Science.gov

Sample records for radiation protection etudes

  1. Radiation protection in space.

    PubMed

    Reitz, G; Facius, R; Sandler, H

    1995-01-01

    Radiation environment, basic concepts of radiation protection, and specific aspects of the space radiation field are reviewed. The discussion of physico-chemical and subcellular radiation effects includes mechanisms of radiation action and cellular consequences. The discussion of radiobiological effects includes unique aspects of HZE particle effects, space flight findings, terrestrial findings, analysis of somatic radiation effects and effects on critical organs, and early and delayed effects. Other topics include the impact of the space flight environment, measurement of radiation exposure, establishing radiation protection limits, limitations in establishing space-based radiation exposure limits, radiation protection measures, and recommendations. PMID:11541474

  2. Radiation Protection Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  3. Maintaining radiation protection records

    SciTech Connect

    Not Available

    1992-11-30

    This Report is part of a series prepared under the auspices of Scientific Committee 46 on Operational Radiation Safety. It provides guidance on maintaining radiation protection records. Record keeping is an essential element of every radiation protection program. This Report describes the elements that should enter into the design of a program for the maintenance of operational radiation safety records. The problems of the length of time for retention of records for operational, regulatory, epidemiologic and legal uses are discussed in detail.

  4. Radiation protection in space

    SciTech Connect

    Blakely, E.A.; Fry, R.J.M.

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  5. Radiation protection in space.

    PubMed

    Blakely, E A; Fry, R J

    1995-08-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space. PMID:7480625

  6. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  7. Optimization of radiation protection

    SciTech Connect

    Lochard, J.

    1981-07-01

    The practical and theoretical problems raised by the optimization of radiological protection merit a review of decision-making methods, their relevance, and the way in which they are used in order to better determine what role they should play in the decision-making process. Following a brief summary of the theoretical background of the cost-benefit analysis, we examine the methodological choices implicit in the model presented in the International Commission on Radiological Protection Publication No. 26 and, particularly, the consequences of the theory that the level of radiation protection, the benefits, and the production costs of an activity can be treated separately.

  8. Protection from Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  9. Protection from space radiation

    SciTech Connect

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-07-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods.

  10. Pregnancy and Radiation Protection

    NASA Astrophysics Data System (ADS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  11. Pregnancy and Radiation Protection

    SciTech Connect

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-21

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  12. Personal Radiation Protection System

    NASA Technical Reports Server (NTRS)

    McDonald, Mark; Vinci, Victoria

    2004-01-01

    A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.

  13. Chemical Protection Against Radiation Damage

    ERIC Educational Resources Information Center

    Campaigne, Ernest

    1969-01-01

    Discusses potential war time and medical uses for chemical compounds giving protection against radiation damage. Describes compounds known to protect, research aimed at discovering such compounds, and problems of toxicity. (EB)

  14. New Approaches to Radiation Protection

    PubMed Central

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923

  15. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The problem of ensuring space flight safety arises from conditions inherent to space flights and outer space and from the existing weight limitations of spacecraft. In estimating radiation hazard during space flights, three natural sources are considered: the Earth's radiation belt, solar radiation, and galactic radiation. This survey first describes the major sources of radiation hazard in outer space with emphasis on those source parameters directly related to shielding manned spacecraft. Then, the current status of the safety criteria used in the shielding calculations is discussed. The rest of the survey is devoted to the rationale for spacecraft radiation shielding calculations. The recently completed long-term space flights indicate the reliability of the radiation safety measures used for the near-Earth space exploration. While planning long-term interplanetary flights, it is necessary to solve a number of complicated technological problems related to the radiation protection of the crew.

  16. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  17. Radiation Protection in Canada

    PubMed Central

    Brown, John R.; Jarvis, Anita A.

    1964-01-01

    A recent survey was carried out with respect to radiobiological and radiological health projects in Canada. Letters of inquiry, followed by two questionnaires, were sent out to every institution where radiation research was likely to have been undertaken. Approximately 75% of those contacted replied. Of the total of 200 studies, 84% were classified as biological and medical studies, the remaining 16% as environmental radiation studies. Responses to the inquiry stressed the inadequacy of the present governmental budget for radiation research, the need for higher salaries for research workers, and the necessity of a more intensive teaching program for technicians and professional personnel. The granting of longer-term grants, rather than annually renewable grants, is urged. PMID:14226104

  18. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses. PMID:26913507

  19. Radiation protection principles of NCRP.

    PubMed

    Kase, Kenneth R

    2004-09-01

    The current recommendations of the National Council on Radiation Protection and Measurements (NCRP) relative to ionizing radiation are based on radiation protection principles that developed historically as information about radiation effects on human populations became available. Because the NCRP Charter states that the NCRP will cooperate with the International Commission on Radiological Protection (ICRP), the basic principles and recommendations for radiation protection of the NCRP are closely coupled with those of the ICRP. Thus, the fundamental principles of justification, optimization, and dose limitation as initially stated in ICRP Publication 26 have been adopted and applied by the NCRP in its recommendations. ICRP and NCRP recommendations on dose limitation for the general public and for occupationally exposed individuals are based on the same analyses of radiation risk, and, while similar, there are differences reflecting the aspects of radiation application and exposure circumstances unique to the United States. The NCRP has recently extended its guidance to address exposure to individuals engaged in space activities. Several reports have been issued or are in preparation to provide recommendations on dose limitation and the development of radiation safety programs to apply the radiation protection principles in space activities. The biological basis for these recommendations is provided in these and accompanying NCRP reports. Recommendations for the application of basic radiation protection principles have been made in many reports over the years. Those that are most current appear in approximately 50 reports published in the last 15 y. These address radiation safety practices in industrial and medical institutions, control of radionuclides in the environment, protection of the public, and assessment of radiation risk. Some of the aspects of these recommendations will be discussed. Current recommendations related to radiation safety practice are based

  20. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect

    Not Available

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  1. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given. (KRM)

  2. [Radiation protection in interventional cardiology].

    PubMed

    Durán, Ariel

    2015-01-01

    INTERVENTIONAL: cardiology progress makes each year a greater number of procedures and increasing complexity with a very good success rate. The problem is that this progress brings greater dose of radiation not only for the patient but to occupationally exposed workers as well. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability and use of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. PMID:26169040

  3. Radiation protection standards in space.

    PubMed

    Sinclair, W K

    1986-01-01

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space. PMID:11537242

  4. Radiation protection standards in space

    NASA Astrophysics Data System (ADS)

    Sinclair, Warren K.

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space.

  5. Future of Radiation Protection Regulations.

    PubMed

    Doss, Mohan

    2016-03-01

    THERE IS considerable disagreement in the scientific community regarding the carcinogenicity of low-dose radiation (LDR), with publications supporting opposing points of view. However, major flaws have been identified in many of the publications claiming increased cancer risk from LDR. The data generally recognized as the most important for assessing radiation effects in humans, the atomic bomb survivor data, are often cited to raise LDR cancer concerns. However, these data no longer support the linear no-threshold (LNT) model after the 2012 update but are consistent with radiation hormesis. Thus, a resolution of the controversy regarding the carcinogenicity of LDR appears to be imminent, with the rejection of the LNT model and acceptance of radiation hormesis. Hence, for setting radiation protection regulations, an alternative approach to the present one based on the LNT model is needed. One approach would be to determine the threshold dose for the carcinogenic effect of radiation from existing data and establish regulations to ensure radiation doses are kept well below the threshold dose. This can be done by setting dose guidelines specifying safe levels of radiation doses, with the requirement that these safe levels, referred to as guidance levels, not be exceeded significantly. Using this approach, a dose guidance level of 10 cGy for acute radiation exposures and 10 cGy y for exposures over extended periods of time are recommended. The concept of keeping doses as low as reasonably achievable, known as ALARA, would no longer be required for low-level radiation exposures not expected to exceed the dose guidance levels significantly. These regulations would facilitate studies using LDR for prevention and treatment of diseases. Results from such studies would be helpful in refining dose guidance levels. The dose guidance levels would be the same for the public and radiation workers to ensure everyone's safety. PMID:26808881

  6. Protection against radiation (biological, pharmacological, chemical, physical)

    NASA Technical Reports Server (NTRS)

    Saksonov, P. P.

    1975-01-01

    Physical, chemical, and biological protection for astronauts from penetrating radiation on long-term space flights is discussed. The status of pharmacochemical protection, development of protective substances, medical use of protective substances, protection for spacecraft ecologic systems, adaptogens and physical conditioning, bone marrow transplants and local protection are discussed. Combined use of local protection and pharmacochemical substances is also briefly considered.

  7. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. PMID:26432587

  8. Space radiation protection: Destination Mars

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  9. Cancer complexity and radiation protection.

    PubMed

    Mossman, Kenneth L

    2014-07-01

    Management of radiological risks typically encountered in environmental and occupational settings is challenging because of uncertainties in the magnitude of the risks and the benefits of risk reduction. In practice, radiation dose instead of risk is measured. However, the relationship between dose and risk is not straightforward because cancer (the major health effect of concern at low doses) is a disease of complexity. Risks at small doses (defined as less than 100 mSv) can never be known exactly because of the inherent uncertainties in cancer as a complex disease. Tumors are complex because of the nonlinear interactions that occur among tumor cells and between the tumor and its local tissue environment. This commentary reviews evidence for cancer complexity and what complexity means for radiation protection. A complexity view of cancer does not mean we must abandon our current system of protection. What it does mean is that complexity requires new ways of thinking about control of cancer-the ideas that cancers can occur without cause, cancers behave unpredictably, and calculated cancer risks following small doses of radiation are highly uncertain. PMID:24849905

  10. Stakeholder perspectives on radiation protection.

    PubMed

    Ledwidge, Lisa; Moore, LeRoy; Crawford, Lisa

    2004-09-01

    Standards for permissible exposure to radiation and the way they are established must incorporate a set of principles that uphold both health and democracy. When the science is uncertain, the burden of proof that risk is not being imposed should be on the source of the risk, not on the possibly affected public or workforce. Scientific processes must be transparent to the public, must address all relevant risk issues and endpoints (and not only cancer), and must be inclusive of the actual experience and opinion of the people who are exposed to radiation risks. Scientists are too often dismissive of public experience and interests, as for instance with worker illnesses or fallout, even though input from the public and workers has frequently proven to be valuable in the development of radiation protection principles. Incorporating the concerns, views, and experiences of workers and the public in a respectful way while maintaining a high standard of scientific work must be an essential part of the standard-setting process. Further, the clearly enunciated International Commission on Radiological Protection principle that the imposition of risk must be accompanied by a clear benefit needs to be a far more explicit part of standard-setting processes, which must also ensure that all known risks are disclosed and that suspected risks, such as possible synergisms between some radionuclides and hormone-disrupting chemicals, are carefully considered. Finally, given the long-lived nature of risks from many radionuclides and the large uncertainties about future physical, social, economic, and other conditions, the issue of how the interests of future generations can be included in standard setting is a difficult but vital matter. PMID:15303067

  11. 78 FR 5813 - 2013 Assuring Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...The Food and Drug Administration (FDA) is announcing the availability of grant funds for the support of the Center for Devices and Radiological Health (CDRH) radiation protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State, and Tribal activities to achieve effective solutions to present and future radiation control problems. The recipient of......

  12. Nevada Test Site Radiation Protection Program

    SciTech Connect

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  13. Radiation protection for nurses. Regulations and guidelines

    SciTech Connect

    Jankowski, C.B. )

    1992-02-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education.

  14. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  15. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement a radiation protection program...

  16. RADIATION BIOLOGY: CONCEPTS FOR RADIATION PROTECTION

    EPA Science Inventory

    ABSTRACT

    The opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The...

  17. Protective effects in radiation modification of elastomers

    NASA Astrophysics Data System (ADS)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-12-01

    Saturated character of ethylene/octene thermoplastic elastomers demands an application of nonconventional methods of crosslinking connections between chains of molecules. These are organic peroxides, usually in the presence of coagents or an application of ionizing radiation. Several approaches (radiation, peroxide, peroxide/plus radiation and radiation/plus peroxide) were applied in crosslinking of elastomere Engage 8200. Attention was directed to the protection effects by aromatic peroxides and by photo- and thermostabilizers on radiolysis of elastomers. Role of dose of radiation, dose rate of radiation as well as the role of composition of elastomere on the radiation yield of hydrogen and absorbtion of oxygen was investigated. DRS method was used to follow postirradiation degradation. Influence of crosslinking methods on properties of elastomers is described. Results were interpreted from the point of view of protective actions of aromatic compounds.

  18. Clear Film Protects Against Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Yavrouian, A.

    1983-01-01

    Acrylic film contains screeing agent filtering ultraviolet radiation up to 380 nanometers in wavelength but passes other components of Sunlight. Film used to protect such materials as rubber and plastics degraded by ultraviolet light. Used as protective cover on outdoor sheets or pipes made of such materials as polyethylene or polypropylene and on solar cells.

  19. Quantities and units in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Jennings, W. A.

    1994-08-01

    A new report, entitled Quantities and Units in Radiation Protection Dosimetry, has recently been published by the international Commission on Radiation Units and Measurements. That report (No. 51) aims to provide a coherent system of quantities and units for purposes of measurement and calculation in the assessment of compliance with dose limitations. The present paper provides an extended summary of that report, including references to the operational quantities needed for area and individual monitoring of external radiations.

  20. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The evaluation of space radiation hazards and shielding requirements is discussed. The proton and electron exposures encountered in earth orbit from the earth radiation belts and solar-flare activity are calculated as functions of orbital altitude and inclination, and the probabilities of exceeding a given dose equivalent are given in tables for missions of varying duration. The Galactic space radiation is characterized and shown to be significant only beyond the earth's vicinity. The Radiation Shielding Design Criteria approved by the USSR Ministry of Health are discussed, and the need for a more heavily shielded shelter module to be used whenever solar-flare activity is detected is indicated. The shielding of interplanetary spacecraft is considered, and it is shown that much heavier shielding is needed for missions longer than about 2 yrs during solar minimum or 3 yrs during solar maximum, or for spacecraft with nuclear energy installations (NEI). A typical shielding thickness requirement is 20 g/sq cm for the radiation shelter of a spacecraft powered by liquid propellant or by a nuclear rocket engine (but without an NEI) on a 600-d interplanetary flight. 7 references.

  1. Radiation Protection Quantities for Near Earth Environments

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  2. Clothing as solar radiation protection.

    PubMed

    Menter, Julian M; Hatch, Kathryn L

    2003-01-01

    The sun is essential for life. Yet, sunlight can also be a source of such deleterious effects as sunburn, and suntanning, as well as premalignant and malignant lesions. These may all occur in individuals with normal responses to sunlight. In addition, there exist a variety of 'abnormal' photosensitivity responses to sunlight that may result from either endogenous imbalances (e.g. the porphyrias) or from added exogenous factors (e.g. drug photosensitivity). The 'normal' responses to sunlight, by and large, are produced preferentially by UVB (290-320 nm), with minor contribution by UVA (320-400 nm) wavelengths. In contrast, the 'abnormal' photosensitivity responses are, for the most part, elicited predominantly by long UVA and, in some cases, visible light. In the last 20 years or so, considerable attention has been paid to the use of fabrics as photoprotective materials. The vast majority of work in this area has been concerned with fabric protection against sunburn. In addition to in vivo measurement of fabric SPF, in vitro evaluation of fabric UPF has been carried out in numerous laboratories around the world. The UPF is estimated from the wavelength-dependent transmission of the fabric, the solar UV spectrum and the erythemal action spectrum over the wavelength region 290-400 nm. Depending on the fabric, UPF values range from 2 to several thousand. More recently, it has become clear that such environmental influences as laundering, solarization, humidity, wetting and degree of stretching may play a major role in fabric protection. Protection also may be altered by addition of dyes, UV absorbers and fluorescent whitening agents. To date, there have been relatively few studies of fabric protection for endpoints other than sunburn erythema. Yet, many fabrics that provide good protection against sunburn may provide inadequate protection against photosensitization by intrinsic or extrinsic absorbing molecules or against (pre)malignant lesions. Future work should

  3. Accreditation of ionizing radiation protection programs

    SciTech Connect

    McDonald, J.C.; Swinth, K.L.; Selby, J.M.

    1991-10-01

    There are over one million workers in the United States who have the potential to be exposed to ionizing radiation. Therefore, it is necessary to determine accurately the quantity of radiation to which they may have been exposed. This quantity if measured by personnel dosimeters that are carried by individuals requiring radiation monitoring. Accreditation of the organizations which evaluate this quantity provides official recognition of the competence of these organizations. Accreditation programs in the field of ionizing radiation protection have been in operation for a number of years, and their experience has demonstrated that such programs can help to improve performance.

  4. Research priorities for occupational radiation protection

    SciTech Connect

    Not Available

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

  5. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included. (KRM)

  6. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  7. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the radiation protection program, including: (1)...

  8. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  9. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  10. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  11. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  12. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J. M.; Nachtwey, D. S.

    1986-01-01

    NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

  13. Radiation protection guidelines for space missions.

    PubMed

    Fry, R J; Nachtwey, D S

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem). PMID:3410682

  14. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.; Nachtwey, D.S.

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  15. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.; Nachtwey, D.S.

    1986-01-01

    The National Aeronautics and Space Administration's current radiation protection guidelines were recommended in 1970. The career limit was set at 400 rem. Today, using the same approach as in 1970, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments that will be experienced in different missions than previously. Since 1970 women have joined their ranks. For these and other reasons it was considered necessary to reexamine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and inclination of the orbit. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (1.0 Sv) for a 24 year old female to 400 rem (4.0 Sv) for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye has been reduced from 600 rem (6.0 Sv) to 400 rem (4.0 Sv). 20 refs., 1 fig., 7 tabs.

  16. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  17. Apollo experience report: Protection against radiation

    NASA Technical Reports Server (NTRS)

    English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.

    1973-01-01

    Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.

  18. Urgent Change Needed to Radiation Protection Policy.

    PubMed

    Cuttler, Jerry M

    2016-03-01

    Although almost 120 y of medical experience and data exist on human exposure to ionizing radiation, advisory bodies and regulators claim there are still significant uncertainties about radiation health risks that require extreme precautions be taken. Decades of evidence led to recommendations in the 1920s for protecting radiologists by limiting their daily exposure. These were shown in later studies to decrease both their overall mortality and cancer mortality below those of unexposed groups. In the 1950s, without scientific evidence, the National Academy of Sciences Biological Effects of Atomic Radiation (BEAR) Committee and the NCRP recommended that the linear no-threshold (LNT) model be used to assess the risk of radiation-induced mutations in germ cells and the risk of cancer in somatic cells. This policy change was accepted by the regulators of every country without a thorough review of its basis. Because use of the LNT model has created extreme public fear of radiation, which impairs vital medical applications of low-dose radiation in diagnostics and therapy and blocks nuclear energy projects, it is time to change radiation protection policy back into line with the data. PMID:26808879

  19. Personal computing in radiation protection programs

    SciTech Connect

    Bunker, A.S. )

    1987-01-01

    In the fall of 1986, Radiation Protection Management surveyed its Correspondents (radiation protection professionals at utilities, universities, national laboratories, consulting firms, and government agencies) on their use of personal computers (PCs). This article presents the results of the survey with profiles of the PC user, the PC equipment, the software, and the work environment. The average PC user is proficient with more than one type of software, is self taught, knows at least one programing language, and uses his/her PC every day. The standard radiation protection PC is an IBM PC/XT/AT or compatible, fully-loaded with 640K of RAM, a hard disk, a modem, etc. Radiation protection professionals use their PCs mainly for word processing and specialty (technical) applications -- their favorite programs are Lotus 1-2-3, Ashton-Tate's dBase series, and MicroPro's WordStar series. Most PCs are shared by several persons, but one of them often uses the PC more than all of the others combined.

  20. 78 FR 59982 - Revisions to Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... FR 66650), the NRC published for public comment the proposed revisions to four sections in Chapter 12... COMMISSION Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard review... Reports for Nuclear Power Plants: LWR Edition'': Section 12.1, ``Assuring that Occupational...

  1. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  2. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  3. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  4. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  5. Shielded radiation protection quantities beyond LEO

    NASA Astrophysics Data System (ADS)

    Clowdsley, M. S.; Wilson, J. W.; Kim, M. Y.; Anderson, B. M.; Nealy, J. E.

    The National Council on Radiation Protection and Measurements (NCRP) has recommended that the quantities used to evaluate health risk to astronauts due to radiation exposure be effective dose and gray-equivalent. The NCRP recommends that effective dose be the limiting quantity for prevention of stochastic effects. Effective dose is a measure of whole body exposure, a weighted average of dose equivalent to a number body tissues for which the NCRP has adopted tissue weighting factors recommended by the International Commission on Radiation Protection (ICRP). For deterministic effects, the NCRP has recommended that gray-equivalent be used. Gray-equivalent is evaluated for specific critical organs and is the weighted sum of absorbed dose from field components to that organ using the relative biological effectiveness (RBE) number for that field component. RBE numbers recommended by the NCRP are used. The NCRP has provided effective dose limits as well as limits for gray-equivalent to eyes, skin, and blood forming organs (BFO) for astronauts in low earth orbit (LEO). As yet, no such limits have been defined for astronaut operations beyond LEO. In this study, the radiation protection quantities, effective dose and gray-equivalent to the eyes, skin, and BFO, are calculated for several environments beyond LEO. The lunar surface and Martian environments are included. For each environment, these radiation protection quantities are calculated behind varying amounts of various types of shielding materials. The results are compared to the exposure limits for LEO, since limits have not yet been defined for interplanetary missions. The benefits of using shielding material containing hydrogen and choosing optimal mission times are discussed.

  6. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  7. A decade of changes in radiation protection.

    PubMed

    Moulder, J E

    1992-04-01

    Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer. PMID:1554578

  8. Radiation Protection Using Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  9. Neutron spectrometry for radiation protection: Three examples

    SciTech Connect

    Goldhagen, P.

    1995-12-31

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author`s instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry.

  10. Porous material for protection from electromagnetic radiation

    SciTech Connect

    Kazmina, Olga E-mail: bdushkina89@mail.ru; Dushkina, Maria E-mail: bdushkina89@mail.ru; Suslyaev, Valentin; Semukhin, Boris

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  11. Issues in deep space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  12. Issues in deep space radiation protection.

    PubMed

    Wilson, J W; Shinn, J L; Tripathi, R K; Singleterry, R C; Clowdsley, M S; Thibeault, S A; Cheatwood, F M; Schimmerling, W; Cucinotta, F A; Badhwar, G D; Noor, A K; Kim, M Y; Badavi, F F; Heinbockel, J H; Miller, J; Zeitlin, C; Heilbronn, L

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. PMID:11669118

  13. Nevada National Security Site Radiation Protection Program

    SciTech Connect

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  14. Radiation protection of astronauts in LEO.

    PubMed

    Melkonian, G; Bourrieau, J

    1989-01-01

    Radiological protection for space flights is often perceived as a technico-scientific problem. All this is the result of the effects of radiation encountered in space and manned flight conditions. The main characteristics of this radiation come from its complex composition and its large energy spectrum which must be taken into account as well as flux variations by both solar activity and the vehicle position on orbit. Inside a vehicle, structures constitute irregularly distributed shields and lead to a specific dose at each location. To be able to protect the crew, it is first necessary to understand the threat and therefore to identify the radiation environment: extraterrestrial and orbital. As the environment varies with both the orbit position and time, the dose received in each critical organ during missions must be determined and compared with acceptable limits. To counter the threat, which may exceed acceptable limits, a strategy is required, including the complementary aspects of prevention, detection, protection and possibly treatment. PMID:11541165

  15. Science Goals in Radiation Protection for Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory

  16. Estrogen Protects against Radiation-Induced Cataractogenesis

    PubMed Central

    Dynlacht, Joseph R.; Valluri, Shailaja; Lopez, Jennifer; Greer, Falon; DesRosiers, Colleen; Caperell-Grant, Andrea; Mendonca, Marc S.; Bigsby, Robert M.

    2008-01-01

    Cataractogenesis is a complication of radiotherapy when the eye is included in the treatment field. Low doses of densely ionizing space radiation may also result in an increased risk of cataracts in astronauts. We previously reported that estrogen (17-β-estradiol), when administered to ovariectomized rats commencing 1 week before γ irradiation of the eye and continuously thereafter, results in a significant increase in the rate and incidence of cataract formation and a decreased latent period compared to an ovariectomized control group. We therefore concluded that estrogen accelerates progression of radiation-induced opacification. We now show that estrogen, if administered continuously, but commencing after irradiation, protects against radiation cataractogenesis. Both the rate of progression and incidence of cataracts were greatly reduced in ovariectomized rats that received estrogen treatment after irradiation compared to ovariectomized rats. As in our previous study, estradiol administered 1 week prior to irradiation at the time of ovariectomy and throughout the period of observation produced an enhanced rate of cataract progression. Estrogen administered for only 1 week prior to irradiation had no effect on the rate of progression but resulted in a slight reduction in the incidence. We conclude that estrogen may enhance or protect against radiation cataractogenesis, depending on when it is administered relative to the time of irradiation, and may differentially modulate the initiation and progression phases of cataractogenesis. These data have important implications for astronauts and radiotherapy patients. PMID:19138041

  17. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  18. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection program changes. 35.26 Section 35.26 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection program without Commission approval if—...

  19. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  20. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  1. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  2. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with...

  3. Orion spacecraft: crew radiation protection strategies

    NASA Astrophysics Data System (ADS)

    Gaza, Razvan; Cooper, Tim; Hussein, Hesham; Jarvis, Kandy; Mytyk, Anna; Patel, Chirag; Reddell, Brandon; Shelfer, Tad

    NASA's Project Constellation aims to return humans to the Moon by the year 2020, using a new generation of manned spacecraft. The Orion crew exploration vehicle (CEV) is the Constellation component inhabited by the crew during the trans-lunar transit and return trip. The ionizing radiation environment is significantly harsher in interplanetary space than in LEO, thus posing an increased risk for detrimental health effects. Minimizing crew radiation exposure on board Orion has been addressed by the prime contractor Lockheed Martin starting as early as the design phase of the vehicle. Radiation analysis of the CEV CAD models containing material and mass density information is used to assess the effective dose incurred by crew members. Ray-tracing is employed to reduce the 3D vehicle geometry and detailed anatomical models to sets of layered shielding configurations. Radiation transport is then modeled using 1-D analytical codes such as HZETRN. Shielding optimization is addressed iteratively, by evaluating the radiation exposure impacts of different protection strategies such as design changes (i.e., material selection), crew repositioning and cabin reconfiguration, and deploying individual shielding.

  4. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  5. Radiation Protection for Lunar Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  6. Radiation protectants: current status and future prospects.

    PubMed

    Seed, Thomas M

    2005-11-01

    In today's heightened nuclear/biological/chemical threat environment, there is an increased need to have safe and effective means to protect not only special high-risk service groups, but also the general population at large, from the health hazards of unintended ionizing radiation exposures. An unfulfilled dream has been to have a globally effective pharmacologic that could be easily taken orally without any undue side effects prior to a suspected or impending nuclear/radiological event; such an ideal radioprotective agent has yet to be identified, let alone fully developed and approved for human use. No one would argue against the fact that this is problematic and needs to be corrected, but where might the ultimate solution to this difficult problem be found? Without question, representative species of the aminothiol family [e.g., Amifostine (MedImmune, Gaithersburg, Maryland)] have proven to be potent cytoprotectants for normal tissues subjected to irradiation or to radiomimetic chemicals. Although Amifostine is currently used clinically, drug toxicity, limited times of protection, and unfavorable routes of administration, all serve to limit the drug's utility in nonclinical settings. A full range of research and development strategies is being employed currently in the hunt for new safe and effective radioprotectants. These include: (1) large scale screening of new chemical classes or natural products; (2) restructuring/reformulating older protectants with proven efficacies but unwanted toxicities; (3) using nutraceuticals that are only moderately protective but are essentially nontoxic; (4) using low dose combinations of potentially toxic but efficacious agents that protect through different routes to foster radioprotective synergy; and (5) accepting a lower level of drug efficacy in lieu of reduced toxicity, banking on the premise that the protection afforded can be leveraged by post-exposure therapies. Although it is difficult to predict which of these

  7. Radiation protection enrollments and degrees, 1981

    SciTech Connect

    Little, J R; Shirley, D L; Blair, L M

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  8. Radiation protection in newer imaging technologies.

    PubMed

    Rehani, Madan M

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large-scale surveys of practice and lack of surveys with change in technology. PMID:20142278

  9. Radiation protection in medicine: ethical framework revisited.

    PubMed

    Malone, J F

    2009-07-01

    The ethical framework within which medicine operates has changed radically over the last two decades. This has been stimulated by events leading to controversy, such as the infant organ retention scandals; concerns about blood products; self regulation of medical practice in the wake of the Harold Shipman Enquiry in the UK; and many other events. It has become obvious following investigations and/or public enquiries that a gap has opened up between what is acceptable to the public on the one hand, and what appears reasonable to, or is at least accepted by, the professionals involved on the other. This paper reviews these issues and some conclusions of a workshop held to consider them. It places the developments in the context of the idea that the approach to problems and communication in a group of people/professionals such as doctors, radiologists, radiation protection specialists, or even the general public may be regarded as a 'culture'. Current practice of radiation protection in medicine is examined in the light of these considerations. PMID:19264829

  10. European activities in radiation protection in medicine.

    PubMed

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  11. Overview of radiation protection at the Superconducting Super Collider Laboratory

    SciTech Connect

    Baker, S.; Britvich, G.; Bull, J.; Coulson, L.; Coyne, J.; Mokhov, N.; Romero, V.; Stapleton, G.

    1994-03-01

    The radiation protection program at the Superconducting Super Collider Laboratory is described. After establishing a set of stringent design guidelines for radiation protection, both normal and accidental beam losses for each accelerator were estimated. From these parameters, shielding requirements were specified using Monte-Carlo radiation transport codes. A groundwater activation model was developed to demonstrate compliance with federal drinking water standards. Finally, the environmental radiation monitoring program was implemented to determine the effect of the facility operation on the radiation environment.

  12. The reference individual of radiation protection

    SciTech Connect

    Eckerman, K.F.; Cristy, M.

    1995-12-31

    The 70-kg {open_quotes}standard man{close_quotes} representing a typical Western adult male has been used in physiological models since at least the 1920s. In 1949 at the Chalk River conference, health physicists from the U.S., UK, and Canada agreed on the concept of a standard man to facilitate comparison of internal dose estimates. The 70-kg standard man included specifications of the masses of 25 organs and tissues, total body content of 15 elements, total water intake and output, water content of the body, and some anatomical and physiological data for the respiratory and gastrointestinal tracts. In 1959, in its Publication 2{sup 2} on permissible doses for internal radiation the International Commission on Radiological Protection (ICRP) modified standard man. In 1963 the ICRP established a task group to revise and extend the standard man concept. The name was changed later to Reference Man and the task group`s work was published in 1975 as ICRP Publication 23{sup 3}. Publication 23 similar to Publication 2, updates and documents the sources of the data. Data on women, children, and fetuses were also collected, where available, but these data were limited primarily to anatomical data and only a few reference values were established for these groups. Information assembled during the course of the effort on the Reference Man report was used at Oak Ridge National Laboratory (ORNL) to construct a mathematical representation of the body (a phantom) that was suitable for use with Monte Carlo methods in the calculation of organ doses. That effort was undertaken to improve estimates of dose from photon-emitting radionuclides residing within organs, so-called internal emitters. The phantom, although updated throughout the years, remains today as the basis for organ dose estimates in nuclear medicine and radiation protection and underlies the radiation risk data derived from the epidemiologic studies of the atomic bomb survivors of Hiroshima and Nagasaki.

  13. Radiation protection guidelines for the skin

    SciTech Connect

    Fry, R.J.M.

    1989-01-01

    With the exception of the function of cells in the skin associated with immunocompetence nonstochastic effects have been well characterized and threshold doses are known with a precision appropriate for setting radiation protection standards. A dose limitation of 0.5 Sv per year and a working lifetime dose limit of 20 Sv should protect the worker population adequately and therefore, the current protection standards are quite adequate. The risk estimate for skin cancer is very dependent on the selection of the projection model and on the mortality rate assumed. Based on the relative risk model, a mortality rate of 0.2% and summing risks for both UVR exposed and shielded skin the risk is about twice (1.94/10{sup {minus}4} Sv{sup {minus}1}) that which ICRP derived in 1977. With the absolute model the risk is considerably less, about 0.5/10{sup {minus}4} Sv{sup {minus}1}. 47 refs., 3 figs., 1 tab.

  14. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  15. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  16. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  17. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  18. 77 FR 66650 - Proposed Revisions to Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... COMMISSION Proposed Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard... (NRC or the Commission) is revising the following sections in Chapter 12, ``Radiation Protection'' and... Nuclear Power Plants: LWR Edition,'' Section 12.1, ``Assuring that Occupational Radiation Exposures Are...

  19. Space Weather Status for Exploration Radiation Protection

    NASA Technical Reports Server (NTRS)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  20. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  1. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  2. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  3. Improved Spacecraft Materials for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 m

  4. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    PubMed Central

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation. PMID:24665152

  5. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  6. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  7. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  8. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  9. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  10. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  11. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  12. Radiation protection for human interplanetary spaceflight and planetary surface operations

    SciTech Connect

    Clark, B.C. ||

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  13. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  14. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  15. The radiation protection system in the United Arab Emirates

    SciTech Connect

    El-Assaly, F.M.

    1994-12-31

    UAE Radiation protection national programme has been designed to protect the health and safety of (a) radiation workers in different fields such as medical applications, logging for oil and ground water, industrial radiography, industry and research, (b) the public from ionizing radiation hazards. The basic radiation protection criteria including formulation of norms and regulations. The drafting of primary legislation (a draft federal decree) was prepared. The Ministry of Health is in charge for implementing the federal decree. The secondary legislation, regulations, guidance notes and codes of practice for particular applications are under preparation. The executive office is within the Ministry of Health to carry out the responsibility of licensing, inspections of users of ionizing radiations. The centre laboratory for radiation protection operates under the Ministry of Health and will be the vital part of radiation protection infrastructure. All workers occupationally exposed to ionizing radiations be included in a regular monitoring practice with TLD and film badges. Their dose records are kept using computer technique. A strategy for dealing with radioactive wastes including not only wastes arising from future operations but also the range of wastes which already exist at various locations will be developed. The emergency planning and preparedness will be established and the necessary training for groups of people on various aspects of radiological emergency will be held with the help of IAEA and other agencies.

  16. Status of radiation protection at different hospitals in Nepal

    PubMed Central

    Adhikari, Kanchan P.; Jha, L.N.; Galan, Montenegro P.

    2012-01-01

    Nepal has a long history of medical radiology since1923 but unfortunately, we still do not have any Radiation Protection Infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five different radiotherapy centers. Questionnaire for radiation workers were used; radiation dose levels were measured and an inventory of availability of radiation equipment made. A corollary objective of the study was to create awareness in among workers on possible radiation health hazard and risk. It was also deemed important to know the level of understanding of the radiation workers in order to initiate steps towards the establishment of Nepalese laws, regulation and code of radiological practice in this field. Altogether, 203 Radiation workers entertained the questionnaire, out of which 41 are from the Radiotherapy and 162 are from diagnostic radiology. The radiation workers who have participated in the questionnaire represent more than 50% of the radiation workers working in this field in Nepal. Almost all X-ray, CT and Mammogram installations were built according to protection criteria and hence found safe. Radiation dose level at the reference points for all the five Radiotherapy centers are within safe limit. Around 65% of the radiation workers have never been monitored for radiation. There is no quality control program in any of the surveyed hospitals except radiotherapy facilities. PMID:23293457

  17. Radiobiology and gray science: flaws in landmark new radiation protections.

    PubMed

    Shrader-Frechette, Kristin

    2005-04-01

    The International Commission on Radiological Protection--whose regularly updated recommendations are routinely adopted as law throughout the globe--recently issued the first-ever ICRP protections for the environment. These draft 2005 proposals are significant both because they offer the commission's first radiation protections for any non-human parts of the planet and because they will influence both the quality of radiation risk assessment and environmental protection, as well as the global costs of nuclear-weapons cleanup, reactor decommissioning and radioactive waste management. This piece argues that the 2005 recommendations are scientifically and ethically flawed, or gray, in at least three respects: first, in largely ignoring scientific journals while employing mainly "gray literature;" second, in relying on non-transparent dose estimates and models, rather than on actual radiation measurements; and third, in ignoring classical ethical constraints on acceptable radiation risk. PMID:15915855

  18. Environmental Protection Agency, Office of Air and Radiation

    MedlinePlus

    ... air pollution, pollution from vehicles and engines, radon, acid rain, stratospheric ozone depletion, climate change, and radiation protection. ... It runs market based programs such as the Acid Rain Program and public/private partnership programs such as ...

  19. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  20. Radiation protection aspects of EMITEL Encyclopaedia of Medical Physics.

    PubMed

    Stoeva, M; Tabakov, S; Lewis, C; Tabakova, V; Thurston, J; Smith, P

    2015-07-01

    The Encyclopaedia of Medical Physics EMITEL was developed under the EU pilot project European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning. This large reference material includes 3400 articles on 2100 pages supported by thousands of illustrations. All materials are available free at the website, www.emitel2.eu. The articles are grouped in seven categories--physics of: X-ray diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. The radiation protection part of EMITEL includes 450 articles. These were organised in several sub-groups including: nuclear and atomic physics; ionizing radiation interactions and biological effects; radiation detection and measurement; dosimetric quantities and units; and general radiation protection and international bodies. EMITEL project was developed over 3 y and attracted as contributors 250+ senior specialists from 35 countries. After its successful launching, EMITEL is actively used by thousands of professionals around the world. PMID:25848099

  1. Has radiation protection become a health hazard?

    SciTech Connect

    Rockwell, T.

    1996-12-31

    Scientists and engineers have a responsibility to speak out when their findings and recommendations lead to public harm. This can happen in several ways. One is when the media misinterpret or sensationalize a scientific fact misleading the public and creating unwarranted fear. Another is when regulations or public policy decision are purportedly based on scientific data but are, in fact, scientifically invalid. Fear of radiation has been far more detrimental to health than radiation itself. The author knows of no deaths to the public from accidental release of radiation, but the consequences of fear have been deadly.

  2. Viewpoint on proposed radiation-protection standards

    SciTech Connect

    Auxier, J.A.

    1982-01-01

    The proposed revision of 10CFR20 is discussed from a personal perspective. A brief historical review of the development of radiation standards is presented, and arguments against the proposed de minimis level elaborated upon. (ACR)

  3. Using computer-based training to facilitate radiation protection review

    SciTech Connect

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs.

  4. Simple Benchmark Specifications for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  5. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  6. Space activities and radiation protection of crew members

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel

    Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.

  7. Radiation protection enrollments and degrees, 1979 and 1980

    SciTech Connect

    Gove, R.M.; Little, J.R.; Shirley, D.L.

    1981-07-01

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel.

  8. Radiation Protection for Manned Interplanetary Missions - Radiation Sources, Risks, Remedies

    NASA Astrophysics Data System (ADS)

    Facius, R.; Reitz, G.

    Health risks in interplanetary explorative missions differ in two major features significantly from those during the manned missions experienced so far. For one, presently available technologies lead to durations of such missions significantly longer than so far encountered - with the added complication that emergency returns are ruled out. Thus radiation exposures and hence risks for late radiation sequelae like cancer increase proportional to mission duration - similar like most other health and many technical risks too. Secondly, loss of the geomagnetic shielding available in low earth orbits (LEO) does increase the radiation dose rates from galactic cosmic rays (GCR) since significant fractions of the GCR flux below about 10 GeV/n now can reach the space vehicle. In addition, radiation from solar particle events (SPE) which at most in polar orbit segments can contribute to the radiation exposure during LEO missions now can reach the spaceship unattenuated. Radiation doses from extreme SPEs can reach levels where even early acute radiation sickness might ensue - with the added risks from potentially associated crew performance decrements. In contrast to the by and large predictable GCR contribution, the doses and hence risks from large SPEs can only stochastically be assessed. Mission designers face the task to contain the overall health risk within acceptable limits. Towards this end they have to transport the particle fluxes of the radiation fields in free space through the walls of the spaceship and through the tissue of the astronaut to the radiation sensitive organs. To obtain a quantity which is useful for risk assessment, the radiobiological effectiveness as well as the specific sensitivity of a given organ has to be accounted for in such transport calculations which of course require a detailed knowledge of the spatial distribution and the atomic composition of the surrounding shielding material. In doing so the mission designer encounters two major

  9. Countermeasure for Radiation Protection and Repair

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.

  10. Radiation protection strategies in HERMES missions.

    PubMed

    Bourdeaud'hui, J C; Feuillais, N; Contant, J M

    1991-01-01

    This paper describes the environment of radiations for the HERMES spaceplane and the doses received by men for several missions. Safeguard strategies are then studied to avoid dangerous dose levels. In particular, an anomalously large solar event with eruption of energetic protons may lead to inacceptable dose levels. Strategies, with regards to the orbits characteristics, are discussed. PMID:11537129

  11. Flexible shielding system for radiation protection

    NASA Technical Reports Server (NTRS)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  12. Protecting Lunar Colonies From Space Radiation

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-08-01

    When Apollo 7 astronaut Walter Cunningham blasted off from Earth on 11 October 1968, the last thing he was thinking about was radiation risks or any risks at all. “Fear doesn’t even enter your mind because you have confidence in yourself, your own ability, your training, and your knowledge,” Cunningham told Space Weather. As a crew member of the first manned mission in the Apollo program and the first three-man American space mission, Cunningham spent 11 days in Earth orbit, testing life-support, propulsion, and control systems on a redesigned command module. In retrospect, compared with immediate risks such as those associated with launch and reentry, “exposure to radiation, which could have long-term effects—we just never gave that a thought,” Cunningham said.

  13. Protection against ionizing radiation with eicosanoids

    SciTech Connect

    Steel, L.K.; Catravas, G.N.

    1988-01-01

    Prostaglandins (PGs) are extremely diverse in their pharmacological activities. They exhibit both antagonistic as well as cytoprotective properties in the pathogenesis of inflammation. Participation of PGs as chemical mediators in the regulation of immune responses and inflammation are increasingly apparent. The antagonistic properties of PGs have been implicated in a variety of symptoms resulting from exposure to ionizing radiation. Post-irradiation increases in small bowel motility, diarrhea, flatulence, abdominal pain, mucositis, and esophagitis have been attributed, in part, to excessive PG production. In contrast, exogenous PGs, particularly of the E type, have been shown to be cytoprotective against a variety of damaging agents, and a deficiency of endogeneous PG has been suggested to contribute to increase susceptibility to injury. These findings have provided much of the impetus to examine the potential cytoprotective effects of PGs in radiation injury.

  14. Physical basis of radiation protection in space travel

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Cucinotta, Francis A.

    2011-10-01

    The health risks of space radiation are arguably the most serious challenge to space exploration, possibly preventing these missions due to safety concerns or increasing their costs to amounts beyond what would be acceptable. Radiation in space is substantially different from Earth: high-energy (E) and charge (Z) particles (HZE) provide the main contribution to the equivalent dose in deep space, whereas γ rays and low-energy α particles are major contributors on Earth. This difference causes a high uncertainty on the estimated radiation health risk (including cancer and noncancer effects), and makes protection extremely difficult. In fact, shielding is very difficult in space: the very high energy of the cosmic rays and the severe mass constraints in spaceflight represent a serious hindrance to effective shielding. Here the physical basis of space radiation protection is described, including the most recent achievements in space radiation transport codes and shielding approaches. Although deterministic and Monte Carlo transport codes can now describe well the interaction of cosmic rays with matter, more accurate double-differential nuclear cross sections are needed to improve the codes. Energy deposition in biological molecules and related effects should also be developed to achieve accurate risk models for long-term exploratory missions. Passive shielding can be effective for solar particle events; however, it is limited for galactic cosmic rays (GCR). Active shielding would have to overcome challenging technical hurdles to protect against GCR. Thus, improved risk assessment and genetic and biomedical approaches are a more likely solution to GCR radiation protection issues.

  15. Importance of establishing radiation protection culture in Radiology Department.

    PubMed

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  16. Importance of establishing radiation protection culture in Radiology Department

    PubMed Central

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-01-01

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  17. Health protection: Toxic agent and radiation control.

    PubMed Central

    1983-01-01

    It is estimated that of the four million chemical compounds which have been synthesized or isolated from natural materials, more than 55,000 are produced commercially. Approximately 1,000 new compounds are introduced annually; pesticide formulations alone contain about 1,500 active chemical ingredients. Diagnostic x-rays are used extensively in medicine and dentistry. Over 2,000 chemicals are suspected carcinogens in laboratory animals--epidemiologic evidence suggests that 26 of these chemicals and/or industrial processes are carcinogenic in humans. More than 20 agents are known to be associated with birth defects in humans; 47 atmospheric contaminants have been identified in animal studies as recognized carcinogens and 128 as mutagens; and, of the 765 contaminants identified in drinking water, 12 were recognized carcinogens, 31 suspected carcinogens, and 59 mutagens. Radiation has known carcinogenic and genetic effects at significant levels of exposure. Problems with toxic agents and radiation sources occur not only in industry, but also in medical and dental care (x-rays and drugs), agriculture (pesticides and herbicides), Government activities (biological and chemical agents), consumer products (incorrect use of consumer products which contain toxic substances), and natural sources (fungal products). PMID:6414020

  18. Research issues for radiation protection for man during prolonged spaceflight

    SciTech Connect

    Conklin, J.J.; Hagan, M.P.

    1987-01-01

    For the purpose of this article, radiation protection is defined as any physical, chemical, biological, or pharmacological modality that accomplishes the goal of protecting the astronaut from radiation hazard or increases his ability to assist other astronauts or spacecraft. Thoughtful examination of these largely operational considerations led to identification of medical and radiobiological research required to support the industrialization of near-Earth space. The scope of these research efforts involves thematic issues that have been defined after review of the available preliminary research from several scientific disciplines that relate to the problem of radiation protection in space. This article serves to highlight areas of research requiring further investigation. While certain of these needs for research are driven by the planned orbits involving small designated astronaut populations and well-defined durations that may be specific to the military, it is the use of geostationary orbits, permanent lunar basing, and the proposed Mars mission that form the primary basis for these operational considerations.

  19. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  20. [Study on Intelligent Automatic Tracking Radiation Protection Curtain].

    PubMed

    Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong

    2015-09-01

    In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area. PMID:26904877

  1. Radiation Protection in the NLC Test Accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  2. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  3. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  4. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  5. Synchrotron radiation shielding design and ICRP radiological protection quantities.

    PubMed

    Bassey, Bassey; Moreno, Beatriz; Chapman, Dean

    2015-06-01

    Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision. PMID:25906251

  6. Health physics/radiation protection enrollments and degrees, 1987

    SciTech Connect

    Not Available

    1988-06-01

    The ''Health Physics/Radiation Protection Enrollments and Degrees Survey, 1987'' included 59 institutions with programs offering a major in health physics or an option within another major with equivalent course work which will prepare the graduate to take a major role in conducting, coordinating, directing, or planning a program for the evaluation and control of radiation hazards, i.e., programs which prepare graduates to perform as health physicists. This report discusses the results of this survey.

  7. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation.

    PubMed

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-12-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm²), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  8. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    PubMed Central

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-01-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  9. Setting standards for radiation protection: A time for change

    SciTech Connect

    Patterson, H.W.; Hickman, D.P.

    1996-01-01

    In 1950, the International Commission on Radiation Protection (ICRP) recommended that ``certain radiation effects are irreversible and cumulative.`` Furthermore, the ICRP ``strongly recommended that every effort be made to reduce exposures to all types of ionizing radiations to the lowest possible level.`` Then in 1954, the ICRP published its assumption that human response to ionizing radiation was linear with dose, together with the recommendation that exposures be kept as low as practicable. These concepts are still the foundation of radiation protection policy today, even though, as Evans has stated, ``The linear non-threshold (LNT) model was adopted specifically on a basis of mathematical simplicity, not from radio-biological data.... Groups responsible for setting standards for radiation protection should be abreast of new developments and new data as they are published; however, this does not seem to be the case. For example, there have been many reports in scientific, peer-reviewed, and other publications during the last three decades that have shown the LNT model and the policy of As Low As Reasonably Achievable (ALARA) to be invalid. However, none of these reports has been refuted or even discussed by standard-setting groups. We believe this mandates a change in the standard-setting process.

  10. Ascorbic acid (AA) metabolism in protection against radiation damage

    SciTech Connect

    Rose, R.C.; Koch, M.J.

    1986-03-05

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with /sup 14/C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the /sup 14/C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of < 3 minutes compared with nonirradiated samples (t/sub 1/2/ > 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of /sup 14/C-AFR disproportionate, with the net effect of /sup 14/C-dehydroascorbic acid formation from /sup 14/C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23/sup 0/C in the presence of 15 ..mu..M /sup 14/C-AA. Samples of supernatant maintained at 100/sup 0/C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues.

  11. CAD-based radiation protection and shielding in space

    SciTech Connect

    Appleby, M.H.

    1991-01-01

    In the not-too-distant future, astronauts will begin living and working on space station Freedom (SSF), eventually establishing a permanent presence in space. Beyond Freedom, the National Aeronautics and Space Administration (NASA) has set its sights on returning to and eventually establishing outposts on the moon and Mars. Without appropriate methods of identifying protection deficiencies, spacecraft designers often overestimate or defer shielding solutions in both cases burdening the program. To avoid possible penalties such as increased mass, complexity, and cost, radiation analysis should be conducted as part of the preliminary design process. An innovative radiation assessment system combining computer-aided design (CAD) capabilities with established NASA transport codes has been developed permitting fast, accurate analysis of spacecraft. The use of this automated analytical tool the Boeing Radiation Exposure Model (Brem) is discussed in this paper, relative to spacecraft design and the optimization of radiation shielding. Results obtained from recently completed radiation analysis of space station Freedom are also discussed.

  12. Proceedings: 2002 Radiation Protection Technology Conference: Baltimore, MD, October 2002

    SciTech Connect

    2003-04-01

    In response to program pressures resulting from shorter outages, combined with a diminishing group of contract health physics (HP) technicians, HP professionals must continuously upgrade their programs. Demanding emergent work also requires HP technicians in the nuclear industry to use new methods and technologies. The EPRI Radiation Protection Technology Conference was directed at highlighting a number of key health physics issues and developments.

  13. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  16. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  17. Radiation protection for human missions to the Moon and Mars

    SciTech Connect

    Simonsen, L.C.; Nealy, J.E.

    1991-02-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  18. Radiation protection for human missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.

    1991-01-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  19. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  20. Radiation Protection in Educational Institutions. Recommendations of the National Council on Radiation Protection and Measurements.

    ERIC Educational Resources Information Center

    National Council on Radiation Protection and Measurements, Washington, DC.

    The problems involved when radiation-producing devices of our contemporary technology are used in the teaching of science at the high school and undergraduate college level are discussed. Information is provided on the hazards involved in the use of radiation-producing equipment or radioactive materials in science demonstrations and experiments…

  1. Space and radiation protection: scientific requirements for space research

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1995-01-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.

  2. Isolation, characterization, and radiation protection of Sipunculus nudus L. polysaccharide.

    PubMed

    Li, Na; Shen, Xianrong; Liu, Yuming; Zhang, Junling; He, Ying; Liu, Qiong; Jiang, Dingwen; Zong, Jie; Li, Jiamei; Hou, Dengyong; Chen, Wei; Wang, Qingrong; Luo, Qun; Li, Kexian

    2016-02-01

    Sipunculus nudus Linnaeus polysaccharide (SNP) was purified from S. nudus L. via NaOH extraction, trichloroacetic acid deproteination, DEAE-cellulose 52 and Sephacryl S-300 chromatography. The monosaccharide analysis and molecular weight was detected with HPLC. FT-IR, 1H spectrum and 13C NMR spectrum were performed to detect the chemical characteristics. The antioxidant activity was assayed in vitro. The radiation protection effects were detected on mice. The results showed that SNP was composed of mannose, rhamnose, galacturonic acid, glucose, arabinose and fucose, and the average molecular weight was 680 kDa. Above the concentration of 10 mg/mL, SNP showed powerful scavenging activity on hydroxyl radical. In the animals irradiated with a 7.5 Gy γ-rays, the 90 mg/kg and the 270 mg/kg SNP groups survived significantly longer than the radiation control group. In the animals irradiated with a 4.0 Gy γ-rays, SNP showed significant protection effect. The contents of DNA in bone marrow cells were significantly increased by SNP treatment, and the micronucleus rates of 30 mg/kg and 270 mg/kg SNP groups were decrease significantly compared to the radiation control group. These findings suggest that SNP possesses marked antioxidant and bone marrow damage protection capacity which play important roles in the prevention of radiation damage. PMID:26645147

  3. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect

    Sinclair, W.K.; Fry, R.J.M.

    1987-01-01

    An overview of presentations and discussions which took place at the US Department of Energy/Commission of European Communities (DOE/CEC) workshop on ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection,'' held at San Diego, California, January 21-22, 1987, is provided. The Department has traditionally supported fundamental research on interactions of ionizing radiation with different biological systems and at all levels of biological organization. The aim of this workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection.

  4. Melatonin protection from chronic, low-level ionizing radiation.

    PubMed

    Reiter, Russel J; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Tan, Dun-Xian

    2011-12-15

    In the current survey, we summarize the published literature which supports the use of melatonin, an endogenously produced molecule, as a protective agent against chronic, low-level ionizing radiation. Under in vitro conditions, melatonin uniformly was found to protect cellular DNA and plasmid super coiled DNA from ionizing radiation damage due to Cs(137) or X-radiation exposure. Likewise, in an in vivo/in vitro study in which humans were given melatonin orally and then their blood lymphocytes were collected and exposed to Cs(137) ionizing radiation, nuclear DNA from the cells of those individuals who consumed melatonin (and had elevated blood levels) was less damaged than that from control individuals. In in vivo studies as well, melatonin given to animals prevented DNA and lipid damage (including limiting membrane rigidity) and reduced the percentage of animals that died when they had been exposed to Cs(137) or Co(60) radiation. Melatonin's ability to protect macromolecules from the damage inflicted by ionizing radiation likely stems from its high efficacy as a direct free radical scavenger and possibly also due to its ability to stimulate antioxidative enzymes. Melatonin is readily absorbed when taken orally or via any other route. Melatonin's ease of self administration and its virtual absence of toxicity or side effects, even when consumed over very long periods of time, are essential when large populations are exposed to lingering radioactive contamination such as occurs as a result of an inadvertent nuclear accident, an intentional nuclear explosion or the detonation of a radiological dispersion device, i.e., a "dirty" bomb. PMID:22185900

  5. Chelation of lysosomal iron protects against ionizing radiation.

    PubMed

    Berndt, Carsten; Kurz, Tino; Selenius, Markus; Fernandes, Aristi P; Edgren, Margareta R; Brunk, Ulf T

    2010-12-01

    Ionizing radiation causes DNA damage and consequent apoptosis, mainly due to the production of hydroxyl radicals (HO•) that follows radiolytic splitting of water. However, superoxide (O2•-) and H2O2 also form and induce oxidative stress with resulting LMP (lysosomal membrane permeabilization) arising from iron-catalysed oxidative events. The latter will contribute significantly to radiation-induced cell death and its degree largely depends on the quantities of lysosomal redox-active iron present as a consequence of autophagy and endocytosis of iron-rich compounds. Therefore radiation sensitivity might be depressed by lysosome-targeted iron chelators. In the present study, we have shown that cells in culture are significantly protected from ionizing radiation damage if initially exposed to the lipophilic iron chelator SIH (salicylaldehyde isonicotinoyl hydrazone), and that this effect is based on SIH-dependent lysosomal stabilization against oxidative stress. According to its dose-response-modifying effect, SIH is a most powerful radioprotector and a promising candidate for clinical application, mainly to reduce the radiation sensitivity of normal tissue. We propose, as an example, that inhalation of SIH before each irradiation session by patients undergoing treatment for lung malignancies would protect normally aerated lung tissue against life-threatening pulmonary fibrosis, whereas the sensitivity of malignant lung tumours, which usually are non-aerated, will not be affected by inhaled SIH. PMID:20846118

  6. Issues in space radiation protection: galactic cosmic rays.

    PubMed

    Wilson, J W; Kim, M; Schimmerling, W; Badavi, F F; Thibeault, S A; Cucinotta, F A; Shinn, J L; Kiefer, R

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes. PMID:7989194

  7. Meteoroid Protection Methods for Spacecraft Radiators Using Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    Various aspects of achieving a low mass heat pipe radiator for the nuclear electric propulsion spacecraft were studied. Specific emphasis was placed on a concept applicable to a closed Brayton cycle power sub-system. Three aspects of inter-related problems were examined: (1) the armor for meteoroid protection, (2) emissivity of the radiator surface, and (3) the heat pipe itself. The study revealed several alternatives for the achievement of the stated goal, but a final recommendation for the best design requires further investigation.

  8. Issues in Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  9. Medicinal protection with Chinese herb-compound against radiation damage

    SciTech Connect

    Zhang, R.J.; Qian, J.K.; Yang, G.H.; Wang, B.Z.; Wen, X.L. )

    1990-08-01

    Experiments were carried out on mice and the subjects irradiated for cancer therapy to evaluate the protective efficacy of a Chinese medicinal herb-compound (CMHC). The lethality and the degree of leucopenia caused by radiation in mice medicated with CMHC were significantly less in comparison with control mice (p less than 0.01 and p less than 0.001, respectively). CMHC significantly improved the WBC and the thrombocytes in irradiated workers (p less than 0.01 and p less than 0.001, respectively). The WBC count of 40 patients under radiotherapy while treated with CMHC recovered from 3450 +/- 77/c.mm to 5425 +/- 264/c.mm (p less than 0.001); whereas, in the control group, without any medication, the WBC count dropped significantly (p less than 0.001). Our results revealed the applicabilities of CMHC in protection against radiation damage in spaceflight and in other fields.

  10. NCRP Program Area Committee 4: Radiation Protection in Medicine.

    PubMed

    Brink, James A; Miller, Donald L

    2016-02-01

    Program Area Committee (PAC) 4 deals with issues in radiation protection in healthcare settings. NCRP Statement No. 11 was published at the end of 2014, and three active scientific committees (SC) are at work--SC 4-5, SC 4-7, and SC 4-8. PAC 4 is also considering a number of topics that could be addressed by new scientific committees in the future. PMID:26717159

  11. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  12. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    SciTech Connect

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  13. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  14. Protection from heat radiation in open-hearth shops

    SciTech Connect

    Parkhomenko, D.I.; Duganov, G.V.; Ilyushchenko, V.I.; Markin, A.D.

    1988-05-01

    Heat radiation studies in open-hearth shops during operations related to servicing the tap hole and cold-charging the furnace were conducted with consideration of the following factors: the capacity of the furnaces; the campaign of the furnace relative to the projected campaign for different furnace capacities; and the variety of manual tasks performed during a shift. Measurements of the thermal radiation were generalized and represented in the form of a nomogram. The results of thermal diagnosis of work stations on the rear platforms of open-hearth furnaces and the cabin of the cold-charging cranes led to the development and introduction of measures to protect workers from heat radiation and improve their working conditions.

  15. [Protection of cadaver tissues exposed to high gamma radiation].

    PubMed

    Matus-Jiménez, J; Flores-Fletes, J R; Carrillo, A

    2013-01-01

    Bone tissue is the most widely used tissue for the treatment of various conditions. As a result of this, allografts are used at an increasing frequency and processes for their harvest, preservation and sterilization have improved. The sterilization method that grants the greatest sterilization is high-dose gamma radiation, which destroys prions and any microorganism thus assuring that patients will not experience any infection. But given that radiation use has proven to deteriorate bone and tendon tissue, efforts have been made to protect the latter. One way to do this is a commercially available substance called Clearant. Studies conducted elsewhere have found that it does protect bone and tendon tissue. This study was therefore conducted with allograft samples exposed to high-dose radiation. Its purpose was to assess, with photon microscopy using various dyes and electron microscopy, the presence of color changes as well as the destruction of the anatomical structure. The same tissue was followed-up throughout the process until it was placed in the patient. The review found no structural changes in bone and tendon tissues exposed to high radiation doses (60 kilograys) when the Clearant process was used, and concluded that the former may be used safely in orthopedic or traumatologic diseases. PMID:24707605

  16. Health physics fundamentals, radiation protection, and radioactive waste treatment. Volume ten

    SciTech Connect

    Not Available

    1986-01-01

    Topics include health physics fundamentals (is radiation dangerous, what is health physics, federal regulations, presence of radiation, sources of radiation, types of radiation), radiation protection (amounts of radiation, radiation measurement, individual radiation exposure measurements, reducing the effects of radiation), and radioactive waste treatment (what are radioactive wastes, gaseous radioactive waste, liquid radioactive waste, solid radioactive waste, methods of rad-waste treatment, PWR and BWR radwaste treatment.

  17. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    SciTech Connect

    Azim M, Osama A.

    2007-02-14

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  18. 10 CFR 35.2026 - Records of radiation protection program changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in...

  19. 78 FR 19148 - Shielding and Radiation Protection Review Effort and Licensing Conditions for Dry Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 Shielding and Radiation Protection Review Effort and...-ISG-26A), Revision 0, ``Shielding and Radiation Protection Review Effort and Licensing Conditions for... to NRC staff when reviewing the shielding and radiation protection portions of applications...

  20. Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition

    NASA Astrophysics Data System (ADS)

    Russkikh, I. M.; Seleznev, E. N.; Tashlykov, O. L.; Shcheklein, S. E.

    2015-12-01

    The significance of optimizing the content of components of a radiation-protective material, which is determined by the isotopic composition of radioactive contamination, depending on the reactor type, operating time, and other factors is demonstrated. The results of computational and experimental investigation of the gamma-radiation attenuation capacity of homogenous radiation-protective materials with different fillers are reported.

  1. Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition

    SciTech Connect

    Russkikh, I. M.; Seleznev, E. N.; Tashlykov, O. L. Shcheklein, S. E.

    2015-12-15

    The significance of optimizing the content of components of a radiation-protective material, which is determined by the isotopic composition of radioactive contamination, depending on the reactor type, operating time, and other factors is demonstrated. The results of computational and experimental investigation of the gamma-radiation attenuation capacity of homogenous radiation-protective materials with different fillers are reported.

  2. Development of accelerator radiation protection at the SSC

    SciTech Connect

    Toohig, T.

    1993-11-01

    The design of the Superconducting Super Collider evolved over a series of studies from 1984 to 1989. Considerations of concentration of radiation sources and provisions for operational control and monitoring of radiation were determining elements in the design concepts for the facility. The development of the designs involved an extension of the range of applicability of energy deposition and radiation shielding codes beyond the 3 TeV level of the proposed UNK collider to 20 TeV for single beam effects and to 40 TeV in the collision regions. This extrapolation was complicated by the newly discovered, very energetic muons from short-lived states associated with heavy quark states. The design guideline for radiation protection was specified to be 10 mRem/yr, 10% of the Federal limit. In order to limit the amount of land required for the facility, which would extend over some 250 mi. sq., the configuration of the land to be acquired was tailored to the requirements for radiation containment below the levels of the guideline.

  3. Implications of radiation dose and exposed populations on radiation protection in the 21st century.

    PubMed

    Boice, John D

    2014-02-01

    Radiation is in the public eye because of Fukushima, computed tomography examinations, airport screenings, and possible terrorist attacks. What if the Boston Marathon pressure cooker had also contained a radioactive source? Nuclear power may be on the resurgence. Because of the increasing uses of radiation, the increases in population exposures, and the increasing knowledge of radiation effects, constant vigilance is needed to keep up with the changing times. Psychosocial disorders associated with the inappropriate (but real) fear of radiation need to be recognized as radiation detriments. Radiation risk communication, radiation education, and communication must improve at all levels: to members of the public, to the media, to other scientists, and to radiation professionals. Stakeholders must continue to be involved in all radiation protection initiatives. Finally, we are at a crisis as the number of war babies (me) and baby boomers (you?) who are also radiation professionals continues its rapid decline, and there are few in the pipeline to fill the current and looming substantial need: "The old road is rapidly agin'" (Dylan). NCRP has begun the WARP initiative-Where Are the Radiation Professionals?-an attempt to rejuvenate the pipeline of future professionals before the trickle becomes tiny drops. A Workshop was held in July 2013 with government agencies, military, private sector, universities, White House representatives, and societies to develop a coordinated and national action plan. A "Manhattan Project" is needed to get us "Back to the Future" in terms of the funding levels that existed in years past that provided the necessary resources to train, engage, and retain (a.k.a., jobs) the radiation professionals needed for the nation. If we don't keep swimmin' (Disney's Nemo) we'll "sink like a stone" (Dylan).Introduction of Implications of Radiation Dose and Exposed Populations (Video 2:06, http://links.lww.com/HP/A25). PMID:24378509

  4. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  5. Environmental Radiation Protection Standards for Yucca Mountain, Nevada

    SciTech Connect

    Clark, R. L.

    2002-02-27

    The Environmental Protection Agency (EPA) has issued radiation protection standards for the potential spent nuclear fuel and high-level radioactive waste disposal system in Yucca Mountain, Nevada. These standards are found in Part 197 of Title 40 of the Code of Federal Regulations (40 CFR Part 197). The Energy Policy Act of 1992 directed, and gave the authority to, EPA to take this action based upon input from the National Academy of Sciences (NAS). The final standards were published in the Federal Register (66 FR 32073) on 13 June 2001. The 40 CFR Part 197 standards have four major parts: (1) individual-protection during storage activities; (2) individual-protection following closure of the repository; (3) human-intrusion; and (4) ground-water protection. The storage standard is 150 microsieverts (Sv) annual committed effective dose equivalent (CEDE) to any member of the general public. The disposal standards are: (1) 150 Sv annual CEDE for the reasonably maximally exposed individual (RMEI) for 10,000 years after disposal; (2) 150 Sv received by the RMEI within 10,000 years after disposal as a result of human intrusion; and (3) the levels of radionuclides in the ground water cannot exceed 40 Sv from beta and gamma emitters, 5 picocuries per liter (pCi/L) of radium-226 and -228, and 15 pCi/L of gross alpha activity. There are also requirements related to the post-10,000-year period, the basis of compliance judgments, and performance assessments. The Agency has published its responses to the comments received, its technical background document, and its economic impact analysis. In addition to printed form, the documents are available on the World Wide Web at http://www.epa.gov/radiation/yucca/index.html.

  6. Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection.

    PubMed

    Bourguignon, Michel H; Gisone, Pablo A; Perez, Maria R; Michelin, Severino; Dubner, Diana; Giorgio, Marina Di; Carosella, Edgardo D

    2005-03-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are "hypersensitive" to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed. PMID:15692806

  7. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success. PMID:16832974

  8. A biokinetic model for zinc for use in radiation protection

    SciTech Connect

    Leggett, Richard Wayne

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and loss of systemic zinc in excreta have been developed from the derived data. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and current radiation protection model for zinc yield broadly similar estimates of effective dose from internally deposited radioisotopes of zinc but substantially different dose estimates for several individual tissues, particularly the liver.

  9. Radiation Protection Studies for LCLS Tune Up Dump

    SciTech Connect

    Santana-Leitner, M.; Fass, A.; Mao, S.; Nuhn, H.D.; Roesler, S.; Rokni, S.; Vollaire, J.; /SLAC

    2010-04-29

    The Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is a pioneer fourth generation hard x-ray free electron laser that shall start to deliver laser pulses in 2009. Among other components of LCLS that present radiation protection concerns, the tune up dump (tdund) is of special interest because it also constitutes an issue for machine protection, as it is placed close to radiation sensitive components, like electronic devices and permanent magnets in the undulators. This paper first introduces the stopper of tdund looking at the heat load, and then it describes the shielding around the dump necessary to maintain the prompt and residual dose within design values. Next, preliminary comparisons of the magnetization loss in a dedicated on-site magnet irradiation experiment with FLUKA simulations serve to characterize the magnetic response to radiation of magnets like those of LCLS. The previous knowledge, together with the limit for the allowed demagnetization, are used to estimate the lifetime of the undulator. Further simulations provide guidelines on which lifetime can be expected for an electronic device placed at a given distance of tdund.

  10. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection.

    PubMed

    Zhang, Xiao-Dong; Zhang, Jinxuan; Wang, Junying; Yang, Jiang; Chen, Jie; Shen, Xiu; Deng, Jiao; Deng, Dehui; Long, Wei; Sun, Yuan-Ming; Liu, Changlong; Li, Meixian

    2016-04-26

    Ionizing radiation (gamma and X-ray) is widely used in industry and medicine, but it can also pose a significant hazardous effect on health and induce cancer, physical deformity, and even death, due to DNA damage and invasion of free radicals. There is therefore an urgent unmet demand in designing highly efficient radioprotectants with synergetic integration of effective renal clearance and low toxicity. In this study, we designed ultrasmall (sub-5 nm) highly catalytically active and cysteine-protected MoS2 dots as radioprotectants and investigated their application in protection against ionizing radiation. In vivo preclinical studies showed that the surviving fraction of MoS2-treated mice can appreciably increase to up to 79% when they were exposed to high-energy ionizing radiation. Furthermore, MoS2 dots can contribute in cleaning up the accumulated free radicals within the body, repairing DNA damage, and recovering all vital chemical and biochemical indicators, suggesting their unique role as free radical scavengers. MoS2 dots showed rapid and efficient urinary excretion with more than 80% injected dose eliminated from the body after 24 h due to their ultrasmall hydrodynamic size and did not cause any noticeable toxic responses up to 30 days. PMID:27018632

  11. Potential of herbs in skin protection from ultraviolet radiation.

    PubMed

    Korać, Radava R; Khambholja, Kapil M

    2011-07-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A "sclerojuglonic" compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  12. Potential of herbs in skin protection from ultraviolet radiation

    PubMed Central

    Korać, Radava R.; Khambholja, Kapil M.

    2011-01-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  13. Radiation protection issues in galactic cosmic ray risk assessment.

    PubMed

    Sinclair, W K

    1994-01-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays. PMID:11538038

  14. Radiation protection issues in galactic cosmic ray risk assessment

    NASA Astrophysics Data System (ADS)

    Sinclair, W. K.

    1994-10-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, wR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. wR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in wR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.

  15. Radiation protection issues in galactic cosmic ray risk assessment

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1994-01-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.

  16. Chromatin Compaction Protects Genomic DNA from Radiation Damage

    PubMed Central

    Takata, Hideaki; Hanafusa, Tomo; Mori, Toshiaki; Shimura, Mari; Iida, Yutaka; Ishikawa, Kenichi; Yoshikawa, Kenichi; Yoshikawa, Yuko; Maeshima, Kazuhiro

    2013-01-01

    Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity. PMID:24130727

  17. Radionuclide and radiation protection data handbook 2nd edition (2002).

    PubMed

    Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C

    2002-01-01

    This handbook is a reference source of radionuclide and radiation protection information. Its purpose is to provide users of radionuclides in medicine, research and industry with consolidated and appropriate information and data to handle and transport radioactive substances safely. It is mainly intended for users in low and intermediate activity laboratories. Individual data sheets are provided for a wide range of commonly used radionuclides (144 in total). These radionuclides are classified into five different groups as a function of risk level, represented by colours red, orange, yellow, green and blue, in descending order of risk. PMID:11916063

  18. Results of a Division of Radiation Protection scrap yard exercise.

    PubMed

    James, J D

    2001-02-01

    For years the Division of Radiation Protection (DRP) has participated in exercises, which are required by the Federal Emergency Management Agency (FEMA) to demonstrate our ability to deal with an accident at a nuclear power plant. These demonstrations are defined by objectives and are structured such that they offer little opportunity to practice for real-world radiological events in the exercise. Since real-world radiological incidents do occur throughout the year, this exercise was designed to be as realistic as possible. A scrap yard incident was chosen as the most probable type of event. The exercise was conducted on May 5 and 6, 1999. PMID:11197512

  19. Issues In Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  20. APPLICATIONS OF THE PHOTONUCLEAR FRAGMENTATION MODEL TO RADIATION PROTECTION PROBLEMS

    SciTech Connect

    Pavel Degtiarenko

    1996-01-01

    In order to provide radiation protection systems for high energy electron accelerators it is necessary to define the yields of hadrons produced when the electron beam interacts with a fixed target. In practical terms this will occur when any beam or fraction of the beam is lost from the accelerator orbit or when any fraction of the beam is intercepted by a target inserted in the path of the beam or when the beam is totally absorbed by a beam dump. The electron and gamma yields from these interactions are well characterized and amenable to calculation utilizing Monte Carlo shower codes. However, the yield of hadrons has been less well defined. Neutron production has received most attention because of its importance to radiation shielding. Production mechanisms such as the giant dipole and the quasi-deuteron resonances have provided valuable information for total neutron yields for electron beams at energies less than about 400 MeV. For electron beams at energies extending to 10 GeV it is necessary to include the higher energy resonance structures and the various intranuclear production channels that are available for the production of higher energy neutrons. The production model described in this paper permits the calculation of laboratory angle and energy of all hadrons produced when an electron beam of energy between 100 MeV and 10 GeV interacts with a fixed target. This model can be used as an event generator for Monte Carlo codes used for many radiation protection purposes including calculation of radiation shielding.

  1. Standing up the National Ignition Facility radiation protection program.

    PubMed

    Kohut, Thomas R; Thacker, Rick L; Beale, Richard M; Dillon, Jon T

    2013-06-01

    Operation of the NIF requires a large and varied number of routine and infrequent activities involving contaminated and radioactive systems, both in servicing online equipment and offline refurbishment of components. Routine radiological operations include up to several dozen entries into contaminated systems per day, multiple laboratories refurbishing radiologically impacted parts, handling of tens of curies of tritium, and (eventually) tens of workers spending most of their day working in radiation areas and handling moderately activated parts. Prior to the introduction of radioactive materials and neutron producing experiments (capable of causing activation), very few of the operating staff had any radiological qualifications or experience. To support the full NIF operating program, over 600 radiological workers needed to be trained, and a functional and large-scale radiological protection program needed to be put in place. It quickly became evident that there was a need to supplement the LLNL site radiological protection staff with additional radiological controls technicians and a radiological protection staff within NIF operations to manage day-to-day activities. This paper discusses the approach taken to stand up the radiological protection program and some lessons learned. PMID:23629066

  2. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect

    Not Available

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  3. Comparison of radiation dose to operator between transradial and transfemoral coronary angiography with optimised radiation protection: a phantom study.

    PubMed

    Liu, Huiliang; Jin, Zhigeng; Jing, Limin

    2014-03-01

    A growing concern in applying radial access in cardiac catheterisation is the increased operator radiation exposure. This study used an anthropomorphic phantom to simulate transradial and transfemoral coronary angiography with optimised radiation protection conditions. Operator radiation exposure was measured with thermoluminescent dosemeters at predefined locations. Compared with the femoral route, the radial route was associated with a dose decrease of 15 % at the operator's chest level with optimised radiation shielding. However, radiation exposure to the operator's hand remained significantly higher when applying radial access even with collective protective equipment used (by a factor of 2). Furthermore, the efficiency of operator radiation protection was found to be dependent on the tube incidence. Awareness should be raised about the significant increase of radiation exposure to operators' hands in transradial coronary angiography. Protection to reduce the dose level to the hands is necessary and should be further improved. PMID:24162374

  4. Threat of ultraviolet radiation to the eye--how to protect against it

    SciTech Connect

    Pitts, D.G.

    1981-12-01

    The purpose of this paper is to discuss the effects of exposure of the eye to ultraviolet (UV) radiation and to provide information from which protective criteria and standards may be established. To accomplish this purpose, the article discusses ultraviolet radiation, absorption of UV radiation by the eye, the effects of ocular exposure to ultraviolet radiation, and how to protect the eye against exposure to UV radiation.

  5. National Council on Radiation Protection and Measurements semiannual technical progress report, March 1989--August 1989

    SciTech Connect

    Ney, W.R.

    1991-01-01

    This semiannual technical progress report is for the period 1 March 1989 through 31 August 1989. This National Council on Radiation Protection and Measurements (NCRP) program is designed to provide recommendations for radiation protection based on scientific principles. During this period several reports were published covering the topics of occupational radiation exposure, medical exposure, radon control, dosimetry, and radiation protection standards. Accomplishments of various committees are also reported; including the committees on dental x-ray protection, radiation safety in uranium mining and milling, ALARA, instrumentation, records maintenance, occupational exposures of medical personnel, emergency planning, and others. (SM)

  6. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  7. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  8. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  9. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  10. Developing the radiation protection safety culture in the UK.

    PubMed

    Cole, P; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; Marsh, A; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A

    2014-06-01

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration.In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses.The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures.The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants.Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur. PMID:24894330

  11. RNA protects a nucleoprotein complex against radiation damage.

    PubMed

    Bury, Charles S; McGeehan, John E; Antson, Alfred A; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B; Garman, Elspeth F

    2016-05-01

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density. PMID:27139628

  12. RNA protects a nucleoprotein complex against radiation damage

    PubMed Central

    Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B.; Garman, Elspeth F.

    2016-01-01

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density. PMID:27139628

  13. A dramatic effect of oxygen on protection of human cells against γ-radiation by lycopene.

    PubMed

    Boehm, Fritz; Edge, Ruth; Truscott, Terence George; Witt, Christian

    2016-04-01

    Reducing radiation damage is important and dietary antioxidants that can protect cells from such damage are of value. Dietary lycopene, a carotenoid found in tomatoes, protects human lymphoid cell membranes from damage by γ-radiation. We report that such protective effects are remarkably reduced as the oxygen concentration increases - near zero at 100% oxygen from fivefold protection at 20% oxygen and, dramatically, from 50-fold protection at 0% oxygen. Such huge differences imply that under higher oxygen concentrations lycopene could lead to improved cancer therapy using γ-radiation. The cells are not efficiently protected from the superoxide radical by lycopene. Noncellular studies suggest molecular mechanisms for the oxygen effect. PMID:26991327

  14. Nuclear fragmentation measurements for hadrontherapy and space radiation protection

    SciTech Connect

    De Napoli, M.; Agodi, C.; Blancato, A. A.; Cavallaro, M.; Cirrone, G. A. P.; Cuttone, G.; Sardina, D.; Scuderi, V.; Battistoni, G.; Bondi, M.; Cappuzzello, F.; Carbone, D.; Nicolosi, D.; Raciti, G.; Tropea, S.; Giacoppo, F.; Morone, M. C.; Pandola, L.; Rapisarda, E.; Romano, F.; and others

    2013-04-19

    Nuclear fragmentation measurements are necessary in hadrontherapy and space radiation protection, to predict the effects of the ion nuclear interactions within the human body. Nowadays, a very limited set of carbon fragmentation cross sections has been measured and in particular, to our knowledge, no double differential fragmentation cross sections at intermediate energies are available in literature. We have measured the double differential cross sections and the angular distributions of the secondary fragments produced in the {sup 12}C fragmentation at 62 AMeV on a thin carbon target. The experimental data have been also used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before.

  15. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    PubMed Central

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters. PMID:26327153

  16. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-09-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters. PMID:26327153

  17. UV radiation and freshwater zooplankton: damage, protection and recovery

    PubMed Central

    Rautio, Milla; Tartarotti, Barbara

    2011-01-01

    While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes. PMID:21516254

  18. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  19. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  20. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  1. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  2. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  3. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities.

    PubMed

    Coleman, C Norman; Parker, Gerald W

    2009-06-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy. PMID:19454803

  4. Mechanistic bases for modelling space radiation risk and planning radiation protection of astronauts.

    PubMed

    Ottolenghi, A; Ballarini, F; Biaggi, M

    2001-01-01

    The approaches generally adopted for planning radiation protection in ground-based facilities cannot be applied straightforward for astronaut protection in space. Indeed in such extreme conditions, modelling methods and shielding design must be based on a detailed mechanistic knowledge of the peculiar astronauts irradiation conditions. Great help can derive from mechanistic modelling, generally aimed to better understand the intermediate steps leading from the initial energy depositions to different biological endpoints, up to organ and organism level. In the present work, criteria will be illustrated for using mechanistic approaches in developing practical tools for astronauts radioprotection, once the external field and the interaction cross sections with the spacecraft walls are known; particular attention will be given to the treatment of mixed fields. Techniques for integrating into condensed-history codes stochastic information provided by event-by-event simulations will be presented. PMID:11780618

  5. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure

    PubMed Central

    2016-01-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, medical radiation exposure has increased rapidly. For medical radiation exposure control, Korea has two separate control systems. Regulation is essential to control medical radiation exposure. Physicians and radiologists must be aware of the radiation risks and benefits associated with medical exposure, and understand and implement the principles of radiation protection for patients. The education of the referring physicians and radiologists is also important. PMID:26908991

  6. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  7. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Authority and responsibilities for the radiation protection program. 35.24 Section 35.24 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the...

  8. 10 CFR 35.2026 - Records of radiation protection program changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each...

  9. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a) A licensee shall retain a record...

  10. 10 CFR 35.2026 - Records of radiation protection program changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each...

  11. 10 CFR 35.2026 - Records of radiation protection program changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each...

  12. 42 CFR 37.45 - Protection against radiation emitted by radiographic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Protection against radiation emitted by radiographic equipment. 37.45 Section 37.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN....45 Protection against radiation emitted by radiographic equipment. Except as otherwise specified...

  13. 10 CFR 35.2026 - Records of radiation protection program changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each...

  14. 78 FR 20103 - Radiation Protection Guidance for Diagnostic and Interventional X-Ray Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY Radiation Protection Guidance for Diagnostic and Interventional X-Ray Procedures AGENCY..., on Radiation Protection Guidance for Diagnostic and Interventional X-Ray Procedures. This document is... for Diagnostic X-rays,'' which was released in October 1976. The recommendations contained in...

  15. Modern new nuclear fuel characteristics and radiation protection aspects.

    PubMed

    Terry, Ian R

    2005-01-01

    The glut of fissile material from reprocessing plants and from the conclusion of the cold war has provided the opportunity to design new fuel types to beneficially dispose of such stocks by generating useful power. Thus, in addition to the normal reactor core complement of enriched uranium fuel assemblies, two other types are available on the world market. These are the ERU (enriched recycled uranium) and the MOX (mixed oxide) fuel assemblies. Framatome ANP produces ERU fuel assemblies by taking feed material from reprocessing facilities and blending this with highly enriched uranium from other sources. MOX fuel assemblies contain plutonium isotopes, thus exploiting the higher neutron yield of the plutonium fission process. This paper describes and evaluates the gamma, spontaneous and alpha reaction neutron source terms of these non-irradiated fuel assembly types by defining their nuclear characteristics. The dose rates which arise from these terms are provided along with an overview of radiation protection aspects for consideration in transporting and delivering such fuel assemblies to power generating utilities. PMID:16381693

  16. The LNT Debate in Radiation Protection: Science vs. Policy

    PubMed Central

    Mossman, Kenneth L.

    2012-01-01

    There is considerable interest in revisiting LNT theory as the basis for the system of radiation protection in the US and worldwide. Arguing the scientific merits of policy options is not likely to be fruitful because the science is not robust enough to support one theory to the exclusion of others. Current science cannot determine the existence of a dose threshold, a key piece to resolving the matter scientifically. The nature of the scientific evidence is such that risk assessment at small effective doses (defined as <100 mSv) is highly uncertain, and several policy alternatives, including threshold and non-linear dose-response functions, are scientifically defensible. This paper argues for an alternative approach by looking at the LNT debate as a policy question and analyzes the problem from a social and economic perspective. In other words, risk assessment and a strictly scientific perspective are insufficiently broad enough to resolve the issue completely. A wider perspective encompassing social and economic impacts in a risk management context is necessary, but moving the debate to the policy and risk management arena necessarily marginalizes the role of scientists. PMID:22740781

  17. Development of the 3DHZETRN code for space radiation protection

    NASA Astrophysics Data System (ADS)

    Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert

    Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.

  18. Protection of radiation detectors from fast neutron damage

    SciTech Connect

    Kronenberg, S.

    1986-09-02

    A device is described for measuring radiation emitted from a nuclear explosion, the radiation having a comparatively fast moving gamma ray component and a comparatively slower neutron component. The device consists of: a solid state crystal radiation detector; a voltage source applied to bias the detector; and means responsive to the gamma ray component for removing the bias voltage for a predetermined time period whereby the crystal radiation detector is rendered less sensitive to the passage of the neutron radiation component.

  19. Anti-apoptotic peptides protect against radiation-induced cell death

    SciTech Connect

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R. . E-mail: chunt@radonc.wustl.edu

    2007-04-06

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.

  20. 47 CFR 80.83 - Protection from potentially hazardous RF radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiation. 80.83 Section 80.83 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements-Ship Stations § 80.83 Protection from potentially hazardous RF radiation. Any license or renewal application for a ship earth station that will cause exposure to radiofrequency (RF) radiation in excess...

  1. 47 CFR 80.227 - Special requirements for protection from RF radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure...

  2. 47 CFR 80.227 - Special requirements for protection from RF radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure...

  3. 47 CFR 80.227 - Special requirements for protection from RF radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure...

  4. 47 CFR 80.83 - Protection from potentially hazardous RF radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radiation. 80.83 Section 80.83 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements-Ship Stations § 80.83 Protection from potentially hazardous RF radiation. Any license or renewal application for a ship earth station that will cause exposure to radiofrequency (RF) radiation in excess...

  5. 47 CFR 80.227 - Special requirements for protection from RF radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure...

  6. 47 CFR 80.83 - Protection from potentially hazardous RF radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radiation. 80.83 Section 80.83 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements-Ship Stations § 80.83 Protection from potentially hazardous RF radiation. Any license or renewal application for a ship earth station that will cause exposure to radiofrequency (RF) radiation in excess...

  7. 47 CFR 80.83 - Protection from potentially hazardous RF radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radiation. 80.83 Section 80.83 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements-Ship Stations § 80.83 Protection from potentially hazardous RF radiation. Any license or renewal application for a ship earth station that will cause exposure to radiofrequency (RF) radiation in excess...

  8. 47 CFR 80.83 - Protection from potentially hazardous RF radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiation. 80.83 Section 80.83 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements-Ship Stations § 80.83 Protection from potentially hazardous RF radiation. Any license or renewal application for a ship earth station that will cause exposure to radiofrequency (RF) radiation in excess...

  9. 47 CFR 80.227 - Special requirements for protection from RF radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure...

  10. Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…