care, emergency department (ED) services, inpatient stays, and ED costs than the two control groups. In this pilot study, the PRPM system was associated with apparent healthcare cost savings. Although more cost analyses are warranted, ambient assisted living technologies are a potentially valuable investment for older adult care. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  12. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  13. Application of data fusion techniques and technologies for wearable health monitoring.

    PubMed

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market. Copyright © 2017. Published by Elsevier Ltd.

  14. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). Themore » CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.« less

  15. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  16. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  17. Evaluation of Shiryaev-Roberts procedure for on-line environmental radiation monitoring.

    PubMed

    Watson, Mara M; Seliman, Ayman F; Bliznyuk, Valery N; DeVol, Timothy A

    2018-04-30

    Water can become contaminated as a result of a leak from a nuclear facility, such as a waste facility, or from clandestine nuclear activity. Low-level on-line radiation monitoring is needed to detect these events in real time. A Bayesian control chart method, Shiryaev-Roberts (SR) procedure, was compared with classical methods, 3-σ and cumulative sum (CUSUM), for quantifying an accumulating signal from an extractive scintillating resin flow-cell detection system. Solutions containing 0.10-5.0 Bq/L of 99 Tc, as T99cO 4 - were pumped through a flow cell packed with extractive scintillating resin used in conjunction with a Beta-RAM Model 5 HPLC detector. While T99cO 4 - accumulated on the resin, time series data were collected. Control chart methods were applied to the data using statistical algorithms developed in MATLAB. SR charts were constructed using Poisson (Poisson SR) and Gaussian (Gaussian SR) probability distributions of count data to estimate the likelihood ratio. Poisson and Gaussian SR charts required less volume of radioactive solution at a fixed concentration to exceed the control limit in most cases than 3-σ and CUSUM control charts, particularly solutions with lower activity. SR is thus the ideal control chart for low-level on-line radiation monitoring. Once the control limit was exceeded, activity concentrations were estimated from the SR control chart using the control chart slope on a semi-logarithmic plot. A linear regression fit was applied to averaged slope data for five activity concentration groupings for Poisson and Gaussian SR control charts. A correlation coefficient (R 2 ) of 0.77 for Poisson SR and 0.90 for Gaussian SR suggest this method will adequately estimate activity concentration for an unknown solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Professional and patient attitudes to using mobile phone technology to monitor asthma: questionnaire survey.

    PubMed

    Pinnock, Hilary; Slack, Roger; Pagliari, Claudia; Price, David; Sheikh, Aziz

    2006-08-01

    There is increasing international interest in using emerging technologies to enhance chronic disease management. We aimed to explore the attitudes of patients and primary care professionals to using mobile technology in order to monitor asthma. A piloted questionnaire containing closed and open-ended questions assessing attitudes to using electronic self-monitoring was posted to a random sample of general practitioners, asthma nurses, and people with asthma (12 years and over) in Lothian and Kent, UK, with 2 reminders. In addition to descriptive statistics, patient and clinician responses were compared using Chi-squared or independent sample t-tests. Free-text responses were analysed thematically. Responses were obtained from 130/300 professionals (43%) and 202/389 patients (52%). Patients rated the technology positively and considered that it may help clinicians to provide care, especially during acute attacks. Although rated similarly, professionals were more sceptical about benefits. Both professionals and patients had concerns about the time and cost implications. Of the respondents, 28 professionals (10%) and 62 patients (16%) returned uncompleted questionnaires citing lack of perceived relevance. The low completion rate probably reflects the current status of mobile phone-facilitated care as a minority interest for 'early adopters' of technology. Even for the enthusiastic minority, using mobile phone technology raised questions of clinical benefit, impact on self-management, and concerns about workload and cost, which will need to be addressed prior to wider acceptance.

  19. A light intensity monitoring method based on fiber Bragg grating sensing technology and BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan

    2017-04-01

    In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.

  20. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment

    PubMed Central

    Nevis, Immaculate; Kabali, Conrad; Anh Tu, Hong; Ekanayake, Samanthika; Mistry, Jigna; Wells, David; Ali, Arshia; Walter, Melissa; Higgins, Caroline

    2018-01-01

    Background Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults. This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. Methods A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence. We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years. We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. Results We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence. For patients living in long-term care homes who are

  1. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment.

    PubMed

    2018-01-01

    Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults.This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence.We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years.We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence.For patients living in long-term care homes who are eligible for the technology, we

  2. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol

    PubMed Central

    Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.

    2015-01-01

    Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642

  3. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    EPA Science Inventory

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  4. Detection and analysis of emitted radiation for advanced monitoring and control of combustors

    NASA Astrophysics Data System (ADS)

    Ballester, J.; Sanz, A.; Hernandez, R.; Smolarz, A.

    2005-09-01

    The permanent optimization of combustion equipment could provide very important benefits in terms of efficiency, reliability and reduced pollution. However, current capabilities for monitoring and control of industrial flames are very limited; the lack of reliable diagnostic techniques is, most probably, the main obstacle to achieve those goals. Novel instrumentation systems based on the processing of the radiation emitted by the flames could help greatly to fill this gap, as radiation signals are known to contain very rich information about flame properties Optical sensors offer the benefit of being selective, rapid and able to gather data from extremely hostile environments. Passive optical sensors offer the further advantages of simplicity and low cost. With the rapidly growing capability of sensor hardware, there is an increased interest and need to develop data interpretation strategies that will allow optical flame emission data to be converted into meaningful combustor state information. The present work describes new results achieved on the use of optical sensors for the development of advanced monitoring systems of lean-premixed flames representative of gas turbine combustors. Different complementary signals have been analyzed: broad band emission using a Si photodiode, a narrow band around 310 nm measured with a photomultiplier and measurement of UV+VIS emission spectra. The signals have been processed using both conventional and advanced methods. The results obtained demonstrate that optical sensors can yield useful, instantaneous information on the actual flame properties, not available with the sensors currently used in practical combustion systems.

  5. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  6. Ambient Monitoring Technology Information Center (AMTIC)

    EPA Pesticide Factsheets

    This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.

  7. A SHORT HISTORY AND CRITICAL REVIEW OF INDIVIDUAL MONITORING.

    PubMed

    Wernli, Christian

    2016-09-01

    Soon after the discovery of X-rays and the radioactive element radium harmful radiation effects occurred, mainly in the medical field. Consequently, the radiologists, a new profession at that time, called for a limitation of radiation exposures. First proposals were to limit the exposure rate to prevent the incidence of skin erythema. It took more than two decades and there were many victims of severe radiation effects until a sound basis for radiation protection and individual monitoring was established. For external dosimetry, the film dosemeter was invented in the 1920s. This device, often combined with an ion chamber-based pencil dosemeter, dominated the systems used in personnel dosimetry until the end of the twentieth century. For internal exposure, the concept of limiting the 'body burden' was commonly used, and only in the late 1970s, the new concept of the 'effective dose equivalent' published in ICRP publication 26 allowed for a unified interpretation and, therefore, addition of the dosimetric quantities for external and internal exposures. By the end of the last century, individual monitoring had to survive an inflation of proposals for new quantities, but fortunately, it was also the time of vast developments of new technologies, methods and procedures. Later on, much room was given to highly sophisticated regulations, requirements, metrological concepts and administrative procedures. In this complex environment, the original task of individual monitoring became more and more hidden behind secondary loads. Now, like about hundred years ago, however with different motivation, once again the ultimate goal of the professional work has to be thought about by asking: Do people always know why they do what they do? Or simply: Why individual monitoring? © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The PHM-Ethics methodology: interdisciplinary technology assessment of personal health monitoring.

    PubMed

    Schmidt, Silke; Verweij, Marcel

    2013-01-01

    The contribution briefly introduces the PHM Ethics project and the PHM methodology. Within the PHM-Ethics project, a set of tools and modules had been developed that may assist in the evaluation and assessment of new technologies for personal health monitoring, referred to as "PHM methodology" or "PHM toolbox". An overview on this interdisciplinary methodology and its comprising modules is provided, areas of application and intended target groups are indicated.

  9. Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis.

    PubMed

    Movila, Alexandru; Kajiya, Mikihito; Wisitrasameewong, Wichaya; Stashenko, Philip; Vardar-Sengul, Saynur; Hernandez, Maria; Thomas Temple, H; Kawai, Toshihisa

    2018-06-01

    We report a novel method for in situ imaging of microvascular permeability in inflamed gingival tissue, using state-of-the-art Cellvizio™ intravital endoscopic technology and a mouse model of ligature-induced periodontitis. The silk ligature was first placed at the upper left second molar. Seven days later, the ligature was removed, and the animals were intravenously injected with Evans blue. Evans blue dye, which selectively binds to blood albumin, was used to monitor the level of inflammation by monitoring vascular permeability in control non-diseased and ligature-induced experimental periodontitis tissue. More specifically, leakage of Evans blue-bound albumin from the micro-capillary to connective tissue indicates the state of inflammation occurring in the specific site. Evans blue leakage from blood vessels was imaged in situ by directly attaching the endoscope (mini Z tip) of the Cellvizio™ system to the gingival tissue without any surgical incision. Evans blue emission intensity was significantly elevated in gingiva of periodontitis lesions, but not control non-ligature placed gingiva, indicating that this technology can be used as a potential minimally invasive diagnostic tool to monitor the level of inflammation at the periodontal disease site. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The PartoPen: Using Digital Pen Technology to Improve Maternal Labor Monitoring in the Developing World

    ERIC Educational Resources Information Center

    Underwood, Heather Marie

    2013-01-01

    This dissertation presents the PartoPen, a new approach to addressing maternal labor monitoring challenges in developing countries. The PartoPen is a hardware and software system that uses digital pen technology to enhance, rather than replace, the paper-based labor monitoring tool known as the partograph. In the developing world, correct use of…

  11. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  12. [Personal dose monitoring of radiation workers in medical institutions at the municipal level and below in a city from 2011 to 2014].

    PubMed

    Wang, C; Mo, S F; Zhang, J B; Li, J R; Huang, R L; Tan, H Y

    2017-08-20

    Objective: To determine the personal dose level of radiation workers in medical institutions at the municipal level and below in a city, and to provide a scientific support for strengthening the radiation protection in the city's medical institutions. Methods: Information of the successful applicants for the "Radiation Worker Permit" from 174 medical institutions at the municipal level and below was collected from October 1, 2011 to December 31, 2014. The annual effective dose was calculated based on the personal dose monitoring report, and indicators including sex, permit application time, hospital level, type of occupational radiation, length of radiation work, blood test, and micronucleated lymphocyte rate were analyzed. Results: Of the 1 143 radiation worker permit applications submitted by medical institutions the municipal level and below in this city from 2011 to 2014, 1 123 provided at least one personal dose monitoring report. The annual effective dose of the radiation workers was 0-4.76 mSv (mean 0.31±0.40 mSv) , and the collective annual effective dose was 351.96 mSv. The annual effective dose was significantly different between radiation workers with different times of permit application, hospital levels, and types of occupational radiation ( P <0.05) . Interventional radiology workers had the highest annual effective dose (0.63 mSv) , and annual effective dose was significantly different between interventional radiology workers with different lengths of radiation work ( H =10.812, P <0.05) . Conclusion: The personal radiation dose of radiation workers in medical institutions at the municipal level and below in this city is maintained at a relatively low level, suggesting that the occupational environment is relatively safe for these workers. However, more focus should be placed on clinical interventional radiology workers.

  13. SafeLand guidelines for landslide monitoring and early warning systems in Europe - Design and required technology

    NASA Astrophysics Data System (ADS)

    Bazin, S.

    2012-04-01

    Landslide monitoring means the comparison of landslide characteristics like areal extent, speed of movement, surface topography and soil humidity from different periods in order to assess landslide activity. An ultimate "universal" methodology for this purpose does not exist; every technology has its own advantages and disadvantages. End-users should carefully consider each one to select the methodologies that represent the best compromise between pros and cons, and are best suited for their needs. Besides monitoring technology, there are many factors governing the choice of an Early Warning System (EWS). A people-centred EWS necessarily comprises five key elements: (1) knowledge of the risks; (2) identification, monitoring, analysis and forecasting of the hazards; (3) operational centre; (4) communication or dissemination of alerts and warnings; and (5) local capabilities to respond to the warnings received. The expression "end-to-end warning system" is also used to emphasize that EWSs need to span all steps from hazard detection through to community response. The aim of the present work is to provide guidelines for establishing the different components for landslide EWSs. One of the main deliverables of the EC-FP7 SafeLand project addresses the technical and practical issues related to monitoring and early warning for landslides, and identifies the best technologies available in the context of both hazard assessment and design of EWSs. This deliverable targets the end-users and aims to facilitate the decision process by providing guidelines. For the purpose of sharing the globally accumulated expertise, a screening study was done on 14 EWSs from 8 different countries. On these bases, the report presents a synoptic view of existing monitoring methodologies and early-warning strategies and their applicability for different landslide types, scales and risk management steps. Several comprehensive checklists and toolboxes are also included to support informed

  14. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  15. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  16. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  17. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  18. Hand hygiene monitoring technology: protocol for a systematic review.

    PubMed

    Srigley, Jocelyn A; Lightfoot, David; Fernie, Geoff; Gardam, Michael; Muller, Matthew P

    2013-11-12

    Healthcare worker hand hygiene is thought to be one of the most important strategies to prevent healthcare-associated infections, but compliance is generally poor. Hand hygiene improvement interventions must include audits of compliance (almost always with feedback), which are most often done by direct observation - a method that is expensive, subjective, and prone to bias. New technologies, including electronic and video hand hygiene monitoring systems, have the potential to provide continuous and objective monitoring of hand hygiene, regular feedback, and for some systems, real-time reminders. We propose a systematic review of the evidence supporting the effectiveness of these systems. The primary objective is to determine whether hand hygiene monitoring systems yield sustainable improvements in hand hygiene compliance when compared to usual care. MEDLINE, EMBASE, CINAHL, and other relevant databases will be searched for randomized control studies and quasi-experimental studies evaluating a video or electronic hand hygiene monitoring system. A standard data collection form will be used to abstract relevant information from included studies. Bias will be assessed using the Cochrane Effective Practice and Organization of Care Group Risk of Bias Assessment Tool. Studies will be reviewed independently by two reviewers, with disputes resolved by a third reviewer. The primary outcome is directly observed hand hygiene compliance. Secondary outcomes include healthcare-associated infection incidence and improvements in hand hygiene compliance as measured by alternative metrics. Results will be qualitatively summarized with comparisons made between study quality, the measured outcome, and study-specific factors that may be expected to affect outcome (for example, study duration, frequency of feedback, use of real-time reminders). Meta-analysis will be performed if there is more than one study of similar systems with comparable outcome definitions. Electronic and video

  19. Advances in vaccine stability monitoring technology.

    PubMed

    Zweig, Stephen E

    2006-08-14

    Electronic time-temperature indicator (eTTI) monitors can be programmed to exactly follow the stability characteristics of vaccines with a high degree of realism. The monitors have a visual output, enabling vaccine status to be assessed at a glance, and can also output more detailed statistical data. When packaged with vaccine vials in groups of about 10 vials per box, the eTTI can remain with a vaccine throughout most of the vaccine's lifetime. The monitors can detect essentially all cold-chain breaks, and can detect issues, such as inadvertent freezing, that are presently not detected by other vaccine stability monitors such as Vaccine Vial Monitors (VVM).

  20. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    PubMed

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    patient- and anatomy-specific radiation exposure monitoring. Large-scale anatomy-specific radiation exposure data repositories can be created with high fidelity from existing digital image archives by using open-source informatics tools.

  1. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  2. 10 CFR 835.703 - Other monitoring records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Other monitoring records. 835.703 Section 835.703 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Records § 835.703 Other monitoring records. The following information shall be documented and maintained: (a) Results of monitoring for radiation and...

  3. 10 CFR 835.703 - Other monitoring records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Other monitoring records. 835.703 Section 835.703 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Records § 835.703 Other monitoring records. The following information shall be documented and maintained: (a) Results of monitoring for radiation and...

  4. 10 CFR 835.703 - Other monitoring records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Other monitoring records. 835.703 Section 835.703 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Records § 835.703 Other monitoring records. The following information shall be documented and maintained: (a) Results of monitoring for radiation and...

  5. 10 CFR 835.703 - Other monitoring records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Other monitoring records. 835.703 Section 835.703 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Records § 835.703 Other monitoring records. The following information shall be documented and maintained: (a) Results of monitoring for radiation and...

  6. Management and Analysis of Radiation Portal Monitor Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Nathan C; Alcala, Scott; Crye, Jason Michael

    2014-01-01

    Oak Ridge National Laboratory (ORNL) receives, archives, and analyzes data from radiation portal monitors (RPMs). Over time the amount of data submitted for analysis has grown significantly, and in fiscal year 2013, ORNL received 545 gigabytes of data representing more than 230,000 RPM operating days. This data comes from more than 900 RPMs. ORNL extracts this data into a relational database, which is accessed through a custom software solution called the Desktop Analysis and Reporting Tool (DART). DART is used by data analysts to complete a monthly lane-by-lane review of RPM status. Recently ORNL has begun to extend its datamore » analysis based on program-wide data processing in addition to the lane-by-lane review. Program-wide data processing includes the use of classification algorithms designed to identify RPMs with specific known issues and clustering algorithms intended to identify as-yet-unknown issues or new methods and measures for use in future classification algorithms. This paper provides an overview of the architecture used in the management of this data, performance aspects of the system, and additional requirements and methods used in moving toward an increased program-wide analysis paradigm.« less

  7. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B; Kanal, K; Dickinson, R

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structuredmore » Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as

  8. Application of the Medipix2 technology to space radiation dosimetry and hadron therapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Pinsky, Lawrence; Stoffle, Nicholas; Jakubek, Jan; Pospisil, Stanislav; Leroy, Claude; Gutierrez, Andrea; Kitamura, Hisashi; Yasuda, Nakahiro; Uchihori, Yulio

    2011-02-01

    The Medipix2 Collaboration, based at CERN, has developed the TimePix version of the Medipix pixel readout chip, which has the ability to provide either an ADC or TDC capability separately in each of its 256×256 pixels. When coupled to a Si detector layer, the device is an excellent candidate for application as an active dosimeter for use in space radiation environments. In order to facilitate such a development, data have been taken with heavy ions at the HIMAC facility in Chiba, Japan. In particular, the problem of determining the resolution of such a detector system with respect to heavy ions of differing charges and energies, but with similar d E/d x values has been explored for several ions. The ultimate problem is to parse the information in the pixel "footprint" images from the drift of the charge cloud produced in the detector layer. In addition, with the use of convertor materials, the detector can be used as a neutron detector, and it has been used both as a charged particle and neutron detector to evaluate the detailed properties of the radiation fields produced by hadron therapy beams. New versions of the basic chip design are ongoing.

  9. [Radiation protection in interventional cardiology].

    PubMed

    Durán, Ariel

    2015-01-01

    INTERVENTIONAL: cardiology progress makes each year a greater number of procedures and increasing complexity with a very good success rate. The problem is that this progress brings greater dose of radiation not only for the patient but to occupationally exposed workers as well. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability and use of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  10. A new analysis method using Bragg curve spectroscopy for a Multi-purpose Active-target Particle Telescope for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Losekamm, M. J.; Milde, M.; Pöschl, T.; Greenwald, D.; Paul, S.

    2017-02-01

    Traditional radiation detectors can either measure the total radiation dose omnidirectionally (dosimeters), or determine the incoming particles characteristics within a narrow field of view (spectrometers). Instantaneous measurements of anisotropic fluxes thus require several detectors, resulting in bulky setups. The Multi-purpose Active-target Particle Telescope (MAPT), employing a new detection principle, is designed to measure particle fluxes omnidirectionally and be simultaneously a dosimeter and spectrometer. It consists of an active core of scintillating fibers whose light output is measured by silicon photomultipliers, and fits into a cube with an edge length of 10 cm. It identifies particles using extended Bragg curve spectroscopy, with sensitivity to charged particles with kinetic energies above 25 MeV. MAPT's unique layout results in a geometrical acceptance of approximately 800 cm2 sr and an angular resolution of less than 6°, which can be improved by track-fitting procedures. In a beam test of a simplified prototype, the energy resolution was found to be less than 1 MeV for protons with energies between 30 and 70 MeV. Possible applications of MAPT include the monitoring of radiation environments in spacecraft and beam monitoring in medical facilities.

  11. Report on the BWR owners group radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, L.R.

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements inmore » relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.« less

  12. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  13. Research on Land Ecological Condition Investigation and Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  14. Surface Contamination Monitor and Survey Information Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioningmore » Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.« less

  15. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was

  16. Information technology resource management in radiation oncology.

    PubMed

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  17. A pilot exploratory investigation on pregnant women's views regarding STan fetal monitoring technology.

    PubMed

    Bryson, Kate; Wilkinson, Chris; Kuah, Sabrina; Matthews, Geoff; Turnbull, Deborah

    2017-12-29

    Women's views are critical for informing the planning and delivery of maternity care services. ST segment analysis (STan) is a promising method to more accurately detect when unborn babies are at risk of brain damage or death during labour that is being trialled for the first time in Australia. This is the first study to examine women's views about STan monitoring in this context. Semi-structured interviews were conducted with pregnant women recruited across a range of clinical locations at the study hospital. The interviews included hypothetical scenarios to assess women's prospective views about STan monitoring (as an adjunct to cardiotocography, (CTG)) compared to the existing fetal monitoring method of CTG alone. This article describes findings from an inductive and descriptive thematic analysis. Most women preferred the existing fetal monitoring method compared to STan monitoring; women's decision-making was multifaceted. Analysis yielded four themes relating to women's views towards fetal monitoring in labour: a) risk and labour b) mobility in labour c) autonomy and choice in labour d) trust in maternity care providers. Findings suggest that women's views towards CTG and STan monitoring are multifaceted, and appear to be influenced by individual labour preferences and the information being received and understood. This underlies the importance of clear communication between maternity care providers and women about technology use in intrapartum care. This research is now being used to inform the implementation of the first properly powered Australian randomised trial comparing STan and CTG monitoring.

  18. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    DTIC Science & Technology

    2005-06-01

    l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and

  19. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween

  20. MONITORING ENVIRONMENTAL RADIATION IN THE UNITED STATES(RADNET)

    EPA Science Inventory

    Operate a national network of sampling stations that regularly submit environmental samples of air, precipitation and drinking water; analyze all samples for radiation at the laboratory; and report data to the public and the radiation protection community. During national radiat...

  1. AMBIENT AMMONIA MONITORING TECHNOLOGIES

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program develops testing protocols and verifies the performance of innovative technologies that have the potential to improve the protection of human health and the environment. This abstract and poster describe the process by whic...

  2. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  3. Older adults' perceptions of technologies aimed at falls prevention, detection or monitoring: a systematic review.

    PubMed

    Hawley-Hague, Helen; Boulton, Elisabeth; Hall, Alex; Pfeiffer, Klaus; Todd, Chris

    2014-06-01

    Over recent years a number of Information and Communication Technologies (ICTs) have emerged aiming at falls prevention, falls detection and alarms for use in case of fall. There are also a range of ICT interventions, which have been created or adapted to be pro-active in preventing falls, such as those which provide strength and balance training to older adults in the prevention of falls. However, there are issues related to the adoption and continued use of these technologies by older adults. This review provides an overview of older adults' perceptions of falls technologies. We undertook systematic searches of MEDLINE, EMBASE, CINAHL and PsychINFO, COMPENDEX and the Cochrane database. Key search terms included 'older adults', 'seniors', 'preference', 'attitudes' and a wide range of technologies, they also included the key word 'fall*'. We considered all studies that included older adults aged 50 and above. Studies had to include technologies related specifically to falls prevention, detection or monitoring. The Joanna Briggs Institute (JBI) tool and the Quality Assessment Tool for Quantitative Studies by the Effective Public Health Practice Project (EPHPP) were used. We identified 76 potentially relevant papers. Some 21 studies were considered for quality review. Twelve qualitative studies, three quantitative studies and 6 mixed methods studies were included. The literature related to technologies aimed at predicting, monitoring and preventing falls suggest that intrinsic factors related to older adults' attitudes around control, independence and perceived need/requirements for safety are important for their motivation to use and continue using technologies. Extrinsic factors such as usability, feedback gained and costs are important elements which support these attitudes and perceptions. Positive messages about the benefits of falls technologies for promoting healthy active ageing and independence are critical, as is ensuring that the technologies are simple

  4. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deploymentmore » of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was

  5. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giurgiutiu, Victor; Mendez Torres, Adrian E.

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications basedmore » on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the nation's spent

  6. The design of Radiation Accident Registry.

    PubMed

    Chen, Jing; Seely, Bob; Bergman, Lauren; Moir, Deborah

    2011-03-01

    In order to provide effective monitoring and follow-up on the health effects of individuals accidentally exposed to ionising radiation, a Radiation Accident Registry (RAR) has been designed and constructed as an extension to the existing National Dose Registry (NDR). The RAR has basic functions of recording, monitoring and reporting. This type of registry is able to assist responders in preparing for and managing situations during radiological events and in providing effective follow-up on the long-term health effects of persons exposed to ionising radiation. It is especially important to register radiation-exposed people in vulnerable population groups, such as children and pregnant women, to ensure proper long-term health care and protection. Even though radiation accidents are rare, a registry prepared for such accidents could involve a large population and, in some cases, require lifetime monitoring for individuals. One of the most challenging tasks associated with RAR is the assessment of radiation dose resulting from accidents. In some cases, the assessment of radiation doses to individuals could be a process requiring the involvement of various methods. The development of fast and accurate dose assessment tools will remain a long-term challenge associated with the RAR. To meet this challenge, further research activities in radiation dosimetry for individual monitoring are needed.

  7. Preventive radioecological assessment of territory for optimization of monitoring and countermeasures after radiation accidents.

    PubMed

    Prister, B S; Vinogradskaya, V D; Lev, T D; Talerko, M M; Garger, E K; Onishi, Y; Tischenko, O G

    2018-04-01

    A methodology of a preventive radioecological assessment of the territory has been developed for optimizing post-emergency monitoring and countermeasure implementation in an event of a severe radiation accident. Approaches and main stages of integrated radioecological zoning of the territory are described. An algorithm for the assessment of the potential radioecological criticality (sensitivity) of the area is presented. The proposed approach is validated using data of the dosimetric passportization in Ukraine after the Chernobyl accident for the test site settlements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guidedmore » wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.« less

  9. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  10. Camera-Based Microswitch Technology to Monitor Mouth, Eyebrow, and Eyelid Responses of Children with Profound Multiple Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Lang, Russell; Didden, Robert

    2011-01-01

    A camera-based microswitch technology was recently used to successfully monitor small eyelid and mouth responses of two adults with profound multiple disabilities (Lancioni et al., Res Dev Disab 31:1509-1514, 2010a). This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on…

  11. 10 CFR 34.47 - Personnel monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Personnel monitoring. 34.47 Section 34.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.47 Personnel monitoring. (a) The licensee may not...

  12. 10 CFR 34.47 - Personnel monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Personnel monitoring. 34.47 Section 34.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.47 Personnel monitoring. (a) The licensee may not...

  13. 10 CFR 34.47 - Personnel monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Personnel monitoring. 34.47 Section 34.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.47 Personnel monitoring. (a) The licensee may not...

  14. 10 CFR 34.47 - Personnel monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Personnel monitoring. 34.47 Section 34.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.47 Personnel monitoring. (a) The licensee may not...

  15. 10 CFR 34.47 - Personnel monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Personnel monitoring. 34.47 Section 34.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Radiation Safety Requirements § 34.47 Personnel monitoring. (a) The licensee may not...

  16. Radiation-tolerant microprocessors in Japanese scientific space vehicles: how to maximize the benefits of commercial SOI technologies

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Saito, Hirobumi

    2013-05-01

    Development of semiconductor devices not only for harsh radiation environments such as space but also for ground-based applications now faces a major hurdle of radiation problems. Necessary is protecting chips from malfunctions due to sub-nanosecond transient noises induced by radiation. As a protection technique using the silicon-on-insulator structure is often suggested, but the use in fact requires devices and circuits carefully optimized for maximizing its benefits. Mainly describing theoretical and experimental characterization of the transient effects, this paper presents a comprehensive study on radiation responses of commercial silicon-on- insulator technologies, which study results in a space-use low-power system-on-chip with a 100-MIPS RISC-based core.

  17. Hand hygiene monitoring technology: protocol for a systematic review

    PubMed Central

    2013-01-01

    Background Healthcare worker hand hygiene is thought to be one of the most important strategies to prevent healthcare-associated infections, but compliance is generally poor. Hand hygiene improvement interventions must include audits of compliance (almost always with feedback), which are most often done by direct observation - a method that is expensive, subjective, and prone to bias. New technologies, including electronic and video hand hygiene monitoring systems, have the potential to provide continuous and objective monitoring of hand hygiene, regular feedback, and for some systems, real-time reminders. We propose a systematic review of the evidence supporting the effectiveness of these systems. The primary objective is to determine whether hand hygiene monitoring systems yield sustainable improvements in hand hygiene compliance when compared to usual care. Methods/Design MEDLINE, EMBASE, CINAHL, and other relevant databases will be searched for randomized control studies and quasi-experimental studies evaluating a video or electronic hand hygiene monitoring system. A standard data collection form will be used to abstract relevant information from included studies. Bias will be assessed using the Cochrane Effective Practice and Organization of Care Group Risk of Bias Assessment Tool. Studies will be reviewed independently by two reviewers, with disputes resolved by a third reviewer. The primary outcome is directly observed hand hygiene compliance. Secondary outcomes include healthcare-associated infection incidence and improvements in hand hygiene compliance as measured by alternative metrics. Results will be qualitatively summarized with comparisons made between study quality, the measured outcome, and study-specific factors that may be expected to affect outcome (for example, study duration, frequency of feedback, use of real-time reminders). Meta-analysis will be performed if there is more than one study of similar systems with comparable outcome definitions

  18. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  19. Evaluating Technology-Based Self-Monitoring as a Tier 2 Intervention across Middle School Settings

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Woods-Groves, Suzanne; Fernando, Josephine; Choi, Taehoon; Troughton, Leonard

    2017-01-01

    Multitiered frameworks like Positive Behavior Interventions and Supports (PBIS) have been recommended for preventing and remediating behavior problems. In this study, technology-based self-monitoring was used as a Tier 2 intervention to improve the academic engagement and disruptive behavior of three middle school students who were identified as…

  20. ATP monitoring technology for microbial growth control in potable water systems

    NASA Astrophysics Data System (ADS)

    Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.

    2006-05-01

    ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.