Science.gov

Sample records for radiation pressure dominated

  1. Ionization Parameter: A Diagnostic of Radiation Pressure Dominated HII Regions

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Matzner, C. D.

    2011-01-01

    When irradiation is sufficiently intense, the structure of an HII region will be dominated by radiation pressure and stellar winds, rather than ionized gas pressure. This state is of considerable interest because of its role in the formation of massive stars, the disruption of giant molecular clouds, and the evolution of starburst galaxies. We discuss the usefulness of the ionization parameter U, as often derived from observed line ratios between species which exist only in ionized gas, as a diagnostic for the radiation pressure-dominated state. In ionization-bounded directions, U cannot exceed a maximum value Umax determined by equilibrium between radiation and gas pressure forces. Lower values of U will occur, however, when the pressure of shocked stellar winds is significant, or when neutral gas is broken into clumps with sufficiently small radii of curvature. Applying these considerations to a prominent ionized shell around 30 Doradus and to the inner starburst region of M82, along with Cloudy simulations, we conclude that both are dominated by a combination of radiation pressure and shocked winds.

  2. Interaction of a jet with a radiation pressure-dominated atmosphere - The case of SS 433

    NASA Technical Reports Server (NTRS)

    Arav, Nahum; Begelman, Mitchell C.

    1993-01-01

    A phenomenological model for the enigmatic object SS 433 is developed in which SS 433 is a neutron star (NS) surrounded by a dense accreted atmosphere. Jets are created close to the neutron star surface by the rapidly spinning NS, toward which matter flows at a super-Eddington rate. This supercritical accretion leads to a quasi-spherical atmosphere around the NS with very high pressure and density close to the surface. The interaction of the jet with the atmosphere as it propagates through it is discussed in detail. A boundary layer (BL) due to radiation viscosity forms between the jet and the surrounding medium. This BL can be visualized as a cocoon of low-density matter around the jet which prevents mass entrainment into the jet. A study of X-ray spectra shows how the radiation-viscous BL can explain the very small Delta v/v that is observed in the jets.

  3. Radiation-Dominated Relativistic Current Sheets

    SciTech Connect

    Jaroschek, C. H.; Hoshino, M.

    2009-08-14

    Relativistic current sheets (RCSs) feature plasma instabilities considered as the potential key to magnetic energy dissipation in Poynting-flux-dominated plasma flows. Kinetic plasma simulations show that the physical nature of RCS evolution changes in the presence of radiation losses: In the ultrarelativistic regime (i.e., magnetization parameter sigma=10{sup 4} defined as the ratio of magnetic to plasma rest frame energy density), the combined effect of nonlinear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the relativistic tearing mode. In contrast to previous studies of the RCS with sigmaapprox1, the relativistic tearing mode then prevails over the drift kink mode. The ultrarelativistic RCS shows a typical life cycle from radiation-induced collapse towards a radiation-quiescent phase with topology analogous to that introduced by Sweet and Parker.

  4. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  5. On the thermal stability of radiation-dominated accretion disks

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2013-11-20

    We study the long-term thermal stability of radiation-dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to the dissipation of MHD turbulence driven by magneto-rotational instability (MRI) and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions are at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway that causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on total pressure satisfy the simplest criterion for classical thermal instability. We identify several physical reasons why the thermal runaway observed in our simulations differ from the standard α disk model; for example, the advection of radiation contributes a non-negligible fraction to the vertical energy flux at the largest radiation pressure, most of the dissipation does not happen in the disk mid-plane, and the change of dissipation scale height with mid-plane pressure is slower than the change of density scale height. We discuss how and why our results differ from those published previously. Such thermal runaway behavior might have important implications for interpreting temporal variability in observed systems, but fully global simulations are required to study the saturated state before detailed predictions can be made.

  6. SATURATION OF THE MAGNETO-ROTATIONAL INSTABILITY IN STRONGLY RADIATION-DOMINATED ACCRETION DISKS

    SciTech Connect

    Jiang Yanfei; Stone, James M.; Davis, Shane W.

    2013-04-20

    The saturation level of the magneto-rotational instability (MRI) in a strongly radiation-dominated accretion disk is studied using a new Godunov radiation MHD code in the unstratified shearing box approximation. Since vertical gravity is neglected in this work, our focus is on how the MRI saturates in the optically thick mid-plane of the disk. We confirm that turbulence generated by the MRI is very compressible in the radiation-dominated regime, as found by previous calculations using the flux-limited diffusion approximation. We also find little difference in the saturation properties in calculations that use a larger horizontal domain (up to four times the vertical scale height in the radial direction). However, in strongly radiation pressure dominated disks (one in which the radiation energy density reaches {approx}1% of the rest mass energy density of the gas), we find that Maxwell stress from the MRI turbulence is larger than the value produced when radiation pressure is replaced with the same amount of gas pressure. At the same time, the ratio between Maxwell stress and Reynolds stress is increased by almost a factor of eight compared with the gas pressure dominated case. We suggest that this effect is caused by radiation drag, which acts like bulk viscosity and changes the effective magnetic Prandtl number of the fluid. Radiation viscosity significantly exceeds both the microscopic plasma viscosity and resistivity, ensuring that radiation-dominated systems occupy the high magnetic Prandtl number regime. Nevertheless, we find that radiative shear viscosity is negligible compared to the Maxwell stress and Reynolds stress in the flow. This may have important implications for the structure of radiation-dominated accretion disks.

  7. The dominant effect of alumina on nearfield plume radiation

    NASA Astrophysics Data System (ADS)

    Laredo, David; Netzer, David W.

    1993-11-01

    Solid propellant rocket motors can achieve high specific impulse with metal fuel additives such as aluminum. Combustion of aluminum produces condensed alumina particles. Besides causing performance losses in the nozzle, the condensed Al2O3 particles are the major source of primary smoke in the exhaust plume. The particulate matter can also have major effects upon the plume i.r. signature. High number densities of particles can block gas-phase radiation from the plume. They can also be the source of radiation, especially the larger particles which exit the nozzle not in thermal equilibrium with the gas. In the past, the expected effects of particle size on the plume i.r. signature have been determined almost exclusively from predictions made with flow and radiation codes. The aim of the present work was to investigate the role of the Al/Al2O3 particles from a highly loaded solid propellant (up to 16% in weight) on the plume radiation of a small rocket motor (5 cm in diameter). The spatial variation of particle size distribution was simultaneously measured with the overall radiation of a portion of the plume in the i.r. band (3.5-5.0 microns). In micro-motors, operating with highly aluminized solid propellant, the condensed particles in the near exhaust plume were the major source of radiation in the 3.5-5 micron wavelength band. Motors with longer residence time and operating at medium chamber pressures produced more particles in the micron sized range. The role of after burning was predominately confined to reheating of the alumina particles to a higher temperature, at which the condensed Al2O3 radiated more than gaseous species. Even with 30% Al2O3 in the plume, the plume of small motors can be considered as approximately conical in shape, with volume distributed radiating sources. Motor conditions producing larger particles in the plume core were thus found to increase plume radiation from that region. The overall apparent emissivity of the plume was between 0

  8. Penguin diagram dominance in radiative weak decays of bottom baryons

    SciTech Connect

    Kohara, Yoji

    2005-05-01

    Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.

  9. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. PMID:26070191

  10. Orbit Perturbations Due to Solar Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Sawyer, G. A.

    1972-01-01

    This disturbing force will be important for satellites with a large area to mass ratio and also for those whose orbits are high enough that atmospheric drag is not the more dominate force. The procedure for the analysis is to represent the radiation force as the gradient of a scalar function to be compatible with existing procedures for studying perturbations due to earth's oblateness. From this analysis, solar radiation pressure appears not to be responsible for any secular or long-periodic variations in the semi-major axis of the orbit nor does it provide any secular changes in the eccentricity of the orbit or the angle of inclination of the osculating plane. Solar radiation pressure does produce secular effects in the other orbital elements, but these are in the opposite sense of secularities caused by the gravitational attraction of the sun and tend to reduce the total secularity.

  11. Measurement of Radiation Pressure in an Ambient Environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  12. Blood Pressure in Early Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Schrier, Robert W.; Abebe, Kaleab Z.; Perrone, Ronald D.; Torres, Vicente E.; Braun, William E.; Steinman, Theodore I.; Winklhofer, Franz T.; Brosnahan, Godela; Czarnecki, Peter G.; Hogan, Marie C.; Miskulin, Dana C.; Rahbari-Oskoui, Frederic F.; Grantham, Jared J.; Harris, Peter C.; Flessner, Michael F.; Bae, Kyongtae T.; Moore, Charity G.; Chapman, Arlene B.

    2015-01-01

    BACKGROUND Hypertension is common in autosomal dominant polycystic kidney disease (ADPKD) and is associated with increased total kidney volume, activation of the renin–angiotensin–aldosterone system, and progression of kidney disease. METHODS In this double-blind, placebo-controlled trial, we randomly assigned 558 hypertensive participants with ADPKD (15 to 49 years of age, with an estimated glomerular filtration rate [GFR] >60 ml per minute per 1.73 m2 of body-surface area) to either a standard blood-pressure target (120/70 to 130/80 mm Hg) or a low blood-pressure target (95/60 to 110/75 mm Hg) and to either an angiotensin-converting–enzyme inhibitor (lisinopril) plus an angiotensin-receptor blocker (telmisartan) or lisinopril plus placebo. The primary outcome was the annual percentage change in the total kidney volume. RESULTS The annual percentage increase in total kidney volume was significantly lower in the low-blood-pressure group than in the standard-blood-pressure group (5.6% vs. 6.6%, P = 0.006), without significant differences between the lisinopril–telmisartan group and the lisinopril–placebo group. The rate of change in estimated GFR was similar in the two medication groups, with a negative slope difference in the short term in the low-blood-pressure group as compared with the standard-blood-pressure group (P<0.001) and a marginally positive slope difference in the long term (P = 0.05). The left-ventricular-mass index decreased more in the low-blood-pressure group than in the standard-blood-pressure group (−1.17 vs. −0.57 g per square meter per year, P<0.001); urinary albumin excretion was reduced by 3.77% with the low-pressure target and increased by 2.43% with the standard target (P<0.001). Dizziness and light-headedness were more common in the low-blood-pressure group than in the standard-blood-pressure group (80.7% vs. 69.4%, P = 0.002). CONCLUSIONS In early ADPKD, the combination of lisinopril and telmisartan did not significantly

  13. Radiative dominated cooling of the flare corona and transition region

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1979-01-01

    Models in which radiation dominates cooling flare loops are investigated. The radiative models are found to predict a differential emission measure (Q) proportional to T to the (l+1) power, where l measures the dependence of the radiative loss coefficient on temperature, lamda (T) approximately T to the (-l) power. It is concluded that the radiative models are incapable of explaining the observed temperature dependence of Q for flare coronal and transitional plasma. The models suggest that large mass motions (velocities of the order of the sound speed) may be required.

  14. Quantum fluctuations of radiation pressure

    SciTech Connect

    Wu, Chun-Hsien; Ford, L. H.

    2001-08-15

    Quantum fluctuations of electromagnetic radiation pressure are discussed. We use an approach based on the quantum stress tensor to calculate the fluctuations in velocity and position of a mirror subjected to electromagnetic radiation. Our approach reveals that radiation pressure fluctuations in the case of a coherent state are due to a cross term between vacuum and state dependent terms in a stress tensor operator product. Thus observation of these fluctuations would entail experimental confirmation of this cross term. We first analyze the pressure fluctuations on a single, perfectly reflecting mirror, and then study the case of an interferometer. This involves a study of the effects of multiple bounces in one arm, as well as the correlations of the pressure fluctuations between arms of the interferometer. In all cases, our results are consistent with those previously obtained by Caves using different methods. We argue that the agreement between the different methods supports the reality of the cross term and justifies the methods used in its evaluation.

  15. Local Axisymmetric Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Turner, N. J.; Stone, J. M.; Sano, T.

    2002-02-01

    We perform numerical simulations of magnetorotational instability in a local patch of accretion disk in which radiation pressure exceeds gas pressure. Such conditions may occur in the central regions of disks surrounding compact objects in active galactic nuclei and Galactic X-ray sources. We assume axisymmetry and neglect vertical stratification. The growth rates of the instability on initially uniform magnetic fields are consistent with the linear analysis of Blaes & Socrates (2001). As is the case when radiation effects are neglected, the nonlinear development of the instability leads to transitory turbulence when the initial magnetic field has no net vertical flux. During the turbulent phase, angular momentum is transported outward. The Maxwell stress is a few times the Reynolds stress, and their sum is about 4 times the mean pressure in the vertical component of the magnetic field. For magnetic pressure exceeding gas pressure, turbulent fluctuations in the field produce density contrasts about equal to the ratio of magnetic to gas pressure. These are many times larger than in the corresponding gas pressure-dominated situation and may have profound implications for the steady state vertical structure of radiation-dominated disks. Diffusion of radiation from compressed regions damps turbulent motions, converting kinetic energy into photon energy.

  16. Dynamics of Radiation Pressure Acceleration

    SciTech Connect

    Macchi, A.; Benedetti, C.; Pegoraro, F.; Veghini, S.

    2010-02-02

    We describe recent theoretical results on Radiation Pressure Acceleration of ions by ultraintense, circularly polarized laser pulses, giving an insight on the underlying dynamics and suggestions for the development of applications. In thick targets, we show how few-cycle pulses may generate single ion bunches in inhomogeneous density profiles. In thin targets, we present a refinement of the simple model of the accelerating mirror and a comparison of its predictions with simulation results, solving an apparent paradox.

  17. Hubble induced mass in radiation-dominated universe

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takesako, Tomohiro

    2012-05-01

    We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we rely on Kadanoff-Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field acquires the effective mass of the order of H.

  18. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  19. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  20. Measurement and Applications of Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Murray, Joseph; Munday, Jeremy; Munday Lab Team

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Measuring and utilizing radiation pressure have aroused growing interest in a wide spectrum of research fields. Micromechanical transducers and oscillators are good candidates for measuring radiation pressure, but accompanying photothermal effects often obscure the measurement. In this work, we investigate the accurate measurement of the radiation force on microcantilevers in ambient conditions and ways to separate radiation pressure and photothermal effects. Further, we investigate an optically broadband switchable device based on polymer dispersed liquid crystal which has potential applications in solar sails and maneuvering spacecraft without moving parts. The authors would like to thank NASA Early Career Faculty Award and NASA Smallsat Technology Partnership Award for their funding support.

  1. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  2. Incipient radiation within the dominant Hawaiian tree Metrosideros polymorpha.

    PubMed

    Stacy, E A; Johansen, J B; Sakishima, T; Price, D K; Pillon, Y

    2014-10-01

    Although trees comprise a primary component of terrestrial species richness, the drivers and temporal scale of divergence in trees remain poorly understood. We examined the landscape-dominant tree, Metrosideros polymorpha, for variation at nine microsatellite loci across 23 populations on young Hawai'i Island, sampling each of the island's five varieties throughout its full geographic range. For four varieties, principal coordinate analysis revealed strong clustering of populations by variety across the 10 430 km(2) island, indicating partitioning of the species into multiple evolutionarily significant units. The single island-endemic form, riparian var. newellii, showed especially strong differentiation from other varieties despite occurring in sympatry with other varieties and likely evolved from a bog form on the oldest volcano, Kohala, within the past 500 000 years. Along with comparable riparian forms on other Pacific Islands, var. newellii appears to represent parallel incipient ecological speciation within Metrosideros. Greater genetic distance among the more common varieties on the oldest volcano and an inverse relationship between allelic diversity and substrate age appear consistent with colonization of Hawai'i Island by older, partially diverged varieties followed by increased hybridization among varieties on younger volcanoes. This study demonstrates that broad population-level sampling is required to uncover patterns of diversification within a ubiquitous and long-lived tree species. Hawaiian Metrosideros appears to be a case of incipient radiation in trees and thus should be useful for studies of divergence and the evolution of reproductive isolating barriers at the early stages of speciation. PMID:24824285

  3. Incipient radiation within the dominant Hawaiian tree Metrosideros polymorpha

    PubMed Central

    Stacy, E A; Johansen, J B; Sakishima, T; Price, D K; Pillon, Y

    2014-01-01

    Although trees comprise a primary component of terrestrial species richness, the drivers and temporal scale of divergence in trees remain poorly understood. We examined the landscape-dominant tree, Metrosideros polymorpha, for variation at nine microsatellite loci across 23 populations on young Hawai'i Island, sampling each of the island's five varieties throughout its full geographic range. For four varieties, principal coordinate analysis revealed strong clustering of populations by variety across the 10 430 km2 island, indicating partitioning of the species into multiple evolutionarily significant units. The single island-endemic form, riparian var. newellii, showed especially strong differentiation from other varieties despite occurring in sympatry with other varieties and likely evolved from a bog form on the oldest volcano, Kohala, within the past 500 000 years. Along with comparable riparian forms on other Pacific Islands, var. newellii appears to represent parallel incipient ecological speciation within Metrosideros. Greater genetic distance among the more common varieties on the oldest volcano and an inverse relationship between allelic diversity and substrate age appear consistent with colonization of Hawai'i Island by older, partially diverged varieties followed by increased hybridization among varieties on younger volcanoes. This study demonstrates that broad population-level sampling is required to uncover patterns of diversification within a ubiquitous and long-lived tree species. Hawaiian Metrosideros appears to be a case of incipient radiation in trees and thus should be useful for studies of divergence and the evolution of reproductive isolating barriers at the early stages of speciation. PMID:24824285

  4. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    SciTech Connect

    Ma, Dakang; Munday, Jeremy N.; Garrett, Joseph L.

    2015-03-02

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  5. Spin 1 /2 field and regularization in a de Sitter and radiation dominated universe

    NASA Astrophysics Data System (ADS)

    Ghosh, Suman

    2016-02-01

    We construct a simple algorithm to derive number density of spin 1 /2 particles created in spatially flat Friedmann-Lemaitre-Robertson-Walker spacetimes and resulting renormalized energy-momentum tensor within the framework of adiabatic regularization. Physical quantities thus found are in agreement with the known results. This formalism can be considered as an appropriate extension of the techniques originally introduced for scalar fields, applicable to fermions in curved space. We apply this formalism to compute the particle number density and the renormalized energy density and pressure analytically (wherever possible) and numerically, in two interesting cosmological scenarios: a de Sitter spacetime and a radiation dominated universe. Results prove the efficiency of the methodology presented here.

  6. Oscillations of radiation pressure supported tori near black holes

    NASA Astrophysics Data System (ADS)

    Mazur, Grzegorz P.; Zanotti, Olindo; Sądowski, Aleksander; Mishra, Bhupendra; Kluźniak, Wlodek

    2016-03-01

    We study the dynamics of radiation pressure supported tori around Schwarzschild black holes, focusing on their oscillatory response to an external perturbation. Using KORAL, a general relativistic radiation-hydrodynamics code capable of modelling all radiative regimes from the optically thick to the optically thin, we monitor a sample of models at different initial temperatures and opacities, evolving them in two spatial dimensions for ˜165 orbital periods. The dynamics of models with high opacity is very similar to that of purely hydrodynamics models, and it is characterized by regular oscillations which are visible also in the light curves. As the opacity is decreased, the tori quickly and violently migrate towards the gas-pressure dominated regime, collapsing towards the equatorial plane. When the spectra of the L2 norm of the mass density are considered, high-frequency inertial-acoustic modes of oscillations are detected (with the fundamental mode at a frequency 68 M_BH^{-1} Hz), in close analogy to the phenomenology of purely hydrodynamic models. An additional mode of oscillation, at a frequency 129 M_BH^{-1} Hz, is also found, which can be unambiguously attributed to the radiation. The spectra extracted from the light curves are typically noisier, indicating that in a real observation such modes may not be easily detected.

  7. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.

    2014-06-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.

  8. Analytic model of the radiation-dominated decay of a compact toroid

    SciTech Connect

    Auerbach, S.P.

    1981-11-11

    The coaxial-gun, compact-torus experiments at LLNL and LASNL are believed to be radiation-dominated, in the sense that most or all of the input energy is lost by impurity radiation. This paper presents a simple analytic model of the radiation-dominated decay of a compact torus, and demonstrates that several striking features of the experiment (finite lifetime, linear current decay, insensitivity of the lifetime to density or stored magnetic energy) may also be explained by the hypothesis that impurity radiation dominates the energy loss. The model incorporates the essential features of the more elaborate 1 1/2-D simulations of Shumaker et al., yet is simple enough to be solved exactly. Based on the analytic results, a simple criterion is given for the maximum tolerable impurity density.

  9. Variation of sodium on Mercury with solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Potter, A. E.; Morgan, T. H.

    1987-09-01

    Sodiums atoms in the atmosphere of Mercury can be accelerated by solar radiation pressure, and several authors have suggested that radiation pressure could sweep sodium off the planet. As a consequence, the sodium abundance might be expected to decrease as the radiation pressure increases. The authors have measured the average sodium abundance over a range of solar radiation pressures and found that the sodium abundance does decrease with increasing radiation pressure. Possible explanations for the observed variation are (1) that radiation pressure sweeps away transient high-velocity sodium atoms generated upon meteoric material impacts, thus reducing the supply rate of sodium, or (2) that the accommodation coefficient of sodium for surface interactions is less than unity, so that radiation pressure can effectively push sodium to the dark side of the planet, where it cannot be detected by scattered sunlight.

  10. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  11. Dominance of toroidal oscillations in dawn/dusk sectors: A consequence of solar wind pressure variation

    NASA Astrophysics Data System (ADS)

    Sinha, A. K.; Rajaram, R.

    2003-02-01

    The pressure variations in the solar wind produce the oscillations in surface currents at the magnetopause boundary in order to nullify the pressure imbalance. These currents introduce compressional variations in the magnetic field within the magnetosphere. The response of transverse field line oscillations to such changes in the magnetic field has been brought out in perfectly reflecting ionospheric conditions. The analysis clearly shows that the fundamental toroidal modes are dominant in the dawn and the dusk sectors as revealed by the statistical studies of pulsations observed by the satellite AMPTE/CCE (Anderson et al., 1990). It is traditionally believed that such oscillations are mainly driven by Kelvin-Helmholtz (K-H) instability (Anderson et al., 1990). Our analysis shows that the dominance of fundamental toroidal modes in the dawn and dusk sectors can also be explained in terms of response to impressed pressure impulses without invoking K-H instability. The analysis also shows that poloidal modes do not exhibit any longitudinal structures. These results are consistent with the observations (Anderson et al., 1990).

  12. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  13. Laplace Plane Modifications Arising from Solar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  14. Laplace plane modifications arising from solar radiation pressure

    SciTech Connect

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  15. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  16. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Durschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  17. On the impact of radiation pressure on the dynamics and inner structure of dusty wind-driven shells

    SciTech Connect

    Martínez-González, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2014-04-20

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep up interstellar gas into thin expanding shells that trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells, as well as on the density-weighted ionization parameter U{sub w} , and put our results on the diagnostic diagram, which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model-predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells, but only during the earliest stages of evolution (before ∼3 Myr) or if a major fraction of the star cluster mechanical luminosity is dissipated or radiated away within the star cluster volume and thus the star cluster mechanical energy output is significantly smaller than star cluster synthetic models predict. However, even in these cases radiation dominates over the wind dynamical pressure only if the exciting cluster is embedded into a high-density ambient medium.

  18. Energy density of standing sound waves at the radiation-dominated phase of the universe expansion (hydrodynamic derivation)

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Sunyaev, R. A.

    2015-12-01

    In the early Universe up to hydrogen recombination in the Universe, the radiation pressure was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic microwave background (CMB) photons was greater than or close to the energy density contained in the rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic index was close to 4/3. The small density perturbations from which the observed galaxies have grown grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time. On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat conduction must have led to the damping of sound waves on very small scales. After the discovery of the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk damping, knowing the CMBtemperature and assuming the density of baryons and electrons. Observations with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation has made it possible to measure the CMB spectral distortions at 10-8 of its total intensity (PIXIE). This has sharply increased the interest of theoretical cosmologists in the problem of energy release when smallscale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound wave in a photon-baryon-electron plasma from simple hydrodynamic and thermodynamic relations. This formula is applicable for an arbitrary relation between the

  19. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  20. Drift current dominated terahertz radiation from InN at low-density excitation

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Tsai, J. T.; Wang, T. S.; Hwang, J. S.; Chen, M. C.; Chi, G. C.

    2008-12-01

    This letter investigates the polarity of terahertz radiation from indium nitride (InN) excited by femtosecond optical pulses wherein a central wavelength of around 790nm is measured. The InN epilayers are grown by metalorganic chemical vapor deposition on sapphire and silicon substrates. The polarity of the terahertz radiation field from InN is opposite to that from p-InAs whose radiation mechanism is dominated by the photo-Dember effect indicating that the dominant radiation mechanism in InN is the drift current induced by the internal electric field at low-density excitation below 590nJ /cm2. The internal electric field consists of the surface accumulation field and the spontaneous polarization-induced electric field. In addition, since no azimuthal angle dependence of the terahertz radiation is observed, the optical rectification effect is ruled out. By comparing the wave forms of terahertz radiation from the front and the back of the InN sample grown on sapphire in reflection geometry, the N polarity of the InN sample is confirmed.

  1. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    SciTech Connect

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or a very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.

  2. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  3. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Margutti, Raffaella; Begelman, Mitchell C.

    2013-03-10

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  4. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  5. Disks Surviving the Radiation Pressure of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Ekşİ, K. Yavuz; Alpar, M. Alİ

    2005-02-01

    The radiation pressure of a radio pulsar does not necessarily disrupt a surrounding disk. The position of the inner radius of a thin disk around a neutron star, determined by the balance of stresses, can be estimated by comparing the electromagnetic energy density generated by the neutron star as a rotating magnetic dipole in vacuum with the kinetic energy density of the disk. Inside the light cylinder, the near zone electromagnetic field is essentially the dipole magnetic field, and the inner radius is the conventional Alfvén radius. Far outside the light cylinder, in the radiation zone, E=B, and the electromagnetic energy density is /c~1/r2, where S is the Poynting vector. Shvartsman argued that a stable equilibrium cannot be found in the radiative zone because the electromagnetic energy density dominates over the kinetic energy density, with the relative strength of the electromagnetic stresses increasing with radius. In order to check whether this is also true near the light cylinder, we employ the Deutsch global electromagnetic field solutions for rotating oblique magnetic dipoles. Near the light cylinder the electromagnetic energy density increases steeply enough with decreasing r to balance the kinetic energy density at a stable equilibrium. The transition from the near zone to the radiation zone is broad. The radiation pressure of the pulsar cannot disrupt the disk for values of the inner radius up to about twice the light cylinder radius if the rotation axis and the magnetic axis are orthogonal. This allowed range beyond the light cylinder extends much farther for small inclination angles. The mass flow rate in quiescent phases of accretion-driven millisecond pulsars can occasionally drop to values low enough that the inner radius of the disk goes beyond the light cylinder. The possibilities considered here may be relevant for the evolution of spun-up X-ray binaries into millisecond pulsars, for some transients, and for the evolution of young neutron

  6. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  7. Emittance Pressure Dominated Regimes for Resonant PWFA Experiments at SPARC Lab

    NASA Astrophysics Data System (ADS)

    Marocchino, Alberto; Atzeni, Stefano; Chiadroni, Enrica; Ferrario, Massimo; Gatti, Claudio; Londrillo, Pasquale; Mostacci, Andrea; Massimo, Francesco; Palumbo, Luigi; Rossi, Andrea; Sinigardi, Stefano

    2014-10-01

    Considerable interest has been shown in the last few years in compact plasma accelerators characterized by extremely high accelerating gradients generated, e.g., by high brightness particle beams. PWFA is currently under investigation at SPARC Lab test facility (Frascati, Italy). Despite 1D model are too simple and limited to catch the whole underlying physics, they offer a simple and fast tool to assess possible working points. We discuss how these models can be analytically modified to extend their validity in the quasi-non-linear regime to phenomenologically account for damping effects. We also present 3D PIC simulations for emittance pressure dominated regimes. We discuss how elongated bunch, with a transverse dimension smaller than the longitudinal dimension, suffer from being drawn into the self-generated bubble and seed the two-stream instability in the witness bunch. A possible mechanism to reduce such an effect consists in using emittance-dominated bunch that can contrast the self-focusing force produced by the surrounding bubble.

  8. Attosecond Gamma-Ray Pulses via Nonlinear Compton Scattering in the Radiation-Dominated Regime

    NASA Astrophysics Data System (ADS)

    Li, Jian-Xing; Hatsagortsyan, Karen Z.; Galow, Benjamin J.; Keitel, Christoph H.

    2015-11-01

    The feasibility of the generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly focused superstrong laser beam in the radiation-dominated regime. The Compton scattering spectra of gamma radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and the radiation reaction are shown to be responsible for such short gamma-ray bursts, which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in the near future.

  9. Radiation pressure of standing waves on liquid columns and small diffusion flames

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.

    2002-11-01

    The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.

  10. Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2013-12-01

    Today, large model discrepancies exist in estimated cloud radiative effects (CREs) and irradiances across 1-D radiative transfer schemes aimed for climate models. The primary purpose of this study is to understand physical causes of such model discrepancies, especially in CREs under partly cloudy sky. To achieve this goal, the unique Cloud-Aerosol-Radiation (CAR) ensemble modeling system was employed, offline driven by the ERA-Interim global data for July 2004 with no feedback considered. For evaluating each individual contribution from the existing scheme diversity of cloud horizontal inhomogeneity, cloud optical properties, cloud vertical overlap, and gas absorptions, several sets of numerical experiments were conducted. It is the first time to explicitly demonstrate that after removing most of the disagreement in cloud fields, model spreads of CREs among the CAR's seven major radiation schemes, as well as those of radiative fluxes, dramatically diminish. Taking global mean CREs for example, their current model ranges can decrease to <4Wm-2 from about 10Wm-2 for shortwave and also to <4Wm-2 from 5-8Wm-2 for longwave. Dominant roles of subgrid-scale cloud structures (including vertical overlap and horizontal variability) were proven in general, explaining about 40 -75% of the total model spreads. We have also found that model spreads of CREs are very sensitive to cloud cover fractions. Such nonlinear sensitivity can be largely reduced after removing the model difference in the treatments of cloud vertical overlap.

  11. Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Liang, Xin-Zhong; Li, Jiangnan; Zeng, Qingcun

    2013-07-01

    Today, large model discrepancies exist in estimated cloud radiative effects (CREs) and irradiances across 1-D radiative transfer schemes aimed for climate models. The primary purpose of this study is to understand physical causes of such model discrepancies, especially in CREs under partly cloudy sky. To achieve this goal, the unique Cloud-Aerosol-Radiation (CAR) ensemble modeling system was employed, offline driven by the ERA-Interim global data for July 2004 with no feedback considered. For evaluating each individual contribution from the existing scheme diversity of cloud horizontal inhomogeneity, cloud optical properties, cloud vertical overlap, and gas absorptions, several sets of numerical experiments were conducted. It is the first time to explicitly demonstrate that after removing most of the disagreement in cloud fields, model spreads of CREs among the CAR's seven major radiation schemes, as well as those of radiative fluxes, dramatically diminish. Taking global mean CREs for example, their current model ranges can decrease to <4 W m-2 from about 10 W m-2 for shortwave and also to <4 W m-2 from 5-8 W m-2 for longwave. Dominant roles of subgrid-scale cloud structures (including vertical overlap and horizontal variability) were proven in general, explaining about 40-75% of the total model spreads. We have also found that model spreads of CREs are very sensitive to cloud cover fractions. Such nonlinear sensitivity can be largely reduced after removing the model difference in the treatments of cloud vertical overlap.

  12. Ly{alpha} DOMINANCE OF THE CLASSICAL T TAURI FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Schindhelm, Eric; France, Kevin; Brown, Alexander; Herczeg, Gregory J.; Bergin, Edwin; Yang Hao; Brown, Joanna M.; Linsky, Jeffrey L.; Valenti, Jeff

    2012-09-01

    Far-ultraviolet (FUV) radiation plays an important role in determining chemical abundances in protoplanetary disks. H I Lyman {alpha} (Ly{alpha}) is suspected to be the dominant component of the FUV emission from Classical T Tauri Stars (CTTSs), but is difficult to measure directly due to circumstellar and interstellar H I absorption. To better characterize the intrinsic Ly{alpha} radiation, we present FUV spectra of 14 CTTSs taken with the Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph instruments. H{sub 2} fluorescence, commonly seen in the spectra of CTTSs, is excited by Ly{alpha} photons, providing an indirect measure of the Ly{alpha} flux incident upon the warm disk surface. We use observed H{sub 2} progression fluxes to reconstruct the CTTS Ly{alpha} profiles. The Ly{alpha} flux correlates with total measured FUV flux, in agreement with an accretion-related source of FUV emission. With a geometry-independent analysis, we confirm that in accreting T Tauri systems Ly{alpha} radiation dominates the FUV flux ({approx}1150 A -1700 A). In the systems surveyed this one line comprises 70%-90% of the total FUV flux.

  13. Line Emission from Radiation-pressurized H II Regions. II. Dynamics and Population Synthesis

    NASA Astrophysics Data System (ADS)

    Verdolini, Silvia; Yeh, Sherry C. C.; Krumholz, Mark R.; Matzner, Christopher D.; Tielens, Alexander G. G. M.

    2013-05-01

    Optical and infrared emission lines from H II regions are an important diagnostic used to study galaxies, but interpretation of these lines requires significant modeling of both the internal structure and dynamical evolution of the emitting regions. Most of the models in common use today assume that H II region dynamics are dominated by the expansion of stellar wind bubbles, and have neglected the contribution of radiation pressure to the dynamics, and in some cases also to the internal structure. However, recent observations of nearby galaxies suggest that neither assumption is justified, motivating us to revisit the question of how H II region line emission depends on the physics of winds and radiation pressure. In a companion paper we construct models of single H II regions including and excluding radiation pressure and winds, and in this paper we describe a population synthesis code that uses these models to simulate galactic collections of H II regions with varying physical parameters. We show that the choice of physical parameters has significant effects on galactic emission line ratios, and that in some cases the line ratios can exceed previously claimed theoretical limits. Our results suggest that the recently reported offset in line ratio values between high-redshift star-forming galaxies and those in the local universe may be partially explained by the presence of large numbers of radiation-pressure-dominated H II regions within them.

  14. Apportioning sediment pressures on watercourses in grassland dominated agricultural catchments: a new framework for policy support

    NASA Astrophysics Data System (ADS)

    Collins, A.; Black, K.; Walling, D. E.; Wilson, P.

    2009-04-01

    Much of the effort directed towards monitoring and understanding soil erosion in the UK has focused upon arable farming systems, but the evidence base has suggested for some time that soil loss from grassland dominated landscapes can be enhanced by agricultural practises. Studies using composite source fingerprinting procedures have, for example, repeatedly highlighted the relative significance of managed pasture as a sediment source at catchment scale. Although traditional sediment sourcing approaches provide useful generic information for characterising sediment pressures, Catchment Officers working as part of the England Catchment Sensitive Farming Delivery Initiative (ECSFDI) also require higher resolution evidence to assist better the targeting of mitigation options. Accordingly, a new framework combining conventional sediment source fingerprinting and a dual signature tracking method has recently been tested in a grassland catchment in Cumbria, north-west England. The former provides information on the relative significance of generic sediment sources such as grassland or arable surface soils, damaged road verges and channel banks/subsurface sources, whereas the latter elucidates sediment loss from poached gateways or cattle tracks and wider areas of general hoofing damage in grass fields. Uncertainty and prior information are explicitly recognised by the novel framework.

  15. Off-shell suppressions and two body radiative processes in a vector dominance model

    SciTech Connect

    Lahiri, A.; Bagchi, B.; Gautam, V.P.; Nandy, A.

    1980-08-01

    The radiative decays of rho,K*, omega and phi are studied in a one-parameter vector dominance model by introducing corrections for the off-shell vector meson-photon coupling constants. It is found that off-shell values rho and omega are suppressed by 1/1.5 while off-shell phi is suppressed by 1/1.9 compared with their on-shell values. In addition, we have also considered P ..-->.. ..gamma.. ..gamma.. decays and sigma/sub tot/ (VP), and found generally good agreement with the available data.

  16. Venus exospheric structure - The role of solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1989-01-01

    The existence of a 'hot' population of hydrogen atoms in the Venus exosphere is well known. In the outer coronal region where it is dominant, r greater than about 2.0 R(V) (Venus radii), hydrogen atoms are also subject to a relatively strong radiation pressure exerted by resonant scattering of solar Lyman-alpha photons. Collisionless models illustrating the consequent structure are discussed, with the nonthermal population mimicked by a dual Maxwellian exobase kinetic distribution. In these models, a considerable fraction of the 'hot' atoms outside 2.0 R(V) belongs to the quasi-satellite component, this fraction exceeding 1/2 for r values between about 4.0 and 10.0 R(V). Solar ionization of bound atoms occurs mainly outside the ionopause, yielding a partial escape flux greater than about 2,000,000/sq cm per sec over the dayside exobase for assumed solar conditions. The inclusion of a cold exobase prescribed by Pioneer Venus observations has little influence on the outer region (in particular, the quasi-satellite component is unaltered) except that the transition to 'hot' kinetic character occurs closer to the exobase on the nightside due to the colder main exobase temperatures there.

  17. Radiation interactions in high-pressure gases

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN )

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V{sub 0} < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur.

  18. Pressure-Induced Structural Transformation in Radiation-Amorphized Zircon

    SciTech Connect

    Trachenko, Kostya; Dove, Martin T.; Salje, E. K. H.; Brazhkin, V. V.; Tsiok, O. B.

    2007-03-30

    We study the response of a radiation-amorphized material to high pressure. We have used zircon ZrSiO{sub 4} amorphized by natural radiation over geologic times, and have measured its volume under high pressure, using the precise strain-gauge technique. On pressure increase, we observe apparent softening of the material, starting from 4 GPa. Using molecular dynamics simulation, we associate this softening with the amorphous-amorphous transformation accompanied by the increase of local coordination numbers. We observe permanent densification of the quenched sample and a nontrivial 'pressure window' at high temperature. These features point to a new class of amorphous materials that show a response to pressure which is distinctly different from that of crystals.

  19. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts.

    PubMed

    Thornhill, Daniel J; Lewis, Allison M; Wham, Drew C; LaJeunesse, Todd C

    2014-02-01

    Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosymbiotic dinoflagellates found in reef-building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbA(ncr)), and multilocus microsatellite genotyping. Through a hierarchical analysis of high-resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lineages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo-history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population-genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont's host specificity, water depth distribution, and phylogeography with paleo-historical signals of climate change, we inferred that present-day species diversity on Atlantic coral reefs stemmed mostly from a post-Miocene adaptive radiation. Host-generalist progenitors spread, specialized, and diversified during the ensuing epochs of prolonged global cooling and change in reef-faunal assemblages. Our evolutionary reconstruction thus suggests that Symbiodinium undergoes "boom and bust" phases in diversification and extinction during major climate shifts. PMID:24134732

  20. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  1. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    NASA Astrophysics Data System (ADS)

    Wolff, Michael Thomas; Becker, Peter A.; Gottlieb, Amy; Fuerst, Felix; Britton Hemphill, Paul; Marcu-Cheatham, Diana; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Joern; Wood, Kent

    2016-04-01

    We report on new spectral modeling of an observation of the accreting X-ray pulsar Her X-1 by the Nuclear Spectroscopic Telescope Array (NuSTAR). We utilize a radiation-dominated radiative shock model that is an implementation of the analytic work of Becker & Wolff (2007) on Comptonized accretion flows onto magnetic neutron stars within the XSPEC analysis environment. We obtain a good fit to the Her X-1 spin-phase averaged 4 to 78 keV X-ray spectrum observed by NuSTAR during a main-on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous spectral models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the details of our spectral fitting model and we discuss the interpretation of the resulting accretion flow physical parameters.This research is supported by the NASA Astrophysics Data Analysis Program.

  2. Variation of sodium on Mercury with solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1987-01-01

    It has been suggested that nonthermal Na atoms with velocities in excess of 2.1 km/sec in the Mercury atmosphere can be accelerated off the planet by solar radiation pressure; Na abundance may accordingly be expected to decrease with increasing radiation pressure. While this is confirmed by the present measurements, high resolution line profile measurements on Na emission indicate that very little, if any, of the Na is nonthermal, while the bulk is at a temperature approaching that of the planetary surface. Attention is given to explanations for the observed variation.

  3. Observation of Nonclassical Radiation Pressure Forces on a Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy; Lecocq, Florent; Simmonds, Raymond; Aumentado, Jose; Teufel, John

    Squeezed states of light are known to be useful for enhancing mechanical displacement sensing since they can be tailored to reduce the ``photon counting noise'' that limits the measurement's noise floor. On the other hand, recent experiments in cavity optomechanics have reached measurement regimes where an interrogating light field exerts radiation pressure noise on a mechanical oscillator. One outstanding challenge has been to explore the intersection between such experiments. I will present data obtained using a superconducting cavity optomechanical system wherein a mechanical oscillator is driven by nonclassical radiation pressure imparted by squeezed microwave fields. JBC acknowledges the NRC for financial support.

  4. Radiation Pressure on Fluffy Submicron-sized Grains

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Draine, Bruce T.

    2016-02-01

    We investigate the claim that the ratio β of radiation pressure force to gravitational force on a dust grain in our solar system can substantially exceed unity for some grain sizes, provided that grain porosity is high enough. For model grains consisting of random aggregates of silicate spherules, we find that the maximum value of β is almost independent of grain porosity, but for small (\\lt 0.3 μ {{m}}) grains, β actually decreases with increasing porosity. We also investigate the effect of metallic iron and amorphous carbon inclusions in the dust grains and find that while these inclusions do increase the radiation pressure cross-section, β remains below unity for grains with 3 pg of silicate material. These results affect the interpretation of the grain trajectories estimated from the Stardust mission, which were modeled assuming β values exceeding one. We find that radiation pressure effects are not large enough for particles Orion and Hylabrook captured by Stardust to be of interstellar origin given their reported impact velocities. We also consider the effects of solar radiation on transverse velocities and grain spin, and show that radiation pressure introduces both transverse velocities and equatorial spin velocities of several hundred meters per second for incoming interstellar grains at 2 au. These transverse velocities are not important for modeling trajectories, but such spin rates may result in centrifugal disruption of aggregates.

  5. Radiation-induced decomposition of PETN and TATB under pressure

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Liermann, Hanns-Peter; Yang, Wenge

    2008-10-02

    We have investigated decomposition of PETN and TATB induced by white synchrotron X-ray radiation in a diamond anvil cell at ambient temperature and two pressures, nearly ambient and about 6 GPa. The decomposition rate of TATB decreases significantly when it is pressurized to 5.9 GPa. The measurements were highly reproducible and allowed us to obtain decomposition rates and the order parameters of the reactions.

  6. The solar radiation pressure on the Mariner 9 Mars orbiter.

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1973-01-01

    The refined mathematical model of the force created by the light pressure of the sun has been used to compute the solar radiation pressure force acting on the Mariner 9 (Mariner Mars 1971) spacecraft, taking into account the reflectivity characteristics of all its components. The results have been compared with values obtained from Mariner 9 observations during the cruise phase and are found to be in agreement within 0.1% of the values.

  7. The solar radiation pressure on the Mariner 9 Mars orbiter

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1973-01-01

    The refined mathematical model of the force created by the light pressure of the sun has been used to compute the solar radiation pressure force acting on the Mariner 9 (Mariner Mars 1971) spacecraft, taking into account the reflectivity characteristics of all its components. The results have been compared with values obtained from Mariner 9 observations during the cruise phase and are found to be in agreement within 0.1% of the values.

  8. The solar radiation pressure on the Mariner 9 Mars orbiter

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1972-01-01

    The refined mathematical model of the force created by the light pressure of the Sun was used to compute the solar radiation pressure force acting on the Mariner 9 (Mariner Mars 1971) spacecraft, taking into account the reflectivity characteristics of all its components. The results were compared with values obtained from Mariner 9 observations during the cruise phase and found to be in agreement within 0.1% of the values.

  9. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Astrophysics Data System (ADS)

    Page, Arthur T.

    2001-07-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  10. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  11. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  12. Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-03-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally show the existence of an exopause that appears naturally as the external limit for bounded particles, above which all particles are escaping.

  13. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Carlson, Markus A; Osgood, Ryan J; Zhao, Chunmei; Huang, Zhongdong; Thompson, Curtis B; Connor, Robert J; Thanos, Christopher D; Scott Brockenbrough, J; Provenzano, Paolo P; Frost, Gregory I; Michael Shepard, H; Hingorani, Sunil R

    2016-05-10

    Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism. PMID:27166818

  14. Effect of background gas pressure and laser pulse intensity on laser induced plasma radiation of copper samples

    NASA Astrophysics Data System (ADS)

    Mehrabian, S.; Aghaei, M.; Tavassoli, S. H.

    2010-04-01

    Study of laser induced plasma emission of Cu in one dimension is numerically carried out. Effects of different background gas pressure (He), 100, 500, and 760 torr, and laser pulse intensities, 0.5, 0.7, and 1 GW/cm2, on the plasma emission as well as ablation processes are investigated. Under a specified condition, heat conduction equation in the target accompanied with gas dynamic equations in the plume is solved simultaneously. The mentioned equations are coupled to each other through the Knudsen layer conditions and the energy and mass balances at the interface between the target and the vapor. The Bremsstrahlung radiation of plasma and the spectral emission of copper atoms are studied under various background gas pressure and laser pulse intensities. Furthermore, number density of He, Cu, and the electron, pressure, and temperature of the plume under various conditions are obtained. In the early time after laser pulse, plasma radiation is mainly due to the Bremsstrahlung radiation while after some 10 ns, the plasma radiation is dominated by spectral emission of Cu atoms. A similar uncoupling is observed spatially. The Bremsstrahlung emission is dominant near the sample surface while at farther points the spectral emission is the dominant one. By increase in the background pressure and also the pulse intensity, the dominancy of the spectral emission would occur later in time and farther in position.

  15. Flow cytometric characterization of rat thymus cells in a radiation-dominated model of combined injury

    SciTech Connect

    Kaffenberger, W.; Gruber, D.F.; MacVittie, T.J.

    1988-05-01

    Thymuses of rats that had been: a) gamma-irradiated (500 cGy whole-body radiation (R)), or b) thermally injured (20% BSA dorsal, scald burn (TI)), or c) combined injured (irradiation followed by burn (CI)) were studied for involution and recovery processes after sublethal treatments. The expression of surface antigens on thymic cells before and after injuries was evaluated using the monoclonal antibodies (mcAB) MRC OX4, MRC OX7, MRC OX8, W3/13 HLK, and W3/25 and flow cytometric analysis. Thymic cellularity decreased to less than 1% of normal (N), age-matched rats by 4 days after R or CI. Recovery reached 60% to 70% of N by 28 days post treatments. TI caused a biphasic thymic recovery pattern with nadirs of 40% of N on days 7 and 21. Recovery at day 28 was similar to that after R and CI. Expression of OX7, OX8, W3/13, and W3/25 antigens all reached nadirs of 40% of N by day 4 after R and CI. Recovery of antigen expression, except for W3/25, was near completion by day 7 after R and CI. Changes in antigen expression after TI were less pronounced for all mcAB tested. Decreases in labeling of thymocytes with the helper T-cell marker, W3/25, observed after TI, could not be correlated with elevated expressions of the suppressor/cytotoxic T-lymphocyte antigen, OX8. Variations in relative labeling of nonlymphoid thymic cells with OX4 (Ia-antigen) reflected the disappearance and recovery of radiosensitive lymphoid thymocytes. The similarity of results after R and CI demonstrate that the model of CI is radiation-dominated. The addition of burn injury to radiation trauma had no synergistically damaging effect on the parameters studied.

  16. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  17. Improved Solar-Radiation-Pressure Models for GPS Satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  18. Radiation pressure cross sections of model fluffy interstellar particles

    NASA Astrophysics Data System (ADS)

    Saija, R.; Iatì, M. A.; Giusto, A.; Denti, P.; Borghese, F.; Cecchi-Pestellini, C.; Aiello, S.; Barsella, B.

    Radiation presssure forces affect the dynamical behaviour of dust particles in several astrophysical environments. For a given grain mass and composition, the optical response and the radiation pressure cross sections are critically dependent on morphology. It is likely that interstellar grains take their origin from aggregation of small particles thus resulting in more or less fluffy aggregates. These kind of structures have been widely exploited in the literature by the use of approximate methods (effective medium theories). In this work we computed the radiation pressure cross sections of composite fluffy grains through the transition matrix method considering silicates aggregates made up of a large number of spherical subunits (up to 200). The results obtained, without resorting to any approximation, show that radiation pressure cross sections decrease with increasing particles fluffiness in the near UV-visible range of the spectrum. This is due to the decrease of the corresponding strenght of the multiple scattering processes that couple the aggregated spheres to each other. As a result, the inertial response to radiation forces of highly porous aggregates tends to become similar to that of the constituents particles. These conclusions are in substantial agreement with the results obtained by Mukai et al.(Astron. Astrophys. 262, 315 (1992)). For an analysis of the dynamical behaviour (expulsion from galaxies) of small aggregates see the results presented in this meeting by S. Aiello et al..

  19. Ionization Parameter as a Diagnostic of Radiation and Wind Pressures in H II Regions and Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Matzner, Christopher D.

    2012-10-01

    The ionization parameter {\\cal U} is potentially useful as a tool to measure radiation pressure feedback from massive star clusters, as it directly reflects the ratio of radiation to gas pressure and is readily derived from mid-infrared line ratios. We consider a number of physical effects which combine to determine the apparent value of {\\cal U} in observations encompassing one or many H II regions. An upper limit is set by the compression of gas by radiation pressure, when this is important. The pressure of shocked stellar winds and the presence of neutral clumps both tend to reduce {\\cal U} for a given intensity of irradiation. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, leading to a bias for observations on galactic scales. We explore these effects in analytical and numerical models for dusty H II regions and use them to interpret previous observational results. We find that radiation pressure confinement sets the upper limit log _{10} {\\cal U}\\simeq -1 seen in individual regions. Unresolved starbursts are known to display a maximum value of ~= - 2.3. While lower, this is also consistent with a large portion of their H II regions being radiation pressure dominated, given the different technique used to interpret unresolved regions, and given the bias caused by dust absorption. We infer that many individual, strongly illuminated regions cannot be significantly overpressured by stellar winds, and that even when averaged on galactic scales, the shocked wind pressure cannot be large compared to radiation pressure. Therefore, most H II regions cannot be adiabatic wind bubbles. Our models imply a metallicity dependence in the physical structure and dust attenuation of radiation-dominated regions, both of which should vary strongly across a critical metallicity of about one-twentieth solar.

  20. IONIZATION PARAMETER AS A DIAGNOSTIC OF RADIATION AND WIND PRESSURES IN H II REGIONS AND STARBURST GALAXIES

    SciTech Connect

    Yeh, Sherry C. C.; Matzner, Christopher D.

    2012-10-01

    The ionization parameter U is potentially useful as a tool to measure radiation pressure feedback from massive star clusters, as it directly reflects the ratio of radiation to gas pressure and is readily derived from mid-infrared line ratios. We consider a number of physical effects which combine to determine the apparent value of U in observations encompassing one or many H II regions. An upper limit is set by the compression of gas by radiation pressure, when this is important. The pressure of shocked stellar winds and the presence of neutral clumps both tend to reduce U for a given intensity of irradiation. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, leading to a bias for observations on galactic scales. We explore these effects in analytical and numerical models for dusty H II regions and use them to interpret previous observational results. We find that radiation pressure confinement sets the upper limit log{sub 10}U{approx_equal}-1 seen in individual regions. Unresolved starbursts are known to display a maximum value of {approx_equal} - 2.3. While lower, this is also consistent with a large portion of their H II regions being radiation pressure dominated, given the different technique used to interpret unresolved regions, and given the bias caused by dust absorption. We infer that many individual, strongly illuminated regions cannot be significantly overpressured by stellar winds, and that even when averaged on galactic scales, the shocked wind pressure cannot be large compared to radiation pressure. Therefore, most H II regions cannot be adiabatic wind bubbles. Our models imply a metallicity dependence in the physical structure and dust attenuation of radiation-dominated regions, both of which should vary strongly across a critical metallicity of about one-twentieth solar.

  1. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy B.; Lecocq, Florent; Simmonds, Raymond W.; Aumentado, José; Teufel, John D.

    2016-07-01

    In quantum-enhanced sensing, non-classical states are used to improve the sensitivity of a measurement. Squeezed light, in particular, has proved a useful resource in enhanced mechanical displacement sensing, although the fundamental limit to this enhancement due to the Heisenberg uncertainty principle has not been encountered experimentally. Here we use a microwave cavity optomechanical system to observe the squeezing-dependent radiation pressure noise that necessarily accompanies any quantum enhancement of the measurement precision and ultimately limits the measurement noise performance. By increasing the measurement strength so that radiation pressure forces dominate the thermal motion of the mechanical oscillator, we exploit the optomechanical interaction to implement an efficient quantum nondemolition measurement of the squeezed light. Thus, our results show how the mechanical oscillator improves the measurement of non-classical light, just as non-classical light enhances the measurement of the motion.

  2. Constraining the Dynamical Importance of Hot Gas and Radiation Pressure in Quasar Outflows Using Emission Line Ratios

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Faucher-Giguère, Claude-André; Zakamska, Nadia L.; Hennawi, Joseph F.

    2016-03-01

    Quasar feedback models often predict an expanding hot gas bubble that drives a galaxy-scale outflow. In many circumstances this hot gas radiates inefficiently and is therefore difficult to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization calculations of the cold (∼ {10}4 {{K}}) line-emitting gas. We compare our calculations with observations of the broad line region, the inner face of the torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure at distances 0.1 {{pc}}{--}10 {{kpc}} from the center. We find that emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales \\lt 40 {{pc}} a dynamically significant hot gas pressure is ruled out, while on larger scales the hot gas pressure cannot exceed six times the local radiation pressure. In individual quasars, ≈25% of quasars exhibit NLR ratios that are inconsistent with radiation-pressure-dominated models, although in these objects the hot gas pressure is also unlikely to exceed the radiation pressure by an order of magnitude or more. The derived upper limits on the hot gas pressure imply that the instantaneous gas pressure force acting on galaxy-scale outflows falls short of the time-averaged force needed to explain the large momentum fluxes \\dot{p}\\gg {L}{{AGN}}/c inferred for galaxy-scale outflows. This apparent discrepancy can be reconciled if optical quasars previously experienced a buried, fully obscured phase during which the hot gas bubble was more effectively confined and during which galactic wind acceleration occurred.

  3. Influence of Solar Radiation Pressure on Satellite Surfaces

    NASA Astrophysics Data System (ADS)

    Kigel, Maryna; Bremer, Stefanie; List, Meike; Rievers, Benny; Rievers, Benny

    In its orbit the satellite's motion is affected by several environmental disturbances. One of these disturbing effects is the solar radiation pressure, which can be modeled adequately by assuming that incident radiation is absorbed, reflected specularly or/and reflected diffuse. At the German institute ZARM (Center of Applied Space Technology and Microgravity) an al-gorithm for the determination of resulting disturbance forces and torques due to solar radiation pressure has been developed. The source code has been tested and compared with analytically obtained values, results will be presented. Since the solar radiation pressure will be considered in the disturbance analysis of the small satellite mission MICROSCOPE, an accurate modelling of the resulting effects is necessary. Thus the algorithm has to be considered for the end-to-end simulation of this mission anyway. For these purposes a finite element model (FEM) of the MICROSCOPE satellite's surfaces structure is built, geometry and surface properties are taken from this model. First results of this study will be reported.

  4. Radiation pressure confinement - II. Application to the broad-line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-02-01

    Active galactic nuclei (AGN) are characterized by similar broad emission lines properties at all luminosities (1039 - 1047 erg s-1). What produces this similarity over a vast range of 108 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the broad-line region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas with a large enough column for gravity to dominate. The photoionized surface layer of the gas must develop a pressure gradient due to the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly ionized surface layer, a density rise inwards and a uniform-density cooler inner region, where the gas pressure reaches the incident radiation pressure. This radiation pressure confinement (RPC) of the photoionized layer leads to a universal ionization parameter U ˜ 0.1 in the inner photoionized layer, independent of luminosity and distance. Thus, RPC appears to explain the universality of the BLR properties in AGN. We present predictions for the BLR emission per unit covering factor, as a function of distance from the ionizing source, for a range of ionizing continuum slopes and gas metallicity. The predicted mean strength of most lines (excluding H β), and their different average-emission radii, are consistent with available observations.

  5. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure. PMID:25265908

  6. Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer.

    PubMed Central

    Hino, O; Klein-Szanto, A J; Freed, J J; Testa, J R; Brown, D Q; Vilensky, M; Yeung, R S; Tartof, K D; Knudson, A G

    1993-01-01

    Hereditary renal carcinoma (RC) in the rat, originally reported by R. Eker in 1954, is an example of a Mendelian dominant predisposition to a specific cancer in an experimental animal. At the histologic level, RCs develop through multiple stages from early preneoplastic lesions (e.g., atypical tubules) to adenomas in virtually all heterozygotes by the age of 1 year. The homozygous mutant condition is lethal at approximately 10 days of fetal life. Ionizing radiation induces additional tumors in a linear dose-response relationship, suggesting that in heterozygotes two events (one inherited, one somatic) are necessary to produce tumors, and that the predisposing gene is a tumor suppressor gene. No genetic linkage has yet been found between the Eker mutation and rat DNA sequences homologous to those in human chromosome 3p, the presumed site of the putative tumor suppressor gene responsible for human RC. Nonrandom loss of rat chromosome 5 in RC-derived cell lines is sometimes associated with homozygous deletion of the interferon gene loci at rat chromosome bands 5q31-q33. Since this locus is not linked with the predisposing inherited gene in the Eker rat, it probably represents a second tumor suppressor gene involved in tumor progression. Images PMID:8419937

  7. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model

    PubMed Central

    Layton, Anita T.

    2014-01-01

    We have developed a whole kidney model of the urine concentrating mechanism and renal autoregulation. The model represents the tubuloglomerular feedback (TGF) and myogenic mechanisms, which together affect the resistance of the afferent arteriole and thus glomerular filtration rate. TGF is activated by fluctuations in macula densa [Cl−] and the myogefnic mechanism by changes in hydrostatic pressure. The model was used to investigate the relative contributions of medullary blood flow autoregulation and inhibition of transport in the proximal convoluted tubule to pressure natriuresis in both diuresis and antidiuresis. The model predicts that medullary blood flow autoregulation, which only affects the interstitial solute composition in the model, has negligible influence on the rate of NaCl excretion. However, it exerts a significant effect on urine flow, particularly in the antidiuretic kidney. This suggests that interstitial washout has significant implications for the maintenance of hydration status but little direct bearing on salt excretion, and that medullary blood flow may only play a signaling role for stimulating a pressure-natriuresis response. Inhibited reabsorption in the model proximal convoluted tubule is capable of driving pressure natriuresis when the known actions of vasopressin on the collecting duct epithelium are taken into account. PMID:24553433

  8. Radiation-pressure-supported obscuring tori around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Radiation pressure acting on dust grains can support the vertical thickness of the obscuring tori believed to exist in active galactic nuclei. Using the results of 2D radiation transfer calculations, we evaluate the radiation force acting on these tori. We find that on the inner edge of the torus the radiation force is about 350 l(E) times the gravitational force of the nucleus, where l(E) is the Eddington ratio. Beyond a few torus heights from the inner edge, the radiation force is negligible with respect to gravity. However, between these two extremes lies a region of considerable size where the ratio of radiation force to gravity is nearly constant and can be of order unity for l(E) about 0.1. If the distribution of material within the torus is sufficiently lumpy, there is a significant time-varying component to the radiation force. This drives the random motions of the constituent clouds, thickening the torus at lower values of l(E).

  9. The Role of Radiation Pressure in Assembling Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Tsz-Ho Tsang, Benny; Milosavljevic, Milos

    2016-06-01

    Super star clusters are the most extreme star-forming regions of the Universe - they occupy the most massive end of the Kennicutt-Schmidt relation, forming stars at exceptionally high rates and gas surface densities. The radiation feedback from the dense population of massive stars is expected to play a dynamic role during the assembly of the clusters, and represents a potential mechanism for launching large-scale galactic outflows. Observationally, large distances and dust obscuration have been withholding clues about the early stages of massive cluster formation; theoretically, the lack of accurate and efficient radiation transfer schemes in multi-dimensional hydrodynamic simulations has been deterring our understanding of radiative feedback. By extending the adaptive mesh refinement code FLASH with a closure-free, Monte Carlo radiation transport scheme, we perform 3D radiation hydrodynamical simulations of super star cluster formation from the collapse of turbulent molecular clouds. Our simulations probe the star formation in densities typical for starbursts, with both non-ionizing UV and dust-reprocessed IR radiation treated self-consistently. We aim to determine the role of radiation pressure in regulating star formation, and its capacity in driving intense outflows.

  10. Solar radiation pressure effects on the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.

  11. Propagation of waves in a medium with high radiation pressure

    NASA Technical Reports Server (NTRS)

    Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.

    1979-01-01

    The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.

  12. Multi-dimensional effects in radiation pressure acceleration of ions

    SciTech Connect

    Tripathi, V. K.

    2015-07-31

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-mono energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.

  13. The motion of axisymmetric satellite with drag and radiation pressure

    NASA Astrophysics Data System (ADS)

    Elshaboury, S. M.; Mostafa, A.

    2014-08-01

    The axisymmetric satellite problem including radiation pressure and drag is treated. The equations of motion of the satellite are derived. The energy-like and Laplace-like invariants of motion have been derived for a general drag force function of the polar angle, and the Laplace-like invariant is used to find the orbit equation in the case of a spherical satellite. Then using the small parameter, the orbit of the satellite is determined for an axisymmetric satellite.

  14. Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise

    NASA Astrophysics Data System (ADS)

    Teufel, J. D.; Lecocq, F.; Simmonds, R. W.

    2016-01-01

    We measure the fundamental noise processes associated with a continuous linear position measurement of a micromechanical membrane incorporated in a microwave cavity optomechanical circuit. We observe the trade-off between the two fundamental sources of noise that enforce the standard quantum limit: the measurement imprecision and radiation pressure backaction from photon shot noise. We demonstrate that the quantum backaction of the measurement can overwhelm the intrinsic thermal motion by 24 dB, entering a new regime for cavity optomechanical systems.

  15. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  16. SAPT units turn-on in an interference-dominant environment. [Stand Alone Pressure Transducer

    NASA Technical Reports Server (NTRS)

    Peng, W.-C.; Yang, C.-C.; Lichtenberg, C.

    1990-01-01

    A stand alone pressure transducer (SAPT) is a credit-card-sized smart pressure sensor inserted between the tile and the aluminum skin of a space shuttle. Reliably initiating the SAPT units via RF signals in a prelaunch environment is a challenging problem. Multiple-source interference may exist if more than one GSE (ground support equipment) antenna is turned on at the same time to meet the simultaneity requirement of 10 ms. A polygon model for orbiter, external tank, solid rocket booster, and tail service masts is used to simulate the prelaunch environment. Geometric optics is then applied to identify the coverage areas and the areas which are vulnerable to multipath and/or multiple-source interference. Simulation results show that the underside areas of an orbiter have incidence angles exceeding 80 deg. For multipath interference, both sides of the cargo bay areas are found to be vulnerable to a worst-case multipath loss exceeding 20 dB. Multiple-source interference areas are also identified. Mitigation methods for the coverage and interference problem are described. It is shown that multiple-source interference can be eliminated (or controlled) using the time-division-multiplexing method or the time-stamp approach.

  17. Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

    SciTech Connect

    Murray, Louise J.; Lilley, John; Thompson, Christopher M.; Cosgrove, Vivian; Mason, Josh; Sykes, Jonathan; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2014-06-01

    Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal

  18. Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas

    2003-01-01

    A report proposes a method of utilizing solar-radiation pressure to keep the axis of rotation of a small spin-stabilized spacecraft pointed approximately (typically, within an angle of 10 deg to 20 deg) toward the Sun. Axisymmetry is not required. Simple tilted planar vanes would be attached to the outer surface of the body, so that the resulting spacecraft would vaguely resemble a rotary fan, windmill, or propeller. The vanes would be painted black for absorption of Solar radiation. A theoretical analysis based on principles of geometric optics and mechanics has shown that torques produced by Solar-radiation pressure would cause the axis of rotation to precess toward Sun-pointing. The required vane size would be a function of the angular momentum of the spacecraft and the maximum acceptable angular deviation from Sun-pointing. The analysis also shows that the torques produced by the vanes would slowly despin the spacecraft -- an effect that could be counteracted by adding specularly reflecting "spin-up" vanes.

  19. Point defects in (Mg,Fe)O at high pressures: where does hydrogen dominate over ferric iron?

    NASA Astrophysics Data System (ADS)

    Otsuka, K.; Karato, S.

    2007-12-01

    The point defects play an important role in transport processes of minerals including diffusion, electrical conduction and plastic deformation. Point defects caused by ferric iron and/or hydrogen (proton) are dominant defects in most of the iron-bearing minerals including olivine and (Mg,Fe)O. In many upper-mantle minerals such as olivine, the concentration of ferric iron is much smaller than that of hydrogen, and therefore the small amount of hydrogen changes their transport properties dramatically. However, the situation is very different for lower- mantle minerals such as (Mg,Fe)O. In this presentation, we will review the available experimental data on point defects in (Mg,Fe)O and discuss the relative importance of ferric iron and hydrogen at high pressures based on atomic models. The existing low-pressure data indicate that the maximum solubility of ferric iron in (Mg,Fe)O is on the order of 0.1 (atomic fraction in the total iron), which is much higher than that of hydrogen. However, experimental studies by Bolfan-Casanova et al (2002, 2006) indicate that the solubility of ferric iron decreases while that of hydrogen increases with pressure. This suggests that the dominant impurity to generate point defects in (Mg,Fe)O may change from ferric iron to hydrogen at high pressure. Therefore it is important to quantify the pressure dependence of the solubility of ferric iron and hydrogen. We have explored two models of ferric iron- related defects and found that the existing experimental data suggest that ferric iron may occur at two lattice sites: the tetrahedral site as interstitial atoms as well as the octahedral site. The pressure dependence of the solubility of hydrogen in (Mg,Fe)O are also estimated based on the experimental data and defect models. The cross-over of defect solubility likely occurs in the lower mantle, but the exact depth is poorly constrained because of large uncertainties in the hydrogen solubility and the mechanisms of hydrogen dissolution

  20. Evolution of Nickel-Manganese-Silicon Dominated Phases in Highly Irradiated Reactor Pressure Vessel Steels

    SciTech Connect

    Peter B Wells; Yuan Wu; Tim Milot; G. Robert Odette; Takuya Yamamoto; Brandon Miller; James Cole

    2014-11-01

    Formation of a high density of Ni-Mn-Si nm-scale precipitates in irradiated reactor pressure vessel steels, both with and without Cu, could lead to severe embrittlement. Models long ago predicted that these precipitates, which are not treated in current embrittlement regulations, would emerge only at high fluence. However, the mechanisms and variables that control Ni-Mn- Si precipitate formation, and their detailed characteristics, have not been well understood. High flux irradiations of six steels with systematic variations in Cu and Ni were carried out at ˜ 295±5°C to high and very high neutron fluences of ˜ 1.3x1020 and 1.1x1021 n/cm2. Atom probe tomography (APT) shows that significant mole fractions of these precipitates form in the Cu bearing steels at ˜ 1.3x1020 n/cm2, while they are only beginning to develop in Cu-free steels. However, large mole fractions, far in excess of those found in previous studies, are observed at 1.1x1021 n/cm2 at all Cu levels. The precipitates diffract, and in one case are compositionally and structurally consistent with the Mn6Ni16Si7 G-phase. At the highest fluence, the large precipitate mole fractions primarily depend on the steel Ni content, rather than Cu, and lead to enormous strength increases up to about 700 MPa. The implications of these results to light water reactor life extension are discussed briefly.

  1. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  2. Photon-dominated regions around cool stars: The effects of the color temperature of the radiation field

    NASA Technical Reports Server (NTRS)

    Spaans, Marco; Tielens, A. G. G. M.; Dishoeck, Ewine F. Van; Bakes, E. L. O.

    1994-01-01

    We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.

  3. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  4. ACTIVE GALACTIC NUCLEUS OBSCURATION THROUGH DUSTY INFRARED-DOMINATED FLOWS. I. RADIATION-HYDRODYNAMICS SOLUTION FOR THE WIND

    SciTech Connect

    Dorodnitsyn, A.; Kallman, T.; Bisnovatyi-Kogan, G. S.

    2011-11-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scales by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the two-dimensional radiation transfer problem in a flux-limited diffusion approximation. We iteratively couple the solution with calculations of stationary one-dimensional models for the wind and obtain the z-component of the velocity. Our results demonstrate that for active galactic nucleus (AGN) luminosities greater than 0.1 L{sub edd}, external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < {tau}{sub T} < 0.6) is comparable to or greater than the escape velocity. In Compton-thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  5. Sitnikov restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Suraj, Md Sanam; Hassan, M. R.

    2014-02-01

    An analytical study of the elliptic Sitnikov restricted four-body problem when all the primaries as source of same radiation pressure is presented. We find a solution, which is valid for small bounded oscillations in case of moderate eccentricity of the primary. We have linearized the equation of motion to obtain the Hill's type equation. Using the Courant and Snyder transformation, Hill's equation transformed into harmonic oscillator type equation. We have used the Lindstedt-Poincare perturbation method and again we have applied the Courant and Snyder transformation to obtain the final result.

  6. Lorentz force and radiation pressure on a spherical cloak

    SciTech Connect

    Chen Hongsheng; Wu, B.-I.; Zhang Baile; Luo Yu; Zhang Jingjing; Ran Lixin; Kemp, Brandon A.

    2009-07-15

    The mechanical behavior of a transformation based spherical cloak under wave illumination is derived. We show that the equatorial region of the cloak is subject to much higher stress than the polar regions, where the polar axis is defined along the wave propagation direction. These forces do not exist before transformation but stem from the squeezed electromagnetic space. The trajectory of the ray can be interpreted as a result of the recoil force that the cloak exerts upon the ray. The total radiation pressure on an ideal cloak is shown to be exactly zero, effecting a stationary cloak.

  7. Quasar Structure Emerges from the Three Forms of Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    2012-08-01

    All quasar spectra show the same atomic features in the optical, UV, near-IR and soft X-rays over all of cosmic time, luminosity black hole mass and accretion rate. This is a puzzle. Here I show that it is possible that all of these atomic features can be accounted for by gas from an accretion disk driven the three forms of radiation pressure: electron scattering, line driving and dust driving. The locations where they successfully drive an escaping wind, and those where they produce only a failed wind are both needed.

  8. Differential response of mouse male germ-cell stages to radiation-induced specific-locus and dominant mutations.

    PubMed Central

    Russell, W L; Bangham, J W; Russell, L B

    1998-01-01

    In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically tested for recessive mutations at seven specific loci and for externally recognizable dominant mutations. Productivity findings provided a rough measure of induced dominant-lethal frequencies. A qualitative assessment of specific-locus mutations (which include deletions and other rearrangements) was made on the basis of homozygosity test results, as well as from information derived from more recent complementation studies and molecular analyses. Both recessive and dominant visibles revealed clear distinctions between spermatogonia and postspermatogonial stages. In addition, differences for both of these endpoints, as well as for presumed dominant lethals, were found among various postspermatogonial stages. It may be concluded that radiation produces its maximum rates of genetic damage in germ-cell stages ranging from midpachytene spermatocytes through early spermatids, a pattern unlike any of those that have been defined for chemicals; further, the frequency peaks for radiation are lower and broader. The difference between post-stem-cell stages overall and stem-cell spermatogonia was smaller than is generally found with chemicals, not only with respect to the frequency but also the nature of mutations. PMID:9560376

  9. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications.

    PubMed

    Gog, T; Casa, D M; Kuzmenko, I; Krakora, R J; Bolin, T B

    2007-07-01

    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering. PMID:17587659

  10. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  11. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  12. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    NASA Astrophysics Data System (ADS)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  13. The Detection of Pressure Fluctuations, Sonic Audition, Is the Dominant Mode of Dipole-Source Detection in Goldfish (Carassius auratus)

    PubMed Central

    Dailey, Deena D.; Braun, Christopher B.

    2009-01-01

    Behavioral detection of a low-frequency (40 Hz) vibratory dipole at source distances of 1.5–24 cm was measured by classically conditioned respiratory suppression in goldfish (Carassius auratus). Detection thresholds were compared across distances and before and after ablation of individual octavolateralis sensory channels. Detection thresholds, expressed in units of pressure (SPL), remained roughly constant as distance between the stimulus source and animal increased. Lateral line inactivation, using CoCl2, had no measurable effect on sensitivity, although some other results can be construed as weak evidence for a small contribution of the lateral line to dipole detection when source distances are ≤6 cm (<1 body length). Gas bladder deflation resulted in a large increase in threshold (17 dB), demonstrating that the gas bladder contributes to audition at low frequencies. The present study confirms an auditory role for the gas bladder–enhanced inner ear of goldfish in the detection of low-frequency vibratory sources. Sonic audition (detection of pressure fluctuations) appears to be the dominant mode of dipole-source detection for goldfish when measured by conditioned behaviors in psychophysical experiments. PMID:19364230

  14. Squeezed-state source using radiation-pressure-induced rigidity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Mavalvala, Nergis; Chen Yanbei; Khalili, Farid; Vyatchanin, Sergey; Whitcomb, Stan

    2006-02-15

    We propose an experiment to extract ponderomotive squeezing from an interferometer with high circulating power and low mass mirrors. In this interferometer, optical resonances of the arm cavities are detuned from the laser frequency, creating a mechanical rigidity that dramatically suppresses displacement noises. After taking into account imperfection of optical elements, laser noise, and other technical noise consistent with existing laser and optical technologies and typical laboratory environments, we expect the output light from the interferometer to have measurable squeezing of 5 dB, with a frequency-independent squeeze angle for frequencies below 1 kHz. This squeeze source is well suited for injection into a gravitational-wave interferometer, leading to improved sensitivity from reduction in the quantum noise. Furthermore, this design provides an experimental test of quantum-limited radiation pressure effects, which have not previously been tested.

  15. Radiation pressure dynamics in planetary exospheres - A 'natural' framework

    NASA Astrophysics Data System (ADS)

    Bishop, J.; Chamberlain, J. W.

    1989-09-01

    Exospheric theory is reformulated to provide for the analysis of dynamical underpinning of exospheric features. The formulation is based on the parabolic-cylindrical separability of the Hamiltonian that describes particle motions in the combined fields of planetary gravity and solar radiation pressure. An approximate solution for trajectory evolution in terms of orbital elements is derived and the role of the exopause in the tail phenomenon is discussed. Also, an expression is obtained for the bound constituent atom densities at outer planetocoronal positions along the planet-sun axis for the case of an evaporative, uniform exobase. This expression is used to estimate midnight density enhancements as a function of radial distance for the terrestrial planets.

  16. Radiation pressure induced difference-sideband generation beyond linearized description

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying

    2016-08-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  17. Angular trapping of a mirror using radiation pressure

    NASA Astrophysics Data System (ADS)

    Kelley, David B.

    Alignment control in gravitational-wave detectors has consistently proven to be a difficult problem due to the stringent noise contamination requirement for the gravitational wave readout and the radiation-pressure induced angular instability in Fabry-Perot cavities (Sidles-Sigg instability). In this thesis, I present optical springs as a tool to damp the motion of a mirror. I discuss the design and implementation of a single degree-of-freedom optical spring system and the importance of the photothermal effect in properly predicting optical spring behavior. I also present the development and implementation of an angular control scheme, attempting to damp two degrees of freedom with two optical cavities. I then extend this understanding into a plausible concept for implementing optical-spring-based angular control in the Advanced LIGO detectors.

  18. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    NASA Astrophysics Data System (ADS)

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-01

    Experimental measurements of the radiation pressure efficiency (Qpr) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Qpr parameter was observed for 2 μm SiO2 core particles coated with nanoparticles of higher refractive indices. Coatings of 14 nm melamine particles were found to increase the Qpr parameter 135 times over similar coatings using SiO2 particles of the same size. While a coating of 100 nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  19. Radiation pressure dynamics in planetary exospheres - A 'natural' framework

    NASA Technical Reports Server (NTRS)

    Bishop, James; Chamberlain, Joseph W.

    1989-01-01

    Exospheric theory is reformulated to provide for the analysis of dynamical underpinning of exospheric features. The formulation is based on the parabolic-cylindrical separability of the Hamiltonian that describes particle motions in the combined fields of planetary gravity and solar radiation pressure. An approximate solution for trajectory evolution in terms of orbital elements is derived and the role of the exopause in the tail phenomenon is discussed. Also, an expression is obtained for the bound constituent atom densities at outer planetocoronal positions along the planet-sun axis for the case of an evaporative, uniform exobase. This expression is used to estimate midnight density enhancements as a function of radial distance for the terrestrial planets.

  20. Experimental evidence for radiation pressure on a macroscopic dielectric

    NASA Astrophysics Data System (ADS)

    García-Segundo, C.; Ramos-Ortiz, G.; Villagrán-Muniz, M.

    2003-09-01

    We have detected acoustic signals produced by laser pulses on a macroscopic glass slab, obtaining amplitudes, as function of the angle of incidence, denoted as Hp and Hs depending on the polarization orientations of the pulsed pumping laser, p and s, respectively. The relative behaviour of these curves is related to radiation pressure rather than pure absorption, in the same manner as predicted theoretically in the literature [A Treatise on Electricity and Magnetism, Dover Publications, New York, 1891; Phys. Rep. 52 (1979) 133; Opt. Commun. 58 (1986) 59]. In a second experiment, based on a CW Michelson interferometer, where one of the mirrors is a glass slab pumped at the Brewster angle with the pulsed beam, we verified qualitatively the relationship observed for the Hp and Hs acoustic experimental data.

  1. RADIATION PRESSURE DETECTION AND DENSITY ESTIMATE FOR 2011 MD

    SciTech Connect

    Micheli, Marco; Tholen, David J.; Elliott, Garrett T. E-mail: tholen@ifa.hawaii.edu

    2014-06-10

    We present our astrometric observations of the small near-Earth object 2011 MD (H ∼ 28.0), obtained after its very close fly-by to Earth in 2011 June. Our set of observations extends the observational arc to 73 days, and, together with the published astrometry obtained around the Earth fly-by, allows a direct detection of the effect of radiation pressure on the object, with a confidence of 5σ. The detection can be used to put constraints on the density of the object, pointing to either an unexpectedly low value of ρ=(640±330)kg m{sup −3} (68% confidence interval) if we assume a typical probability distribution for the unknown albedo, or to an unusually high reflectivity of its surface. This result may have important implications both in terms of impact hazard from small objects and in light of a possible retrieval of this target.

  2. A gas-dynamical approach to radiation pressure acceleration

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Boine-Frankenheim, Oliver

    2016-06-01

    The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.

  3. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    SciTech Connect

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-02

    Experimental measurements of the radiation pressure efficiency (Q{sub pr}) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Q{sub pr} parameter was observed for 2 μm SiO{sub 2} core particles coated with nanoparticles of higher refractive indices. Coatings of 14 nm melamine particles were found to increase the Q{sub pr} parameter 135 times over similar coatings using SiO{sub 2} particles of the same size. While a coating of 100 nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  4. Investigation of radiation defects in gallium arsenide under hydrostatic pressure

    SciTech Connect

    Brudnyi, V.N.; Vilisov, A.A.; Diamant, V.M.; Krivorotov, N.P.

    1980-01-01

    The spectral characteristics of gallium arsenide photodiodes irradiated with electrons (2 MeV, 300/sup 0/K) were used to study the influence of hydrostatic compression (up to 8 kbar) and temperature (77--300/sup 0/K) on the energy positions of radiation-defect levels. The pressure coefficients of the spectral positions of the impurity absorption bands at 1.2 and 1.37 eV indicated a genetic relationship between localized states H/sub 0/ (approx.E/sub v/+0.1 eV) and H/sub 1/ (approx.E/sub v/+0.25 eV) and the band extrema E/sub v/(GAMMA/sub 15/) and E/sub c/(GAMMA/sub 1/), respectively. The high piezoresistance coefficient (1/rho)(drho/dP)approx. =3.5 x 10/sup -4/ bar/sup -1/, recorded for the first time for n-type GaAs compensated by electron irradiation, was attributed to the influence of a state split off from the valence band and located in the upper half of the band gap at E/sub c/-0.3--0.4 eV. Isochronous annealing of radiation defects was investigated in the temperature range 300--35/sup 0/K.

  5. The Solar-Radiation Pressure Effects on the Orbital Evolution of Asteroid Moons

    NASA Astrophysics Data System (ADS)

    Troianskyi, V. V.; Bazyey, O. A.

    In the theory of motion, disturbances are divided into gravitational and non-gravitational ones. In this paper, we discuss the effects of solar-radiation pressure on the orbital evolution of asteroid moons. It is known from the laws of physics that the smaller an object is the more pressure is exerted on it by solar radiation. That is the reason why asteroid moons with their small sizes are exposed to the solar-radiation pressure so much.

  6. PBH mass growth through radial accretion during the radiation dominated era

    SciTech Connect

    Lora-Clavijo, F.D.; Guzmán, F.S.; Cruz-Osorio, A. E-mail: guzman@ifm.umich.mx

    2013-12-01

    We model the radial accretion of radiation on Primordial Black Holes (PBH) by numerically solving Einstein's equations coupled to an ultrarelativistic ideal gas with equation of state p = ρ/3. We calculate the final mass of a black hole by the integration of the accreted radiation energy density during the leptonic era between t ∼ 10{sup −4}s to t ∼ 10{sup 2}s after the Big Bang. Our results indicate that small PBHs with initial masses between 10{sup −4} to 1M{sub ⊙} may grow up to hundreds of solar masses, and thus can be SMBH seeds. On the other hand, PBHs formed at t ∼ 1s with initial mass between 900 and ∼ 980M{sub ⊙}, by the time t ∼ 100s show masses of 10{sup 4} to 10{sup 6}M{sub ⊙} which are masses of seeds or already formed SMBHs. The fact that we consider only radial flow implies that our results work well as limiting cases, and it is expected that under more general scenarios the accretion rates may change significantly. Nevertheless we show that it is possible that SMBHs can be PBHs that grew due to the accretion of radiation.

  7. The break-up dynamics of liquid threads revealed by laser radiation pressure and optocapillarity

    NASA Astrophysics Data System (ADS)

    Petit, Julien; Robert de Saint Vincent, Matthieu; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2014-09-01

    We show how optocapillary stresses and optical radiation pressure effects in two-phase liquids open the way for investigating the difficult problem of liquid thread breakup at small scales when surfactants are present at the interface or when the roughness of the interface becomes significant. Using thermocapillary stresses driven by light to pinch a surfactant-laden microjet, we observe deviations from the expected visco-capillary law governed by a balance between viscosity and interfacial tension. We suggest that these deviations are due to time varying interfacial tension resulting from the surfactant depletion at the neck pinching location, and we experimentally confirm this mechanism. The second case is representative of the physics of nanojets. Considering a near critical liquid-liquid interface, where the roughness of the interfaces may be tuned, we use the radiation pressure of a laser wave to produce stable fluctuating liquid columns and study their breakup. We show how pinching crosses over from the visco-capillary to a fluctuation dominated regime and describe this new regime. These experiments exemplify how optofluidics can reveal new physics of fluids.

  8. Characterization of Cat-2t, a radiation-induced dominant cataract mutation in mice

    SciTech Connect

    Graw, J.; Bors, W.; Gopinath, P.M.; Merkle, S.; Michel, C.; Reitmeir, P.; Schaeffer, E.S.; Summer, K.H.; Wulff, A. )

    1990-07-01

    A dominant cataract mutation was detected recently among the offspring of x-ray-irradiated male mice. The mutation, which causes total lens opacity, has provisionally been designated by the gene symbol Cat-2t. In the lenses of heterozygous and homozygous Cat-2t mutants, the epithelial and fiber cells were swollen and the lens capsule was ruptured. The histologic analysis demonstrated a complete destruction of the cellular organization of the lens, which might be caused by its altered developmental processes. The data derived from biochemical investigations indicate that biochemistry of the cataractous Cat-2t lenses is affected: the osmotic state as indicated by the increased water content and increased Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity; the energy state as indicated by the decreased adenosine triphosphate (ATP) concentration; and the redox state as indicated by the enhanced content of oxidized glutathione. Additionally, the lenticular protein composition is altered because of the presence of vimentin in the water-soluble fraction. This cannot be explained by the enhanced crosslinking activity of transglutaminase. The changes of the osmotic, energy, and redox states are considered to be secondary in relation to the altered lenticular development. In contrast, the variations concerning vimentin and transglutaminase might be a biochemical indication of the changed development. Possible similarities to other dominantly expressed murine cataract mutants are discussed.

  9. Numerical investigation of the transverse instability on the radiation-pressure-driven foil

    NASA Astrophysics Data System (ADS)

    Wang, W. Q.; Yin, Y.; Yu, T. P.; Xu, H.; Zou, D. B.; Shao, F. Q.

    2015-12-01

    The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.

  10. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration–acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration–acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F

  11. A dominant role of oxygen additive on cold atmospheric-pressure He + O{sub 2} plasmas

    SciTech Connect

    Yang, Aijun; Liu, Dingxin E-mail: xhw@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Xiaohua E-mail: xhw@mail.xjtu.edu.cn; Kong, Michael G.

    2014-08-15

    We present in this paper how oxygen additive impacts on the cold atmospheric-pressure helium plasmas by means of a one-dimensional fluid model. For the oxygen concentration [O{sub 2}] > ∼0.1%, the influence of oxygen on the electron characteristics and the power dissipation becomes important, e.g., the electron density, the electron temperature in sheath, the electron-coupling power, and the sheath width decreasing by 1.6 to 16 folds with a two-log increase in [O{sub 2}] from 0.1% to 10%. Also the discharge mode evolves from the γ mode to the α mode. The reactive oxygen species are found to peak in the narrow range of [O{sub 2}] = 0.4%–0.9% in the plasmas, similar to their power-coupling values. This applies to their wall fluxes except for those of O* and O{sub 2}{sup −}. These two species have very short lifetimes, thus only when generated in boundary layers within several micrometers next to the electrode can contribute to the fluxes. The dominant reactive oxygen species and the corresponding main reactions are schematically presented, and their relations are quantified for selected applications.

  12. Clumpy Accretion onto Black Holes. I. Clumpy-advection-dominated Accretion Flow Structure and Radiation

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Cheng, Cheng; Li, Yan-Rong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  13. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  14. Theory of radiation pressure on magneto-dielectric materials

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Loudon, Rodney

    2015-06-01

    We present a classical linear response theory for a magneto-dielectric material and determine the polariton dispersion relations. The electromagnetic field fluctuation spectra are obtained and polariton sum rules for their optical parameters are presented. The electromagnetic field for systems with multiple polariton branches is quantized in three dimensions and field operators are converted to 1-dimensional forms appropriate for parallel light beams. We show that the field-operator commutation relations agree with previous calculations that ignored polariton effects. The Abraham (kinetic) and Minkowski (canonical) momentum operators are introduced and their corresponding single-photon momenta are identified. The commutation relations of these and of their angular analogues support the identification, in particular, of the Minkowski momentum with the canonical momentum of the light. We exploit the Heaviside-Larmor symmetry of Maxwell’s equations to obtain, very directly, the Einsetin-Laub force density for action on a magneto-dielectric. The surface and bulk contributions to the radiation pressure are calculated for the passage of an optical pulse into a semi-infinite sample.

  15. 1D problems of radiation pressure on elastic solids

    NASA Astrophysics Data System (ADS)

    Požar, Tomaž; Možina, Janez

    2015-08-01

    We treat the light-matter interaction due to radiation pressure in one dimension using the fundamental, nonrelativistic conservation principles of energy and momentum. Additionally, we assume that the center of mass-energy maintains the same uniform motion if the interaction takes place or not. Since we handle solids as elastic objects, the results are consistent with the principle of causality and agree with recent experimental observations. We analyze the problem of reflection of a light pulse from a fully-reflective mirror and show that its reflection gives rise to an elastic wave with a measurable amplitude and a correct Doppler shift of the reflected pulse. We also analyze the problem of light pulse transmission into an anti-reflection coated, non-dispersive and lossless dielectric, where an elastic wave may as well be accompanied by a mechanical wave escorting the light pulse. We show that the Balazs rigid box thought experiment can be also realized in elastic dielectrics where some of the energy of the incident light is transferred to the wave motion. It follows from our approach that the electromagnetic momentum of the light pulse in the dielectric acquires Abraham's form only when a single type of the mechanical waves accompanies the interaction.

  16. Satellite de-orbiting via controlled solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  17. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  18. Rayleigh-Taylor modes in constant-density incompressible fluids accelerated by radiation pressure. [astrophysical models

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1977-01-01

    The paper examines the behavior of linear perturbations in an incompressible fluid undergoing acceleration by radiation pressure, with reference to processes occurring in quasars, supernovae, and planetary nebulae. It is shown that, contrary to prior expectation, fluids accelerated by radiation pressure, are not always unstable to Rayleigh-Taylor modes. Some are, in fact, unstable, but the nature of the instability is qualitatively different.

  19. Flow cytometric characterization of rat thymus cells in a radiation-dominated model of combined injury. Scientific report

    SciTech Connect

    Kaffenberger, K.; Gruber, D.F.; MacVittie, T.J.

    1988-01-01

    Thymuses of rats that had been: (a) gamma-irradiated 500 cGy whole-body radiation (R), or (b) thermally injured 20% BSA dorsal, scald burn (TI), or c) combined injured irradiation followed by burn (CI) were studied for involution and recovery processes after sublethal treatments. The expression of surface antigens on thymic cells before and after injuries was evaluated using the monoclonal antibodies and flow cytometric analysis. Thymic cellularity decreased to less than 1% of normal (N), age-matched rats by 4 days after R or CI. Recovery reached 60% to 70% of N by 28 days post treatments. Expression of OX7, OX8, W3/13, and W3/25 antigens all reached nadirs of 40% of N by day 4 after R and CI. Recovery of antigen expression, except for W3/25, was near completion by day 7 after R and CI. Changes in antigen expression after TI were less pronounced for all mcAB tested. Variations in relative labeling of nonlymphoid thymic cells with OX4 (Ia-antigen) reflected the disappearance and recovery of radiosensitive lymphoid thymocytes. The similarity of results after R and CI demonstrate that the model of CI is radiation-dominated. The addition of burn injury to radiation trauma had no synergistically damaging effect on the parameters studied.

  20. Effects of Lingual Effort on Swallow Pressures Following Radiation Treatment

    ERIC Educational Resources Information Center

    Lenius, Kerry; Stierwalt, Julie; LaPointe, Leonard L.; Bourgeois, Michelle; Carnaby, Giselle; Crary, Michael

    2015-01-01

    Purpose: This article investigated the effects of increased oral lingual pressure on pharyngeal pressures during swallowing in patients who have undergone radiotherapy for head and neck cancer. It was hypothesized that increased oral lingual pressure would result in increased pharyngeal pressures. Method: A within-subject experimental design was…

  1. Relativistic drag and emission radiation pressures in an isotropic photonic gas

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2016-06-01

    By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.

  2. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10{sup -3} M{sub sun} yr{sup -1} or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  3. A New Mechanism for Mass Accretion Under Radiation Pressure in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10-3 M sun yr-1 or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the "OMOSHI effect," where OMOSHI is an acronym for "One Mechanism for Overcoming Stellar High radiation pressure by weIght." Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  4. On Radiation Pressure in Static, Dusty H II Regions

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2011-05-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms) to shell-like (large Q 0 n rms). When Q 0 n rms >~ 1052 cm-3 s-1, dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms, a fourth quantity, which can be Q 0, determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest—such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas—depend on β, γ, and Q 0 n rms. For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  5. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature

    NASA Astrophysics Data System (ADS)

    Galvez, Matthieu E.; Manning, Craig E.; Connolly, James A. D.; Rumble, Douglas

    2015-11-01

    Fluids exert a key control on the mobility of elements at high pressure and temperature in the crust and mantle. However, the prediction of fluid composition and speciation in compositionally complex fluid-rock systems, typically present in subduction zones, has been hampered by multiple challenges. We develop a computational framework to study the role of phase equilibria and complex solid-solutions on aqueous fluid speciation in equilibrium with rocks to 900 °C and 3 GPa. This is accomplished by merging conventional phase-equilibrium modeling involving electrolyte-free molecular fluids, with an electrostatic approach to model solute-solute and solute-solvent interactions in the fluid phase. This framework is applied to constrain the activity ratios, composition of aqueous solutes, and pH of a fluid in equilibrium with a pelite lithology. Two solvent compositions are considered: pure H2O, and a COH fluid generated by equilibration of H2O and graphite. In both cases, we find that the pH is alkaline. Disparities between the predicted peralkalinity of our fluid ([Na ] + [K ]) / [Al ] ∼ 6 to 12 and results from independent mineral solubility experiments (∼2) point to the presence of Na-K-Al-Si polymers representing ca. 60 to 85% of the total K and Al content of the fluid at 600 °C and 2.2 GPa, and to an important fraction of dissolved Ca and Mg not accounted for in present speciation models. The addition of graphite to the system reduces the relative permittivity by ca. 40% at elevated T and low P, triggers the formation of C-bearing anions, and brings the pH closer to neutrality by up to 0.6 units at low T. This ionic C pool represents up to 45 mol% of the fluid ligands at elevated P, and is dominant at low P despite the low ionic strength of the fluid (<0.05). The present study offers new possibilities for exploring redox- pH dependent processes that govern volatile, major and trace element partitioning between rocks and fluids in experimental or natural

  6. A New Flexure-Dominated Lithospheric Stress Model for Mars, Driven by Pressure Differences at the Base of the Lithosphere

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Holt, W. E.; Schultz, R. A.

    2008-12-01

    Two different models of lithospheric stress have been employed to explain the majority of the faulting in and around Tharsis. Banerdt and Golombek [2000] used topography and gravity as boundary conditions and a full thin shell treatment with horizontal gradient loads and both bending and membrane stresses, lithospheric deflection and a laterally varying crustal thickness determined through the system of shell equations by the two boundary conditions. They inferred that Tharsis was formed primarily by volcanic construction accommodated by lithospheric flexure. However, the faulting extending from Ceraunius Fossae north and north-east through Tantalus and Alba Fossae is not well described by this model. Either these structures formed under different conditions than we see today, or the assumptions of this model are not appropriate for this region. Dimitrova et al [2006] showed the deviatoric stress field associated with horizontal gradients of gravitational potential energy (GPE) alone provides an excellent fit to (~ 70%) of the normal faults as mapped by Knapmeyer et al [2006] in the region. This fit suggests that many of the faults were created at early times when elastic thicknesses and membrane and flexural stresses were small, a combination of brittle and ductile deformation was likely to be widespread, and GPE stresses dominated. We revisit the problem of the stress at the time of faulting by incorporating a new method for deriving the load function and the vertical displacement using the driving force of the difference between local pressure and global average pressure, inferred from the topography of Zuber et al [2000] and the crustal thickness model of Neumann et al [2004]. We build on the approach of Banerdt and Golombek [2000] by making no assumptions on the source or type of loading. The key point here is that the load that has lead to flexure involves an unknown radial displacement. In our approach, the problem of determining this radial displacement

  7. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  8. Outward Motion of Porous Dust Aggregates by Stellar Radiation Pressure in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Tazaki, Ryo; Nomura, Hideko

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast to homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.

  9. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    SciTech Connect

    Tazaki, Ryo; Nomura, Hideko

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast to homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.

  10. Calculating far-field radiated sound pressure levels from NASTRAN output

    NASA Technical Reports Server (NTRS)

    Lipman, R. R.

    1986-01-01

    FAFRAP is a computer program which calculates far field radiated sound pressure levels from quantities computed by a NASTRAN direct frequency response analysis of an arbitrarily shaped structure. Fluid loading on the structure can be computed directly by NASTRAN or an added-mass approximation to fluid loading on the structure can be used. Output from FAFRAP includes tables of radiated sound pressure levels and several types of graphic output. FAFRAP results for monopole and dipole sources compare closely with an explicit calculation of the radiated sound pressure level for those sources.

  11. Radiation Pressure Effects in the Oscillations of Compressible Rotating Homogeneous Spheroids

    NASA Astrophysics Data System (ADS)

    Chia, T. T.; Pung, S. Y.

    1993-09-01

    Earlier models of compressible, rotating, and homogeneous ellipsoids with gas pressure are generalized to include the presence of radiation pressure. Under the assumptions of a linear velocity field of the fluid and a bounded ellipsoidal surface, the dynamical behaviour of these models can be described by ordinary differential equations. These equations are used to study the finite oscillations of massive radiative models with masses 10M ⊙ and 30M ⊙ in which the effects of radiation pressure are expected to be important. Models with two different degrees of equilibrium are chosen: an equilibrium (i.e., dynamically stable) model with an initial asymmetric inward velocity, and a nonequilibrium model with a nonequilibrium central temperature and which falls inwards from rest. For each of these two degrees of equilibrium, two initial configurations are considered: rotating spheroidal and nonrotating spherical models. From the numerical integration of the differential equations for these models, we obtain the time evolution of their principal semi-diametersa 1 anda 3, and of their central temperatures, which are graphically displayed by making plots of the trajectories in the (a 1,a 3) phase space, and of botha 1 and the total central pressureP c against time. It is found that in all the equilibrium radiative models (in which radiation pressure is taken into account), the periods of the oscillations of botha 1 andP c are longer than those of the corresponding nonradiative models, while the reverse is true for the nonequilibrium radiative models. The envelopes of thea 1 oscillations of the equilibrium radiative models also have much longer periods; this result also holds for the nonequilibrium models whenever the envelope is well defined. Further, as compared to the nonradiative models, almost all the radiative models collapse to smaller volumes before rebouncing, with the more massive model undergoing a larger collapse and attaining a correspondingly larger peakP c

  12. CODE's new solar radiation pressure model for GNSS orbit determination

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  13. Spatial variability and response to anthropogenic pressures of assemblages dominated by a habitat forming seaweed sensitive to pollution (northern coast of Alboran Sea).

    PubMed

    Bermejo, Ricardo; de la Fuente, Gina; Ramírez-Romero, Eduardo; Vergara, Juan J; Hernández, Ignacio

    2016-04-15

    The Cystoseira ericaefolia group is conformed by three species: C. tamariscifolia, C. mediterranea and C. amentacea. These species are among the most important habitat forming species of the upper sublittoral rocky shores of the Mediterranean Sea and adjacent Atlantic coast. This species group is sensitive to human pressures and therefore is currently suffering important losses. This study aimed to assess the influence of anthropogenic pressures, oceanographic conditions and local spatial variability in assemblages dominated by C. ericaefolia in the Alboran Sea. The results showed the absence of significant effects of anthropogenic pressures or its interactions with environmental conditions in the Cystoseira assemblages. This fact was attributed to the high spatial variability, which is most probably masking the impact of anthropogenic pressures. The results also showed that most of the variability occurred on at local levels. A relevant spatial variability was observed at regional level, suggesting a key role of oceanographic features in these assemblages. PMID:26892204

  14. Contributions of John Henry Poynting to the understanding of radiation pressure.

    PubMed

    Loudon, R; Baxter, C

    2012-07-01

    The name of Poynting is universally recognized for his development of the well-known expression for the flow of electromagnetic energy. Not so well known is Poynting's series of papers on radiation pressure, with 2011 marking the centenary of the last of his 15 publications on this topic. This paper reviews and assesses his radiation-pressure work, with a level of coverage aimed at the reader familiar with the Maxwell electromagnetic theory and interested in the current understanding of radiation pressure. We begin with brief details of Poynting's life, followed by accounts of the relevant publications by others before and during his period of activity in the field from 1903 to 1911. His contributions to the understanding of radiation-pressure effects in the solar system, and the linear and angular momenta of light are discussed, with evaluations from a modern perspective. PMID:22792039

  15. New empirically-derived solar radiation pressure model for GPS satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y.; Kuang, D.

    2003-01-01

    Solar radiation pressure force is the second largest perturbation acting on GPS satellites, after the gravitational attraction from the Earth, Sun, and Moon. It is the largest error source in the modeling of GPS orbital dynamics.

  16. Contributions of John Henry Poynting to the understanding of radiation pressure

    PubMed Central

    Loudon, R.; Baxter, C.

    2012-01-01

    The name of Poynting is universally recognized for his development of the well-known expression for the flow of electromagnetic energy. Not so well known is Poynting's series of papers on radiation pressure, with 2011 marking the centenary of the last of his 15 publications on this topic. This paper reviews and assesses his radiation-pressure work, with a level of coverage aimed at the reader familiar with the Maxwell electromagnetic theory and interested in the current understanding of radiation pressure. We begin with brief details of Poynting's life, followed by accounts of the relevant publications by others before and during his period of activity in the field from 1903 to 1911. His contributions to the understanding of radiation-pressure effects in the solar system, and the linear and angular momenta of light are discussed, with evaluations from a modern perspective. PMID:22792039

  17. Observations of x-ray radiation pressure force on individual gold nanocrystals

    SciTech Connect

    Sasaki, Yuji C.; Okumura, Yasuaki; Miyazaki, Takuya; Higurashi, Takashi; Oishi, Noboru

    2006-07-31

    We report observations of x-ray radiation pressure force on individual single nanocrystals using an x-ray single molecular methodology. The observed gold nanocrystals are linked to the adsorbed protein molecules. We observed the directed Brownian motion of individual linked nanocrystals. The observed force is estimated at about 0.13-0.63 aN. We will be able to control and measure dynamics of micro- or nanocrystalline materials using x-ray radiation pressure force.

  18. In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures

    NASA Astrophysics Data System (ADS)

    Babini, G.; Morini, J.; Baiocco, G.; Mariotti, L.; Ottolenghi, A.

    2015-03-01

    The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.

  19. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  20. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  1. Contact conductance evaluation for a full scale space erectable radiator pressurized interface

    NASA Technical Reports Server (NTRS)

    Duschatko, R. John

    1989-01-01

    The baseline thermal control configuration for the Space Station Freedom includes a contact heat exchanger to provide efficient heat transfer between the two-phase thermal bus heat collection/delivery system and the radiator panel heat rejection system. The contact heat exchanger provides a dry interface for a modular radiator system with easy on-orbit panel replacement. July 1988 testing of the Space Erectable Radiator System (SERS) at NASA-JSC provided thermal/vacuum data for three full-scale prototype units of a pressurized dry contact heat exchanger design. Derived contact conductance values agreed with predictions and previous element tests and demonstrated high conductance for relatively low pressure levels. A limited amount of data was also obtained below the operating pressure, resulting in contact conductance trends with respect to interface pressure.

  2. Disruptive effects of vigilance on dominant group members' treatment of outgroup members: choking versus shining under pressure.

    PubMed

    Vorauer, Jacquie D; Turpie, Cory A

    2004-09-01

    Three studies examined the hypothesis that evaluative concerns exert a disruptive effect on intimacy-building behaviors exhibited by dominant group members in intergroup interaction. The authors predicted that although evaluative concerns would lead individuals with a negative baseline response to outgroup members to shine (i.e., to exhibit warmer, more friendly behavior), such concerns would have a contrary, choking, effect on individuals with a more positive baseline response. Results were generally consistent with these hypotheses across 3 different operationalizations of evaluative concerns and regardless of whether individuals' orientation toward outgroup members was assessed in terms of prejudiced racial attitudes or racial ingroup identification. Implications for lower status group members' experience of intergroup interaction and for the prejudice-reduction process are considered. PMID:15382987

  3. The birth of a galaxy - II. The role of radiation pressure

    NASA Astrophysics Data System (ADS)

    Wise, John H.; Abel, Tom; Turk, Matthew J.; Norman, Michael L.; Smith, Britton D.

    2012-11-01

    Massive stars provide feedback that shapes the interstellar medium of galaxies at all redshifts and their resulting stellar populations. Here we present three adaptive mesh refinement radiation hydrodynamics simulations that illustrate the impact of momentum transfer from ionizing radiation to the absorbing gas on star formation in high-redshift dwarf galaxies. Momentum transfer is calculated by solving the radiative transfer equation with a ray-tracing algorithm that is adaptive in spatial and angular coordinates. We find that momentum input partially affects star formation by increasing the turbulent support to a three-dimensional rms velocity equal to the circular velocity of early haloes. Compared to a calculation that neglects radiation pressure, the star formation rate is decreased by a factor of 5 to 1.8 × 10-2 M⊙ yr-1 in a dwarf galaxy with a dark matter and stellar mass of 2.0 × 108 and 4.5 × 105 M⊙, respectively, when radiation pressure is included. Its mean metallicity of 10-2.1 Z⊙ is consistent with the observed dwarf galaxy luminosity-metallicity relation. However, one may naively expect from the calculation without radiation pressure that the central region of the galaxy overcools and produces a compact, metal-rich stellar population with an average metallicity of 0.3 Z⊙, indicative of an incorrect physical recipe. In addition to photoheating in H II regions, radiation pressure further drives dense gas from star-forming regions, so supernova feedback occurs in a warmer and more diffuse medium, launching metal-rich outflows. Capturing this aspect and a temporal separation between the start of radiative and supernova feedback are numerically important in the modelling of galaxies to avoid the 'overcooling problem'. We estimate that dust in early low-mass galaxies is unlikely to aid in momentum transfer from radiation to the gas.

  4. Quantum optomechanical correlations induced by radiation pressure between light and mirrors

    NASA Astrophysics Data System (ADS)

    Briant, T.; Verlot, P.; Tavernarakis, A.; Cohadon, P.-F.; Heidmann, A.

    2009-02-01

    Radiation pressure exerted by light in interferometric measurements is responsible for displacements of mirrors which appear as an additional back-action noise and limit the sensitivity of the measurement. We experimentally study these effects by monitoring in a very high-finesse optical cavity the displacements of a mirror with a sensitivity at the 10-20m/√Hz level. This unique sensitivity is a step towards the first observation of the fundamental quantum effects of radiation pressure and the resulting standard quantum limit in interferometric measurements. Our experiment may become a powerful facility to test quantum noise reduction schemes, and we already have demonstrated radiation-pressure induced correlations between two optical beams sent into the same moving mirror cavity. Our scheme can be extended down to the quantum level and has applications both in high-sensitivity measurements and in quantum optics.

  5. Observation of radiation-pressure effects and back-action cancellation in interferometric measurements

    NASA Astrophysics Data System (ADS)

    Heidmann, A.; Caniard, T.; Verlot, P.; Briant, T.; Cohadon, P.-F.

    2008-02-01

    Radiation pressure exerted by light in interferometric measurements is responsible for displacements of mirrors which appear as an additional back-action noise and limit the sensitivity of the measurement. We experimentally study these effects by monitoring in a very highfinesse optical cavity the displacements of a mirror with a sensitivity at the 10 -20 m/√Hz level. This unique sensitivity is a step towards the first observation of the fundamental quantum effects of radiation pressure and the resulting standard quantum limit in interferometric measurements. Our experiment may become a powerful facility to test quantum noise reduction schemes, and we already report the first experimental demonstration of a back-action noise cancellation. Using a classical radiation-pressure noise to mimic the quantum noise of light, we have observed a drastic improvement of sensitivity both in position and force measurements.

  6. THE DEVELOPMENT OF RADIATION EMBRITTLEMENT MODELS FOR U.S. POWER REACTOR PRESSURE VESSEL STEELS

    SciTech Connect

    Wang, Jy-An John; Rao, Nageswara S

    2006-01-01

    The information fusion technique is used to develop radiation embrittlement prediction models for reactor pressure vessel (RPV) steels from U.S. power reactors, including boiling water reactors and pressurized water reactors. The Charpy transition temperature-shift data is used as the primary index of RPV radiation embrittlement in this study. Six parameters {Cu, Ni, P, neutron fluence, irradiation time, and irradiation temperature {are used in the embrittlement prediction models. The results indicate that this new embrittlement predictor achieved reductions of about 49.5% and 52% in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The implications of dose-rate effect and irradiation temperature effects for the development of radiation embrittlement models are also discussed.

  7. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  8. Exospheric perturbations by radiation pressure. II - Solution for orbits in the ecliptic plane

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1980-01-01

    A previous study (Chamberlain, 1979) gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure; each element was assumed to behave independently. In the present paper, the instantaneous rates of changes for three elements (e, Omega, and phi = omega + Omega) are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tighly bound to the planet, and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the earth's atmosphere.

  9. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    NASA Astrophysics Data System (ADS)

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as space sailing1,2 or optical "tweezers."2 There are, however, relatively few problems that are available as end-of-the-chapter exercises. Below I present a problem I composed that I assign to my students in class and that facilitates a lively class discussion. This problem is somewhat reminiscent of the setting used by P. N. Lebedev in his historic experiments on proving the existence of radiation pressure.

  10. Cavity optomechanics with micromirrors: Progress towards the measurement of quantum radiation pressure noise and ponderomotive squeezing

    NASA Astrophysics Data System (ADS)

    Cripe, Jonathan; Singh, Robinjeet; Corbitt, Thomas; LIGO Collaboration

    2016-03-01

    Advanced LIGO is predicted to be limited by quantum noise at intermediate and high frequencies when it reaches design sensitivity. The quantum noise, including radiation pressure noise at intermediate frequencies, will need to be reduced in order to increase the sensitivity of future gravitational wave interferometers. We report recent progress towards measuring quantum radiation pressure noise in a cryogenic optomechanical cavity. The low noise microfabricated mechanical oscillator and cryogenic apparatus allow direct broadband thermal noise measurements which test thermal noise models and damping mechanisms. We also progress toward the measurement of the ponderomotive squeezing produced by the optomechanical cavity and the reduction of radiation pressure noise using squeezed light. These techniques may be applicable to an upgrade of Advanced LIGO or the next generation of gravitational wave detectors.

  11. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  12. Measurement of angular antispring effect in optical cavity by radiation pressure

    SciTech Connect

    Sakata, Shihori; Nishizawa, Atsushi; Ishizaki, Hideharu; Kawamura, Seiji; Miyakawa, Osamu

    2010-03-15

    We present a measurement of an angular antispring effect caused by radiation pressure in an optical cavity with a mirror of 20 mg suspended by a silica fiber of 10 {mu}m in diameter. The antispring effect occurred since the torque on the suspended mirror is increased with the higher radiation pressure force, pushing the system towards instability. We measured shifts of the rotational resonant frequencies of the suspended mirror from 2.0 Hz to 1.0 Hz with the increased circulating power. It is verified that the result agrees with the theoretical curve to show the antispring effect. The result proves that it will be possible to make a reliable control system model of the radiation pressure effect for the second generation of the gravitational wave detectors.

  13. OMOSHI Effect: A New Mechanism for Mass Accretion under the Radiation Pressure in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei; Nakamoto, Taishi

    2009-08-01

    In a massive-star formation process, a high-mass accretion rate is considered to be needed to overcome the strong radiation pressure at the dust sublimation front. We examined the accretion structure near the dust sublimation front and found a new mechanism to overcome this radiation pressure. The weight of the accumulated mass in a stagnant flow near the dust sublimation front helps with the mass accretion. We call this mechanism the ``OMOSHI effect,'' where OMOSHI is an acronym for ``One Mechanism for Overcoming Stellar High radiation pressure by weight.'' OMOSHI is also a Japanese noun meaning a weight that is put on something to prevent it from moving. This mechanism relaxes the condition for the massive star formation.

  14. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Hill, K.; Jah, M.

    2014-09-01

    Recent research has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function (BRDF) models. This paper seeks to evaluate the impact of BRDF-consistent radiation pressure models compared to changes in the other BRDF parameters. The differences in orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a function of time for simulated rocket bodies and debris at geo-synchronous orbit (GEO). The initial position and velocity of the space object is kept fixed, and the orbital position difference between a baseline or-bit and the perturbed orbit are plotted as a function of time. This is similar to how the effects of perturbations have been visualized in the past in commonly used astrodynamics references.

  15. Radiation pressure force from optical cycling on a polyatomic molecule

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Matsuda, Kyle; Hemmerling, Boerge; Doyle, John M.

    2016-07-01

    We demonstrate multiple photon cycling and radiative force deflection on the triatomic free radical strontium monohydroxide (SrOH). Optical cycling is achieved on SrOH in a cryogenic buffer-gas beam by employing the rotationally closed P(N\\prime\\prime =1) branch of the vibronic transition {\\tilde{X}}2{{{Σ }}}+(000)≤ftrightarrow {\\tilde{A}}2{{{\\Pi }}}1/2(000). A single repumping laser excites the Sr–O stretching vibrational mode, and photon cycling of the molecule deflects the SrOH beam by an angle of 0.2^\\circ via scattering of ∼100 photons per molecule. This approach can be used for direct laser cooling of SrOH and more complex, isoelectronic species.

  16. Particle sizes in Comet Bennett /1970 II/. [radiation pressure models for coma and tail

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.

    1974-01-01

    The particle size distribution in the coma and tail of Comet Bennett has been determined by several methods, each sensitive to a particular size range. It is confirmed that a minimum value of the particle density, size, and radiation pressure efficiency function exists at about .00003 to .00010 g/sq cm. The existence of such a cutoff is probably due to the decreasing radiation pressure efficiency for particles smaller than the wavelength of the light being scattered. An exact determination of this cutoff may allow identification of the particle type.

  17. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  18. Exospheric perturbations by radiation pressure. 2: Solution for orbits in the ecliptic plane

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1980-01-01

    The instantaneous rates of change for the orbital elements eccentricity, longitude of perigee from the Sun, and longitude from the Sun of the ascending node are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tightly bound to the planet and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms escaping from Earth due to radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to deteriorate into the Earth's atmosphere.

  19. Effects of radiation pressure on the equipotential surfaces in X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.

  20. The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite

    NASA Technical Reports Server (NTRS)

    Musen, Peter

    1960-01-01

    This article reports an investigation of the effect of solar radiation pressure on the motion of an artificial satellite. The theory has been applied to the orbit of the Vanguard I satellite, and is found to produce significant perturbations in the perigee height of that satellite. In the case of a satellite with a large ratio of area to mass the major terms introduced by solar radiation pressure can reduce the perigee distance at the rate of 1 to 2 km per day, so that the lifetime of the satellite will become considerably shorter than it would be without this effect.

  1. Control of tetrahedron satellite formation flying in the geosynchronous orbit using solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Hou, Yong-Gang; Zhang, Ming-Jiang; Zhao, Chang-Yin; Sun, Rong-Yu

    2016-04-01

    In this paper, the control of tetrahedron satellite formation flying in the geosynchronous orbit (GEO) using solar radiation pressure is investigated. The long term disturbing effect of the main zonal and tesseral harmonics J2 and J_{22} of the geopotential are eliminated by adjusting the initial orbital elements, and a tetrahedron satellite formation flying in the GEO is designed. Then a control system using solar radiation pressure is further proposed to maintain the tetrahedron satellite formation, in which a sliding mode control (SMC) is developed to determine the control force. The control force is acquired from the solar sails equipped on the satellites, and the final control law and strategy using solar radiation pressure are presented. Moreover, three kinds of numerical simulations are especially given to verify the validity of the control system using solar radiation. It shows that Laplace precession of the GEO satellite can be avoided effectively, and the in-plane and out-of-plane errors of the formation can be eliminated easily. And hence the control of tetrahedron satellite formation flying in the GEO using solar radiation pressure is proved to be feasible.

  2. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  3. Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.

    2014-06-01

    Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.

  4. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  5. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT

    NASA Astrophysics Data System (ADS)

    Rosdahl, J.; Teyssier, R.

    2015-06-01

    We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an optically semithick medium, direct pressure on gas from ionizing radiation, convergence of our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the competition between gravity and radiation pressure in a dusty atmosphere, and the formation of radiative Rayleigh-Taylor instabilities. With the new features, RAMSES-RT can be used for state-of-the-art simulations of radiation feedback from first principles, on galactic and cosmological scales, including not only direct radiation pressure from ionizing photons, but also indirect pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation, both in the optically thin and thick limits.

  6. The Effect of Solar Radiation Pressure on the Motion of an Artificial Satellite

    NASA Technical Reports Server (NTRS)

    Bryant, Robert W.

    1961-01-01

    The effects of solar radiation pressure on the motion of an artificial satellite are obtained, including the effects of the intermittent acceleration which results from the eclipsing of the satellite by the earth. Vectorial methods have been utilized to obtain the nonlinear equations describing the motion, and the method of Kryloff-Bogoliuboff has been applied in their solution.

  7. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  8. An Analytical Theory for the Perturbative Effect of Solar Radiation Pressure on Natural and Artificial Satellites

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.

    Solar radiation pressure is the largest non-gravitational perturbation for most satellites in the solar system, and can therefore have a significant influence on their orbital dynamics. This work presents a new method for representing the solar radiation pressure force acting on a satellite, and applies this theory to natural and artificial satellites. The solar radiation pressure acceleration is modeled as a Fourier series which depends on the Sun's location in a body-fixed frame; a new set of Fourier coefficients are derived for every latitude of the Sun in this frame, and the series is expanded in terms of the longitude of the Sun. The secular effects due to the solar radiation pressure perturbations are given analytically through the application of averaging theory when the satellite is in a synchronous orbit. This theory is then applied to binary asteroid systems to explain the Binary YORP effect. Long term predictions of the evolution of the near-Earth asteroid 1999 KW4 are discussed under the influence of solar radiation pressure, J2, and 3rd body gravitational effects from the Sun. Secular effects are shown to remain when the secondary asteroid becomes non-synchronous due to a librational motion. The theory is also applied to Earth orbiting spacecraft, and is shown to be a valuable tool for improved orbit determination. The Fourier series solar radiation pressure model derived here is shown to give comparable results for orbit determination of the GPS IIR-M satellites as JPL's solar radiation pressure model. The theory is also extended to incorporate the effects of the Earth's shadow analytically. This theory is briefly applied to the evolution of orbital debris to explain the assumptions that are necessary in order to use the cannonball model for debris orbit evolution, as is common in the literature. Finally, the averaging theory methodology is applied to a class of Earth orbiting solar sail spacecraft to show the orbital effects when the sails are made

  9. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  10. Spectroscopic measurement of radiation of high-pressure mercury discharge lamps

    SciTech Connect

    Fu Ling; Leutz, Ralf; Ries, Harald

    2005-06-15

    Compact size and high efficiency are important features for projection systems. As the most often used sources for projection optics, short arc lamps are characterized by their impressive economy and the ability to produce extremely bright light from small dimensional sources. In this contribution the old principle of back reflection towards the sources is applied to a high-pressure mercury discharge lamp with a reflector to improve the radiance of the source by 35% at a certain reduced solid angle. Increasing the optical thickness of sources is equivalent to reducing the total phase space (etendue) of emitted radiation by the same factor, which is very useful for compacting sources. In addition, by comparing the forward radiation and the back-reflected radiation obtained from spectroscopic measurements, we calculate the absorptivity, emissivity, absorption, and emission coefficients of the plasma of the arc lamp based on Kirchhoff's Law and Planck's equation which is necessary for determining its temperature and pressure.

  11. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Muehlmatt, Amy; Savage, Alexandria; Lin, Liyong; Kennedy, Ann R.

    2014-02-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in opening pressure (OP) occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure.

  12. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    SciTech Connect

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L{sub IR}-L'{sub CO} correlation, and the L{sub IR}-L'{sub HCN} correlation. In particular, the linear L{sub IR}-L'{sub HCN} correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H{sub 2} and HCN-to-H{sub 2} conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  13. In search of radiation minima for balancing the needs of forest and water management in snow dominated watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Seyednasrollah, B.; Link, T. E.

    2013-12-01

    In upland snowfed forested watersheds, where the majority of melt recharge occurs, there is growing interest among water and forest managers to strike a balance between maximizing forest productivity and minimizing impacts on water resources. Implementation of forest management strategies that involve reduction of forest cover generally result in increased water yield and peak flows from forests, which has potentially detrimental consequences including increased erosion, stream destabilization, water shortages in late melt season, and degradation of water quality and ecosystem health. These ill effects can be partially negated by implementing optimal gap patterns and vegetation densities through forest management, that may minimize net radiation on snow-covered forest floor (NRSF). A small NRSF can moderate peak flows and increase water availability late in the melt season. Since forest canopies reduce direct solar (0.28 - 3.5 μm) radiation but increase longwave (3.5-100 μm) radiation at the snow surface, by performing detailed quantification of individual radiation components for a range of vegetation density and and gap configurations, we identify the optimal vegetation configurations. We also evaluate the role of site location, its topographic setting, local meteorological conditions and vegetation morphological characteristics, on the optimal configurations. The results can be used to assist forest managers to quantify the radiative regime alteration for various thinning and gap-creation scenarios, as a function of latitudinal, topographic, climatic and vegetation characteristics.

  14. Response to Multiple Radiation Doses of Human Colorectal Carcinoma Cells Infected With Recombinant Adenovirus Containing Dominant-Negative Ku70 Fragment

    SciTech Connect

    Urano, Muneyasu; He Fuqiu; Minami, Akiko; Ling, C. Clifton; Li, Gloria C.

    2010-07-01

    Purpose: To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. Methods and Materials: Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. Results: Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was {approx}1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. Conclusion: Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.

  15. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  16. DIRECT STELLAR RADIATION PRESSURE AT THE DUST SUBLIMATION FRONT IN MASSIVE STAR FORMATION: EFFECTS OF A DUST-FREE DISK

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2011-10-01

    In massive star formation ({approx}> 40 M{sub sun}) by core accretion, the direct stellar radiation pressure acting on the dust particles exceeds the gravitational force and interferes with mass accretion at the dust sublimation front, the first absorption site. Ram pressure generated by high accretion rates of 10{sup -3} M{sub sun} yr{sup -1} is thought to be required to overcome the direct stellar radiation pressure. We investigate the direct stellar irradiation on the dust sublimation front, including the inner accretion disk structure. We show that the ram pressure of the accretion disk is lower than the stellar radiation pressure at the dust sublimation front. Thus, another mechanism must overcome the direct stellar radiation pressure. We suggest that the inner hot dust-free region is optically thick, shielding the dust sublimation front from direct stellar irradiation. Thus, accretion would not halt at the dust sublimation front, even at lower accretion rates.

  17. Radiation annealing of radiation embrittlement of the reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Krasikov, E.; Nikolaenko, V.

    2016-02-01

    Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore - nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore flux effect manifestation depends on fluence level. At low fluencies radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result oscillation arise that in tern lead to enhanced data scatter.

  18. Radiation pressure confinement - III. The origin of the broad ionization distribution in AGN outflows

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Behar, Ehud; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-12-01

    The winds of ionized gas driven by active galactic nuclei (AGN) can be studied through absorption lines in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe0+ to Fe25+). This characteristic feature can be quantified with the absorption measure distribution (AMD), defined as the distribution of column density with ionization parameter |dN/d log ξ|. Observed AMDs extend over 0.1 ≲ ξ ≲ 104 (cgs), and are remarkably similar in different objects. Power-law fits (|dN/d log ξ| ≈ N1ξa) yield N1 = 3 × 1021 cm- 2 ± 0.4 dex and a = 0-0.4. What is the source of this broad ionization distribution, and what sets the small range of observed N1 and a? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform gas pressure medium. However, the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore to a broad range of ionization states within a single slab. We show that this compression of the gas by the radiation pressure leads to an AMD with |dN/d log ξ| = 8 × 1021 ξ0.03 cm-2, remarkably similar to that observed. The calculated values of N1 and a depend weakly on the gas metallicity, the ionizing spectral slope, the distance from the nucleus, the ambient density, and the total absorber column. Thus, radiation pressure compression (RPC) of the photoionized gas provides a natural explanation for the observed AMD. RPC predicts that the gas pressure increases with decreasing ionization, which can be used to test the validity of RPC in ionized AGN outflows.

  19. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOEpatents

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  20. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    NASA Technical Reports Server (NTRS)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  1. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  2. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-09-15

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  3. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    SciTech Connect

    Tetsumoto, Tomohiro; Tanabe, Takasumi

    2014-07-15

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  4. The Development of Radiation Embrittlement Models for U. S. Power Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John; Rao, Nageswara S; Konduri, Savanthi

    2007-01-01

    A new approach of utilizing information fusion technique is developed to predict the radiation embrittlement of reactor pressure vessel steels. The Charpy transition temperature shift data contained in the Power Reactor Embrittlement Database is used in this study. Six parameters {Cu, Ni, P, neutron fluence, irradiation time, and irradiation temperature {are used in the embrittlement prediction models. The results indicate that this new embrittlement predictor achieved reductions of about 49.5% and 52% in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The implications of dose-rate effect and irradiation temperature effects for the development of radiation embrittlement models are also discussed.

  5. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    PubMed

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications. PMID:25166170

  6. Deflection of the local interstellar dust flow by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.

    1999-01-01

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.

  7. New empirically-derived solar radiation pressure model for GPS satellites

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y.; Kuang, D.

    2003-04-01

    We derive a new and improved GPS solar pressure model by estimating model parameters using least square approximation to four and a half years of GPS precise orbit data. The new solar radiation model for Block IIR satellites provides 90% improvement over to the best pre-launch model, as measured by orbit fits and orbit prediction quality. The new model of Block II/IIA realizes a more modest improvement of the previous JPL empirical model. The empirical model is constructed as a set of Fourier functions of the Earth-Probe-Sun angle, to represent the solar radiation pressure forces in the coordinate system tied to the nominal solar panel surface orientation. The model derivation reveals a number of systematic patterns, some of which can be explained in terms of properties of the GPS attitude control system, and some are yet to be explained. Finally, we will discuss the overall orbit determination improvements using the new models.

  8. Generation of Radiation Pressure in Thermally Induced Ultrasonic Emitter Based on Nanocrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Hirota, Jun; Shinoda, Hiroyuki; Koshida, Nobuyoshi

    2004-04-01

    To confirm the applicability of thermally induced ultrasonic emission from nanocrystalline silicon (nc-Si) devices as radiation pressure generators, the dynamic response has been investigated under a pulse operation mode. The nc-Si emitter is fabricated on a p-type Si wafer by conventional electrochemical anodization with subsequent formation of the surface electrode. Due to the flat nature of the frequency response of this emitter, the device emits an acoustic wave with little distortion under the pulse-drive condition. It is shown that a significant radiation pressure of 34.5 Pa is generated by a concentrated burst-like electrical input, and that a beam located at a distance can be levitated as a result of the mechanical loading effect. This silicon-based emitter is attractive for applications to integrated nano- or micro-electromechanical systems.

  9. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  10. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  11. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-09-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  12. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    PubMed Central

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  13. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.

    PubMed

    Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  14. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity

  15. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter

    NASA Astrophysics Data System (ADS)

    Bethune-Waddell, Max; Chau, Kenneth J.

    2015-12-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible

  16. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter.

    PubMed

    Bethune-Waddell, Max; Chau, Kenneth J

    2015-12-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible

  17. Quantum noise and radiation pressure effects in high power optical interferometers

    NASA Astrophysics Data System (ADS)

    Corbitt, Thomas Randall

    2008-06-01

    In recent years, a variety of mechanical systems have been approaching quantum limits to their sensitivity of continuous position measurements imposed by the Heisenberg Uncertainty Principle. Most notably, gravitational wave interferomters, such as the Laser Interferometer Gravitational wave Observatory (LIGO), operate within a factor of 10 of the standard quantum limit. Here we characterize and manipulate quantum noise in a variety of alternative topologies which may lead to higher sensitivity GW detectors, and also provide an excellent testbed for fundamental quantum mechanics. Techniques considered include injection and generation of non-classical (squeezed) states of light, and cooling and trapping of macroscopic mirror degrees of freedom by manipulation of the optomechanical coupling between radiation pressure and mirror motion. A computational tool is developed to model complex optomechanical systems in which these effects arise. The simulation tool is used to design an apparatus capable of demonstrating a variety of radiation pressure effects, most notably ponderomotive squeezing and the optical spring effect. A series of experiments were performed, designed to approach measurement of these effects. The experiments use a 1 gram mirror to show progressively stronger radiation pressure effects, but only in the classical regime. The most significant result of these experiments is that we use radiation pressure from two optical fields to shift the mechanical resonant frequency of a suspended mirror from 172 Hz to 1.8 kHz, while simultaneously damping its motion. The technique could prove useful in advanced gravitational wave interferometers by easing control issues, and also has the side effect of effectively cooling the mirror by removing its thermal energy. We show that with improvements, the technique may allow the quantum ground state of the mirror to be approached. Finally, we discuss future prospects for approaching quantum effects in the experiments

  18. Correct generalized solar radiation pressure force on a circular cylinder in an arbitrary orientation

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1981-01-01

    In response to the inconsistency seen in Geogevic (1973) with respect to the solution for solar radiation pressure in the case of a circular cylinder, a succinct derivation of the correct solution is presented. Numerical comparisons of the two sets of results confirm that the new formulation yields physically reasonable results for both general and special cases. A detailed graphic representation of the mathematical model used is included.

  19. Hole-boring radiation pressure proton acceleration at high intensity in near-critical density targets

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; Dover, N. P.; Jin, Xiaolin; Li, Bin; Dangor, A. E.; Najmudin, Z.

    2014-10-01

    We will present high quality proton beams accelerated from hole-boring radiation pressure proton acceleration (HB-RPA) using three-dimension Particle-in-Cell simulation results. Scaling works on proton cut off energy with laser parameters such as laser intensity and laser pulse duration have been studied in detail by two-dimension Particle-in-Cell simulations. Optimal conditions for generating proton beam of narrow energy spread will be discussed.

  20. Ab initio simulation of radiation damage in nuclear reactor pressure vessel materials

    NASA Astrophysics Data System (ADS)

    Watts, Daniel; Finkenstadt, Daniel

    2012-02-01

    Using Kinetic Monte Carlo we developed a code to study point defect hopping in BCC metallic alloys using energetics and attempt frequencies calculated using VASP, an electronic structure software package. Our code provides a way of simulating the effects of neutron radiation on potential reactor materials. Specifically we will compare the Molybdenum-Chromium alloy system to steel alloys for use in nuclear reactor pressure vessels.

  1. Dynamic thermal and radiative behaviors of a high pressure sodium lamp plasma

    SciTech Connect

    Ben Ahmed, R.; Kazziz, S.; Troudi, L.; Charrada, K.; Helali, H.; Zissis, G.; Said, R.

    2005-08-15

    The main purpose of the present work consists in the study of supply frequency and sodium vapor pressure effects on the sodium lamp properties. The retained model is a two-temperature channel type that reproduces quite well the electrical and thermal behaviors as well as the main radiative characteristics of mercury-sodium discharge plasma and can be easily coupled with the lamp circuitry software.

  2. Quantification of the VUV radiation in low pressure hydrogen and nitrogen plasmas

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Briefi, S.; Rauner, D.; Wünderlich, D.

    2016-08-01

    Hydrogen and nitrogen containing discharges emit intense radiation in a broad wavelength region in the VUV. The measured radiant power of individual molecular transitions and atomic lines between 117 nm and 280 nm are compared to those obtained in the visible spectral range and moreover to the RF power supplied to the ICP discharge. In hydrogen plasmas driven at 540 W of RF power up to 110 W are radiated in the VUV, whereas less than 2 W is emitted in the VIS. In nitrogen plasmas the power level of about 25 W is emitted both in the VUV and in the VIS. In hydrogen–nitrogen mixtures, the NH radiation increases the VUV amount. The analysis of molecular and atomic hydrogen emission supported by a collisional radiative model allowed determining plasma parameters and particle densities and thus particle fluxes. A comparison of the fluxes showed that the photon fluxes determined from the measured emission are similar to the ion fluxes, whereas the atomic hydrogen fluxes are by far dominant. Photon fluxes up to 5  ×  1020 m‑2 s‑1 are obtained, demonstrating that the VUV radiation should not be neglected in surface modifications processes, whereas the radiant power converted to VUV photons is to be considered in power balances. Varying the admixture of nitrogen to hydrogen offers a possibility to tune photon fluxes in the respective wavelength intervals.

  3. Radiation pressure and air drag effects on the orbit of the balloon satellite 1963 30D

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1974-01-01

    Computed orbits of the balloon satellite 1963 30D are given every 2 days over an interval of 456 days near the beginning of the satellite's lifetime and an interval of 824 days near the end of its lifetime. The effects of radiation pressure on the satellite are examined in some detail. It is found that the variations in all the elements can be represented by use of a single parameter to specify the effect of diffuse reflection from the satellite's surface, and that this parameter remains constant, or nearly so, during the entire 7-year lifetime. Success in obtaining a consistent representation of the radiation-pressure effects is ascribed to the inclusion of the effects of terrestrial radiation pressure, using a model for the earth's albedo that includes seasonal and latitudinal variations. Anomalous effects in the orbital acceleration, as well as in the other elements, are represented quite well by including a small force at right angle to the solar direction and by allowing this to rotate about the solar direction. This implies that the satellite is aspherical, that it is rotating, and that the axis of rotation precesses.

  4. Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation.

    PubMed

    Craik, S A; Weldon, D; Finch, G R; Bolton, J R; Belosevic, M

    2001-04-01

    The effect of ultraviolet radiation from low- and medium-pressure mercury arc lamps on Cryptosporidium parvum oocysts was studied using a collimated beam apparatus. Experiments were conducted using parasites suspended in both filtered surface water and phosphate buffered laboratory water. Inactivation of oocysts was measured as reduction in infectivity using a CD-1 neonatal mouse model and was found to be a non-linear function of UV dose over the range of germicidal doses tested (0.8-119 mJ/cm2). Oocyst inactivation increased rapidly with UV dose at doses less than 25 mJ/cm2 with two and three log-units inactivation at approximately 10 and 25 mJ/cm2, respectively. The cause of significant leveling-off and tailing in the UV inactivation curve at higher doses was not determined. Maximum measured oocyst inactivation ranged from 3.4 to greater than 4.9 log-units and was dependent on different batches of parasites. Water type and temperature, the concentration of oocysts in the suspension, and the UV irradiance did not have significant impacts on oocyst inactivation. When compared on the basis of germicidal UV dose, the oocysts were equally sensitive to low- and medium-pressure UV radiation. With respect to Cryptosporidium, both low- and medium-pressure ultraviolet radiation are attractive alternatives to conventional chemical disinfection methods in drinking water treatment. PMID:11317885

  5. The deformation of an erythrocyte under the radiation pressure by optical stretch.

    PubMed

    Liu, Yong-Ping; Li, Chuan; Liu, Kuo-Kang; Lai, Alvin C K

    2006-12-01

    In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611x10-6 Nm(-1), when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature. PMID:17154682

  6. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation.

    PubMed

    Sanzari, Jk; Muehlmatt, A; Savage, A; Lin, L; Kennedy, Ar

    2014-02-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in OP occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure. PMID:25242832

  7. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    PubMed Central

    Sanzari, JK; Muehlmatt, A; Savage, A; Lin, L; Kennedy, AR

    2014-01-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in OP occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure. PMID:25242832

  8. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    SciTech Connect

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-18

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  9. Formation of nanoclusters under radiation pressure in solution: A Brownian dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Jose, Prasanth P.; Bagchi, Biman

    2002-02-01

    When radiation is scattered by a medium, a part of its momentum is transferred to the target particles. This is purely a mechanical force which comes into effect when radiation is not coherently interacting. This force is known in literature as radiation pressure. Recent experimental studies have demonstrated the feasibility of using radiation pressure of a laser beam as a tool for cluster formation in solution. In this paper we describe the Brownian dynamics simulation of solute molecules under the perturbation induced by laser radiation. Here the force field generated by a laser beam in the fundamental mode is modeled as that of a two-dimensional harmonic oscillator. The radial distribution function of the perturbed system gives indication of high inhomogeneities in the solute distribution. An explicit analysis of the nature of these clusters is carried out by calculating the density-density correlation functions in the plane perpendicular to beam direction g(rxy); and along the direction of beam g(z), they give an average picture of shell structure formation in the different directions. The relaxation time of the first shell structure calculated from the van Hove correlation function is found to be relatively large in the perturbed solution. This is the signature of formation of stable nanoclusters in the presence of the radiation field. Our study on the dynamics of solute molecules during the cluster formation and dissolution gives the duration of collective relaxation, far away from the equilibrium to an equilibrium distribution. This relaxation time is found to be large for a perturbed solution.

  10. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles

  11. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime.

    PubMed

    Colgan, J; Abdallah, J; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C

    2013-03-22

    In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range. PMID:25166812

  12. Left-handed metamaterials operating in the visible: negative refraction and negative radiation pressure

    NASA Astrophysics Data System (ADS)

    Lezec, Henri

    2009-03-01

    Forty years ago, V. Veselago derived the electromagnetic properties of a hypothetical material having simultaneously-negative values of electric permittivity and magnetic permeability [1]. Such a material, denominated ``left-handed'', was predicted to exhibit a negative index of refraction, as well as a number of other counter-intuitive optical properties. For example, it was hypothesized that a perfect mirror illuminated with a plane wave would experience a negative radiation pressure (pull) when immersed in a left-handed medium, as opposed to the usual positive radiation pressure experienced when facing a dielectric medium such as air or glass. Since left-handed materials are not available in nature, considerable efforts are currently under way to implement them under the form of artificial ``metamaterials'' -- composite media with tailored bulk optical characteristics resulting from constituent structures which are smaller in both size and density than the effective wavelength in the medium. Here we show how surface-plasmon modes propagating in a stacked array of metal-insulator-metal (MIM) waveguides can be harnessed to yield a volumetric left-handed metamaterial characterized by an in-plane-isotropic negative index of refraction over a broad frequency range spanning the blue and green. By sculpting this material with a focused-ion beam we realize prisms and micro-cantilevers which we use to demonstrate, for the first time, (a) in-plane isotropic negative-refraction at optical frequencies, and (b) negative radiation pressure. We predict and experimentally verify a negative ``superpressure'', the magnitude of which exceeds the photon pressure experienced by a perfect mirror by more than a factor of two. 1) V. Veselago, Sov. Phys. Usp. 10, p.509 (1968).

  13. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas.

    PubMed

    Murakami, Motohiko; Goncharov, Alexander F; Hirao, Naohisa; Masuda, Ryo; Mitsui, Takaya; Thomas, Sylvia-Monique; Bina, Craig R

    2014-01-01

    The possible presence of dense magmas at Earth's core-mantle boundary is expected to substantially affect the dynamics and thermal evolution of Earth's interior. However, the thermal transport properties of silicate melts under relevant high-pressure conditions are poorly understood. Here we report in situ high-pressure optical absorption and synchrotron Mössbauer spectroscopic measurements of iron-enriched dense silicate glasses, as laboratory analogues for dense magmas, up to pressures of 85 GPa. Our results reveal a significant increase in absorption coefficients, by almost one order of magnitude with increasing pressure to ~50 GPa, most likely owing to gradual changes in electronic structure. This suggests that the radiative thermal conductivity of dense silicate melts may decrease with pressure and so may be significantly smaller than previously expected under core-mantle boundary conditions. Such dark magmas heterogeneously distributed in the lower mantle would result in significant lateral heterogeneity of heat flux through the core-mantle boundary. PMID:25384573

  14. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  15. Solar radiation pressure as a mechanism of acceleration of atoms and first ions with low ionization potentials

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.

    2015-04-01

    Calculated results are presented for solar radiation pressure acting on atoms and first ions. For some of these particles, radiation pressure exceeds the gravitational attraction and can accelerate them to large velocities. A comparison of the results with ionization potentials shows that the maxima of radiation pressure on neutral atoms coincide with the minima of the first ionization potentials (FIPs). This relationship is even more apparent for first ions. The minima of the second ionization potentials (SIPs) coincide with the radiation pressure maxima for a number of ions such as Be II, Mg II, Ca II, and the neighboring elements. Thus, radiation pressure may serve as a possible mechanism of acceleration of pickup ions and energetic neutral atoms (ENA) coming from an inner source (zodiacal dust and sungrazing comets). These atoms and ions, which are not typical of the solar wind, are formed as a result of the disintegration of comets or meteor showers near the Sun and can accelerate and reach the Earth's orbit as part of the solar wind. Doubly ionized atoms have resonance lines in the UV range, where solar radiation pressure has no apparent impact on the particle dynamics; thus, the proposed acceleration mechanism can only be applied to neutral atoms and first ions with low potentials of the subsequent ionization.

  16. Theory for planetary exospheres: I. Radiation pressure effect on dynamical trajectories

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-03-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalisation of the study by Bishop and Chamberlain (Bishop, J., Chamberlian, J.W. [1989]. Icarus 81, 145-163). In this first paper, we present the complete solutions of particles trajectories, which are not conics, under the influence of the solar radiation pressure with some assumptions. This problem is similar to the classical Stark problem (Stark, J. [1914]. Ann. Phys. 348, 965-982). This problem was largely tackled in the literature and more specifically, recently by Lantoine and Russell (Lantoine, G., Russell, R.P. [2011]. Celest. Mech. Dynam. Astron. 109, 333-366) and by Biscani and Izzo (Biscani, F., Izzo, D. [2014]. Mon. Not. R. Astron. Soc. 439, 810-822) as we will discuss in this paper. We give here the full set of solutions for the motion of a particle (in our case for an atom or a molecule), i.e. the space coordinates and the time solution for bounded and unbounded trajectories in terms of Jacobi elliptic functions. We thus provide here the complete set of solutions for this so-call Stark effect (Stark, J. [1914]. Ann. Phys. 348, 965-982) in terms of Jacobi elliptic functions (Jacobi, C.G.J. [1829]. Fundamenta nova theoriae functionum ellipticarum. Sumtibus fratrum), which may be used to model the trajectories of particles in planetary exospheres.

  17. RADIATION PRESSURE AND MASS EJECTION IN {rho}-LIKE STATES OF GRS 1915+105

    SciTech Connect

    Neilsen, Joseph; Remillard, Ronald A.; Lee, Julia C.

    2012-05-01

    We present a unifying scenario to address the physical origin of the diversity of X-ray light curves within the {rho} variability class of the microquasar GRS 1915+105. This 'heartbeat' state is characterized by a bright flare that recurs every {approx}50-100 s, but the profile and duration of the flares vary significantly from observation to observation. Based on a comprehensive, phase-resolved study of heartbeats in the Rossi X-ray Timing Explorer archive, we demonstrate that very different X-ray light curves do not require origins in different accretion processes. Indeed, our detailed comparison of the phase-resolved spectra of a double-peaked oscillation and a single-peaked oscillation shows that different cycles can have basically similar X-ray spectral evolution. We argue that all heartbeat oscillations can be understood as the result of a combination of a thermal-viscous radiation pressure instability, a local Eddington limit in the disk, and a sudden, radiation-pressure-driven evaporation or ejection event in the inner accretion disk. This ejection appears to be a universal, fundamental part of the {rho} state, and is largely responsible for a hard X-ray pulse seen in the light curve of all cycles. We suggest that the detailed shape of oscillations in the mass accretion rate through the disk is responsible for the phenomenological differences between different {rho}-type light curves, and we discuss how future time-dependent simulations of disk instabilities may provide new insights into the role of radiation pressure in the accretion flow.

  18. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  19. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect

    Park, Sanghoo; Choe, Wonho; Youn Moon, Se; Park, Jaeyoung

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  20. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  1. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGESBeta

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  2. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  3. Oxygen at 2 atmospheres absolute pressure does not increase the radiation sensitivity of normal brain in rats

    SciTech Connect

    Routh, A.; Kapp, J.P.; Smith, E.E.; Bebin, J.; Barnes, T.; Hickman, B.T.

    1984-07-01

    Cranial radiation was administered to CD Fisher rats at 1.0, 1.5 and 2.0 atmospheres oxygen pressure. Life span following radiation was recorded. Surviving animals were killed at 28 weeks and the brains were examined independently by two neuropathologists. Survival time was significantly less in animals receiving higher doses of radiation but showed no relationship to the oxygen pressure in the environment of the animal at the time radiation was administered. Microscopic examination of the brain did not reveal any differences in animals radiated in a normobaric or hyperbaric oxygen environment. It is concluded that hyperbaric oxygen does not sensitize the normal brain to the effects of ionizing radiation.

  4. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    PubMed Central

    DEHGHANI, Mohammad Hadi; JAHED, Gholam-Reza; ZAREI, Ahmad

    2013-01-01

    Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV) can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water. Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 μw / cm2. Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001). Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults. Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode. PMID:23641409

  5. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Paradkar, B. S.; Krishnagopal, S.

    2016-02-01

    Dynamics of electron heating in the radiation-pressure-driven acceleration through self-induced transparency (SIT) is investigated with the help of particle-in-cell simulations. The SIT is achieved through laser filamentation which is seeded by the transverse density modulations due to the Rayleigh-Taylor-like instability. We observe stronger SIT induced electron heating for the longer duration laser pulses leading to deterioration of accelerated ion beam quality (mainly energy spread). Such heating can be controlled to obtain a quasimonoenergetic beam by cascaded foils targets where a second foil behind the main accelerating foil acts as a laser reflector to suppress the SIT.

  6. Improving Space Object Catalog Maintenance Through Advances in Solar Radiation Pressure Modeling

    NASA Astrophysics Data System (ADS)

    McMahon, J.; Scheeres, D.

    This paper investigates the weaknesses of using the cannonball model to represent the solar radiation pressure force on an object in an orbit determination process, and presents a number of alternative models that greatly improve the orbit determination performance. These weaknesses are rooted in the fact that the cannonball model is not a good representation of the true solar radiation pressure force acting on an arbitrary object. Using an erroneous force model results in poor estimates, inaccurate trajectory propagation, unrealistic covariances, and the inability to fit long and/or dense arcs of data. The alternative models presented are derived from a Fourier series representation of the solar radiation pressure force. The simplest instantiation of this model requires only two more parameters to be estimated, however this results in orders of magnitude improvements in tracking accuracy. This improvement is illustrated through numerical examples of a discarded upper stage in a geosynchronous transfer orbit, and more drastically for a piece of high area-to-mass ratio debris in a near-geosynchronous orbit. The upper stage example shows that using the proposed 3-parameter model can improve the orbit fit from 5 days of tracking data by 2-4 orders of magnitude over the cannonball model. Perhaps more importantly, over a 28 day propagation arc with the estimated models, the prediction errors with the 3-parameter model rarely exceed 2-sigma of the propagated covariance, whereas the cannonball prediction errors grow to over 70-sigmaof the propagated covariance. Most significantly, we show that using the proposed Fourier model greatly improves estimation of HAMR debris orbits, where the cannonball model can struggle to fit the data at any level. In the most extreme case tested, fitting 3 short arcs of data each separated by 100 hours, the Fourier model fits the orbit to the centimeter level, while the cannonball model has errors on the order of 1000 km. Implementation of

  7. Radiation trapping in rubidium optical pumping at low buffer-gas pressures

    SciTech Connect

    Rosenberry, M. A.; Reyes, J. P.; Gay, T. J.; Tupa, D.

    2007-02-15

    We have made a systematic study of rubidium optical pumping in a simple cylindrical cell geometry with a high-power 10 W diode laser array, low magnetic fields, and buffer-gas pressures of less than 50 torr. We have determined rubidium polarizations experimentally for H{sub 2}, N{sub 2}, He, and Ar buffer gases, with Rb number densities from 10{sup 12} to 10{sup 13} cm{sup -3}. Comparison to a relatively simple optical pumping model allows us to extract useful information about radiation trapping and quenching effects.

  8. Giant Deformations of a Liquid-Liquid Interface Induced by the Optical Radiation Pressure

    SciTech Connect

    Casner, Alexis; Delville, Jean-Pierre

    2001-07-30

    Because of the small momentum of photons, very intense fields are generally required to bend a liquid interface with the optical radiation pressure. We explore this issue in a near-critical phase-separated liquid mixture to vary continuously the meniscus softness by tuning the temperature. Low power continuous laser waves become sufficient to induce huge stationary bulges. Using the beam size to build an ''optical'' Bond number, Bo , we investigate the crossover from low to large Bo . The whole set of data collapses onto a single master curve which illustrates the universality of the phenomenon.

  9. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  10. An efficient method to calculate the radiated pressure from a vibrating structure

    NASA Astrophysics Data System (ADS)

    Choi, Sunghoon; Kim, Yang-Hann

    2002-05-01

    An alternative formulation of the Helmholtz integral equation, derived by Wu et al. [J. Acoust. Soc. Am. 103, 1763-1774 (1998)], expresses the pressure field explicitly in terms of the velocity vector of a radiating surface. This formulation, derived for arbitrary sources, is similar in form to Rayleigh's formula for planar sources. Because the pressure field is expressed explicitly as a surface integral of the particle velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use the boundary element method to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the nonuniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated first for some simple geometries. This method is also applied to general vibro-acoustic problems in which both the surface pressure and velocity components are unknown. [Work sponsored by Ministry of Education, Korean Government under the BK21 program and Ministry of Science and Tech., Korean Government under National Research Lab. program.

  11. Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism.

    PubMed

    Davis, Eric J; Siems, William F; Hill, Herbert H

    2012-06-01

    All atmospheric pressure ion detectors, including photo ionization detectors, flame ionization detectors, electron capture detectors, and ion mobility spectrometers, utilize Faraday plate designs in which ionic charge is collected and amplified. The sensitivity of these Faraday plate ion detectors are limited by thermal (Johnson) noise in the associated electronics. Thus approximately 10(6) ions per second are required for a minimal detection. This is not the case for ion detection under vacuum conditions where secondary electron multipliers (SEMs) can be used. SEMs produce a cascade of approximately 10(6) electrons per ion impinging on the conversion dynode. Similarly, photomultiplier tubes (PMTs) can generate approximately 10(6) electrons per photon. Unlike SEMs, however, PMTs are evacuated and sealed so that they are commonly used under atmospheric pressure conditions. This paper describes an atmospheric pressure ion detector based on coupling a PMT with light emitted from ion-ion neutralization reactions. The normal Faraday plate collector electrode was replaced with an electrode "needle" used to concentrate the anions as they were drawn to the tip of the needle by a strong focusing electric field. Light was emitted near the surface of the electrode when analyte ions were neutralized with cations produced from the anode. Although radiative-ion-ion recombination has been previously reported, this is the first time ions from separate ionization sources have been combined to produce light. The light from this radiative-ion-ion-neutralization (RIIN) was detected using a photon multiplier such that an ion mobility spectrum was obtained by monitoring the light emitted from mobility separated ions. An IMS spectrum of nitroglycerin (NG) was obtained utilizing RIIN for tranducing the mobility separated ions into an analytical signal. The implications of this novel ion transduction method are the potential for counting ions at atmospheric pressure and for obtaining ion

  12. Analytical Analysis of the Effect of the Radiation Pressure on Planetary Exospheres: Application to Earth, Mars, Titan and Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I. S.; Mazelle, C. X.

    2014-12-01

    Because of rare collisions, the motion of light species (H, H2) in the planetary exospheres is essentially determined by the external forces: the gravitation from the planet and the radiation pressure, ... Currently, the only analytical model used to model exospheric neutral density profiles is the well-known Chamberlain model which takes into account only the gravity. In this work and in the same way as Chamberlain, we solve rigorously and analytically, based on the Hamiltonian mechanics and Liouville theorem, the additional effect of the radiation pressure in particular for hydrogen (the model works for any species sensitive to the radiation pressure) on the structure of the exosphere and on the density profiles of ballistic particles. This approach was initially developed by Bishop and Chamberlain (1989) only in the Sun-planet direction. We extend it here to the whole exosphere with a 2D model. Also, we determine analytically the escape flux on the dayside at SZA=0, which can be compared with the Jeans' escape flux. We thus show that the radiation pressure induces : strong density asymmetries at high altitudes in the planetary exospheres, leading to the phenomenon of geotail at Earth for example the natural existence of an external limit (or exopause) for the exosphere, whose location is analytically determined an increase of the exospheric densities compared with Chamberlain profiles without radiation pressure (e.g. up to +150% at 5 Martian radius) a significant increase of the thermal escape flux (up to 30/35% for Earth/Mars today), until a «blow-off » regime with a constant escape flux for an extreme radiation pressure. The influence of the radiation pressure on the escape flux may thus bring conditions on the size of primary atmospheres, because of a strong radiation pressure in the Sun's young years. Finally, we show that this model may be applied to exoplanets, in particular to the hot Jupiters that are also subject to additional effects: centrifugal

  13. Analysis of the effect of the radiation pressure on planetary exospheres : application to Earth, Mars, Titan and hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beth, Arnaud; Garnier, Philippe; Toublanc, Dominique; Mazelle, Christian; Dandouras, Iannis

    2015-04-01

    Because of rare collisions, the motion of light species (H, H2) in the planetary exospheres is essentially determined by the external forces: the gravitation from the planet and the radiation pressure, ... Currently, the only analytical model used to model exospheric neutral density profiles is the well-known Chamberlain model which takes into account only the gravity. In this work and in the same way as Chamberlain, we solve rigorously and analytically, based on the Hamiltonian mechanics and Liouville theorem, the additional effect of the radiation pressure in particular for hydrogen (the model works for any species sensitive to the radiation pressure) on the structure of the exosphere and on the density profiles of ballistic particles. This approach was initially developed by Bishop and Chamberlain (1989) only in the Sun-planet direction. We extend it here to the whole exosphere with a 2D model. Also, we determine analytically the escape flux on the dayside at SZA=0, which can be compared with the Jeans' escape flux. We thus show that the radiation pressure induces : 1. strong density asymmetries at high altitudes in the planetary exospheres, leading to the phenomenon of geotail at Earth for example 2. the natural existence of an external limit (or exopause) for the exosphere, whose location is analytically determined 3. an increase of the exospheric densities compared with Chamberlain profiles without radiation pressure (e.g. up to +150% at 5 Martian radius) 4. a significant increase of the thermal escape flux (up to 30/35% for Earth/Mars today), until a «blow-off » regime with a constant escape flux for an extreme radiation pressure. The influence of the radiation pressure on the escape flux may thus bring conditions on the size of primary atmospheres, because of a strong radiation pressure in the Sun's young years. Finally, we show that this model may be applied to exoplanets, in particular to the hot Jupiters that are also subject to additional effects

  14. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    SciTech Connect

    Tripathi, Vipin K.; Sharma, Anamika

    2013-05-15

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is taken to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.

  15. Modes of elastic plates and shells in water driven by modulated radiation pressure of focused ultrasound

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars

    2015-11-01

    The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.

  16. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F., III; Davis, G.A.; Loheide, S.P., II; Butler, J.J., Jr.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  17. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells. PMID:15584307

  18. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    SciTech Connect

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J.; Saul, L.; Wurz, P.; Bzowski, M.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Frisch, P.; Gruntman, M.; Mueller, H. R.

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  19. Evaluation of HFIR (High Flux Isotope Reactor) pressure-vessel integrity considering radiation embrittlement

    SciTech Connect

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of approx.10/sup 4/ less), that is, a rate effect.

  20. Radiation pressure acceleration by X-rays in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron; Netzer, Hagai

    2001-09-01

    We present calculations of the dynamics of highly ionized gas (HIG) clouds that are confined by external pressure, and are photoionized by AGN continuum. We focus on the gas that is seen, in absorption, in the X-ray spectrum of many AGN and show that such gas can reach hydrostatic equilibrium under various conditions. The principal conclusion is that the clouds can be accelerated to high velocities by the central X-ray source. The dynamical problem can be reduced to the calculation of a single parameter, the average force multiplier, . The typical value of is ~10 suggesting that radiation pressure acceleration by X-rays is efficient for L/LEdd>~0.1. The terminal velocity scales with the escape velocity at the base of the flow and can exceed it by a large factor. The typical velocity for a HIG flow that originates at R=1017cm in a source with Lx=1044ergs-1 is ~1000kms-1, i.e. similar to the velocities observed in several X-ray and UV absorption systems. Highly ionized AGN clouds are driven mainly by bound-free absorption, and bound-bound processes are less important unless the lines are significantly broadened or the column density is very small. Pressure laws that result in constant or outward decreasing ionization parameters are most effective in accelerating the flow.

  1. Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Trines, R. M. G. M.; Dover, N. P.; Najmudin, Z.

    2012-11-01

    The production of high-energy protons by the ‘hole-boring’ radiation pressure acceleration (HB-RPA) mechanism of laser-driven ion acceleration is examined in the case where the plasma has a density less than a0nc in 2D. Previously this was examined in 1D (Robinson 2011 Phys. Plasmas 18 056701) and was motivated by previous predictions of the non-linear criterion for an ultra-intense laser pulse to penetrate a dense plasma. By reducing the density well below a0nc the proton energies achieved increases considerably, thus leading to proton energies >100 MeV at laser intensities close to current capabilities. The results show that good quality proton beams with proton energies >100 MeV can be obtained via HB-RPA using targets with densities in the range 12-20nc and laser intensities in the range 5 × 1021-3 × 1022 W cm-2.

  2. The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Oguz, N.; Prosperetti, A.

    2001-01-01

    The action of pressure-radiation (or Bjerknes) forces on gas bubbles is well understood. This paper studies the analogous phenomenon for vapor bubbles, about which much less is known. A possible practical application is the removal of boiling bubbles from the neighborhood of a heated surface in the case of a downward facing surface or in the absence of gravity. For this reason, the case of a bubble near a plane rigid surface is considered in detail. It is shown that, when the acoustic wave fronts are parallel to the surface, the bubble remains trapped due to secondary Bjerknes force caused by an "image bubble." When the wave fronts are perpendicular to the surface, on the other hand, the bubble can be made to slide laterally.

  3. Radiative corrections to the Casimir Pressure under the influence of temperature and external fields

    SciTech Connect

    Robaschik, D.; Scharonhorst, K.; Wieczorek, E.

    1987-03-01

    Generalizing the quantum field theory (QFT) with boundary conditions in covariant gauge to the case of finite temperature, we develop the quantum electrodynamics (QED) with boundary conditions in the Matsubara approach as well as in the thermofield formulation. We rederive the known results of the free-field theory for the pressure and the free energy of the Casimir problem. For infinitely thin plates we calculate the radiative corrections in second-order perturbation theory at finite temperature. Thereby it turns out that the calculation in of the vacuum energy at the vanishing temperature via the Z functional is much simplier than the calculation via the energy momentum tensor. This observation allows determination of the influence of static electromagnetic fields on the Casimir problem. copyright 1987 Academic Press, Inc.

  4. Analysis of solar radiation pressure induced coupled librations of a gravity stabilized axisymmetric satellite

    NASA Technical Reports Server (NTRS)

    Shrivastava, S. K.; Hablani, H. B.

    1979-01-01

    This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.

  5. Effects of solar radiation pressure on the orbit of the Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.

    1977-01-01

    The surface area-to-weight ratio of the Solar Power Satellite (SPS) is of the order of sq m/kg. Therefore, solar radiation pressure will be an important perturbation on the orbit, causing large variations in eccentricity. An analytical solution is developed for the motion of eccentricity and the line of apsides. Included is a secular term due to the earth's orbital eccentricity. Several initial conditions are considered. For some cases, the eccentricity is nearly constant over a few years. General characteristics of the motion are discussed. Long-term (30 years) effects of gravity are investigated by using a numerical integration method. Eccentricities of approximately 0.08 can be expected for uncorrected SPS orbits.

  6. Direct solar and earth-albedo radiation pressure effects on the orbit of Pageos 1

    NASA Technical Reports Server (NTRS)

    Zerbini, S.

    1980-01-01

    The orbit of the Pageos 1 balloon satellite was analyzed for the effects of direct solar and albedo radiation pressure. Anomalous behavior occurred in the orbital acceleration near the end of the 2nd year of the satellite's lifetime which may have resulted from the change in its shape; the shape has become slightly oblate, spinning about a minor axis and precessing about the direction of the sun. The near-earth micrometeoroid particle flux was estimated to be 5 x 10 to the -8th/sq cm/s by analyzing the balloon inflation process with sublimating compounds and the resulting variation of the satellite mass due to the leakage through the holes produced by micrometeoroid bombardment.

  7. Dynamics of Satellites Around Asteroids in Presence of Solar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Xin, Xiaosheng; Scheeres, Daniel J.; Hou, Xiyun; Liu, Lin

    2016-01-01

    Due to the close distance to the Sun, solar radiation pressure (SRP) plays an important role in the dynamics of satellites around near-Earth asteroids (NEAs). In this paper, we focus on the equilibrium points of a satellite orbiting around an asteroid in presence of SRP in the asteroid rotating frame. The asteroid is modelled as a uniformly rotating triaxial ellipsoid. When SRP comes into play, the equilibrium points transformed into periodic orbits termed as``dynamical substitutes". We obtain the analytical approximate solutions of the dynamical substitutes from the linearised equations of motion. The analytical solutions are then used as initial guesses and are numerically corrected to compute the accurate orbits of the dynamical substitutes. The stability of the dynamical substitutes is analysed and the stability maps are obtained by varying parameters of the ellipsoid model as well as the magnitude of SRP.

  8. Neutral cometary atmospheres. III - Acceleration of cometary CN by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Combi, M. R.

    1980-01-01

    The acceleration of cometary CN radicals due to solar radiation pressure has been determined by fitting Monte Carlo models to nine observed sunward-tailward pairs of brightness profiles of the (0-0) band of CN at 3883 A. The profiles were determined from spectrograms of comets Bennett 1970 II and West 1976 VI. The values of the observed acceleration agree with those computed from resonance fluorescence calculations to within the expected uncertainties. This provides an independent confirmation of the identification of the observed scale lengths with the photochemical lifetimes and velocities associated with the production of observed cometary CN by the photodissociation of HCN. The ratio of the intensity of the (0-1) band of CN at 4216 A to the (0-0) band at 3883 A has been determined from spectrograms of comet West, and is compared with theoretical values.

  9. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    SciTech Connect

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-05-15

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  10. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  11. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  12. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Innerhofer, Edith; Pelc, Jason; Mavalvala, Nergis

    2006-08-15

    We report on experimental observation of radiation-pressure induced effects in a high-power optical cavity. These effects play an important role in next-generation gravitational wave detectors, as well as in quantum nondemolition interferometers. We measure the properties of an optical spring, created by coupling of an intense laser field to the pendulum mode of a suspended mirror, and also the parametric instability (PI) that arises from the coupling between acoustic modes of the cavity mirrors and the cavity optical mode. We measure an unprecedented optical rigidity of K=(3.08{+-}0.09)x10{sup 4} N/m, corresponding to an optical rigidity that is 6000 times stiffer than the mechanical stiffness, and PI strength R{approx_equal}3. We measure the unstable nature of the optical spring resonance, and demonstrate that the PI can be stabilized by feedback to the frequency of the laser source.

  13. Radiation pressure cross section exerted on homogenous dielectric spherical particle by zeroth order Mathieu beams

    NASA Astrophysics Data System (ADS)

    Chafiq, A.; Belafhal, A.

    2016-08-01

    In this paper, we present a full calculation of radiation pressure cross section and optical forces exerted by linearly polarized zeroth order Mathieu beams on homogenous dielectric spherical particle in the framework of generalized Lorenz-Mie theory (GLMT). In this theory, the scattered fields are dependent upon the Mie scattering coefficients and the beam shape coefficients. So a new optical property such as force and torque appears by changing the beam profile and the nature of particle. In this way, this work is devoted to the analysis of both transverse and longitudinal optical forces exerted on a simple dielectric spherical particle by zeroth order Mathieu beams and zeroth order Bessel (which is a particular case of the first beam). Thus, through numerical simulations, we show that zeroth order Mathieu beams can't trap this particle but Bessel beam presents some dimensional stable equilibrium points.

  14. Line Emission from Radiation-pressurized H II Regions. I. Internal Structure and Line Ratios

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Verdolini, Silvia; Krumholz, Mark R.; Matzner, Christopher D.; Tielens, Alexander G. G. M.

    2013-05-01

    The emission line ratios [O III] λ5007/Hβ and [N II] λ6584/Hα have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting H II regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper, we construct a grid of quasi-static H II region models to explore how choices about these parameters alter H II regions' emission line ratios. We find that when radiation pressure is included in our models, H II regions reach a saturation point beyond which further increase in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an H II region's line ratio. We also show that if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that H II regions are wind-blown bubbles and that they have high ionization parameters; some popular H II region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of H II regions.

  15. Dust scattering and the radiation pressure force in the M82 superwind

    SciTech Connect

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul E-mail: thompson@astronomy.ohio-state.edu

    2013-11-20

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L {sub *,UV}) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L {sub *,UV} ≈ (1-6) × 10{sup 42} erg s{sup –1}, ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L {sub *,UV} implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  16. X-ray radiation from the volume discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Bratchikov, V. B.; Gagarinov, K. A.; Kostyrya, I. D.; Tarasenko, V. F.; Tkachev, A. N.; Yakovlenko, S. I.

    2007-07-01

    X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ≈60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

  17. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    SciTech Connect

    Lu, S.C.; Sommer, S.C.; Johnson, G.L. ); Lambert, H.E. )

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns.

  18. Heliotropic orbits at oblate asteroids: balancing solar radiation pressure and J2 perturbations

    NASA Astrophysics Data System (ADS)

    Lantukh, Demyan; Russell, Ryan P.; Broschart, Stephen

    2015-02-01

    The combined effect of significant solar radiation pressure and perturbations on spacecraft orbits is investigated using both singly and doubly-averaged disturbing potentials with the Lagrange Planetary Equations. The resulting dynamics are applied to a spacecraft around an oblate asteroid. Several Sun-frozen families of orbits are identified using the singly-averaged potential, including two new families of orbits and a previously-discovered equatorial heliotropic orbit family. Families of both stable and unstable Sun-frozen orbits are mapped and characterized in the singly-averaged case. In addition, a heliotropic constraint is implemented to locate heliotropic orbits out of the equatorial plane using a constrained, doubly-averaged potential. Dynamic bounds for these 3D heliotropic orbits are shown to have an inclination limit of approximately 46 degrees for oblate bodies, and this limit is independent of the value of and radiation parameters. The resulting heliotropic and related periodic families of orbits are good candidates to consider for low-altitude science orbits around small oblate bodies with low or near-180 degree obliquity like Bennu, the target for the OSIRIS-REx mission.

  19. New method to measure the angular antispring effect in a Fabry-Perot cavity with remote excitation using radiation pressure

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-03-01

    In experiments with Fabry-Perot cavities consisting of suspended mirrors, an angular antispring effect on the mirror of the cavity is caused by radiation pressure from resonant light in the cavity. A new method was invented to measure the effect precisely with remote excitation on the mirror using the radiation pressure. This method was found to be available for the suspended 23 mg mirror and improved the measurement accuracy by a factor of two, compared with the previous method. This result leads to stable control systems to eliminate the angular instability of the mirror caused by the effect.

  20. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM

    PubMed Central

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-01-01

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20–25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution. PMID:27595795

  1. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM.

    PubMed

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-01-01

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution. PMID:27595795

  2. Problems of applications of high power IR radiation in aquatic medium under high pressure

    NASA Astrophysics Data System (ADS)

    Sorokin, Yurii V.; Kuzyakov, Boris A.

    2004-06-01

    In this work the effects that appear in the optical breakdown are analyzed in water and the time dependences received also for the velocities and pressures at the wave fronts. The application of acoustic waves, generated by high power laser pulses in the aqueous medium, has quite serious perspectives for sounding. It is shown in the work that under comparatively low power density of radiation, as a result of a surface layer heating, the thermoelastic sresses arise, leading to the excitation of the acoustic waves. The analysis showed that the prognostic evaluations of the values of a light deflagration area are possible for a clear aqueous medium with the pressures up to 400 kg/cm2. With the presence of microinhomogeneities, it is necessary to know their total physical and chemical properties and detailed trustworthy data by their spatial distribution. A principally new approach was developed to the problem of videoinformation transmission from the object surfaces by the fiber-optic channel. The application of a precision measuring TV-camera with a color format in the range 0.3 - 0.98 μm allows to raise the information capacity of the transmitted information. The optimization of vision module choice are considered also.

  3. Out-of-plane equilibria in the symmetric collinear restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.

    2016-08-01

    In this paper, a three dimensional case of the restricted four-body problem with radiation pressure is considered. The three primaries are supposed to be in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. In addition to the analysis of the equilibria in the planar problem introduced in a previous paper by the authors, we present here a complete study of position and stability of the equilibrium points out of {Oxy} plane.

  4. Inactivation of Single-Celled Ascaris suum Eggs by Low-Pressure UV Radiation

    PubMed Central

    Brownell, Sarah A.; Nelson, Kara L.

    2006-01-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44- ± 0.20-log inactivation (mean ± 95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23- ± 0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80- ± 0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-μm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (∼20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone. PMID:16517669

  5. The effect of radiation pressure on the particle dynamics in ring-type N-body configurations

    NASA Astrophysics Data System (ADS)

    Kalvouridis, Telemachus J.

    2001-09-01

    The paper deals with a simple photo-gravitational model of N+1 bodies. The motion of a small particle which subjects both the gravitational attraction and the radiation pressure is studied in a regular polygon configuration of N bodies. The dynamical features of this model are investigated for a wide range of values of the radiation parameters by mapping its equilibrium points and periodic orbits. The results show that for these values, radiation merely affects quantitatively the characteristics of the system, while it leaves unaffected the stability of the particle periodic motions and equilibria.

  6. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  7. Eclipse intervals for satellites in circular orbit under the effects of Earth's oblateness and solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Ismail, M. N.; Bakry, A.; Selim, H. H.; Shehata, M. H.

    2015-06-01

    In this work, the circumstances of eclipse for a circular satellites' orbit are studied. The time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of satellites' orbit are calculated. An application was done taken into account the effects of solar radiation pressure and Earth's oblateness on the orbital elements of circular orbit satellite.

  8. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together

  9. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  10. Reverberation Mapping of the Broad-line Region in NGC 5548: Evidence for Radiation Pressure?

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Du, Pu; Hu, Chen; Li, Yan-Rong; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Bi, Shao-Lan; Bai, Jin-Ming; Ho, Luis C.; Wang, Jian-Min

    2016-08-01

    NGC 5548 is the best-observed reverberation-mapped active galactic nucleus with long-term, intensive monitoring. Here we report results from a new observational campaign between 2015 January and July. We measure the centroid time lag of the broad Hβ emission line with respect to the 5100 Å continuum and obtain {τ }{{cent}}={7.20}-0.35+1.33 days in the rest frame. This yields a black hole mass of {M}\\bullet ={8.71}-2.61+3.21× {10}7{M}ȯ using a broad Hβ line dispersion of 3124 ± 302 km s‑1 and a virial factor of {f}{{{BLR}}}=6.3+/- 1.5 for the broad-line region (BLR), consistent with the mass measurements from previous Hβ campaigns. The high-quality data allow us to construct a velocity-binned delay map for the broad Hβ line, which shows a symmetric response pattern around the line center, a plausible kinematic signature of virialized motion of the BLR. Combining all the available measurements of Hβ time lags and the associated mean 5100 Å luminosities over 18 campaigns between 1989 and 2015, we find that the Hβ BLR size varies with the mean optical luminosity, but, interestingly, with a possible delay of {2.35}-1.25+3.47 years. This delay coincides with the typical BLR dynamical timescale of NGC 5548, indicating that the BLR undergoes dynamical changes, possibly driven by radiation pressure.

  11. Forced periodic motions by solar radiation pressure around uniformly rotating asteroids

    NASA Astrophysics Data System (ADS)

    Xin, Xiaosheng; Scheeres, Daniel J.; Hou, Xiyun

    2016-06-01

    Since asteroids generally have relatively weak gravity fields, solar radiation pressure (SRP) is a major perturbation for orbits in their vicinity, which under certain circumstances can be even larger than the third-body gravitational perturbations. In this work, by adopting a triaxial ellipsoid model for the asteroid and taking into account of SRP, the forced periodic motions caused by SRP around equilibrium points are studied in the body-fixed frame of the asteroid. For forced periodic motions around saddle equilibrium points, we find that the SRP does not alter their stability yet does change the morphology of the associated invariant manifolds. For forced periodic motions around center equilibrium points, different types of orbits are identified. Their stability changes with different parameters, i.e., the asteroid's shape and spin period, the latitude of the Sun, and the magnitude of SRP. Evolution of these forced periodic motions is described in detail and some interesting phenomena are found. Stability results found for our ideal model with the Sun at a fixed distance and latitude are shown to predict stability regions in a realistic model with the Sun on inclined and elliptic orbits. Though our work is based on the simplified triaxial ellipsoid model, similar computation method and conclusions should also be applicable to real asteroids.

  12. Geocoronal structure - The effects of solar radiation pressure and the plasmasphere interaction

    NASA Technical Reports Server (NTRS)

    Bishop, J.

    1985-01-01

    The theory of planetary exospheres is extended to incorporate solar radiation pressure in a rigorous manner, and an evaporative geocoronal prototype (classical, motionless exobase) is constructed using Liouville's theorem. Model calculations for density and kinetic temperature at points along the earth-sun axis (solar and antisolar directions) reveal an extensive satellite component, comprising approximately 2/3 of the total hydrogen density near 10 earth radii, and a temperature profile suggestive of an isotropic quasi-Maxwellian velocity distribution for the bound component. A geotail is also evident as an enhancement of the density at local midnight compared to local noon that increases outward (from approximately 25 percent at 10 earth radii to over 60 percent at 20 earth radii). Additional mechanisms acting upon the geocorona alter the basic evaporative case in notable ways. Solar ionization has been included in a simple fashion; the effect is to partially deplete the density without otherwise altering the structure. Interaction with a simple plasmasphere via the Boltzmann equation results in 'heating' the geocorona and enhancing the escape flux at the expense of the density of the bound component, an effect not appreciated in earlier studies; the geotail survives this interaction.

  13. Key conditions for stable ion radiation pressure acceleration by circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Zepf, M.; Gibbon, P.; Borghesi, M.; Schreiber, J.; Geissler, M.

    2011-05-01

    Radiation pressure acceleration (RPA) theoretically may have great potential to revolutionize the study of laserdriven ion accelerators due to its high conversion efficiency and ability to produce high-quality monoenergetic ion beams. However, the instability issue of ion acceleration has been appeared to be a fundamental limitation of the RPA scheme. To solve this issue is very important to the experimental realization and exploitation of this new scheme. In our recent work, we have identified the key condition for efficient and stable ion RPA from thin foils by CP laser pulses, in particular, at currently available moderate laser intensities. That is, the ion beam should remain accompanied with enough co-moving electrons to preserve a local "bunching" electrostatic field during the acceleration. In the realistic LS RPA, the decompression of the co-moving electron layer leads to a change of local electrostatic field from a "bunching" to a "debunching" profile, resulting in premature termination of acceleration. One possible scheme to achieve stable RPA is using a multi-species foil. Two-dimensional PIC simulations show that 100 MeV/u monoenergetic C6+ and/or proton beams are produced by irradiation of a contaminated copper foil with CP lasers at intensities 5 × 1020W/cm2, achievable by current day lasers.

  14. GIOVE-B solar radiation pressure modeling for precise orbit determination

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Montenbruck, Oliver; Hugentobler, Urs

    2015-03-01

    Previous studies have identified systematic errors in the orbit and clock estimates of the GIOVE and Galileo IOV satellites in the order of ± 20 cm. These errors are visible as periodic variations in the Satellite Laser Ranging (SLR) and clock residuals. For IOV, these variations could be attributed to the contribution of a stretched satellite body and it was shown that a simple a priori box model for the solar radiation pressure can significantly reduce these errors. GIOVE-B has similar dimensions as the IOV satellites but its orientation is different: for GIOVE-B the narrow side of the satellite points to the Earth rather than the longitudinal side. In addition, an extra plate carrying, amongst others, the laser retro reflector array is mounted on the spacecraft introducing shadowing effects. These features are considered with a simple box-plate model. This model reduces the periodic clock errors and the SLR residual RMS of GIOVE-B by a factor of two. Most importantly, the box-plate model reduces the SLR offset from 11 cm to less than 1 cm. The largest part of this reduction comes from considering the plate and its shadowing effects.

  15. Fiber-tip resonator excited by radiation pressure and photo-thermal effect

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Wang, Anbo

    2010-04-01

    A mechanical resonator was fabricated on the tip of a standard single mode fiber with outer diameter of 125 μm. The fabrication process involved a single-mode to a multimode fiber splicing, sputtering coating of a submicron gold nanofilm, focused ion beam (FIB) patterning and chemical wet etching. A micro-vibrating disk with suspension arms was formed on the sensing fiber tip, the resonance frequency of the vibrator is sensitive to mass loading on its surface. Vibration was excited by laser excitation via the radiation pressure and the photo-thermal effect and detected by a CW laser beam at another wavelength. The detected intensity of the fundamental and higher order harmonics can be monitored for resonance frequency determination. The excitation and detection beams were multiplexed within a single fiber link, which makes the sensor compact and versatile. The resonator maintained relatively high quality factor in air and was successfully applied to the analysis of layer-by-layer electrostatic self-assembly and immuno-sensing.

  16. Families of periodic orbits in Hill's problem with solar radiation pressure: application to Hayabusa 2

    NASA Astrophysics Data System (ADS)

    Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2014-11-01

    This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.

  17. Experimental Demonstration of Synthetic Lorentz Force on Cold Atoms by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ban, Ticijana; Santic, Neven; Dubcek, Tena; Aumiler, Damir; Buljan, Hrvoje

    2015-05-01

    The quest for synthetic magnetism in quantum degenerate atomic gases is motivated by producing controllable quantum emulators, which could mimic complex quantum systems such as interacting electrons in magnetic fields. Experiments on synthetic magnetic fields for neutral atoms have enabled realization of the Hall effect, Harper and Haldane Hamiltonians, and other intriguing topological effects. Here we present the first demonstration of a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, in cold atomic gases captured in a Magneto-Optical Trap (MOT). Synthetic Lorentz force on cold atomic cloud is measured by recording the cloud trajectory. The observed force is perpendicular to the cloud velocity, and it is zero for the atomic cloud at rest. The proposed concept is straightforward to implement in a large volume and different geometries, it is applicable for a broad range of velocities, and it can be realized for different atomic species. The experiment is based on the theoretical proposal introduced in. This work was supported by the UKF Grant No. 5/13 and Croatian MZOS.

  18. The effect of line-tying on the radiative MHD stability of coronal plasmas with radial pressure profile

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1984-01-01

    The role of photospheric line-tying, i.e., solar coronal loop structures, was investigated in terms of the effect on radiative modes and the influence that different radial pressure profiles exert on the effects of line-tying on radiative MHD stability. Energy is assumed dissipated by heat conduction and radiation and zero- and first-order solutions are obtained for the radiative time scales. Line-tying is a magnetic tension in the zero-order MHD mode and produces stability. Heat conduction occurs along bent field lines in first-order MHD modes when plasmas cross the field lines. Irradiated cool-core loops can experience MHD instabilities in the cylinder center, while line-tying can stabilize the plasma in the surrounding hot medium. Line-tying also adds stability to magnetosonic and condensation modes.

  19. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  20. The Role of Non-ionizing Radiation Pressure in Star Formation: The Stability of Cores and Filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-06-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic center or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  1. Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario

    NASA Astrophysics Data System (ADS)

    Tobias, Guillermo; Jesús García, Adrián

    2016-04-01

    The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of

  2. Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.

    2016-09-01

    The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core

  3. Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.

    2016-09-01

    The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core

  4. An Enhanced Box-Wing Solar Radiation pressure model for BDS and initial results

    NASA Astrophysics Data System (ADS)

    Zhao, Qunhe; Wang, Xiaoya; Hu, Xiaogong; Guo, Rui; Shang, Lin; Tang, Chengpan; Shao, Fan

    2016-04-01

    Solar radiation pressure forces are the largest non-gravitational perturbations acting on GNSS satellites, which is difficult to be accurately modeled due to the complicated and changing satellite attitude and unknown surface material characteristics. By the end of 2015, there are more than 50 stations of the Multi-GNSS Experiment(MGEX) set-up by the IGS. The simple box-plate model relies on coarse assumptions about the dimensions and optical properties of the satellite due to lack of more detailed information. So, a physical model based on BOX-WING model is developed, which is more sophisticated and more detailed physical structure has been taken into account, then calculating pressure forces according to the geometric relations between light rays and surfaces. All the MGEX stations and IGS core stations had been processed for precise orbit determination tests with GPS and BDS observations. Calculation range covers all the two kinds of Eclipsing and non-eclipsing periods in 2015, and we adopted the un-differential observation mode and more accurate values of satellite phase centers. At first, we tried nine parameters model, and then eliminated the parameters with strong correlation between them, came into being five parameters of the model. Five parameters were estimated, such as solar scale, y-bias, three material coefficients of solar panel, x-axis and z-axis panels. Initial results showed that, in the period of yaw-steering mode, use of Enhanced ADBOXW model results in small improvement for IGSO and MEO satellites, and the Root-Mean-Square(RMS) error value of one-day arc orbit decreased by about 10%~30% except for C08 and C14. The new model mainly improved the along track acceleration, up to 30% while in the radial track was not obvious. The Satellite Laser Ranging(SLR) validation showed, however, that this model had higher prediction accuracy in the period of orbit-normal mode, compared to GFZ multi-GNSS orbit products, as well with relative post

  5. Geometrical Model of Solar Radiation Pressure Based on High-Performing Galileo Clocks - First Geometrical Mapping of the Yarkowsky effect

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Steigenberger, Peter; Ziebart, Marek

    2014-05-01

    Solar radiation pressure is the main source of errors in the precise orbit determination of GNSS satellites. All deficiencies in the modeling of Solar radiation pressure map into estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geometrically map radial orbit perturbations of GNSS satellites using highly-performing clocks on board the first Galileo satellites. Only a linear model (time bias and time drift) needs to be removed from the estimated clock parameters and the remaining clock residuals map all radial orbit perturbations along the orbit. With the independent SLR measurements, we show that a Galileo clock is stable enough to map radial orbit perturbations continuously along the orbit with a negative sign in comparison to SLR residuals. Agreement between the SLR residuals and the clock residuals is at the 1 cm RMS for an orbit arc of 24 h. Looking at the clock parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR bias in Galileo and GPS orbits can be explained by the translation of the determined orbit in the orbital plane towards the Sun. This orbit translation is due to thermal re-radiation and not accounting for the Sun elevation in the parameterization of the estimated Solar radiation pressure parameters. SLR ranging to GNSS satellites takes place typically at night, e.g. between 6 pm and 6 am local time when the Sun is in opposition to the satellite. Therefore, SLR observes only one part of the GNSS orbit with a negative radial orbit error that is mapped as an artificial bias in SLR observables. The Galileo clocks clearly show orbit translation for all Sun elevations: the radial orbit error is positive when the Sun is in conjuction (orbit noon) and negative when the Sun is in opposition (orbit midnight). The magnitude of this artificial negative SLR bias

  6. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds

    SciTech Connect

    Pento, A V; Nikiforov, S M; Simanovsky, Ya O; Grechnikov, A A; Alimpiev, S S

    2013-01-31

    A new method was developed for the mass spectrometric analysis of organic and bioorganic compounds, which involves laser ablation with the ionisation of its products by laser-plasma radiation and enables analysing gaseous, liquid, and solid substances at atmospheric pressure without sample preparation. The capabilities of this method were demonstrated by the examples of fast pharmaceutical composition screening, real-time atmosphere composition analysis, and construction of the mass spectrometric images of organic compound distributions in biological materials. (interaction of laser radiation with matter)

  7. Dielectric barrier discharge KrCl- and XeCl-excilamps radiation power control by pressure jump method

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Kuznetsov, Vladimir S.; Didenko, Maria V.; Panarin, Victor A.

    2015-12-01

    The energy dissipation processes in dielectric barrier discharge KrCl- and XeCl-excilamps at various voltage, frequencies and pulse duration are revealed by a pressure jump method. It is offered and tested a way of radiation power calculation in conditions of non-uniform filling of device bulb by discharge plasma. The previous data (Pikulev A.A., Sosnin E.A., 2010-2013) are confirmed. The regularity was formulated: conditions of maximal ultraviolet radiation power corresponds to conditions of maximal heat release in plasma.

  8. The radiation pressure-driven Rayleigh-Taylor instability - Analysis and application to QSO emission line clouds

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1979-01-01

    The growth of perturbations in a photoionized gas slab accelerated by radiation pressure under conditions like those in QSO emission-line regions is analyzed. A linear dispersion relation is derived, and numerical radiation-transfer calculations are performed to evaluate the coefficients and roots of that dispersion relation for L-alpha optical depths between 0.1 and 10,000. The nonlinear growth of the waves is estimated, and it is concluded that complete dispersal of the clouds is likely. On the basis of qualitative arguments it is suggested that clouds of greater optical depth are linearly stable.

  9. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... one of the sex chromosomes, which are the X and Y chromosomes. Dominant inheritance occurs when an ...

  10. A Numerical Algorithm to Calculate the Pressure Distribution of the TPS Front End Due to Desorption Induced by Synchrotron Radiation

    SciTech Connect

    Sheng, I. C.; Kuan, C. K.; Chen, Y. T.; Yang, J. Y.; Hsiung, G. Y.; Chen, J. R.

    2010-06-23

    The pressure distribution is an important aspect of a UHV subsystem in either a storage ring or a front end. The design of the 3-GeV, 400-mA Taiwan Photon Source (TPS) foresees outgassing induced by photons and due to a bending magnet and an insertion device. An algorithm to calculate the photon-stimulated absorption (PSD) due to highly energetic radiation from a synchrotron source is presented. Several results using undulator sources such as IU20 are also presented, and the pressure distribution is illustrated.

  11. A new empirical solar radiation pressure model for BeiDou GEO satellites

    NASA Astrophysics Data System (ADS)

    Liu, Junhong; Gu, Defeng; Ju, Bing; Shen, Zhen; Lai, Yuwang; Yi, Dongyun

    2016-01-01

    Two classic empirical solar radiation pressure (SRP) models, the Extended Center for Orbit Determination in Europe (CODE) Orbit Model ECOM 5 and ECOM 9 have been widely used for Global Positioning System (GPS) Medium Earth Orbit (MEO) satellites precise orbit determination (POD). However, these two models are not suitable for BeiDou Geostationary Earth Orbit (GEO) satellites due to their special attitude control mode. With the experimental design method this paper proposes a new empirical SRP model for BeiDou GEO satellites, which is featured by three constant terms in DYX directions, two sine terms in DX directions and one cosine term in the Y direction. It is the first time to reveal that the periodic terms in the D direction are more important than those in YX directions for BeiDou GEO satellites. Compared with ECOM 5 and ECOM 9, the BeiDou GEO satellite orbits are significantly stabilized with the new SRP force model. The average orbit overlapping root mean square (RMS) achieved by the proposed model is 7.5 cm in the radial component, which is evidently improved over those of 37.4 and 13.2 cm for ECOM 5 and ECOM 9, respectively. In addition, the correlation coefficients between GEO orbit overlaps precision and the elevation angle of the Sun have been decreased to -0.12, 0.21, and -0.03 in radial, along-track and cross-track components by using the proposed model, while they are -0.94, -0.79 and -0.29 for ECOM 5 and -0.70, 0.21 and 0.10 for ECOM 9. Moreover, the standard deviation (STD) of Satellite Laser Ranging (SLR) data residuals for the GEO satellite C01 is reduced by 37.4% and 16.1% compared with those of ECOM 5 and ECOM 9 SRP models.

  12. Supernova dynamics in the laboratory: Radiative shocks produced by ultra-high pressure implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, Arthur

    2012-10-01

    Thermonuclear fuel experiments on the National Ignition Facility implode 2-mm diameter capsules with a cryogenic deuterium-tritium ice layer to 1000x liquid density and pressures exceeding 100 Gbar (10^11 atm). About 200 ps after peak compression, a spherical supernova-like radiative shock wave is observed that expands with shock velocities of uS = 300 km/s, temperatures of order 1 keV at densities of 1 g/cc resulting in a radiation strength parameter of Q ˜uS^5 = 10^4. Radiation-hydrodynamic simulations indicate that the shock launched at stagnation first goes down a strong density gradient while propagating outward from the highly compressed DT fuel (˜ 1000g/cc) to the ablation front (˜ 1 g/cc). Similar to what happens inside a star, the shock pressure drops as it accelerates and heats. The radiative shock emission is first observed when it breaks out of the dense compressed fuel shell into the low-density inflowing plasma at the ablation front mimicking the supernova situation where the shock breaks out through the star surface into surrounding in-falling matter [1,2]; the shock is subsequently approaching the supercritical state with a strong pre-cursor followed by rapid cooling. These observations are consistent with the rapid vanishing of the radiation ring 400 ps after peak compression due to strong radiation losses and spherical expansion. The evolution and brightness of the radiative shock provides insight into the performance of these implosions that have the goal to produce burning fusion plasmas in the laboratory. By modifying the capsule ablator composition and thickness, the stagnation pressure, density gradients, shock velocity and radiative properties could be tailored to study various regimes related to supernovae radiative remnants.[4pt] [1] W. David Arnett, Supernovae as phenomena of high-energy astrophysics, Ann NY Aca. Science 302, 90 (1977).[0pt] [2] L. Ensman and A. Burrows, Shock breakout in SN1987A, ApJ 393, 742.

  13. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  14. The end-of-life disposal of satellites in libration-point orbits using solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Soldini, Stefania; Colombo, Camilla; Walker, Scott

    2016-04-01

    This paper proposes an end-of-life propellant-free disposal strategy for libration-point orbits which uses solar radiation pressure to restrict the evolution of the spacecraft motion. The spacecraft is initially disposed into the unstable manifold leaving the libration-point orbit, before a reflective sun-pointing surface is deployed to enhance the effect of solar radiation pressure. Therefore, the consequent increase in energy prevents the spacecraft's return to Earth. Three European Space Agency missions are selected as test case scenarios: Herschel, SOHO and Gaia. Guidelines for the end-of-life disposal of future libration-point orbit missions are proposed and a preliminary study on the effect of the Earth's orbital eccentricity on the disposal strategy is shown for the Gaia mission.

  15. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  16. The effect of radiation pressure on planar, self-gravitating H II regions and its neutral environment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramírez, J. C.; Raga, A. C.

    2016-08-01

    We study the hydrostatic configuration of an isothermal gas layer surrounding a planar distribution of stars, in which the gravitational effects (due to the stars and the self-gravity of the gas) and the radiation pressure due to dust absorption and photoionization of H are important. We consider an infinite planar distribution, and derive a model for the vertical stratification. We obtain the density profiles of a photoionized gas layer, which is covered by a neutral region. We find that the solutions range between cases in which the photoionized layer extends to infinity, to cases in which the vertical extent of the photoionized layer is negligible in comparison with the characteristic height of the enclosing, neutral layer. We find that in cases with a significant dust content, the effect of the radiation pressure together with the self-gravity generates dense, narrow neutral layers in which further star formation might occur.

  17. Orientation and shape-control of an orbiting flexible beam under the influence of solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Krishna, R.; Bainum, P. M.

    1984-01-01

    In this paper, the uncontrolled and controlled dynamics of a thin flexible beam in orbit and in the presence of solar radiation disturbance are analyzed. A beam nominally oriented along (i) the local horizontal and carrying a gimballed rigid dumbbell for gravity stabilization, and (ii) a beam nominally oriented along the local vertical are considered. The uncontrolled dynamics of the beam in the presence of the solar radiation pressure disturbance shows the excitation of the rigid pitch mode. The control laws previously designed for the case where the environmental effects were neglected, are found to be inadequate to control the shape and orientation of very flexible beams that are exposed to solar radiation disturbances. The control laws and the gain parameters are reevaluated for both cases of nominal beam orientations; this results, in general, in increased robustness of the closed-loop system. Methods of obtaining a robust control system in the presence of environmental perturbations are discussed.

  18. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... type of chromosome that is affected (autosomal or sex chromosome). It also depends on whether the trait ...

  19. Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure.

    PubMed

    Luo, Yan; Tang, Xinhua; Lu, Fenggui; Chen, Qintao; Cui, Haichao

    2015-02-10

    The attenuation of a laser by plasma plume can be restrained for laser welding under subatmospheric pressure. Based on the experimental obtained spectra, the extinctions of a probe laser under different subatmospheric pressures and the spatial distribution of probe laser extinction were measured. The role of subatmospheric pressure on plasma plume was analyzed. The results show that, with decreasing ambient pressure, the extinction of a probe laser decreases, and the welding penetration depth increases. The maximum attainable value of extinction gets far away from the keyhole in the transversal and vertical directions. The attenuation of a fiber laser is about 10% under normal atmosphere, and it reaches only about 1% when the ambient pressure is reduced to 3 kPa. PMID:25968026

  20. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  1. The linear and nonlinear optical properties of a hydrogenic donor impurity in a nanowire superlattice: Effects of laser radiation and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Safarpour, Gh.; Izadi, M. A.; Khajehei, N.; Dialameh, M.

    2014-12-01

    The effects of laser radiation and hydrostatic pressure on the linear and nonlinear optical properties of an impure GaAs/Ga1-xAlxAs nanowire superlattice (NWSL) are analyzed using the finite difference method and compact density-matrix approach. In this regards the transition between ground and first excited states is considered to obtain linear, third order nonlinear and total optical absorption coefficients (ACs) and refractive index (RI) changes. Our calculations show that presence of laser radiation causes an increment in ACs and RI changes and shifts optical spectrum towards lower energies. Additionally, applying pressure leads to a decrement in ACs and RI changes with a small blue shift in the spectrum. Moreover, the nonlinear terms of ACs and RI changes are very sensitive to laser radiation and pressure, and saturation in optical spectrum can be adjusted by magnitudes of laser radiation and pressure.

  2. Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2016-06-01

    In this paper we use the planar circular restricted three-body problem where one of the primary bodies is an oblate spheroid or an emitter of radiation in order to determine the basins of attraction associated with the equilibrium points. The evolution of the position of the five Lagrange points is monitored when the values of the mass ratio μ , the oblateness coefficient A1, and the radiation pressure factor q vary in predefined intervals. The regions on the configuration (x,y) plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson method. The correlations between the basins of convergence of the equilibrium points and the corresponding number of iterations needed in order to obtain the desired accuracy are also illustrated. We conduct a thorough and systematic numerical investigation demonstrating how the dynamical quantities μ , A1, and q influence the basins of attractions. Our results suggest that the mass ratio and the radiation pressure factor are the most influential parameters, while on the other hand the structure of the basins of convergence are much less affected by the oblateness coefficient.

  3. Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1976-01-01

    A theoretical and experimental investigation of the noise and unsteady surface pressure characteristics of an isolated airfoil in a uniform mean velocity, homogeneous, nearly-isotropic turbulence field was conducted. Wind tunnel experiments were performed with a 23 cm chord, two dimensional NACA 0012 airfoil over a free stream Mach number range of 0.1 to 0.5. Far-field noise spectra and directivity were measured in an anechoic chamber that surrounded the tunnel open jet test section. Spanwise and chordwise distribution of unsteady airfoil surface pressure spectra and surface pressure cross-spectra were obtained. Incident turbulence intensities, length scales, spectra, and spanwise cross-spectra, required in the calculation of far-field noise and surface pressure characteristics were also measured.

  4. The direct measurement of ablation pressure driven by 351-nm laser radiation

    NASA Astrophysics Data System (ADS)

    Fratanduono, D. E.; Boehly, T. R.; Celliers, P. M.; Barrios, M. A.; Eggert, J. H.; Smith, R. F.; Hicks, D. G.; Collins, G. W.; Meyerhofer, D. D.

    2011-10-01

    The instantaneous scaling of ablation pressure to laser intensity is directly inferred for ramp compression of diamond targets irradiated by 351-nm light. Continuously increasing pressure profiles from 100 to 970 GPa are produced by direct-drive laser ablation at intensities up to 7 × 1013 W/cm2. The free-surface velocity on the rear of the target is used to directly infer the instantaneous ablation-pressure profile at the front of the target. The laser intensity on target is determined by laser power measurements and fully characterized laser spots. The ablation pressure is found to depend on the laser intensity as P(GPa )=42(±3)[I(TW/cm2)]0.71(±0.01).

  5. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    PubMed

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  6. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  7. Measurement of electrical avalanches and optical radiation near solid insulators in high pressure (up to 0. 3 MPa) nitrogen gas

    SciTech Connect

    Mahajan, S.M. ); Sudarshan, T.S. )

    1991-03-01

    Electron and ion avalanches have been recorded near a variety of insulators (plexiglas, teflon, high-density polyethylene, low-density polyethylene, polypropylene, delrin, polyvinyl chloride, and nylon) in nitrogen gas at pressures of 0.1, 0.2, and 0.3 MPa. With the exception of nylon, suppression of avalanches has been observed in the presence of insulators. In addition to electron and ion avalanches, simultaneous measurement of optical radiation associated with an electron avalanche was successfully carried out. Qualitative explanations have been provided for the suppression of avalanches near most insulators and an anomalous growth of avalanches near nylon insulators. Photoemission from nylon surfaces appears to be responsible for the enhanced growth of avalanches near nylon insulators. More precise measurements of optical radiation are needed to better understand the electron-photon interactions near a solid insulator in a gaseous dielectric medium.

  8. Mechanical effects of light on material media: radiation pressure and the linear and angular momenta of photons

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2014-09-01

    Electromagnetic waves carry energy as well as linear and angular momenta. Interactions between light and material media typically involve the exchange of all three entities. In all such interactions energy and momentum (both linear and angular) are conserved. Johannes Kepler seems to have been the first person to notice that the pressure of sunlight is responsible for the tails of the comets pointing away from the Sun. Modern applications of radiation pressure and photon momentum include solar sails, optical tweezers for optical trapping and micro-manipulation, and optically-driven micro-motors and actuators. This paper briefly describes certain fundamental aspects underlying the mechanical properties of light, and examines several interesting phenomena involving the linear and angular momenta of photons.

  9. A simple table-top experiment demonstrating mechanical oscillation of a macroscopic object driven by radiation pressure

    NASA Astrophysics Data System (ADS)

    Jesensky, Grace; Dams, Dominic; Khomenko, Oleksiy; Kim, Woo-Joong

    We have implemented a Michelson's interferometer to demonstrate the resonant motion of a cm-sized cantilever due to radiation pressure of a laser diode (5 mW or less). The mechanical oscillation is found to be 2.454 (+/-0.003) kHz and is independently confirmed by dynamic force microscopy in which a piezoelectric transducer (PZT) is employed as a mechanical driver. We will discuss other applications, such as a wavelength meter and short-ranged force measurements, based on our simple table-top experiment.

  10. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (< 6 GPa); (2) Though at each condition potentially complicated by charge disordering process, isothermal compression curves remains simple and reproducible; (3) During cooling, the reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  11. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect

    Vasilyak, L. M.; Drozdov, L. A. Kostyuchenko, S. V.; Sokolov, D. V.; Kudryavtsev, N. N.; Sobur, D. A.

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  12. Promising high-pressure DF - CO{sub 2} laser for amplifying picosecond radiation pulses

    SciTech Connect

    Agroskin, V Ya; Bravy, B G; Vasil'ev, G K; Kashtanov, S A; Makarov, E F; Sotnichenko, S A; Chernyshev, Yu A

    2012-10-31

    A scheme of the experiment is described and the results of measuring the small-signal gain in the active medium of a pulsed chemical DF - CO{sub 2} laser at a medium pressure in the range from 1 to 2.5 atm are reported. The values obtained (above 5 m{sup -1} at a pressure of 2.5 atm) make this laser a promising final amplifier of a multiterawatt laser system in the 10-{mu}m wavelength region. (lasers)

  13. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    PubMed

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces. PMID:26309145

  14. [Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium].

    PubMed

    Wang, Hua; Zhao, Ping; Cai, Xi-An; Ma, Ling; Rao, Xing-Quan; Zeng, Xiao-Ping

    2008-02-01

    Based on the measurement of the stem sap flow of Acacia mangium with Granier' s thermal dissipation probe, and the cross-correlation and time serial analysis of the sap flow and corresponding photosynthetically active radiation and vapor pressure deficit, this paper studied the time lag effect between the stem sap flow of A. mangium and the driving factors of the tree canopy transpiration. The results indicated that the main driving factors of the transpiration were photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Sap flux density (Js) was more dependent on PAR than on VPD, and the dependence was more significant in dry season than in wet season. Sap flow lagged behind PAR but advanced than VPD in both dry and wet seasons. The time lag did not show any significant variation across different size tree individuals, but showed significant variation in different seasons. Time lag effect was not correlated with tree height, diameter at the breast, and canopy size. The time lag between Js and VPD was significantly related to nighttime water recharge in dry season, but reversed in wet season. PMID:18464623

  15. Radiation counting technique allows density measurement of metals in high-pressure/ high-temperature environment

    NASA Technical Reports Server (NTRS)

    Dillion, I. G.; Nelson, P. A.; Swanson, B. S.

    1967-01-01

    Radioactive tracers induced by neutron irradiation provide a gamma ray flux proportional to the density of a metal, allowing density measurement of these metals in extreme high-temperature and high-pressure environments. This concept is applicable to most metals, as well as other substances.

  16. Dominance of the Breit interaction in the cross section and circular polarization of x-ray radiation following longitudinally-polarized-electron-impact excitation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Jiang, Jun

    2014-08-01

    Longitudinally-polarized-electron-impact excitation cross sections from the ground state to the individual magnetic sublevels of the excited state 1s2s22p3/2(J = 2) of highly charged Be-like ions are calculated using a fully relativistic distorted-wave method. The contributions of the Breit interaction to the cross sections and circular polarizations of the 1s2s22p3/2(J = 2)→1s22s2(J = 0) magnetic quadrupole (M2) line for selected Be-like Ag43+, Ho63+, and Bi79+ ions are investigated systematically. It is found that the Breit interaction has a large effect and makes the cross sections increase, especially to the mf = -1 and -2 sublevels, the Breit interaction can modify the cross sections by several orders of magnitude. These dramatic influences also lead to a remarkable decrease in the circular polarization of subsequent x-ray radiation, the character of which becomes more and more evident with increasing incident energy and atomic number. And all these characteristics are very different from the conclusions for the linear polarization of radiation following the electron-impact process [S. Fritzsche, A. Surzhykov, and T. Stöhlker, Phys. Rev. Lett. 103, 113001 (2009), 10.1103/PhysRevLett.103.113001; Z. W. Wu, J. Jiang, and C. Z. Dong, Phys. Rev. A 84, 032713 (2011), 10.1103/PhysRevA.84.032713].

  17. Synthesis of high-molecular-weight polymer of methyl chloride salt of N,N-dimethylaminoethyl methacrylate by radiation-induced polymerization at high pressure. [Gamma radiation

    SciTech Connect

    Ishigaki, I.; Okada, T.; Sasuga, T.; Takehisa, M.; Machi, S.

    1981-02-01

    Polymer of the methyl chloride salt of N,N-dimethylaminoethyl methacrylate and its copolymer with acrylamide are used as cationic flocculants for the treatment of waste water containing organic suspensions. As reported, radiation-induced polymerization is one of the most convenient methods because of its temperature independence of initiation and extremely large G-value. In general, a flocculant with higher molecular weight has larger flocculation effects. The high-molecular-weight products were prepared in high monomer concentration and a low dose rate. This paper concerns the polymerization and copolymerization of methyl chloride salt of N,N-dimethylaminoethyl methacrylate at high pressure, up to 7000 kg/cm/sup 2/, providing high-molecular-weight cationic flocculants.

  18. Neighborite Under High Pressure: In Situ Angle Dispersive X-ray Diffraction Study Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, J.; Weidner, D.; Hu, J.; Meng, Y.; Mao, H.

    2003-12-01

    The neighborite (NaMgF3) is an ideal analogue model for silicate perovskite (MgSiO3) due to the similarities between their crystal and electronic structures. The advantage of the analogue study is that the weaker bonding feature of neighborite grants us the opportunity to simulate behavior of silicate perovskite at lower mantlei. e.high pressure and high temperature condition, at relatively lower P-T conditions. The previous high pressure studies for neighborite were reported by Zhao et al [1, 2]. Energy dispersive x-ray diffraction data were achieved within 10GPa and 1000oC, while angle dispersive x-ray diffraction data were obtained only at 4.9GPa and room temperature.More information of atomic position change is required to reveal the role of MgF6 octahedral framework tilting during its phase transition process responding to heating andcompressing. Thus the high-resolution monochromatic x-ray powder diffraction studies on NaMgF3 perovskite at high pressure were carried out using diamond anvil cell at X17C of National Synchrotron Light Source (Brookhaven) and HPCAT of Advance Photon Source (Argonne). The orthorhombic structure keeps stable under pressure up to 30 GPa, and the crystal structure is refined using Rietveld method. The result indicates that tilting angle of the MgF6 octahedral framework increases continually while the octahedral Mg-F bond length decreases slightly with increasing pressure.Difference between the tilting angles derived from macro-structure (lattice parameters) and from micro-structure (atomic positions), as well as the trend of change in the tilting angle with temperature and pressureare discussed. [1]. Zhao YS, Weidner DJ, Ko JD, Leinenweber K, Liu X, Li BS, Meng Y,Pacalo REG, Vaughan MT, Wang YB, Yeganehhaeri A,J.Geophys. Res. Solid Earth, 99 (1994) 2871. [2]. Zhao YS, Parise JB, Wang YB, Kusaba K, Vaughan MT, Weidner DJ, Kikegawa T, Chen J, Shimomura O,Am.Miner., 79 (1994) 615.

  19. Characterization of the flowing afterglows of an N2 O2 reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NOβ UV intensity variation with the N and O atom densities

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Saoudi, B.; Moisan, M.; Ricard, A.

    2007-03-01

    The flowing afterglow of an N2-O2 discharge in the 0.6-10 Torr range is examined in the perspective of achieving sterilization of medical devices (MDs) under conditions ensuring maximum UV intensity with minimum damage to polymer-based MDs. The early afterglow is shown to be responsible for creating strong erosion damage, requiring that the sterilizer be operated in a dominant late-afterglow mode. These two types of afterglow can be characterized by optical emission spectroscopy: the early afterglow is distinguished by an intense emission from the N_{2}^{+} 1st negative system (band head at 391.4 nm) while the late afterglow yields an overpopulation of the v' = 11 ro-vibrational level of the N2(B) state, indicating a reduced contribution from the early afterglow N2 metastable species. We have studied the influence of operating conditions (pressure, O2 content in the N2-O2 mixture, distance of the discharge from the entrance to the afterglow (sterilizer) chamber) in order to achieve a dominant late afterglow that also ensures maximum and almost uniform UV intensity in the sterilization chamber. As far as operating conditions are concerned, moving the plasma source sufficiently far from the chamber entrance is shown to be a practical means for significantly reducing the density of the characteristic species of the early afterglow. Using the NO titration method, we obtain the (absolute) densities of N and O atoms in the afterglow at the NO injection inlet, a few cm before the chamber entrance: the N atom density goes through a maximum at approximately 0.3-0.5% O2 and then decreases, while the O atom density increases regularly with the O2 percentage. The spatial variation of the N atom (relative) density in the chamber is obtained by recording the emission intensity from the 1st positive system at 580 nm: in the 2-5 Torr range, this density is quite uniform everywhere in the chamber. The (relative) densities of N and O atoms in the discharge are determined by using

  20. Study of pulsed neon-xenon VUV radiating low pressure plasmas for mercury free fluorescent sign optimization

    NASA Astrophysics Data System (ADS)

    Robert, E.; Point, S.; Dozias, S.; Viladrosa, R.; Pouvesle, J. M.

    2010-04-01

    This work deals with the study and optimization of mercury free fluorescent discharge tubes for publicity lighting applications. The experimental set-up allows for time resolved spectroscopy from 110 up to 900 nm, photometric characterization in a large volume integrating sphere and the current and voltage measurement of microsecond duration signals delivered by lab-developed pulsed drivers. The glow and afterglow radiative process analysis indicates that the best performance measured with the pulsed excitation of rare gas plasma, in comparison with the conventional ac excitation, essentially originates from the efficient plasma relaxation during the afterglow at the benefit of the vacuum ultraviolet (VUV) resonance line radiated at 146.9 nm for xenon. The fit of the VUV time resolved experimental measurements, with the results issued from a simplified kinetic model of neon-xenon plasmas, evidences the crucial role of production of molecular ions during the glow phase and of their radiative recombination during the afterglow. The pulse duration and the gas mixture pressure appear as two experimental parameters whose influence, studied over an extended range, has been demonstrated to bring about a significant sign performance enhancement. There exists an optimum pulse duration range, which results in the appearance of limited stepwise excitation and ionization processes, favourable for an intense afterglow VUV production. The pressure dependence study shows that the best performance for pulsed excitation is obtained in Ne/Xe (100/1) mixtures around 50 mbar, at the difference of an ac driven Ne/Xe plasma for which the best conditions were reported to be of a few millibars. This pressure increase results both in the VUV and sign light output enhancement and the successful continuous operation of pulsed mercury free signs for time as long as 4000 h with neither electrode erosion, nor glass or phosphor degradation nor chromatic coordinate variation. For the green

  1. Radiation Pressure Force from Optical Cycling on a Polyatomic Molecule SrOH

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Matsuda, Kyle; Sedlack, Alex; Hemmerling, Boerge; Doyle, John

    2016-05-01

    Polyatomic molecules hold promise for many applications in physics and chemistry due to their rotational and vibrational degrees of freedom. The starting point for our approach to the production of ultracold strontium monohydroxide (SrOH) is buffer-gas cooling followed by laser manipulation. Linear geometry, diagonal Franck-Condon factors, short radiative lifetimes and unresolved hyperfine splittings make SrOH a particularly attractive candidate for direct laser cooling. We report deflection of the SrOH beam through radiative force from optical cycling on the X~2Σ+ <-->Ã2Π1 / 2 transition. We observe × 12 fluorescence enhancement with closed spin-rotation splitting and demonstrate cycling between different vibrational levels with the Sr <--> O mode repumping laser. Observed deflection and detection signals correspond to the scattering of ~ 100 photons. Additional repumping laser for the bending mode would lead to scattering of ~ 1 , 000 photons allowing for transverse laser cooling of the SrOH beam. We will also describe our experimental efforts towards laser slowing and trapping of SrOH.

  2. Remote sensing of cloud-top pressure using reflected solar radiation in the oxygen A-band

    NASA Technical Reports Server (NTRS)

    Wu, M.-L. C.

    1985-01-01

    An algorithm has been developed for using the reflection of solar radiation in the oxygen A-band to determine cloud-top altitude. Because of multiple scattering and molecular absorption inside the cloud, the reflection of clouds is substantially modified in comparison with a mirror cloud, which is assumed to have a 100 percent reflection. To infer true cloud-top altitude, therefore, it is necessary to accurately estimate the amount of 'photon penetration'. Theoretical calculations indicate that the amount of photon penetration depends on the altitude, the scaled volume scattering coefficient, and the scaled optical thickness of the cloud. Algorithms using the reflection in the oxygen A-band to determine the cloud-top pressure have been applied to an aircraft field experiment in conjunction with CCOPE, 1981. Results of this study are very encouraging, especially for extended clouds.

  3. Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series

    NASA Astrophysics Data System (ADS)

    Li, Renxian; Ren, Kuan Fang; Han, Xiang'e.; Wu, Zhensen; Guo, Lixin; Gong, Shuxi

    2013-09-01

    Debye series expansion (DSE) is employed to the analysis of radiation pressure force (RPF) exerted on biological cells induced by high-order Bessel beams (BB). The beam shape coefficients (BSCs) for high-order Bessel beams are calculated using analytical expressions obtained by the integral localized approximation (ILA). Different types of cells, including a real Chinese Hamster Ovary (CHO) cell and a lymphocyte which are respectively modeled by a coated and five-layered sphere, are considered. The RPF induced by high-order Bessel beams is compared with that by Gaussian beams and zeroth-order Bessel beams, and the effect of different scattering processes on RPF is studied. Numerical calculations show that high-order Bessel beams with zero central intensity can also transversely trap particle in the beam center, and some scattering processes can provide longitudinal pulling force.

  4. Investigation of high thermal contact conductance at low contact pressure for high-heat-load optical elements of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Tanaka, M.; Ohashi, H.; Goto, S.

    2013-09-01

    We measured the thermal-contact-conductance (TCC) of indirect cooling components in synchrotron radiation beamlines. To reduce the strain on the optical element, we explored conditions for insertion materials with a high TCC in region with low contact pressures of 0.1-1.0 MPa. We examined the TCC at the interface between oxygen-free copper (OFC) and insertion materials such as indium, graphite, and gold foil. The TCC depended on the hardness and thickness of the insertion material. Thin indium (20 μm thick) showed the highest TCC. Nickel and gold passivation on the OFC surface reduced the TCC to 30% of that for the bare OFC. Future work will involve exploring the passivation conditions of OFC for higher TCC is and measuring the TCC under cryogenic-cooling conditions.

  5. Thermoluminescent properties of Ni and Co doped synthetic, high pressure, high temperature diamonds: application to ionising radiation dosimetry.

    PubMed

    Benabdesselam, M; Iacconi, P; Gheeraert, E; Kanda, H; Lapraz, D; Briand, D

    2002-01-01

    An investigation of the thermoluminescence (TL) properties of high pressure, high temperature (HPHT) synthetic diamond crystals grown under diluted nickel or cobalt as solvent catalysts is reported. After a study of TL properties of 6 different samples, it is shown that a crystal grown with Ni+2%Ti and annealed at 2100 K presents an intense glow peak at around 490 K. This peak is characterised by a broad emission band centred at 530 nm (2.34 eV). This crystal presents a significant, reproducible and linear TL response relative to the absorbed dose up to an X ray air kerma of 10 Gy. All these features make this material suitable for ionising radiation dosimetry. A similar study is made on another crystal grown from pure Co, and a comparative review of the results does show that for dosimetry work, Ni-containing diamonds are more appropriate than those grown from Co catalyst. PMID:12382890

  6. Negating the Yearly Eccentricity Magnitude Variation of Super-synchronous Disposal Orbits due to Solar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Jones, S. L.

    Solar radiation pressure alters satellites' eccentricity by accelerating and decelerating them during each orbit. The accumulated perturbation cancels yearly for geostationary satellites, but meanwhile the perigee radius changes. Disposed satellites must be reorbited higher to compensate, using more fuel. The examined disposal orbit points toward the Sun and uses the satellite's natural eccentricity. This causes the eccentricity vector to only change direction, keeping the perigee radius constant. This thesis verifies this behavior over one year with an analytical derivation and MATLAB simulation, gaining useful insights into its cause. The traditional and proposed disposal orbits are then modeled using NASA's GMAT for more realistic simulations. The proposed orbit's sensitivity to satellite and initialization errors is also examined. Relationships are developed to show these errors' effect on the perigee radius. In conclusion, while this orbit can be used in the short term, margins are necessary to guarantee protection of the geostationary belt.

  7. Thermal annealing of the reactor pressure vessel NPP Unit 2 in Jaslovske Bohunice for its radiation embrittlement regeneration

    SciTech Connect

    Kupca, L.; Cepcek, S.

    1993-12-01

    The status of the preparation works for the thermal annealing operation at reactor pressure vessel (RPV) V-230-type Unit 2 in Jaslovske Bohunice planned for Autumn 1993 is presented in this paper. The producer of the RPV W-213 type, SKODA Works, will perform the thermal annealing operation and manufacture all equipment needed. During the planned shutdown for the refueling operation of this unit in September 1989, samples were prepared from base material (BM) and weld metal (WM) by means of special equipment used for the analysis of the chemical composition in the Nuclear Power Plants Research Institute (VUJE) laboratories. Results of the analysis of the irradiated samples and the hardness measurements of RPV material before and after annealing operation serves as the measure of radiation embrittlement recovery efficiency. Possible extension of the operation life of RPVs of WWER type by means of suitable provisions during normal operation before thermal annealing is also discussed.

  8. On the and families of orbits in the Hill problem with solar radiation pressure and their application to asteroid orbiters

    NASA Astrophysics Data System (ADS)

    García Yárnoz, Daniel; Scheeres, Daniel J.; McInnes, Colin R.

    2015-04-01

    The focus of this paper is on the exploration of the and - families of planar symmetric periodic orbits around minor bodies under the effect of solar radiation pressure (SRP). An extended Hill problem with SRP allows the study of spacecraft trajectories in the vicinity of asteroids orbiting the Sun. The evolution of the and - families is presented with SRP increasing from the classical Hill problem to levels characteristic of current and future planned missions to minor bodies, as well as one extreme case with very large SRP for a small asteroid. In addition, the implications of considering a spherical body are analysed, in terms of trajectories colliding with the asteroid and eclipses, which limits the feasibility of various family branches. Finally, the influence of SRP on the linear stability of feasible orbits is calculated.

  9. Protective arrangement for a plug-connected electric motor sealed against pressure, vapors and radiation

    SciTech Connect

    Heuer, D.; Schmiedke, G.

    1984-05-29

    An electric motor construction comprises a housing with a motor rotor rotatably mounted in the housing with stator windings disposed in the housing around the rotor. The housing has a wall with an opening therein and a terminal box plug connector for the stator windings is mounted on the wall around the opening and includes an upper and a lower interengageable connector parts. A sealing gasket disposed between the parts which may be plug interconnected and held into position by a snap action lock. The stator windings have lead wires leading from the housing into the connector part and a continuous sealing compound resistant to humidity, vapors and gamma radiation embeds the stator windings and the lead wires and extends from the housing into the connector parts.

  10. Stability of Beams, Plates and Membranes due to Subsonic Aerodynamic Flows and Solar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Gibbs, Samuel Chad, IV

    This dissertation explores the stability of beams, plates and membranes due to subsonic aerodynamic flows or solar radiation forces. Beams, plates and membranes are simple structures that may act as building blocks for more complex systems. In this dissertation we explore the stability of these simple structures so that one can predict instabilities in more complex structures. The theoretical models include both linear and nonlinear energy based models for the structural dynamics of the featureless rectangular structures. The structural models are coupled to a vortex lattice model for subsonic fluid flows or an optical reflection model for solar radiation forces. Combinations of these theoretical models are used to analyze the dynamics and stability of aeroelastic and solarelastic systems. The dissertation contains aeroelastic analysis of a cantilevered beam and a plate / membrane system with multiple boundary conditions. The dissertation includes analysis of the transition from flag-like to wing-like flutter for a cantilevered beam and experiments to quantify the post flutter fluid and structure response of the flapping flag. For the plate / membrane analysis, we show that the boundary conditions in the flow direction determine the type of instability for the system while the complete set of boundary conditions is required to accurately predict the flutter velocity and frequency. The dissertation also contains analysis of solarelastic stability of membranes for solar sail applications. For a fully restrained membrane we show that a flutter instability is possible, however the post flutter response amplitude is small. The dissertation also includes analysis of a membrane hanging in gravity. This systems is an analog to a spinning solar sail and is used to validate the structural dynamics of thin membranes on earth. A linear beam structural model is able to accurately capture the natural frequencies and mode shapes. Finally, the dissertation explores the stability

  11. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  12. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    NASA Astrophysics Data System (ADS)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  13. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  14. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    SciTech Connect

    Stevenick, W. Van . Environmental Measurements Lab.)

    1994-08-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to [+-]3 [center dot] 10[sup [minus]16] A over the environmental range of temperature ([minus]40 to +40 C). Using a single 10[sup 11] [Omega] feed-back resistor, the electrometer accurately measures currents over a range from 3 [center dot] 10[sup [minus]15] A to 3 [center dot] 10[sup [minus]11] A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 [mu]R h[sup [minus]1]), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically [approximately]27 pA at 1 mR h[sup [minus]1]. A data recorder and system controller was designed using the Tattletale[trademark] Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards.

  15. Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Fabian, Andrew C.; Quataert, Eliot; Murray, Norman

    2015-05-01

    It is typically assumed that radiation-pressure-driven winds are accelerated to an asymptotic velocity of v∞ ≃ vesc, where vesc is the escape velocity from the central source. We note that this is not the case for dusty shells and clouds. Instead, if the shell or cloud is initially optically thick to the UV emission from the source of luminosity L, then there is a significant boost in v∞ that reflects the integral of the momentum absorbed as it is accelerated. For shells reaching a generalized Eddington limit, we show that v∞ ≃ (4RUVL/Mshc)1/2, in both point-mass and isothermal-sphere potentials, where RUV is the radius where the shell becomes optically thin to UV photons, and Msh is the mass of the shell. The asymptotic velocity significantly exceeds vesc for typical parameters, and can explain the ˜1000-2000 km s-1 outflows observed from rapidly star-forming galaxies and active galactic nuclei (AGN) if the surrounding halo has low gas density. Similarly fast outflows from massive stars can be accelerated on ˜few-103 yr time-scales. These results carry over to clouds that subtend only a small fraction of the solid angle from the source of radiation and that expand as a consequence of their internal sound speed. We further consider the dynamics of shells that sweep up a dense circumstellar or circumgalactic medium. We calculate the `momentum ratio' dot{M} v/(L/c) in the shell limit and show that it can only significantly exceed ˜2 if the effective optical depth of the shell to re-radiated far-infrared photons is much larger than unity. We discuss simple prescriptions for the properties of galactic outflows for use in large-scale cosmological simulations. We also briefly discuss applications to the dusty ejection episodes of massive stars, the disruption of giant molecular clouds, and AGN.

  16. Radiation Pressure Forces, the Anomalous Acceleration, and Center of Mass Motion for the TOPEX/POSEIDON Spacecraft

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Born, George H.

    2000-01-01

    Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.

  17. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, G. D.; Baker, D. N.; Spence, H.

    2016-07-01

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00-18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00-06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. These variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.

  18. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE PAGESBeta

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.

    2016-07-22

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancakemore » distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  19. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental

  20. Correlating radiation exposure with embrittlement: Comparative studies of electron- and neutron-irradiated pressure vessel alloys

    SciTech Connect

    Alexander, D. E.; Rehn, L. E.; Odette, G. R.; Lucas, G. E.; Klingensmith, D.; Gragg, D.

    1999-12-22

    Comparative experiments using high energy (10 MeV) electrons and test reactor neutrons have been undertaken to understand the role that primary damage state has on hardening (embrittlement) induced by irradiation at 300 C. Electrons produce displacement damage primarily by low energy atomic recoils, while fast neutrons produce displacements from considerably higher energy recoils. Comparison of changes resulting from neutron irradiation, in which nascent point defect clusters can form in dense cascades, with electron irradiation, where cascade formation is minimized, can provide insight into the role that the in-cascade point defect clusters have on the mechanisms of embrittlement. Tensile property changes induced by 10 MeV electrons or test reactor neutron irradiations of unalloyed iron and an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy were examined in the damage range of 9.0 x 10{sup {minus}5} dpa to 1.5 x 10{sup {minus}2} dpa. The results show the ternary alloy experienced substantially greater embrittlement in both the electron and neutron irradiate samples relative to unalloyed iron. Despite their disparate nature of defect production similar embrittlement trends with increasing radiation damage were observed for electrons and neutrons in both the ternary and unalloyed iron.

  1. Cosmic ray pressure driven magnetic field amplification: dimensional, radiative and field orientation effects

    NASA Astrophysics Data System (ADS)

    Downes, T. P.; Drury, L. O'C.

    2014-10-01

    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We investigate in some detail a simple model based on turbulence generation by cosmic ray pressure gradients. Previously, this model was investigated using 2D magnetohydrodynamic simulations. Motivated by the well-known qualitative differences between 2D and 3D turbulence, we further our investigations of this model using both 2D and 3D simulations to study the influence of the dimensionality of the simulations on the field amplification achieved. Further, since the model implies the formation of shocks which can, in principle, be efficiently cooled by collisional cooling, we include such cooling in our simulations to ascertain whether it could increase the field amplification achieved. Finally, we examine the influence of different orientations of the magnetic field with respect to the normal of the blastwave. We find that dimensionality has a slight influence on the overall amplification achieved, but a significant impact on the morphology of the amplified field. Collisional cooling has surprisingly little impact, primarily due to the short time which any element of the ISM resides in the precursor region for supernova blastwaves. Even allowing for a wide range of orientations of the magnetic field, we find that the magnetic field can be expected to be amplified by, on average, at least an order of magnitude in the precursors of supernova blastwaves.

  2. Influence of fluence rate on radiation-induced mechanical property changes in reactor pressure vessel steels

    SciTech Connect

    Hawthorne, J.R.; Hiser, A.L. )

    1990-03-01

    This report describes a set of experiments undertaken using a 2 MW test reactor, the UBR, to qualify the significance of fluence rate to the extent of embrittlement produced in reactor pressure vessel steels at their service temperature. The test materials included two reference plates (A 302-B, A 533-B steel) and two submerged arc weld deposits (Linde 80, Linde 0091 welding fluxes). Charpy-V (C{sub v}), tension and 0.5T-CT compact specimens were employed for notch ductility, strength and fracture toughness (J-R curve) determinations, respectively. Target fluence rates were 8 {times} 10{sup 10}, 6 {times} 10{sup 11} and 9 {times} 10{sup 12} n/cm{sup 2} {minus}s{sup {minus}1}. Specimen fluences ranged from 0.5 to 3.8 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV. The data describe a fluence-rate effect which may extend to power reactor surveillance as well as test reactor facilities now in use. The dependence of embrittlement sensitivity on fluence rate appears to differ for plate and weld deposit materials. Relatively good agreement in fluence-rate effects definition was observed among the three test methods. 52 figs., 4 tabs.

  3. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    SciTech Connect

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  4. Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Zong, Q.-G.

    2014-11-01

    We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a "test-kinetic model") with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energies between 500 keV and 1.5 MeV near geosynchronous orbit. We also demonstrate that electrons in this energy range satisfy the drift resonance condition for the ULF waves produced by the MHD model. This confirms the conclusions reached by Tan et al. (2011), that the energization process in this case is dominated by drift-resonant interactions between electrons and MHD fast mode waves, produced by fluctuations in solar wind dynamic pressure.

  5. Observation of reduction of radiation-pressure-induced rotational anti-spring effect on a 23 mg mirror in a Fabry–Perot cavity

    NASA Astrophysics Data System (ADS)

    Enomoto, Yutaro; Nagano, Koji; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-07-01

    Although quantum radiation pressure noise could limit the sensitivity of the second-generation gravitational wave detectors, it has not been observed in a broad frequency band and its reduction methods have not been proven yet. A promising way to observe quantum radiation pressure noise is to store high power light in an optical cavity with a tiny mirror. However, anti-spring torque caused by radiation pressure of the light acting on the tiny mirror could make the system unstable, and it is generally difficult to attach actuators to the tiny mirror for stabilization. Hence a new method to overcome this anti-spring torque has been developed. In the new method, the other mirror of the cavity is controlled so that the position of the resonant light at the tiny mirror is fixed to decrease the anti-spring torque and stabilize angular motion of the tiny mirror. With the new method, it was successfully observed that the anti-spring torque caused by radiation pressure was suppressed in the present experiment with a 23 mg mirror, where resonant frequency of angular motion of the tiny mirror increased towards the mechanical resonant frequency.

  6. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uropathogenic Escherichia coli (UPEC) are common contaminants in meat and poultry. Nonthermal food safety intervention technologies used to improve safety and shelf-life of both human and pet foods can include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV...

  7. Radiation Pressure, Poynting-Robertson Drag, and Solar Wind Drag in the Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Jackson, A. A.

    1995-01-01

    In this paper, we examine the effects of radiation pressure, Poynting-Robertson (PR) drag, and solar wind drag on dust grains trapped in mean motion resonances with the Sun and Jupiter in the restricted (negligible dust mass) three-body Problem. We especially examine the evolution of dust grains in the 1:1 resonance. As a first step, the Sun and Jupiter are idealized to both be in circular orbit about a common center of mass (circular restricted three-body problem). From the equation of motion of the dust particle in the rotating reference frame, the drag-induced time rate of change of its Jacobi "constant," C, is then derived and expressed in spherical coordinates. This new mathematical expression in spherical coordinates shows that C, in the 1:1 resonance, both oscillates and secularly increases with increasing time. The new expression gives rise to an easy understanding of how an orbit evolves when the radiation force and solar wind drag are included. All dust grain orbits are unstable in time when PR and solar wind drag are included in the Sun-Jupiter-dust system. Tadpole orbits evolve into horseshoe orbits; and these orbits continuously expand in size to lead to close encounters with Jupiter. Permanent trapping is impossible. Orbital evolutions of a dust grain trapped in the 1:1 resonance in the planar circular, an inclined case, an eccentric case, and the actual Sun-Jupiter case are numerically simulated and compared with each other and show grossly similar time behavior. Resonances other than 1:1 are also explored with the new expression. Stable exterior resonance trapping may be possible under certain conditions. One necessary condition for such a trap is derived. Trapping in interior resonances is shown to be always unstable.

  8. Shape Oscillations of Bubbles in Water Driven by Modulated Ultrasonic Radiation Pressure and Applications to Interfacial Dynamics

    NASA Astrophysics Data System (ADS)

    Asaki, Thomas James

    1995-01-01

    Acoustic levitation techniques were used for static and dynamic studies of single air bubbles in aqueous solutions. Bubble sizes ranged from 0.3 to 6 mm in radius. The static position of a bubble, determined by the balance between the buoyant and acoustic forces, agrees well with existing theory. Measured bubble aspect ratios are a nonmonotonic increasing function of bubble size and agree well with an improved expression based on the radiation stress tensor. Small amplitude normal mode shape oscillations were induced by modulation of the acoustic radiation pressure and were detected by optical pseudo-extinction and optical interferometry techniques. Driven oscillation frequencies for bubbles in clean water agree well with Lamb theory although significant frequency shifts occur for bubbles of large aspect ratio (_sp{~ }{>}1.3). An improved asymptotic expansion, important for bubbles in fluids and for liquid drops in air, was obtained for the complex free decay frequency. The free decay of quadrupole shape oscillations was measured for nearly spherical bubbles (aspect ratio ~ 1.01) in clean water, clean salt water, sea water, and in the presence of surfactants. Bubbles in clean solutions exhibit behavior indicative of an ideal clean interface. Frequency shifts and excess damping were observed for bubbles in sea water, in aqueous solutions of Triton X-100, and for a bubble coated with the insoluble surfactant stearic acid. The damping and frequency exhibit nonmonotonic behavior with respect to interfacial surfactant coverage; maxima occur at coverages which do not significantly affect the surface tension. At large coverages the damping is increased and the frequency is reduced relative to theoretical expectations for a clean ideal interface at constant surface tension. These results are in qualitative agreement with theories incorporating interfacial viscoelastic effects and with planar-surface capillary ripple experiments which also exhibit maxima in the damping as a

  9. General Relativistic Radiation Pressure Supported Stars as Quasar Central Engines in an Universe Which is Recycling Matter

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2011-11-01

    Hoyle & Folwler (1963a,b) suggested that quasars may contain Radiation Pressure Supported Stars (RPSS), which are quasi-Newtonian (surface redshitf z ≪ 1) and supermassive. This proposal however did not work and one of the reasons was that such quasi-Newtonian PRSSs are unstable to gravitational contraction to become extremely general relativistic RPSSs. And since trapped surfaces are not allowed, (Mitra 2009a) these relativistic RPSSs are bound to hover around their instantaneous "Schwarzschild Radius" Rs = 2GM/c2. In view of the fact that they have z ≫ 1, they appear as "Black Holes" (BH) to distant observers. However since, they are always radiating, in a strict sense, they are always contracting. During such extreme compatification, RPSSs are likely to acquire extremely large magnetic field due to magnetic flux freezing, and hence they have strong magnetosphere around them by which they may arrest the accretion disk surrounding them at "Alfven Radius", Ra ≫ Rs. In contrast, for an accreting Schwarzschild black hole, one expects the inner edge of the accretion disk to be at Ri = 3Rs. Consequently, such ultramagnetized RPSSs have been nick named as Magnetospheric Eternally Collapsing Objects" (MECOs). Microlensing studies of several quasar structures have shown that indeed Ri ˜ 35Rs rather that R1 = 3Rs, and which confirms that quasars harbor MECOs rather than true black holes (Schild et al. 2006, 2008, Lovegrove et al. 2011). Further the recent proof that the true BHs have M = 0 confirms that the BH candidates are not true BHs (Mitra 2004a,b; 2009b). Here we highlight the facts (i) outflows from quasars and (ii) their ability to recycle cosmic matter for having new stars and galaxies are best understood by realizing that they contain MECOs rather than true BHs.

  10. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ. PMID:27137045

  11. A passive satellite deorbiting strategy for medium earth orbit using solar radiation pressure and the J2 effect

    NASA Astrophysics Data System (ADS)

    Lücking, Charlotte; Colombo, Camilla; McInnes, Colin R.

    2012-08-01

    The growing population of space debris poses a serious risk to the future of space flight. To effectively manage the increase of debris in orbit, end-of life disposal has become a key requirement for future missions. This poses a challenge for Medium Earth Orbit (MEO) spacecraft which require a large Δv to re-enter the atmosphere or reach the geostationary graveyard orbit. This paper further explores a passive strategy based on the joint effects of solar radiation pressure and the Earth's oblateness acting on a high area-to-mass-ratio object. The concept was previously presented as an analytical planar model. This paper uses a full 3D model to validate the analytical results numerically for equatorial circular orbits first, then investigating higher inclinations. It is shown that for higher inclinations the initial position of the Sun and right ascension of the ascending node become increasingly important. A region of very low required area-to-mass-ratio is identified in the parameter space of semi-major axis and inclination which occurs for altitudes below 10,000 km.

  12. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2001-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  13. Side-effects of a bad attitude: How GNSS spacecraft orientation errors affect solar radiation pressure modelling

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner

    2015-04-01

    Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.

  14. Precision measurement of a low-loss cylindrical dumbbell-shaped sapphire mechanical oscillator using radiation pressure

    NASA Astrophysics Data System (ADS)

    Bourhill, J.; Ivanov, E.; Tobar, M. E.

    2015-08-01

    We present first results from a number of experiments conducted on a 0.53-kg cylindrical dumbbell-shaped sapphire crystal. Here we report on an optomechanical experiment utilizing a modification to the typical cylindrical architecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave whispering gallery modes that are simultaneously excited within the crystal. A microwave readout system is implemented, allowing extremely low noise measurements of this frequency modulation near our modes of interest, having a phase noise floor of -165 dBc/Hz at 100 kHz. Fine tuning of the crystal's suspension has allowed for the optimization of mechanical quality factors in preparation for cryogenic experiments, with a value of Q =8 ×107 achieved at 127 kHz. This results in a Q ×f product of 1013, equivalent to the best measured values in a macroscopic sapphire mechanical system. Results are presented that demonstrate the excitation of mechanical modes via radiation pressure force, allowing an experimental method of determining the transducer's displacement sensitivity d f /d x and calibrating the system. Finally, we demonstrate parametric backaction phenomenon within the system. These are all important steps towards the goal of achieving quantum limited measurements of a kilogram-scale macroscopic device for the purpose of detecting deviations from standard quantum theory resulting from quantum gravitational effects.

  15. Quantum Stochastic Equations for an Opto-Mechanical Oscillator with Radiation Pressure Interaction and Non-Markovian Effects

    NASA Astrophysics Data System (ADS)

    Barchielli, Alberto

    2016-06-01

    The quantum stochastic Schrödinger equation or Hudson-Parthasarathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of output fields. An important feature of such an equation is that it allows to treat not only absorption and emission of quanta, but also scattering processes, which however had very few applications in physical modelling. Moreover, recent developments have shown that also some non-Markovian dynamics can be generated by suitable choices of the state of the quantum noises involved in the HP-equation. This paper is devoted to an application involving these two features, non-Markovianity and scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that this process needs the scattering part of the HP-equation to be described. On the other side, non-Markovianity is introduced by the dissipation due to the interaction with some thermal environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum, and by the introduction of phase noise in the laser beam. Finally, we study the full power spectrum of the reflected light and we show how the laser beam can be used as a temperature probe.

  16. Assessing Bilingual Dominance.

    ERIC Educational Resources Information Center

    Flege, James Emil; Mackay, Ian R. A.; Piske, Thorsten

    2002-01-01

    Used two methods to assess bilingual dominance in four groups of Italian-English bilinguals. Ratios were derived from bilinguals' self-rating of ability to speak and understand Italian compared to English. Dominance in Italian was associated with a relatively high level of performance in Italian (assessed in a translation task) and relatively poor…

  17. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  18. The evolution of dominance.

    PubMed

    Bourguet, D

    1999-07-01

    The evolution of dominance has been subject to intensive debate since Fisher first argued that modifiers would be selected for if they made wild-type alleles more dominant over mutant alleles. An alternative explanation, put forward by Wright, is that the commonly observed dominance of wild-type alleles is simply a physiological consequence of metabolic pathways. Wright's explanation has gained support over the years, largely ending the debate over the general recessivity of deleterious mutations. Nevertheless there is reason to believe that dominance relationships have been moulded by natural selection to some extent. First, the metabolic pathways are themselves products of evolutionary processes that may have led them to be more stable to perturbations, including mutations. Secondly, theoretical models and empirical experiments suggest that substantial selection for dominance modifiers exists during the spread of adaptive alleles or when a polymorphism is maintained either by overdominant selection or by migration-selection balance. PMID:10447697

  19. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  20. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  1. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study

    SciTech Connect

    Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Appel, Sarit; Landau, Efrat; Ben-David, Merav A.; Rabin, Tatiana; Benayun, Maoz; Dubinski, Sergey; Weizman, Noam; Alezra, Dror; Gnessin, Hila; Goldstein, Adam M.; Baidun, Khader; Segel, Michael J.; Peled, Nir; Symon, Zvi

    2015-10-01

    Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test. CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.

  2. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  3. Non-linear oscillation of inter-connected satellites system under the combined influence of the solar radiation pressure and dissipative force of general nature

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Narayan, A.

    2001-06-01

    The non-linear oscillation of inter-connected satellites system about its equilibrium position in the neighabourhood of main resonance ??=3D 1, under the combined effects of the solar radiation pressure and the dissipative forces of general nature has been discussed. It is found that the oscillation of the system gets disturbed when the frequency of the natural oscillation approaches the resonance frequency.

  4. The influence of radiative heat exchange on the character of gasdynamic flows under conditions of pulsed discharge in high-pressure cesium vapor

    NASA Astrophysics Data System (ADS)

    Baksht, F. G.; Lapshin, V. F.

    2015-01-01

    The gasdynamics of pulse-periodic radiative discharge in high-pressure cesium vapor has been studied in the framework of a two-temperature multifluid model. It is established that, at a limited volume of the gas-discharge tube, the character of gasdynamic flows depends on the conditions of radiative heat exchange in discharge plasma. In cases in which the main contribution to radiative energy losses is related to a spectral region with optical thickness τ R (λ) ˜ 1, there is nonlocal radiative heat exchange in discharge plasma, which is uniformly heated over the entire tube volume and moves from the discharge axis to tube walls during the entire pulse of discharge current. Under the conditions of radiative losses determined by the spectral region where τ R (λ) ≪ 1, the reabsorption of radiation is absent and discharge plasma is nonuniformly heated by the current pulse. This leads to the appearance of reverse motions, so that the heated plasma is partly pushed toward the tube walls and partly returned to the discharge axis.

  5. Autosomal dominant vitreoretinochoroidopathy (ADVIRC).

    PubMed Central

    Blair, N P; Goldberg, M F; Fishman, G A; Salzano, T

    1984-01-01

    We report the second family recognised to have autosomal dominant vitreoretinochoroidopathy. The clinical features were (1) autosomal dominant inheritance; (2) peripheral, coarse pigmentary degeneration of the fundus for 360 degrees, with a relatively discrete posterior border in the equatorial region (this finding may be pathognomonic); (3) superficial punctate yellowish-white opacities in the retina; (4) various vascular abnormalities; (5) breakdown of the blood-retinal barrier; (6) retinal neovascularisation; (7) vitreous abnormalities; and (8) choroidal atrophy. Visual reduction was mainly due to macular oedema or vitreous haemorrhage. Images PMID:6689931

  6. Language after dominant hemispherectomy

    PubMed Central

    Gott, Piggy S.

    1973-01-01

    Linguistic and related cognitive abilities were investigated two years after dominant left hemispherectomy for cerebral malignancy in a 12 year old female. Auditory comprehension of speech was superior to other modes of language abilities with expressive speech being the least developed. Findings suggested an isolation or non-communication between the systems for speaking and for writing and visual perception. It was concluded that language mechanisms in the right hemisphere were not just at a low level of development of the functions found in the dominant hemisphere but were modified as a result of interference by preexistent spatioperceptual systems. Images PMID:4772723

  7. Interactions Between Small Arrays of Atmospheric Pressure Micro-Plasma Jets: Gas Dynamic, Radiation and Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia

    2013-09-01

    Atmospheric pressure plasma jets are widely used devices for biomedical applications. A typical plasma jet consists of a tube through which noble gas or its mixture with a molecular gas flows. The noble gas creates a channel into the ambient air which is eventually dispersed by interdiffusion with the air. Plasma plumes are formed by the propagation of ionization waves (IWs) through the tubes and then through the noble gas phase channel. The IW typically propagates until the mole fraction of the ambient air in the channel increases above a critical values which requires a larger E/N to propagate the IW. By grouping several jets together to form an array of jets, one can in principle increase the area treated by the plume. If the jets are sufficiently far apart, the IWs and resulting plasma plumes are independent. As the spacing between the jets decreases, the plasma jets begin to mutually interact. In this talk, we discuss results from a computational investigation of small arrays of He/O2 micro-plasma jets propagating into ambient air. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential. Navier-Stokes equations are solved for the gas dynamics and radiation transport is addressed using a propagator method. We found that as the spacing between the jets decreases, the He channels from the individual jets tend to merge. The IWs from each channel also merge into regions having the highest He mole fraction and so lowest E/N to sustain the IW. The proximity of the IWs enable other forms of interaction. If the IWs are of the same polarity, electrostatic forces can warp the paths of the IWs. If in sufficient proximity, the photoionization from one IW can influence its neighbors. The synchronization of the voltage pulses of adjacent IWs can also influence its neighbors. With synchronized pulses

  8. Features of the electron density dynamics in the filamentation of femtosecond laser radiation in air at elevated pressure

    NASA Astrophysics Data System (ADS)

    Chizhov, P. A.; Bukin, V. V.; Ushakov, A. A.; Garnov, S. V.

    2016-04-01

    The electron density in the plasma channel of a femtosecond filament in air at pressures from 1 to 7 atm is measured at different instants, starting from the ionisation onset and up to several hundreds of picoseconds after it. The initial electron density is found to increase sharply in the pressure range of 3 – 4 atm. The plasma channel diameter is found to decrease with an increase in pressure from 3 to 7 atm.

  9. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    SciTech Connect

    Wang, Yanbin; Shen, Guoyin

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  10. Iron dominated magnets

    SciTech Connect

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  11. Effects of total pressure on non-grey gas radiation transfer in oxy-fuel combustion using the LBL, SNB, SNBCK, WSGG, and FSCK methods

    NASA Astrophysics Data System (ADS)

    Chu, Huaqiang; Gu, Mingyan; Consalvi, Jean-Louis; Liu, Fengshan; Zhou, Huaichun

    2016-03-01

    The effects of total pressure on gas radiation heat transfer are investigated in 1D parallel plate geometry containing isothermal and homogeneous media and an inhomogeneous and non-isothermal CO2-H2O mixture under conditions relevant to oxy-fuel combustion using the line-by-line (LBL), statistical narrow-band (SNB), statistical narrow-band correlated-k (SNBCK), weighted-sum-of-grey-gases (WSGG), and full-spectrum correlated-k (FSCK) models. The LBL calculations were conducted using the HITEMP2010 and CDSD-1000 databases and the LBL results serve as the benchmark solution to evaluate the accuracy of the other models. Calculations of the SNB, SNBCK, and FSCK were conducted using both the 1997 EM2C SNB parameters and their recently updated 2012 parameters to investigate how the SNB model parameters affect the results under oxy-fuel combustion conditions at high pressures. The WSGG model considered is the recently developed one by Bordbar et al. [19] for oxy-fuel combustion based on LBL calculations using HITEMP2010. The total pressure considered ranges from 1 up to 30 atm. The total pressure significantly affects gas radiation transfer primarily through the increase in molecule number density and only slightly through spectral line broadening. Using the 1997 EM2C SNB model parameters the accuracy of SNB and SNBCK is very good and remains essentially independent of the total pressure. When using the 2012 EM2C SNB model parameters the SNB and SNBCK results are less accurate and their error increases with increasing the total pressure. The WSGG model has the lowest accuracy and the best computational efficiency among the models investigated. The errors of both WSGG and FSCK using the 2012 EM2C SNB model parameters increase when the total pressure is increased from 1 to 10 atm, but remain nearly independent of the total pressure beyond 10 atm. When using the 1997 EM2C SNB model parameters the accuracy of FSCK only slightly decreases with increasing the total pressure.

  12. The effect of temperature and pressure on optical absorption spectra of transition zone minerals - Implications for the radiative conductivity of the Earth's interior

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Goncharov, A. F.; Frost, D. J.; McCammon, C. A.

    2010-12-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivities of the Earth’s interior [e.g., 1]. Recent high-pressure studies imply that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually might contribute to the heat flow in the Earth’s interior [2]. However, experimental results on temperature effects on radiative heat transfer are not available. We studied the effect of both, pressure and temperature, on the optical absorption of hydrous Fe-bearing ringwoodite, γ-(Mg,Fe)2SiO4, and hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, which are the main components of the Earth’s transition zone. Gem-quality single-crystals were synthesized at 18 GPa and 1400 °C in a 5000t multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For optical absorption measurements in the IR - VIS - UV spectral range (400 - 50000 cm-1) 50 µm sized single-crystals of ringwoodite and wadsleyite were double polished to thicknesses of 13 µm and 18 µm, respectively, and loaded in resistively heated diamond-anvil cells with argon as pressure medium. After taking measurements at high pressure and room temperature, ringwoodite was studied at 26 GPa up to 650 °C and wadsleyite spectra were recorded at 16 GPa up to 450 °C. At ambient pressure the absorption spectrum of ringwoodite reveals a crystal field band (Fe2+) at 12075 cm-1, an intervalence charge transfer band (Fe2+ to Fe3+) at 16491 cm-1, and an absorption edge due to ligand-metal charge transfer close to 30000 cm-1. The wadsleyite spectrum is characterized by a similar absorption edge in the VIS-UV range

  13. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  14. [Dominant, motivation and behavior].

    PubMed

    Batuev, A S

    1982-01-01

    It was shown in experiments on cats with elaborated conditioned running to the left (with fresh food) and right (with salted food) feeding troughs that conditioned signals may change the current behaviour in spite of real unconditioned stimuli. The fresh food signal produces a conditioned "freshening" of the salt meat, which may be regarded as a successful physiological model of gustatory illusions. With a free choice of different salinity of food from different cups of each feeding though, behaviour is corrected by unconditioned factors, i.e. real salinity of food. As a result the thresholds of eating salt food from both feeding troughs are equalized. The facts are discussed in the light of the dominant principle, i.e. that central program which is built on the basis of the dominant motivation, of previous experience and current analysis of surroundings. PMID:7164569

  15. [Dominant Thalamus and Aphasia].

    PubMed

    Nakano, Akiko; Shimomura, Tatsuo

    2015-12-01

    Many studies have shown that lesions of the dominant thalamus precipitate language disorders in a similar manner to transcortical aphasias, in a phenomenon known as "thalamic aphasia." In some cases, however, aphasia may not occur or may appear transiently following thalamic lesions. Furthermore, dominant thalamic lesions can produce changes in character, as observed in patients with amnesic disorder. Previous work has explored the utility of thalamic aphasia as a discriminative feature for classification of aphasia. Although the thalamus may be involved in the function of the brainstem reticular activating system and play a role in attentional network and in memory of Papez circuit or Yakovlev circuit, the mechanism by which thalamic lesion leads to the emergence of aphasic disorders is unclear. In this review, we we survey historical and recent literature on thalamic aphasia in an attempt to understand the neural processes affected by thalamic lesions. PMID:26618763

  16. New Orbit Simulations for BepiColombo Using Higher-Order Mercury Gravity Field Coefficients, Solar Gravity and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Lüdicke, F.; Hussmann, H.; Oberst, J.

    2008-09-01

    Introduction We developed an orbit simulation tool for BepiColombo scheduled for arrival at Mercury in 2019. The mission will consist of two spacecraft, the MPO (Mercury Planetary Orbiter, ESA) and the MMO (Mercury Magnetospheric Orbiter, JAXA). We simulate the orbit evolutions of the two considering perturbing forces for a time of 2 years from arrival. This study was undertaken for mission planning purposes and estimates of surface coverage for the onboard mapping instruments. Orbit Perturbations Perturbing forces acting on the Keplerian MPO and MMO orbits include Mercury's non-spherical mass distribution parameters, the gravitational force of the sun, and solar radiation pressure (faintest). Because of the perturbing accelerations, semi-major axis, eccentricity, inclination, ascending node, argument of pericenter, show complex variations. The program simulates the evolution of all these elements over a period of 2 years. The software was programmed in FORTRAN, using SPICE subroutines. Numerical Integration Several of the Runge-Kutta methods are implemented in the software for a numerical integration of the equations of motion. Starting from initial values for the state vector (i.e., position and velocity) at time t0 given in [2], we obtain the spacecraft trajectory with an accuracy of the order of 1 m by choosing a stepsize of 50 s [1]. The results of the numerical calculation were checked with the results of a similar Bepi Colombo orbit simulation by ESOC [2] and showed very good agreement. Gravity Field Coefficients The MARINER 10 spacecraft executed 3 flybys of Mercury (1974/75). From spacecraft tracking, a first estimate of the gravity parameter GM and crude limits for J2 could be obtained. Higher-order gravitational coefficients, e.g., C30 and C22 are practically unknown. Results (Examples) Fig. 1 shows the evolution of the pericenter height for the MPO during the 2 mission years using the typical error bounds (6.0 ± 2.0)E-5 [4] for J2 = -C20. In addition

  17. The Role of Radiation Feedback in Starburst Environments

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Matzner, C. D.; Seaquist, E. R.

    2012-01-01

    Massive bursts of stellar activity in starburst environments feed prodigious amount of energy and momentum into the surrounding neutral clouds. With sufficiently intense irradiation from starbursts, the structure of an HII region will be dominated by radiation pressure rather than ionized gas pressure, and radiative energy input in photodissociation regions (PDRs) becomes more important. This state is of considerable interest because of its role in the formation of massive stars, the disruption of giant molecular clouds, and the evolution of starburst galaxies. We study the role of radiation feedback in starburst environments via both theoretical and observational approaches. We argue that radiation pressure is the underlying mechanism for the remarkable constancy of ionization parameters in starburst environments. We also point out that clumping in the neutral material and compression by stellar wind pressure can act to reduce ionization parameters. We use the Cloudy code to determine effective ionization parameters for a population of static dusty HII regions compressed by both radiation pressure and stellar winds. We conclude that the inner starburst region of M82 and the Antennae Galaxies HII regions are both dominated by a combination of radiation pressure and shocked winds. We investigate radiative energy feedback in starburst environments by observing the nearest starburst region 30 Doradus in the LMC. We observe 30 Doradus using NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) with H2 1-0 S(1), Brγ, and [FeII] lines. While H2 can be either radiative or shock excited, the near infrared [FeII] emission line traces shock activities, and the hydrogen recombination line Brγ arises from regions ionized by UV radiation. Therefore ratios of the three emission lines form very useful diagnostics to assess the fraction of radiative and shock feedback. We preliminarily suggest that radiative energy input in the 30 Doradus PDRs is non-negligible.

  18. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    NASA Astrophysics Data System (ADS)

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; Zuo, Pingbing; Spence, Harlan; Reeves, Geoffrey

    2016-05-01

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. Using electron flux data from a group of 14 satellites, we report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse. When the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into L ˜ 6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. It is demonstrated that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.

  19. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    DOE PAGESBeta

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; et al

    2016-05-03

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less

  20. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  1. Characterization of Damage to Bacteria and Bio-macromolecules Caused by (V)UV Radiation and Particles Generated by a Microscale Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Lackmann, Jan-Wilm; Schneider, Simon; Narberhaus, Franz; Benedikt, Jan; Bandow, Julia E.

    Atmospheric pressure plasma jets effectively inactivate bacteria on ­surfaces including infected tissues. This is due to the combined effects of (V)UV radiation, reactive oxygen and nitrogen species, ions, and high electric fields. A well-characterized microscale atmospheric pressure plasma jet (μ-APPJ) operated with He/O2 gas mixture has been modified so that (V)UV radiation and heavy reactive particles (mainly O3 molecules and O atoms) emitted from the plasma source can be separated effectively. The separation is achieved by an additional lateral He flow, which diverts the heavy particles from the jet axis. The new jet geometry is called X-Jet. Separation of different plasma components allows studying their effects on living cells and bio-macromolecules separately. First, the effectiveness of the separation of different plasma components was demonstrated by treatment of monolayers of vegetative Bacillus subtilis cells. To characterize effects on nucleic acids, dried plasmid DNA and total cellular RNA were treated with the separated plasma components. Dried bovine serum albumin was used to study etching effects of (V)UV radiation and heavy particles on proteins. We found that heavy particles emitted from the X-Jet kill vegetative cells more effectively than the (V)UV radiation from this type of plasma source. All bio-macromolecules investigated, DNA, RNA, and proteins, are affected by plasma treatment. DNA exposed to the (V)UV-channel of the jet seems to be prone to thymine dimer formation not only in vitro but also in vivo as indicated by induction of the photolyase in Escherichia coli, while DNA strand breaks occur under both jet channels. Heavy particles seem more effective in degrading RNA and in etching protein in vitro.

  2. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  3. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  4. Rings dominate western Gulf

    NASA Astrophysics Data System (ADS)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  5. Long-term evolution of space debris under the J_2 effect, the solar radiation pressure and the solar and lunar perturbations

    NASA Astrophysics Data System (ADS)

    Casanova, Daniel; Petit, Alexis; Lemaître, Anne

    2015-10-01

    The aim of this paper is the development of a model to propagate space debris in the geostationary ring considering the J_2 effect due to the Earth oblateness, the Sun and Moon perturbations, and the solar radiation pressure. We justify the importance of considering the J_2 effect when propagating space debris independently of the ratio A / m for short and long-term propagation. We study the role of the Sun and the Moon in the period and amplitude of the inclination for different values of A / m. Thanks to the Hamiltonian formulation of the problem and the use of Poincaré's variables it is possible to express the evolution of the space debris through a simplified dynamical system. We test and validate our obtained analytical solutions with the numerical ones, computed with a powerful integrator named NIMASTEP. We analyse the improvements obtained when we include the J_2 effect and the third body perturbations by a rigorous comparison with a previous model, which only considers the solar radiation pressure. Finally, we study the effect of the area-to-mass ratio on short and long-term propagation.

  6. Using ultrasonic measurements and a two-phase composite model to assess radiation damage in reactor pressure vessel steels

    SciTech Connect

    Wang, J.A.

    1996-05-01

    Ultrasonic methods used in the study of radiation damage and recovery in single crystals appear to also be useful for similar studies on polycrystalline alloys. Ultrasonic methods have demonstrated a sensitivity to radiation damage as affected by neutron fluence, irradiation temperature, large changes in composition, and possibly, as well, by neutron energy spectrum. On the microstructure defect evolution, only the residual defects created through the radiation event will contribute to the final macroscopic material property change. From a microstructure point, it is generally accepted that radiation hardening and embrittlement in metals are caused by clusters of vacancies, interstitial, and solute atoms that impede the motion of slip dislocations. Although vacancy-type defects are a major contributor to the material hardening, they also indicate the presence of other interstitial defects. Thus the total volume change of vacancy-type defects before and after irradiation can serve as a direct index to the final material property changes. The volume change of the vacancy-type defects can be determined by utilizing the two -phase composite model (matrix and void-type inclusion) to interpret wave velocities of baseline and irradiated specimens that are obtained from the ultrasonic wave experiment. This is a relatively economic and straightforward procedure. The correlation of the volume change of the vacancy-type defects with the existing destructive mechanical test results may play an important role in the future for the prediction of the radiation embrittlement and remaining plant lifetime, especially for the older plants on the verge of exhausting all the available mechanical test specimens loaded in the surveillance capsules. The above hypothesis was supported by the limited irradiated data analyzed and presented in his paper. The proposed ultrasonic methodology also has a potential application to assess creep damage in fossil power plants.

  7. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  8. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation

    SciTech Connect

    Albanakis, C.; Missirlis, D.; Yakinthos, K.; Goulas, A.; Michailidis, N.; Omar, H.; Tsipas, D.; Granier, B.

    2009-01-15

    The main objective of this work was to evaluate the behavior of porous materials, when treated as volumetric receivers under concentrated solar radiation. For this reason various porous metallic and ceramic materials have been tested as potential receivers for concentrated solar radiation. The experimental investigation showed that their efficiency was depending on both materials parameters and flow conditions. In this work, a variety of foam materials such as Ni and Ni alloy, inconel, copper, aluminum and SiC with different open cell porosity were tested as potential media to be used as volumetric receivers and heat exchangers. However, since the results were similar, for space economy, only the results of two of them, nickel and inconel were presented in detail and compared with each other. (author)

  9. Spectroscopic diagnostics of low-pressure inductively coupled Kr plasma using a collisional–radiative model with fully relativistic cross sections

    NASA Astrophysics Data System (ADS)

    Gangwar, Reetesh K.; Dipti; Srivastava, Rajesh; Stafford, Luc

    2016-06-01

    A collisional–radiative (C–R) model for krypton plasma using fully relativistic distorted-wave cross sections for electron excitations was developed. The model was applied to the characterization of inductively coupled Kr plasma with cylindrical geometry over the pressure regime 1–50 mTorr. Radially averaged emission intensities from transitions of Kr (4p55p  →  4p55s) in the range 500–900 nm were recorded at 17 cm from the planar RF-driven coil, with the plasma operated in the inductive regime (H mode). The measured emission intensities were then fitted by varying the electron density, n e, and electron temperature, T e, in the C–R model. At both low and high pressures, variations of the electron density by over two orders of magnitude had only a minor role on the relative emission intensities. On the other hand, T e values deduced from the comparison between experiment and model decreased from 6.7 to 2.6 eV as pressure increased from 1 to 50 mTorr. These results are found to be in good agreement with the effective electron temperature determined from Langmuir probe measurements and the predictions of a model based on the particle balance equation of charged particles.

  10. Deformation of olivine under mantle conditions: An in situ high-pressure, high-temperature study using monochromatic synchrotron radiation

    SciTech Connect

    Hilairet, Nadège; Wang, Yanbin; Sanehira, Takeshi; Merkel, Sébastien; Mei, Shenghua

    2012-03-15

    Polycrystalline samples of San Carlos olivine were deformed at high-pressure (2.8-7.8 GPa), high-temperature (1153 to 1670 K), and strain rates between 7.10{sup -6} and 3.10{sup -5} s{sup -1}, using the D-DIA apparatus. Stress and strain were measured in situ using monochromatic X-rays diffraction and imaging, respectively. Based on the evolution of lattice strains with total bulk strain and texture development, we identified three deformation regimes, one at confining pressures below 3-4 GPa, one above 4 GPa, both below 1600 K, and one involving growth of diffracting domains associated with mechanical softening above {approx}1600 K. The softening is interpreted as enhanced grain boundary migration and recovery. Below 1600 K, elasto-plastic self-consistent analysis suggests that below 3-4 GPa, deformation in olivine occurs with large contribution from the so-called 'a-slip' system [100](010). Above {approx}4 GPa, the contribution of the a-slip decreases relative to that of the 'c-slip' [001](010). This conclusion is further supported by texture refinements. Thus for polycrystalline olivine, the evolution in slip systems found by previous studies may be progressive, starting from as low as 3-4 GPa and up to 8 GPa. During such a gradual change, activation volumes measured on polycrystalline olivine cannot be linked to a particular slip system straightforwardly. The quest for 'the' activation volume of olivine at high pressure should cease at the expense of detailed work on the flow mechanisms implied. Such evolution in slip systems should also affect the interpretation of seismic anisotropy data in terms of upper mantle flow between 120 and 300 km depth.

  11. Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, Dimitri

    Basic Radiation Theory Specific Intensity Photon Number Density Photon Distribution Function Mean Intensity Radiation Energy Density Radiation Energy Flux Radiation Momentum Density Radiation Stress Tensor (Radiation Pressure Tensor) Thermal Radiation Thermodynamics of Thermal Radiation and a Perfect Gas The Transfer Equation Absorption, Emission, and Scattering The Equation of Transfer Moments of the Transfer Equation Lorentz Transformation of the Transfer Equation Lorentz Transformation of the Photon 4-Momentum Lorentz Transformation of the Specific Intensity, Opacity, and - Emissivity Lorentz Transformation of the Radiation Stress Energy Tensor The Radiation 4-Force Density Vector Covariant Form of the Transfer Equation Inertial-Frame Equations of Radiation Hydrodynamics Inertial-Frame Radiation Equations Inertial-Frame Equations of Radiation Hydrodynamics Comoving-Frame Equation of Transfer Special Relativistic Derivation (D. Mihalas) Consistency Between Comoving-Frame and Inertial-Frame Equations Noninertial Frame Derivation (J. I. Castor) Analysis of O (v/c) Terms Lagrangian Equations of Radiation Hydrodynamics Momentum Equation Gas Energy Equation First Law of Thermodynamics for the Radiation Field First Law of Thermodynamics for the Radiating Fluid Mechanical Energy Equation Total Energy Equation Consistency of Different Forms of the Radiating-Fluid Energy - and Momentum Equations Consistency of Inertial-Frame and Comoving-Frame Radiation Energy - and Momentum Equations Radiation Diffusion Radiation Diffusion Nonequilibrium Diffusion The Problem of Flux Limiting Shock Propagation: Numerical Methods Acoustic Waves Numerical Stability Systems of Equations Implications of Shock Development Implications of Diffusive Energy Transport Illustrative Example Numerical Radiation Hydrodynamics Radiating Fluid Energy and Momentum Equations Computational Strategy Energy Conservation Formal Solution Multigroup Equations An Astrophysical Example Adaptive-Grid Radiation

  12. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    SciTech Connect

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  13. Nonlinear Evolution of the Radiation-driven Magneto-acoustic Instability

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Socrates, Aristotle

    2013-04-01

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux—the radiation-driven magneto-acoustic instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes & Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  14. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Wu, H. C.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.

    2015-02-01

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ˜2.74 × 1022 W/cm2, a quasi-monoenergetic proton beam with a peak energy of ˜1.5 GeV/u, density ˜10nc, and transverse size ˜1λ0 can be obtained.

  15. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2010-01-01

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549

  16. Generation of quasi-monoenergetic protons from a double-species target driven by the radiation pressure of an ultraintense laser pulse

    NASA Astrophysics Data System (ADS)

    Pae, Ki Hong; Kim, Chul Min; Nam, Chang Hee

    2016-03-01

    In laser-driven proton acceleration, generation of quasi-monoenergetic proton beams has been considered a crucial feature of the radiation pressure acceleration (RPA) scheme, but the required difficult physical conditions have hampered its experimental realization. As a method to generate quasi-monoenergetic protons under experimentally viable conditions, we investigated using double-species targets of controlled composition ratio in order to make protons bunched in the phase space in the RPA scheme. From a modified optimum condition and three-dimensional particle-in-cell simulations, we showed by varying the ion composition ratio of proton and carbon that quasi-monoenergetic protons could be generated from ultrathin plane targets irradiated with a circularly polarized Gaussian laser pulse. The proposed scheme should facilitate the experimental realization of ultrashort quasi-monoenergetic proton beams for unique applications in high field science.

  17. Effects of alloying elements on radiation hardening based on loop formation of electron-irradiated light water reactor pressure vessel model steels

    NASA Astrophysics Data System (ADS)

    Nishi, Takakuni; Hashimoto, N.; Ohnuki, S.; Yamamoto, T.; Odette, G. R.

    2011-10-01

    Electron irradiations using a high voltage electron microscope were conducted on several reactor pressure vessel model alloys in order to investigate the effects of alloying elements on the formation and development of defect clusters. In addition, the effects of alloying elements on yield stress change after irradiation were considered, comparing the mean size and number density of dislocation loops with the irradiation-induced hardening. High Cu alloys formed Cu and Mn-Ni-Si rich clusters, and these are important in determining the yield stress increase. High Ni alloys formed a high density of small dislocation loops and probably Mn-Ni-Si rich cluster, which have the effect of increasing the yield stress. High P enhanced radiation-induced segregation on grain boundary, helping prevent dislocation movement.

  18. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus.

    PubMed

    Guignard, Jeremy; Crichton, Wilson A

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10(-4) to 10(-6) s(-1). Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10(-3) Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T-σ-ε̇ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation. PMID:26329238

  19. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus

    NASA Astrophysics Data System (ADS)

    Guignard, Jeremy; Crichton, Wilson A.

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10-4 to 10-6 s-1. Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10-3 Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T- σ - ɛ ˙ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation.

  20. Constraining the minute amount of audible energy radiated from binary collisions of light plastic spheres in conditions of incomplete angular coverage of the measured pressure.

    PubMed

    Petculescu, Andi; Riner, Joshua

    2010-10-01

    Usually, the energy released as air-coupled sound following a collision is dismissed as negligible. The goal of this Letter is to quantify the value of this small but measurable quantity, since it can be useful to impact studies. Measurements of sound radiation from binary collisions of polypropylene balls were performed in order to constrain the fraction of incident energy radiated as sound in air. In the experiments, one ball is released from rest, directly above a stationary target ball. The transient acoustic waveforms are detected by a microphone rotated about the impact point at a radius of 10 cm. The sound pressure was measured as a function of the polar angle θ (the azimuthal symmetry of the problem was verified by rotating the microphone in the horizontal plane). The angular pattern has two main lobes that are asymmetric with respect to the impact plane. This asymmetry is ascribable to interference and/or scattering effects. Gaps in the acoustic measurements at the "poles" (i.e., around 0° and 180°) pose a challenge similar to that of extrapolating the cosmic microwave background in the galactic "cut." The data was continued in the gaps by polynomial interpolation rather than least-squares fitting, a choice dictated by the accuracy of the reconstructed pattern. The acoustic energy radiated during the impact, estimated by multiplying the collision time by the sound intensity integrated over a spherical surface centered at the impact point, is calculated as four orders of magnitude smaller than the incident energy (0.23 μJ versus 1.6 mJ). PMID:20968327

  1. The analytical modeling of planetary exospheres: a) the satellite particles at Earth, Titan and Mars, b) the influence of the radiation pressure on the ballistic and escaping particles density profiles

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I. S.; Mazelle, C. X.

    2013-12-01

    a) The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We revisit here the importance of a specific exospheric population, i.e. the satellite particles, which is usually neglected in the models (see also Beth et al., Icarus, accepted). These particles are indeed produced through rare collisions in the exospheres, and may either be negligible or dominate the exospheres of all planets with dense atmospheres in our solar system, depending on the balance between their sources and losses. Richter et al. (1979) were the first to propose, beyond the Chamberlain's (Chamberlain (1963)) rough approximation, a rigorous approach for these particles by using the Boltzmann equation in the Earth exosphere below 3000 km altitude. We here further investigate this approach and determine the contribution of satellite populations to the densities of light elements at Titan (H2 species) and Mars (H species). The results confirm that the Chamberlain approximation overestimates the satellite particles densities at high altitudes, but that there may be enough collisions to produce a significant amount of satellite particles in some conditions, up to more than 50% of the contributions due to ballistic and escaping populations (i.e. those considered in the collisionless models) in the case of Mars or even 36% at Titan. This suggests that considering collisionless exospheric profiles for light species can lead to an underestimation of the total densities at high altitudes. b) We also present a new analytical approach to understand the structure of the exospheres submitted to the radiation pressure and determine the densities of others populations, i.e. ballistic and escaping particles, using the Liouville theorem and Hamiltonian mechanics. Our modeling work will in particular enable to better

  2. Intense electron-beam transport in the ion-focused regime through the collision-dominated regime

    SciTech Connect

    Sanford, T.W.L.; Poukey, J.W.; Welch, D.R.; Mock, R.C.

    1993-12-31

    This paper reviews the transport of the 19-MeV, 700-kA, 25-ns Hermes-III electron beam in long gas cells filled with N{sub 2} gas spanning six decades in pressure from 10{sup 3} to {approximately}10{sup 3} Torr. We show through measurements and theoretical analyses that the beam has two windows of stable transport: a low-pressure window (between {approximately}1 and {approximately}100 mTorr) that is dominated by propagation in the semi-collisionless IFR (ion-focused regime), and a high-pressure window (between {approximately}1 and {approximately}100 Torr) that is dominated by propagation in the resistive CDR (collision-dominated regime). In the CDR, 79{plus_minus}1.5% of the beam energy is transported over 11 m at 20 Torr. In the IFR, we show that intense radiation fields with controllable rise times and pulse widths can be generated on axis at a bremsstrahlung target. In summary, the measurements and analyses presented here provide a quantitative description of the Hermes-III beam transport over six decades in pressure.

  3. Characteristics of a Frisch collar grid CdZnTe radiation detector grown by low-pressure Bridgman method

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    A single-polarity charge-sensing method was studied by using a CdZnTe Frisch collar grid detector grown by using a low-pressure Bridgeman furnace at the Korea Atomic Energy Research Institute (KAERI). The Frisch collar grid CdZnTe detector has an active volume of 5 × 5 × 10 mm3, and was fabricated from a single crystal, Teflon tape and copper tape used as a Frisch collar grid. A room-temperature energy resolution of 6% full width at half maximum (FWHM) was obtained for the 662keV peak of Cs-137 without any additional electrical corrections. The detector's fabrication process is described, and its characteristics are discussed. Finally, the charge transport properties and gamma-ray energy resolution of the fabricated Frisch collar grid detector are compared with those of two other Frisch collar detectors grown by using different crystal growth methods and purchased from eV-products and Redlen technology.

  4. Determination of the dominant catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst system: Is it single-metal Rh₁Cp*-based, subnanometer Rh₄ cluster-based, or Rh(0)n nanoparticle-based cyclohexene hydrogenation catalysis at room temperature and mild pressures?

    SciTech Connect

    Bayram, Ercan; Linehan, John C.; Fulton, John L.; Szymczak, Nathaniel K.; Finke, Richard G.

    2015-05-27

    Determining the kinetically dominant catalyst in a given catalytic system is a forefront topic in catalysis. The [RhCp*Cl₂]₂ (Cp* =[η⁵-C₅(CH₃)₅]) system pioneered by Maitlis and co-workers is a classic precatalyst system from which homogeneous mononuclear Rh₁, subnanometer Rh₄ cluster, and heterogeneous polymetallic Rh(0)n nanoparticle have all arisen as viable candidates for the true hydrogenation catalyst, depending on the precise substrate, H₂ pressure, temperature, and catalyst concentration conditions. Addressed herein is the question of whether the prior assignment of homogeneous, mononuclear Rh₁Cp*-based catalysis is correct, or are trace Rh₄ subnanometer clusters or possibly Rh(0)n nanoparticles the dominant, actual cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm initial H₂ pressure? The observation herein of Rh₄ species by in operando-X-ray absorption fine structure (XAFS) spectroscopy, at the only slightly more vigorous conditions of 26 °C and 8.3 atm H₂ pressure, and the confirmation of Rh₄ clusters by ex situ mass spectroscopy raises the question of the dominant, room temperature, and mild pressure cyclohexene hydrogenation catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst pioneered by Maitlis and co-workers. Ten lines of evidence are provided herein to address the nature of the true room temperature and mild pressure cyclohexene hydrogenation catalyst derived from [RhCp*Cl₂]₂. Especially significant among those experiments are quantitative catalyst poisoning experiments, in the present case using 1,10-phenanthroline. Those poisoning studies allow one to distinguish mononuclear Rh₁, subnanometer Rh₄ cluster, and Rh(0)n nanoparticle catalysis hypotheses. The evidence obtained provides a compelling case for a mononuclear, Rh₁Cp*-based cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm H₂ pressure. The resultant methodology, especially the quantitative

  5. Radiation hydrodynamics

    SciTech Connect

    Pomraning, G.C.

    1982-12-31

    This course was intended to provide the participant with an introduction to the theory of radiative transfer, and an understanding of the coupling of radiative processes to the equations describing compressible flow. At moderate temperatures (thousands of degrees), the role of the radiation is primarily one of transporting energy by radiative processes. At higher temperatures (millions of degrees), the energy and momentum densities of the radiation field may become comparable to or even dominate the corresponding fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid, and it is the description of this regime which is generally the charter of radiation hydrodynamics. The course provided a discussion of the relevant physics and a derivation of the corresponding equations, as well as an examination of several simplified models. Practical applications include astrophysics and nuclear weapons effects phenomena.

  6. Dominance Hierarchies in Leptothorax Ants

    NASA Astrophysics Data System (ADS)

    Cole, Blaine J.

    1981-04-01

    The social organization of Leptothorax allardycei is unique among ant species thus far studied. The workers form linear dominance hierarchies characterized by routine displays of dominance, avoidance behavior, and even fighting. The high-ranking ants are favored in liquid food exchange, have greater ovarian development, and produce 20 percent of the eggs.

  7. Dominant Leadership Style in Schools

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh

    2006-01-01

    The dominant leadership style is defined by the situation and the kind of organizational environment and climate. This, however, does not sufficiently define the leadership qualities in school organizations. There are other factors which also determine the dominant leadership style, which are the traits and style, teachers commitments, pass out…

  8. Orbit determination modelling analysis using GPS including perturbations due to geopotential coefficients of high degree and order, solar radiation pressure and luni-solar attraction

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio

    The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application

  9. Might eddies dominate carbon export ?

    NASA Astrophysics Data System (ADS)

    Allen, J.; Rixen, M.; Fielding, S.; Mustard, A.; Brown, L.; Sanders, R.

    2003-04-01

    Yes - from a review of recent data sets we present a scale analysis of the potential for globally integrated carbon export, from the surface ocean, due to the vertical transports of mesoscale eddies. Mesoscale eddies are the oceanic equivalent of atmospheric storms, most are a fundamental result of horizontally unstable density gradients on the surface of a rotating sphere (baroclinic instability) and ~ 90% of the oceans energy exchanges take place at this scale. Recent studies from satellite remote sensing and high resolution models show that mesoscale eddies are a ubiquitous feature of the open ocean in both time and space; they are even present in sub-tropical oligotrophic gyres. Individual atmospheric weather systems generally have little ecological impact on terrestrial or marine biological systems. Grass grows and herbivores munch through many cyclone and anticyclone periods. In the open ocean we have a very different picture. The primary producers and herbivores have shorter time scales; time scales that coincide with those of mesoscale eddies. Plankton can have either good or bad weather lifetimes associated with just a single cyclone or anticyclone period. Furthermore, although the spring bloom may be the single largest source of material for the export of carbon from the upper ocean, it is short lived and may not be dominant everywhere in the annual export budget. The magnitude of vertical motion associated with mesoscale eddies is significant on biological timescales both for phytoplankton growth and the development of zooplankton grazing pressure. Critically this motion does not form a closed vertical circulation; baroclinic instability releases potential energy and thus water masses are exchanged both vertically and horizontally across water mass boundaries. Thus mesoscale eddies have been shown to provide a mechanism for export both in the direct transport of biomass downwards out of the surface mixed layer and the fertilisation of an exhausted

  10. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    SciTech Connect

    Cao, Xinwu

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  11. Comparison of the response of a NaI scintillation crystal with a pressurized ionization chamber as a function of altitude, radiation level and Ra-226 concentration

    SciTech Connect

    Provencher, R.; Smith, G.; Borak, T.B.; Kearney, P.

    1986-01-01

    The Grand Junction Uranium Mill Tailings Remedial Action-Radiological Survey Activities Group (UMTRA-RASA) program employs a screening method in which external exposure rates are used to determine if a property contaminated with uranium mill tailings is eligible for remedial action. Portable NaI detectors are used by survey technicians to locate contaminated areas and determine exposure rates. The exposure rate is calculated using a regression equation derived from paired measurements made with a pressurized ionization chamber (PIC) and a NaI detector. During July of 1985 extensive measurements were taken using a PIC and a NaI scintillator with both analogue and digital readout for a wide range of exposure rates and at a variety of elevations. The surface soil was sampled at most of these locations and analyzed for /sup 226/Ra. The response of the NaI detectors was shown to be highly correlated to radiation level but not to /sup 226/Ra concentration or elevation.

  12. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    SciTech Connect

    Zou, D. B.; Zhuo, H. B. Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.; Wu, H. C.

    2015-02-15

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ∼2.74 × 10{sup 22 }W∕cm{sup 2}, a quasi-monoenergetic proton beam with a peak energy of ∼1.5 GeV/u, density ∼10n{sub c}, and transverse size ∼1λ{sub 0} can be obtained.

  13. Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, D.; Qiao, B.; McGuffey, C.; He, X. T.; Beg, F. N.

    2014-12-01

    Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration (RPA) of intense laser pulses is investigated. Different from previously studied RPA of protons or light ions, the dynamic ionization of high-Z atoms can stabilize the heavy ion acceleration. A self-organized, stable RPA scheme specifically for heavy ion beams is proposed, where the laser peak intensity is required to match with the large ionization energy gap when the successive ionization state passes the noble gas configurations [such as removing an electron from the helium-like charge state ( Z - 2 ) + to ( Z - 1 ) + ]. Two-dimensional particle-in-cell simulations show that a mono-energetic Al13+ beam with peak energy 1.0 GeV and energy spread of only 5% can be obtained at intensity of 7 × 10 20 W / cm 2 through the proposed scheme. A heavier, mono-energetic, ion beam (Fe26+) can attain a peak energy of 17 GeV by increasing the intensity to 10 22 W / cm 2 .

  14. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  15. Developing the "Precessing Inclined Bi-Elliptical Four-Body Problem with Radiation Pressure" to search for orbits in the triple asteroid 2001SN263

    NASA Astrophysics Data System (ADS)

    Masago, Bruna Yukiko Pinheiro Lopes; Prado, A. F. B. A.; Chiaradia, Ana Paula Marins; Gomes, Vivian Martins

    2016-02-01

    Space missions to visit small bodies of the Solar System are important steps to improve our knowledge of the Solar System. Usually those bodies do not have well known characteristics, as their gravity field, which make the mission planning a difficult task. The present paper has the goal of studying orbits around the triple asteroid 2001SN263, a Near-Earth Asteroid (NEA). A mission to this system allows the exploration of three bodies in the same trip. The distances reached by the spacecraft from those three bodies have fundamental importance in the quality of their observations. Therefore, the present research has two main goals: (i) to develop a semi-analytical mathematical model, which is simple, but able to represent the main characteristics of that system; (ii) to use this model to find orbits for a spacecraft with the goal of remaining the maximum possible time near the three bodies of the system, without the need of space maneuvers. This model is called "Precessing Inclined Bi-Elliptical Problem with Radiation Pressure" (PIBEPRP). The use of this model allow us to find important natural orbits for the exploration of one, two or even the three bodies of the system. These trajectories can be used individually or combined in two or more parts using orbital maneuvers.

  16. Characteristics of a planar-type Cd0.9Zn0.1Te radiation detector grown by using the low-pressure bridgman method

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Kim, Han Soo; Kim, Young Soo; Ha, Jang Ho

    2014-04-01

    An indium-doped (7 ppm) Cd0.9Zn0.1Te single crystal for use in room-temperature radiation detectors has been grown using a low-pressure Bridgman (LPB) furnace at the Korea Atomic Research Institute. The single crystal has a (111) orientation and a high resistivity of ˜1 × 1012 Ω·cm. In addition, the mobility-lifetime products of the electrons and hole are 4.2 × 10-4 cm2/V and 5 × 10-5 cm2/V, respectively. These values are simply derived by using a Hecht and a neural equation and 5 MeV alpha particles emitted from an 241Am alpha source. To characterize the Cd0.9Zn0.1Te grown by using the LPB method, we fabricated planar detectors with volume of 10 × 10 × 2.5 mm3 from a 2-inch-diameter Cd0.9Zn0.1Te ingot.

  17. Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    SciTech Connect

    Wu, D.; Qiao, B.; McGuffey, C.; Beg, F. N.; He, X. T.

    2014-12-15

    Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration (RPA) of intense laser pulses is investigated. Different from previously studied RPA of protons or light ions, the dynamic ionization of high-Z atoms can stabilize the heavy ion acceleration. A self-organized, stable RPA scheme specifically for heavy ion beams is proposed, where the laser peak intensity is required to match with the large ionization energy gap when the successive ionization state passes the noble gas configurations [such as removing an electron from the helium-like charge state (Z−2){sup +} to (Z−1){sup +}]. Two-dimensional particle-in-cell simulations show that a mono-energetic Al{sup 13+} beam with peak energy 1.0 GeV and energy spread of only 5% can be obtained at intensity of 7×10{sup 20} W/cm{sup 2} through the proposed scheme. A heavier, mono-energetic, ion beam (Fe{sup 26+}) can attain a peak energy of 17 GeV by increasing the intensity to 10{sup 22} W/cm{sup 2}.

  18. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany.

    PubMed

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions. PMID:21301889

  19. Lateral Dominance and Reading Disability.

    ERIC Educational Resources Information Center

    Harris, Albert J.

    1979-01-01

    Theory and research on the relation of lateral dominance to the causation of reading disability are reviewed. Both direct and indirect measures of cerebral hemisphere functioning are considered. (SBH)

  20. Insecticide resistance and dominance levels.

    PubMed

    Bourguet, D; Genissel, A; Raymond, M

    2000-12-01

    Dominance has been assessed in different ways in insecticide resistance studies, based on three phenotypic traits: the insecticide concentration required to give a particular mortality (DLC), mortality at a particular insecticide dose (DML), and fitness in treated areas (DWT). We propose a general formula for estimating dominance on a scale of 0 to 1 (0 = complete recessivity and 1 = complete dominance). DLC, DML, and DWT are not directly related and their values depend on genetic background and environmental conditions. We also show that pest management strategies can have the consequence to increase DWT via the selection of dominance modifiers. Studies on resistance to Bacillus thuringiensis toxins provide the ultimate example of the complexity of the definition of the concept of dominance. Almost all studies have focused on calculation of DLC, which provides little information about the efficiency of pest management programs. For instance, one assumption of the high dose/refuge strategy is that Bacillus thuringiensis resistance must be effectively recessive (i.e., DML must be close to zero). However, DWT, rather than DML, is relevant to the resistance management strategy. Therefore, we strongly suggest that the time has come to focus on fitness dominance levels in the presence and absence of insecticide. PMID:11142285

  1. Neural mechanisms of social dominance

    PubMed Central

    Watanabe, Noriya; Yamamoto, Miyuki

    2015-01-01

    In a group setting, individuals' perceptions of their own level of dominance or of the dominance level of others, and the ability to adequately control their behavior based on these perceptions are crucial for living within a social environment. Recent advances in neural imaging and molecular technology have enabled researchers to investigate the neural substrates that support the perception of social dominance and the formation of a social hierarchy in humans. At the systems' level, recent studies showed that dominance perception is represented in broad brain regions which include the amygdala, hippocampus, striatum, and various cortical networks such as the prefrontal, and parietal cortices. Additionally, neurotransmitter systems such as the dopaminergic and serotonergic systems, modulate and are modulated by the formation of the social hierarchy in a group. While these monoamine systems have a wide distribution and multiple functions, it was recently found that the Neuropeptide B/W contributes to the perception of dominance and is present in neurons that have a limited projection primarily to the amygdala. The present review discusses the specific roles of these neural regions and neurotransmitter systems in the perception of dominance and in hierarchy formation. PMID:26136644

  2. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  3. Wind induced interior and far field radiated exterior noise from automobiles

    NASA Astrophysics Data System (ADS)

    Dobrzynski, W.

    Aerodynamically induced interior noise in passenger cars was investigated. Surface pressure and resulting interior noise were measured on a full-scale automobile in wind tunnel tests. Both quantities are interrelated theoretically; corresponding interior noise predictions are compared to measured data. Results show that high surface-pressure originating even from highly localized flow separations on the car-body tend to dominate interior noise. Far field noise radiation from exterior flow/car-body interaction is predicted and compared to measured data.

  4. Social dominance in preschool classrooms.

    PubMed

    Pellegrini, Anthony D; Roseth, Cary J; Mliner, Shanna; Bohn, Catherine M; Van Ryzin, Mark; Vance, Natalie; Cheatham, Carol L; Tarullo, Amanda

    2007-02-01

    The authors examined preschoolers' aggressive and cooperative behaviors and their associations with social dominance. First and as predicted, directly observed aggressive interactions decreased across the school year, and same-sex aggression occurred more frequently than cross-sex aggression. Next, the authors examined the relation between aggression and reconciliation, cooperation, and social display variables. Teacher ratings of children's aggression related to observed aggression but not to observed "wins" of aggressive bouts. Instead, wins were related to cooperation and display variables. Finally, they examined the relative power of wins and cooperation in predicting 2 measures of social dominance. After age was controlled, wins alone predicted teacher-rated social dominance. Results are discussed in terms of different forms of competition and how school ethos affects these forms. PMID:17324075

  5. Highly dominating, highly authoritarian personalities.

    PubMed

    Altemeyer, Bob

    2004-08-01

    The author considered the small part of the population whose members score highly on both the Social Dominance Orientation scale and the Right-Wing Authoritarianism scale. Studies of these High SDO-High RWAs, culled from samples of nearly 4000 Canadian university students and over 2600 of their parents and reported in the present article, reveal that these dominating authoritarians are among the most prejudiced persons in society. Furthermore, they seem to combine the worst elements of each kind of personality, being power-hungry, unsupportive of equality, manipulative, and amoral, as social dominators are in general, while also being religiously ethnocentric and dogmatic, as right-wing authoritarians tend to be. The author suggested that, although they are small in number, such persons can have considerable impact on society because they are well-positioned to become the leaders of prejudiced right-wing political movements. PMID:15279331

  6. Radiation Damage Assessment in the Reactor Pressure Vessel of the Integral Inherently Safe Light Water Reactor (I2S-LWR)

    NASA Astrophysics Data System (ADS)

    Flaspoehler, Timothy; Petrovic, Bojan

    2016-02-01

    One of the major limiting factors to nuclear reactors lifetime is the radiation-induced material damage in the Reactor Pressure Vessel (RPV). While older reactors were designed assuming a 40-year operating lifetime, new reactor designs are expected to have lifetimes up to 100 years. For safe operation, the integrity of the RPV must be ensured against significant material property changes. In this work, typical neutron damage indicators are calculated in the RPV of the I2S-LWR (Integral Inherently Safe LWR) Power Plant, including DPA (displacements per atom) and fast neutron fluence (>1 MeV and >0.1MeV). I2S-LWR is a PWR of integral design, which means that its wider downcomer provides additional shielding to the vessel. However, its higher core power density and longer lifetime may offset this advantage. In order to accurately represent the neutron environment for RPV damage assessment, a detailed model based on the preliminary design specifications of the I2S-LWR was developed to be used in the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence of the Scale6.1 code package. MAVRIC uses the CADIS (Consistent Adjoint-Driven Importance Sampling) methodology to bias a fixed-source MC (Monte Carlo) simulation. To establish the upper limit of a bounding envelope, a flat-source distribution was used. For the low limit, a center-peaked source was generated using the KENO-VI criticality sequence assuming uniform fresh fuel core. Results based on the preliminary I2S-LWR model show that DPA rates and fast fluence rates are conservatively 75% lower than in typical PWRs being operated currently in the US.

  7. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    PubMed Central

    Sommers, Christopher H.; Scullen, O. J.; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0–25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  8. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    PubMed

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  9. Dominant resistance against plant viruses

    PubMed Central

    de Ronde, Dryas; Butterbach, Patrick; Kormelink, Richard

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described. PMID:25018765

  10. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  11. Dominance and Age in Bilingualism

    ERIC Educational Resources Information Center

    Birdsong, David

    2014-01-01

    The present article examines the relationship between age and dominance in bilingual populations. Age in bilingualism is understood as the point in development at which second language (L2) acquisition begins and as the chronological age of users of two languages. Age of acquisition (AoA) is a factor in determining which of a bilingual's two…

  12. Simple Waves in Ideal Radiation Hydrodynamics

    SciTech Connect

    Johnson, B M

    2008-09-03

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  13. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: A new cell for X-ray absorption spectroscopy study under high pressure

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou

    2009-08-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.

  14. From nature-dominated to human-dominated environmental changes

    NASA Astrophysics Data System (ADS)

    Messerli, Bruno; Grosjean, Martin; Hofer, Thomas; Núñez, Lautaro; Pfister, Christian

    2000-01-01

    To what extent is it realistic and useful to view human history as a sequence of changes from highly vulnerable societies of hunters and gatherers through periods with less vulnerable, well buffered and highly productive agrarian-urban societies to a world with regions of extreme overpopulation and overuse of life support systems, so that vulnerability to climatic-environmental changes and extreme events is again increasing? This question cannot be fully answered in our present state of knowledge, but at least we can try to illustrate, with three case studies from different continents, time periods and ecosystems, some fundamental changes in the relationship between natural processes and human activities that occur, as we pass from a nature-dominated to a human dominated environment. 1. Early-mid Holocene: Nature dominated environment — human adaptation, mitigation, and migration. In the central Andes, the Holocene climate changed from humid (10,800-8000 BP) to extreme arid (8000-3600 BP) conditions. Over the same period, prehistoric hunting communities adopted a more sedentary pattern of resource use by settling close to the few perennial water bodies, where they began the process of domesticating camelids around 5000 BP and irrigation from about 3100 BP. 2. Historical period: An agrarian society in transition from an "enduring" to an innovative human response. Detailed documentary evidence from Western Europe may be used to reconstruct quite precisely the impacts of climatic variations on agrarian societies. The period considered spans a major transition from an apparently passive response to the vagaries of the environment during the 16th century to an active and innovative attitude from the onset of the agrarian revolution in the late 18th century through to the present day. The associated changes in technology and in agricultural practices helped to create a society better able to survive the impact of climatic extremes. 3. The present day: A human dominated

  15. Increasing human dominance of tropical forests.

    PubMed

    Lewis, Simon L; Edwards, David P; Galbraith, David

    2015-08-21

    Tropical forests house over half of Earth's biodiversity and are an important influence on the climate system. These forests are experiencing escalating human influence, altering their health and the provision of important ecosystem functions and services. Impacts started with hunting and millennia-old megafaunal extinctions (phase I), continuing via low-intensity shifting cultivation (phase II), to today's global integration, dominated by intensive permanent agriculture, industrial logging, and attendant fires and fragmentation (phase III). Such ongoing pressures, together with an intensification of global environmental change, may severely degrade forests in the future (phase IV, global simplification) unless new "development without destruction" pathways are established alongside climate change-resilient landscape designs. PMID:26293955

  16. New Solutions for Synchronized Domineering

    NASA Astrophysics Data System (ADS)

    Bahri, Sahil; Kruskal, Clyde P.

    Cincotti and Iida invented the game of Synchronized Domineering, and analyzed a few special cases. We develop a more general technique of analysis, and obtain results for many more special cases. We obtain complete results for board sizes 3 ×n, 5 ×n, 7 ×n, and 9 ×n (for n large enough) and partial results for board sizes 2×n, 4 ×n, and 6 ×n.

  17. In-situ synchrotron radiation x-ray diffraction and visual imaging study of magnesite + quartz + water at mid-crustal temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Kerrigan, R. J.; Candela, P. A.; Piccoli, P. M.

    2009-12-01

    The system MgO-SiO2-H2O-CO2 (MSHC) has been investigated to observe the decarbonation of magnesite and the kinetics of mineral dissolution/precipitation in the presence of a silica-rich fluid. Hydrothermal experiments containing magnesite + quartz + water under greenschist to amphibolite facies temperatures and pressures (up to 765°C and 1 GPa) were conducted in a Bassett-type hydrothermal diamond anvil cell (HDAC). Two sets of experiments were conducted: (1) experiments monitored by using visible light microscopy, digitally recorded to track apparent dissolution and precipitation changes, and (2) experiments monitored over time by synchrotron radiation x-ray diffraction (SR-XRD). Our experiments have produced minerals of a fibrous habit, a morphology sometimes linked to respiratory illnesses. Understanding the conditions that promote the growth of fibrous minerals will allow us to better identify geological environments wherein they may form. The starting materials consist of two equidimensional grains of magnesite and quartz (~0.05 mm in diameter) in deionized H2O. The sample chamber is confined by the two diamonds (1mm culet) and a rhenium gasket (0.3 mm diameter, 0.15 mm thick). Experimental temperatures and pressures were progressively increased, step-wise through 450-765°C and 0.1-1GPa, with several isothermal steps of 30-90 minutes duration. Experiments were returned to 465°C before quench. The final equilibrium assemblage was dependent on the molar ratio of starting materials. Images of digitally recorded experiments were analyzed to track apparent changes of mineral proportions over time. In-situ SR-XRD, provides phase identification information and data on reaction progress through the relative abundance of reactants and products. Changes in characteristic x-ray peak intensity, morphology and cross-sectional area, allows for the determination of important physical properties and kinetic parameters for the reactant and product phases. At temperatures

  18. EFFECTS OF MICROWAVE RADIATION ON AVIAN DOMINANCE BEHAVIOR

    EPA Science Inventory

    Seventeen birds among twelve flocks were exposed to four combinations of different microwave density and duration along with three sham control birds from two additional flocks. Although the irradiated birds maintained their positions in the hierarchies with one exception, some a...

  19. Convective dominated flows in open capillary channels

    NASA Astrophysics Data System (ADS)

    Rosendahl, Uwe; Grah, Aleksander; Dreyer, Michael E.

    2010-05-01

    This paper is concerned with convective dominated liquid flows in open capillary channels. The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces. The convective dominated flow regime is a special case of open capillary flow, since the viscous forces are negligibly small compared with the convective forces. Flows of this type are of peculiar interest since the free surfaces possess a quasisymmetry in the flow direction. This quasisymmetry enables the application of a new effective method for evaluation of the flow limit. The flow limit is caused by a choking effect. This effect is indicated by the speed index, S, which is defined by the ratio of the flow velocity and the longitudinal capillary wave speed. The speed index is defined analogously to Mach number and tends toward unity in the case of flow limitation, i.e., when the maximum flow rate is reached. Utilizing the quasisymmetry, a new approach for a very precise determination of the speed index is presented. This approach uses a new approximation for the curvature of the surfaces by means of the empirical surface profiles. On the basis of empirical and theoretical data, the paper discusses the typical features of the stable flow. The experiments were performed under microgravity aboard the sounding rockets TEXUS 41 and TEXUS 42. The experiment setup enables the approach to the flow limit through either increase in flow rate or channel length. The theoretical data have been gained from numerical solutions of a one-dimensional flow model. The empirical and theoretical results are in good agreement and both confirm the choking effect as cause of the flow limitation

  20. Phase space analysis of bulk viscous matter dominated universe

    NASA Astrophysics Data System (ADS)

    Sasidharan, Athira; Mathew, Titus K.

    2016-06-01

    We consider a Friedmann model of the universe with bulk viscous matter and radiation as the cosmic components. We study the asymptotic properties in the equivalent phase space by considering the three cases for the bulk viscous coefficient as (i) ζ = ζ 0, a constant (ii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a} , depending on velocity of the expansion of the universe and (iii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a}+{ζ}_2overset{\\cdot \\cdot /a}{overset{\\cdot }{a}} , depending both on velocity and acceleration of the expansion of the universe. It is found that all the three cases predicts the late acceleration of the universe. However, a conventional realistic behaviour of the universe, i.e., a universe having an initial radiation dominated phase, followed by decelerated matter dominated phase and then finally evolving to accelerated epoch, is shown only when ζ = ζ 0, a constant. For the other two cases, it does not show either a prior conventional radiation dominated phase or a matter dominated phase of the universe.

  1. Bulk viscous matter-dominated Universes: asymptotic properties

    SciTech Connect

    Avelino, Arturo; García-Salcedo, Ricardo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel E-mail: rigarcias@ipn.mx E-mail: ulises@ifm.umich.mx

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  2. Domination of black hole accretion in brane cosmology.

    PubMed

    Majumdar, A S

    2003-01-24

    We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black holes with small initial mass to survive until several cosmologically interesting eras. PMID:12570481

  3. LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Charnoz, S.

    2013-10-01

    Context. In most current debris disc models, the dynamical and the collisional evolutions are studied separately with N-body and statistical codes, respectively, because of stringent computational constraints. In particular, incorporating collisional effects (especially destructive collisions) into an N-body scheme has proven a very arduous task because of the exponential increase of particles it would imply. Aims: We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough to be applied to any astrophysical case where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, bright exozodiacal discs, etc. Methods: The code takes its basic architecture from the LIDT3D algorithm for protoplanetary discs, but has been strongly modified and updated to handle the very constraining specificities of debris disc physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas that never relaxes initial conditions, etc. It has a 3D Lagrangian-Eulerian structure, where grains of a given size at a given location in a disc are grouped into super-particles or tracers whose orbits are evolved with an N-body code and whose mutual collisions are individually tracked and treated using a particle-in-a-box prescription designed to handle fragmenting impacts. To cope with the wide range of possible dynamics for same-sized particles at any given location in the disc, and in order not to lose important dynamical information, tracers are sorted and regrouped into dynamical families depending on their orbits. A complex reassignment routine that searches for redundant tracers in each family and reassignes them where they are needed, prevents the number of tracers from diverging. Results: The LIDT-DD code has been successfully tested on simplified cases for which robust results have

  4. A New Method to Assess Eye Dominance

    ERIC Educational Resources Information Center

    Valle-Inclan, Fernando; Blanco, Manuel J.; Soto, David; Leiros, Luz

    2008-01-01

    People usually show a stable preference for one of their eyes when monocular viewing is required ("sighting dominance") or under dichoptic stimulation conditions ("sensory eye-dominance"). Current procedures to assess this "eye dominance" are prone to error. Here we present a new method that provides a continuous measure of eye dominance and…

  5. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  6. Role of brain hemispheric dominance in anticipatory postural control strategies.

    PubMed

    Cioncoloni, David; Rosignoli, Deborah; Feurra, Matteo; Rossi, Simone; Bonifazi, Marco; Rossi, Alessandro; Mazzocchio, Riccardo

    2016-07-01

    Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy. PMID:26952051

  7. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  8. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jingui; Kuang, Yunqian; Zhang, Bo; Liu, Yonggang; Fan, Dawei; Zhou, Wenge; Xie, Hongsen

    2015-11-01

    The high-pressure properties of natural azurite [Cu3(CO3)2(OH)2] have been investigated by in situ synchrotron powder X-ray diffraction and Raman spectroscopy up to 11 and 16 GPa at room temperature, respectively. The results indicate that azurite is stable within the pressure region in this study. The pressure-volume data from in situ X-ray diffraction experiments were described by a third-order Birch-Murnaghan equation of state with V 0 = 304.5 (4) Å3, K 0 = 40 (2) GPa and K 0' = 5.5 (6). The K 0 was obtained as 45.1 (8) GPa when K 0' was fixed at 4. The axial compressional behavior of azurite was also fitted with a linearized third-order Birch-Murnaghan equation of state, showing an intense anisotropy with K a0 = 29.7 (9) GPa, K b0 = 25.0 (7) GPa and K c0 = 280 (55) GPa. In addition, the Raman spectroscopy of azurite in this study also presents the weak [OH]- group and the rigid [CO3]2- group. The different high-pressure behaviors of azurite and malachite combined with the smaller isothermal bulk modulus compared with certain anhydrous carbonates and the obvious compression anisotropy of azurite were discussed with the experimental results in this study together with the results from previous studies. Furthermore, the effect of hydroxyl on the high-pressure behaviors of carbonates was also discussed.

  9. Pressure-induced changes of the vibrational modes of spin-crossover complexes studied by nuclear resonance scattering of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Trautwein, A. X.; Paulsen, H.; Winkler, H.; Giefers, H.; Wortmann, G.; Toftlund, H.; Wolny, J. A.; Chumakov, A. I.; Leupold, O.

    2010-03-01

    Nuclear inelastic scattering (NIS) spectra were recorded for the spin-crossover complexes STP and ETP (STP = [Fe(1,1,1-tris{[N-(2-pyridylmethyl)-N-methylamino]methyl}-ethane)](ClO4)2 and ETP = [Fe(1,1,1-tris{[N-(2-pyridylmethyl)-N-methylamino]methyl}-butane)](ClO4)2) at 30 K and at room temperature and also at ambient pressure and applied pressure (up to 2.6 GPa). Spin transition from the high-spin (HS) to the low-spin (LS) state was observed by lowering temperature and also by applying pressure at room temperature and has been assigned to the hardening of iron-bond stretching modes due to the smaller volume in the LS isomer.

  10. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  11. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both ...

  12. Observational effects of the early episodically dominating dark energy

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Lee, Jae-heon; Hwang, Jai-chan; Noh, Hyerim

    2014-10-01

    We investigate the observational consequences of the early episodically dominating dark energy on the evolution of cosmological structures. For this aim, we introduce the minimally coupled scalar-field dark energy model with the Albrecht-Skordis potential, which allows a sudden ephemeral domination of a dark energy component during the radiation or early matter era. The conventional cosmological parameters in the presence of such an early dark energy are constrained with WMAP and Planck cosmic microwave background radiation data including other external data sets. It is shown that in the presence of such an early dark energy, the estimated cosmological parameters can deviate substantially from the currently known Λ cold dark matter (Λ CDM )-based parameters, with best-fit values differing by several percent for WMAP and by a percent level for Planck data. For the latter case, only a limited amount of dark energy with episodic nature is allowed since the Planck data strongly favor the Λ CDM model. Compared with the conventional dark energy model, the early dark energy dominating near the radiation-matter equality or at the early matter era results in the shorter cosmic age or the presence of tensor-type perturbation, respectively. Our analysis demonstrates that the alternative cosmological parameter estimation is allowed based on the same observations even in Einstein's gravity.

  13. Numerical investigation of the electron dynamic dependence on gas pressure in the breakdown of hydrogen by KrF laser radiation

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Elsayed, Khaled A.; Mahmoud, M. A.

    2012-10-01

    This paper presents a numerical investigation of the measurements that were carried out by Yagi et al. [12] to study the breakdown of molecular hydrogen induced by short laser of wavelength 248 nm and pulse duration 20 ns. The aim of the study is to give a detailed description of the physical processes which contributed to the breakdown of molecular hydrogen at focused intensities between 4×1012 W/cm2 and 8.0×1012 W/cm2 over gas pressure range extended from 150 to 7000 Torr. The applied computer simulation model is based on the numerical solution of the time dependent Boltzmann equation and a set of rate equations that describe the rate of change of the formed excited states population. The experimentally measured rate constants and cross-sections for the various physical processes involved in the model are used in the calculations. Provision is made for the electron impact ionization and photoionization of the excited states. The former process is incorporated parametrically in the calculation owing to the lack of quantitative description of this process. Computations are performed at each gas pressure. The calculated threshold intensities are found to be in good agreement with the experimentally measured ones, both showing a noticeable increase in the higher pressure region. Moreover, calculation of the electron energy distribution function (EEDF) and its parameters demonstrated the exact correlation between gas pressure and the physical processes responsible for determining the breakdown threshold intensity.

  14. Applications in genetic risk estimation of data on the induction of dominant skeletal mutations in mice

    SciTech Connect

    Selby, P.B.

    1982-01-01

    Studies on the induction of dominant skeleton mutations and of dominant cataract mutations provide means of estimating genetic hazard to humans from radiation. The breeding-test method of studying the induction of dominant skeletal mutations is slow and cumbersome. In an attempt to devise a more rapid method, three non-breeding-test methods have been developed which are likely to have wider application in mutagenicity testing. (ACR)

  15. Introduction to radiation transport

    SciTech Connect

    Olson, G.L.

    1998-12-31

    This lecture will present time-dependent radiation transport where the radiation is coupled to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the materials it propagates through and will accelerate the material in the direction of the radiation flow. This fully coupled problem with radiation transport and materials in motion is referred to as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of this lecture.

  16. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  17. 5 CFR 532.305 - Dominant industry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Dominant industry. 532.305 Section 532... SYSTEMS Determining Rates for Principal Types of Positions § 532.305 Dominant industry. (a)(1) A specialized industry is a “dominant industry” if the number of wage employees in the wage area who are...

  18. Double Minoritisation: Intragroup Domination and Cultural Hegemony.

    ERIC Educational Resources Information Center

    Duquette, Georges

    2001-01-01

    Explores language dominance and cultural hegemony within the Franco-Ontarian community in Canada. Looks at within-group dominance, ethnolinguistic vitality, and ethnocultural equity, presenting a complex composite portrait of this minority language community. Suggests it is under the dominating influence of the majority English population, but…

  19. 38 CFR 4.69 - Dominant hand.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Dominant hand. 4.69... DISABILITIES Disability Ratings The Musculoskeletal System § 4.69 Dominant hand. Handedness for the purpose of.... Only one hand shall be considered dominant. The injured hand, or the most severely injured hand, of...

  20. 38 CFR 4.69 - Dominant hand.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Dominant hand. 4.69... DISABILITIES Disability Ratings The Musculoskeletal System § 4.69 Dominant hand. Handedness for the purpose of.... Only one hand shall be considered dominant. The injured hand, or the most severely injured hand, of...

  1. 38 CFR 4.69 - Dominant hand.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Dominant hand. 4.69... DISABILITIES Disability Ratings The Musculoskeletal System § 4.69 Dominant hand. Handedness for the purpose of.... Only one hand shall be considered dominant. The injured hand, or the most severely injured hand, of...

  2. 38 CFR 4.69 - Dominant hand.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Dominant hand. 4.69... DISABILITIES Disability Ratings The Musculoskeletal System § 4.69 Dominant hand. Handedness for the purpose of.... Only one hand shall be considered dominant. The injured hand, or the most severely injured hand, of...

  3. 38 CFR 4.69 - Dominant hand.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Dominant hand. 4.69... DISABILITIES Disability Ratings The Musculoskeletal System § 4.69 Dominant hand. Handedness for the purpose of.... Only one hand shall be considered dominant. The injured hand, or the most severely injured hand, of...

  4. DDIA-30: a Versatile Megabar Mutli-anvil Device for in-situ High Pressure Studies with White and Monochromatic Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jing, Z.; Hilairet, N.; Yu, T.; Nishiyama, N.; Tange, Y.; Sakamaki, T.; Rivers, M. L.; Sutton, S. R.

    2010-12-01

    We report installation and test results of the DDIA-30 apparatus, a new high pressure device jointly supported by GSECARS and COMPRES. This module is now operational in the 1000 ton press in at the insertion device beamline (13-ID-D) of the Advanced Photon Source. With the operational principle similar to that of the deformation DIA (D-DIA) [1], the DDIA-30 is much larger in size, with anvil truncation edge lengths (TEL) in excess of 30 mm and hydraulic load capacity of 1000 tons. The upper and lower guide blocks have built-in differential hydraulic rams, so that the upper and lower anvils can be driven independently, generating a controlled differential stress field. When operated in single-stage mode, the device allows large samples (up to ~10 mm) to be deformed under high pressure and temperature, in a way identical to the small D-DIA that has been in operation since 2004 at 13-BM-D. The large TEL and load capacity makes DDIA-30 more attractive in double-stage configurations. Without driving the differential rams, DDIA-30 is used to compress eight second-stage cubic anvils. This 6-8 (6 first-stage and 8 second-stage anvils) configuration has been demonstrated to reach 90+ GPa with sintered diamond as second-stage anvils [2, 3]. We have tested this configuration with both LaCrO3 and TiB2 as heater materials to 35 GPa and 1500 C and successfully conducted melting experiments on selected metals and alloys with energy-dispersive diffraction and imaging. Another type of second-stage configuration is to use six DIA anvil extensions with small TELs. This 6-6 configuration [4] allows deformation experiments to be conducted without having to change the large first-stage anvils when different sized cell assemblies are desired. Recent laboratory studies using a similar device in Japan have shown that the large guide blocks have unique advantages in maintaining anvil alignment, greatly expanding capability of the deformation DIA to 25 GPa and 2000 K [5]. Monochromatic

  5. Determination of the Phase Boundary Fe3O4 - h-Fe3O4 at high Temperature and Pressure using in situ Synchroton Radiation

    NASA Astrophysics Data System (ADS)

    Schollenbruch, K.; Woodland, A. B.; Frost, D. J.; Wang, Y.; Sanehira, T.

    2009-12-01

    Magnetite is an important accessory mineral in the Earth’s mantle and its rare occurrence as inclusions in diamonds means that this phase has a direct relevance to geochemical processes in the deep earth. For this reason it is important to define its thermodynamic behaviour at high P and T. Magnetite transforms to an orthorhombic high-pressure phase (h-Fe3O4) at room T and ~25 GPa, however the reaction is very sluggish and h-Fe3O4 is unquenchable, complicating the determination of the exact position of the phase boundary at low T. For this reason the phase transition has been investigated by a combination of a multianvil press and in situ X-ray diffraction measurements performed at the Advanced Photo Source (APS) at Argonne National Laboratory, U.S.A.. With this setup, pressure can be monitored during an experiment, allowing different P-T trajectories to be employed (i.e. pressurisation at high T) compared to conventional methods. Experiments were performed up to 15 GPa and 1400°C. A series of measurements during pressurisation at different temperatures revealed, that diffraction peaks related to h-Fe3O4 appeared at the expense of magnetite peaks at about 10 GPa. At the onset of the phase transition, the pressure decreased slightly due to pressure buffering from the 7% volume reduction attending the transition. However, the strongest magnetite reflections remained even at the highest P and T, underlining the sluggishness of the reaction. Measurements made while tracking down P at high T provided reversals, where the regrowth of magnetite diffraction peaks were observed. Once formed, h-Fe3O4 remains metastable down to nearly ambient conditions. Post-experiment TEM investigation revealed extensive twinning and other microstructures, confirming the interpretation of Frost et al. (2001), that such structures formed during the reconversion to magnetite at low pressure. Our high P-T experiments indicate a nearly isobaric phase boundary over a range of 800-1400

  6. Pressure Sores

    MedlinePlus

    ... may form. Pressure sores are also called bedsores, pressure ulcers and decubitus ulcers. Symptoms What are the symptoms ... do to help pressure sores heal: Relieving the pressure that caused the sore Treating the sore itself Improving nutrition and other conditions to help the sore heal ...

  7. Adiabatic and nonadiabatic responses of the radiation belt relativistic electrons to the external changes in solar wind dynamic pressure and interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Li, L.

    2013-12-01

    By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ≥-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (ΔPd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (ΔPd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |ΔPd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites

  8. The dominant intraseasonal mode of intraseasonal South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.

    2014-01-01

    From June through September, the intraseasonal variability of the Asian summer monsoon is dominated by the so-called "monsoon intraseasonal oscillation (MISO)." This paper provides a comprehensive description of the MISO based on outgoing longwave radiation (OLR) data. The MISO is characterized by alternating active periods, in which the primary rain area of the Asian summer monsoon that stretches from the northern Arabian Sea east southeastward almost all the way to the northwest Pacific Intertropical Convergence Zone is relatively intense, and break periods, in which the heaviest rainfall shifts from south Asia to the central and eastern equatorial Indian Ocean. The MISO is attended by well-defined but weak sea surface temperature (SST) perturbations whose phase is indicative of a negative feedback upon the atmospheric perturbations. Meridional profile of variables on the various regression maps shown in this paper averaged along a set of tilted axes parallel to the west-northwest to east-southeast (WNW-ESE) sloping lines in empirical orthogonal function 1 of OLR have been made, and it is found that the strongest westerly 850 hPa wind anomalies are located two grid points (5° of latitude) to the south of the reference latitude. At the 150 hPa level, the meridional profile of divergence is closely aligned with the OLR profile. SST profile is lowest at approximately 2.5° of latitude to the south of the minimum OLR and 2.5° to the north of the strongest westerly 850 hPa wind anomalies. The sea level pressure profiles and the midlower tropospheric geopotential height profiles are almost in phase. It is observed that in most years, there are two-three bands of intensified and suppressed rainfall that cross the reference line from south to north (northward propagating) at the interval of 30-60 days over South Asia. The degree of correspondence between the MISO and active and break spells of the Indian summer monsoon rainfall is also documented.

  9. Depletion modeling of liquid dominated geothermal reservoirs

    SciTech Connect

    Olsen, G.

    1984-06-01

    Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

  10. Dominance in vertebrate broods and litters.

    PubMed

    Drummond, Hugh

    2006-03-01

    Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as "aggression-submission," "aggression-resistance," "aggression-aggression," "aggression-avoidance," "rotating dominance," and "flock dominance." These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the "site-specific dominance" (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. PMID:16602272

  11. Hand Dominance and Common Hand Conditions.

    PubMed

    Lutsky, Kevin; Kim, Nayoung; Medina, Juana; Maltenfort, Mitchell; Beredjiklian, Pedro K

    2016-05-01

    The goals of this study were to (1) assess how frequently patients present for evaluation of common hand disorders in relation to hand dominance and (2) evaluate the effect of hand dominance on function in patients with these conditions. The authors hypothesized that (1) the majority of patients who seek evaluation would have a condition that affects the dominant hand, and (2) disability scores would be worse if the dominant hand is involved. They retrospectively reviewed the records of consecutive patients who presented for treatment to their institution with unilateral symptoms of 5 common disorders of the hand: carpal tunnel syndrome (CTS), de Quervain's tenosynovitis (DEQ), lateral epicondylitis (LE), hand osteoarthritis (OA), and trigger finger (TF). The authors assessed the effect of diagnosis and hand dominance on Disabilities of the Arm, Shoulder and Hand (DASH) scores. The study group comprised 1029 patients (379 men and 650 women) with a mean age of 59.5 years. Ninety percent were right-hand dominant. The dominant and nondominant hands were affected with relatively equal frequency for CTS, DEQ, OA, and TF (range, 45%-53%). Patients with LE had a significantly higher incidence of dominant hand involvement. Men had lower DASH scores than women by an average of 7.9 points, and DASH scores were significantly but slightly higher for the overall group (3.2 points) when the dominant side was affected. Men with LE and women with TF and OA had significantly higher DASH scores when their dominant extremity was affected. Common hand disorders such as CTS, DEQ, OA, and TF affect the dominant and nondominant hands in roughly equivalent proportions, whereas LE is more common on the dominant side. Dominant hand involvement results in significantly worse DASH scores, although the magnitude of this is relatively small. Women have significantly higher DASH scores than men for the conditions evaluated. [Orthopedics. 2016; 39(3):e444-e448.]. PMID:27018604

  12. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    rise into the Milky Way's halo. The results presented by Lockman suggest that, as some astronomers have predicted, the hot gas in the halo slowly cools and condenses into hydrogen clouds along with wispy filaments that connect them. When these clouds become as massive as many of those discovered by Lockman, they should then begin to fall back onto the Galactic plane. This phenomenon is commonly referred to as a "galactic fountain." "If the clouds were part of the galactic fountain process," Lockman said, "then it is likely that they are now falling back onto the Galaxy." Radio telescopes are able to detect the naturally occurring radio emission from neutral atomic hydrogen. As hydrogen atoms move about in space, they can absorb small amounts of energy, sending the atom's single electron to a higher energy state. When the electron eventually moves back to its lower energy -- or resting state, it gives up a small amount of electromagnetic radiation at a wavelength of 21 centimeters. The GBT, dedicated in August of 2000, is the world's largest fully steerable radio telescope. Its 100 by 110 meter dish is composed of 2004 individually hinged panels. It also has a unique offset feed arm, which greatly enhances the performance of the telescope, making it ideal for observations of faint astronomical objects. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Features of Afterbody Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Brandis, Aaron

    2014-01-01

    Radiative heating is identified as a major contributor to afterbody heating for Earth entry capsules at velocities above 10 km/s. Because of rate-limited electron-ion recombination processes, a large fraction of the electronically-excited N and O atoms produced in the high temperature/pressure forebody remain as they expand into the afterbody region, which results in significant afterbody radiation. Large radiative heating sensitivities to electron-impact ionization rates and escape factors are identified. Ablation products from a forebody ablator are shown to increase the afterbody radiation by as much as 40%. The tangent-slab radiation transport approach is shown to over-predict the radiative flux by as much as 40% in the afterbody, therefore making the more computationally expensive ray-tracing approach necessary for accurate radiative flux predictions. For the Stardust entry, the afterbody radiation is predicted to be nearly twice as large as the convective heating during the peak heating phase of the trajectory. Comparisons between simulations and the Stardust Echelle observation measurements, which are shown to be dominated by afterbody emission, indicate agreement within 20% for various N and O lines. Similarly, calorimeter measurements from the Fire II experiment are identified as a source of validation data for afterbody radiation. For the afterbody calorimeter measurement closest to the forebody, which experiences the largest afterbody radiative heating component, the convective heating alone is shown to under-predict the measurement, even for the fullycatalytic assumption. Agreement with the measurements is improved with the addition of afterbody radiation. These comparisons with Stardust and Fire II measurements provide validation that the significant afterbody radiation values proposed in this work are legitimate.

  14. Protein pheromone expression levels predict and respond to the formation of social dominance networks

    PubMed Central

    Nelson, Adam C.; Cunningham, Christopher B.; Ruff, James S.; Potts, Wayne K.

    2015-01-01

    Communication signals are key regulators of social networks, and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odors of dominants and nondominants differentially influence behavior, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild-derived mice by analyzing expression levels before, during, and after competition for reproductive resources over three days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species. PMID:25867293

  15. Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations.

    PubMed

    Hu, Guanglan; Zheng, Yuanrong; Liu, Zhenmin; Deng, Yun; Zhao, Yanyun

    2016-08-01

    α-Casein was treated by high hydrostatic pressure (HHP), UV-C, or far-IR (FIR). These treatments increased roughness, α-helicity, and β-turn, but decreased β-sheet and IgE-binding reactivity. One 5-min cycle at 600-MPa pressure caused maximum α-helicity, β-turn, and surface hydrophobicity (Ho), but minimum stimulated intestinal fluid from α-casein. UV-C (15min) produced the maximum kurtosis, free sulfhydryl content (FSC), and stimulated intestinal fluid, minimum Ho, R, and simulated gastric fluid. FIR (15min) caused the minimum α-helicity and FSC, but maximum R and β-sheet. The NMR peaks of the main allergenic characteristics affected were 15-17, 23-26, 40, 53, 59 and 85-88, respectively. Generally, all treatments decreased the allergenicity of α-casein by modifying its morphology, ultrastructure, characteristic domains, and peptides. Based on the stimulated digestion tests, UV-C (15min) was more efficient for lowering α-casein allergenicity, thus decreasing the allergenicity of milk. PMID:26988474

  16. Pressure ulcers.

    PubMed

    O'Byrne, Deborah

    2016-04-13

    My nursing experience is in acute care. Acute medical nurses are well placed to assess skin integrity, identify patients at risk of pressure ulcer development, and commence appropriate interventions to prevent or treat pressure ulcers. PMID:27073966

  17. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  18. Consumers, health insurance and dominated choices.

    PubMed

    Sinaiko, Anna D; Hirth, Richard A

    2011-03-01

    We analyze employee health plan choices when the choice set offered by their employer includes a dominated plan. During our study period, one-third of workers were enrolled in the dominated plan. Some may have selected the plan before it was dominated and then failed to switch out of it. However, a substantial number actively chose the dominated plan when they had an unambiguously better choice. These results suggest limitations in the ability of health reform based solely on consumer choice to achieve efficient outcomes and that implementation of health reform should anticipate, monitor and account for this consumer behavior. PMID:21300414

  19. The dynamics of radiation-driven, optically thick winds

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2016-06-01

    Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes (dot{M} > L_Edd/c^2). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, Lk, are super-Eddington with L < Lk and L ∝ L_k^{1/3}. In the lower total luminosity regime, most of the energy is carried out by the radiation with Lk < L ≈ LEdd. In a third, low mass-loss regime (dot{M} < L_Edd/c^2), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.

  20. Dominant-lethal mutations and heritable translocations in mice

    SciTech Connect

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.