Science.gov

Sample records for radiation protection infrastructure

  1. 76 FR 17934 - Infrastructure Protection Data Call

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Infrastructure Protection Data Call AGENCY: National Protection and Programs Directorate, DHS...: Infrastructure Protection Data Call. OMB Number: 1670-NEW. Frequency: On occasion. Affected Public:...

  2. 77 FR 35700 - Protected Critical Infrastructure Information (PCII) Program Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... SECURITY Protected Critical Infrastructure Information (PCII) Program Survey AGENCY: National Protection...), National Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Infrastructure Information Collection Division (IICD), will submit the following Information Collection...

  3. Tools for 21st Century infrastructure protection

    SciTech Connect

    Trost, S.R.

    1997-07-01

    The President`s Commission on Critical Infrastructure Protection (PCCEP) was formed under Executive Order 13010 to recommend a national strategy for protecting and assuring critical infrastructures. Eight critical infrastructure elements have been identified. This paper provides an overview of tools necessary to conduct in depth analysis and characterization of threats, vulnerabilities, and interdependencies of critical infrastructure subsystems, and their interaction with each other. Particular emphasis is placed on research requirements necessary to develop the next generation of tools. In addition to tools, a number of system level research suggestions are made including developing a system architecture, data flow models, national level resources, and a national test bed.

  4. National Infrastructure Protection Plan: Partnering to Enhance Protection and Resiliency

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2009

    2009-01-01

    The overarching goal of the National Infrastructure Protection Plan (NIPP) is to build a safer, more secure, and more resilient America by preventing, deterring, neutralizing, or mitigating the effects of deliberate efforts by terrorists to destroy, incapacitate, or exploit elements of our Nation's critical infrastructure and key resources (CIKR)…

  5. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  6. Radiation protection in space.

    PubMed

    Reitz, G; Facius, R; Sandler, H

    1995-01-01

    Radiation environment, basic concepts of radiation protection, and specific aspects of the space radiation field are reviewed. The discussion of physico-chemical and subcellular radiation effects includes mechanisms of radiation action and cellular consequences. The discussion of radiobiological effects includes unique aspects of HZE particle effects, space flight findings, terrestrial findings, analysis of somatic radiation effects and effects on critical organs, and early and delayed effects. Other topics include the impact of the space flight environment, measurement of radiation exposure, establishing radiation protection limits, limitations in establishing space-based radiation exposure limits, radiation protection measures, and recommendations. PMID:11541474

  7. 76 FR 22113 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Information Collection Request in the Federal Register on November 4, 2010 at 75 FR 67989, for a 60-day public... SECURITY Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure... Infrastructure Protection (IP), will submit the following Information Collection Request to the Office...

  8. 76 FR 17935 - Protected Critical Infrastructure Information (PCII) Stakeholder Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... SECURITY Protected Critical Infrastructure Information (PCII) Stakeholder Survey AGENCY: National... the Critical Infrastructure Information Act of 2002, (Sections 211-215, Title II, Subtitle B of the... owners and operators of critical infrastructure and protected systems. The PCII Program is implemented...

  9. Radiation Protection Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  10. Maintaining radiation protection records

    SciTech Connect

    Not Available

    1992-11-30

    This Report is part of a series prepared under the auspices of Scientific Committee 46 on Operational Radiation Safety. It provides guidance on maintaining radiation protection records. Record keeping is an essential element of every radiation protection program. This Report describes the elements that should enter into the design of a program for the maintenance of operational radiation safety records. The problems of the length of time for retention of records for operational, regulatory, epidemiologic and legal uses are discussed in detail.

  11. 75 FR 75611 - Critical Infrastructure Protection Month, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... the United States of America the two hundred and thirty-fifth. (Presidential Sig.) [FR Doc. 2010-30581... Proclamation 8607--Critical Infrastructure Protection Month, 2010 Proclamation 8608--Helsinki Human Rights Day...;The President ] Proclamation 8607 of November 30, 2010 Critical Infrastructure Protection Month,...

  12. A Federal Response: The President's Critical Infrastructure Protection Board.

    ERIC Educational Resources Information Center

    Schmidt, Howard

    2002-01-01

    Outlines the U.S. Critical Infrastructure Protection Board's purpose, budget, principles, and priorities. Describes the board's role in coordinating all federal activities related to protection of information systems and networks supporting critical infrastructures. Also discusses its responsibility in creating a policy and road map for government…

  13. 76 FR 17933 - Infrastructure Protection Data Call Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... SECURITY Infrastructure Protection Data Call Survey AGENCY: National Protection and Programs Directorate... significant consequences on a regional or national scale. The IP Data Call is administered out of the IP Infrastructure Information Collection Division (IICD). The IP Data Call provides opportunities for states...

  14. 77 FR 72673 - Critical Infrastructure Protection and Resilience Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ....) [FR Doc. 2012-29573 Filed 12-4-12; 11:15 am] Billing code 3295-F3 ... December 5, 2012 Part VII The President Proclamation 8910--Critical Infrastructure Protection and...-- #0;The President ] Proclamation 8910 of November 30, 2012 Critical Infrastructure Protection...

  15. Radiation protection in space

    SciTech Connect

    Blakely, E.A.; Fry, R.J.M.

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  16. 75 FR 41213 - National Protection and Programs Directorate; Infrastructure Protection Data Call Survey; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (NPPD), Office of Infrastructure Protection (IP), Infrastructure Information Collection Division (IICD) published a 60-day comment period notice in the Federal Register at 74 FR 68070-68071 seeking comments for... SECURITY National Protection and Programs Directorate; Infrastructure Protection Data Call...

  17. Radiation protection in space.

    PubMed

    Blakely, E A; Fry, R J

    1995-08-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space. PMID:7480625

  18. 3 CFR 8607 - Proclamation 8607 of November 30, 2010. Critical Infrastructure Protection Month, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Infrastructure Protection Month, 2010 8607 Proclamation 8607 Presidential Documents Proclamations Proclamation 8607 of November 30, 2010 Proc. 8607 Critical Infrastructure Protection Month, 2010By the President of the United States of America A Proclamation During Critical Infrastructure Protection Month,...

  19. Risk Assessment Methodology for Protecting Our Critical Physical Infrastructures

    SciTech Connect

    BIRINGER,BETTY E.; DANNEELS,JEFFREY J.

    2000-12-13

    Critical infrastructures are central to our national defense and our economic well-being, but many are taken for granted. Presidential Decision Directive (PDD) 63 highlights the importance of eight of our critical infrastructures and outlines a plan for action. Greatly enhanced physical security systems will be required to protect these national assets from new and emerging threats. Sandia National Laboratories has been the lead laboratory for the Department of Energy (DOE) in developing and deploying physical security systems for the past twenty-five years. Many of the tools, processes, and systems employed in the protection of high consequence facilities can be adapted to the civilian infrastructure.

  20. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  1. Optimization of radiation protection

    SciTech Connect

    Lochard, J.

    1981-07-01

    The practical and theoretical problems raised by the optimization of radiological protection merit a review of decision-making methods, their relevance, and the way in which they are used in order to better determine what role they should play in the decision-making process. Following a brief summary of the theoretical background of the cost-benefit analysis, we examine the methodological choices implicit in the model presented in the International Commission on Radiological Protection Publication No. 26 and, particularly, the consequences of the theory that the level of radiation protection, the benefits, and the production costs of an activity can be treated separately.

  2. 75 FR 31458 - Infrastructure Protection Data Call Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... Data Call Survey. DHS previously published this information collection request (ICR) in the Federal Register on December 22, 2009, at 74 FR 68070-68071, for a 60-day public comment period. DHS received no... SECURITY National Protection and Programs Directorate Infrastructure Protection Data Call Survey...

  3. 78 FR 29375 - Protected Critical Infrastructure Information (PCII) Office Self-Assessment Questionnaire

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... SECURITY Protected Critical Infrastructure Information (PCII) Office Self- Assessment Questionnaire AGENCY... Information Collection Division (IICD), Protected Critical Infrastructure Information (PCII) Program will...: The PCII Program was created by Congress under the Critical Infrastructure Information Act of...

  4. 75 FR 9607 - National Protection and Programs Directorate; Critical Infrastructure Partnership Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register (71 FR 14930... SECURITY National Protection and Programs Directorate; Critical Infrastructure Partnership Advisory Council... Information Sharing Office, Partnership and Outreach Division, Office of Infrastructure Protection,...

  5. Protection from Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  6. Protection from space radiation

    SciTech Connect

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-07-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods.

  7. 6 CFR 29.8 - Disclosure of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 Domestic Security 1 2013-01-01 2013-01-01 false Disclosure of Protected Critical Infrastructure... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.8 Disclosure of Protected Critical Infrastructure... Infrastructure Protection, or either's designee may choose to provide or authorize access to PCII under one...

  8. 6 CFR 29.8 - Disclosure of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 6 Domestic Security 1 2014-01-01 2014-01-01 false Disclosure of Protected Critical Infrastructure... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.8 Disclosure of Protected Critical Infrastructure... Infrastructure Protection, or either's designee may choose to provide or authorize access to PCII under one...

  9. 6 CFR 29.8 - Disclosure of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 Domestic Security 1 2011-01-01 2011-01-01 false Disclosure of Protected Critical Infrastructure... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.8 Disclosure of Protected Critical Infrastructure... Infrastructure Protection, or either's designee may choose to provide or authorize access to PCII under one...

  10. 6 CFR 29.8 - Disclosure of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Disclosure of Protected Critical Infrastructure... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.8 Disclosure of Protected Critical Infrastructure... Infrastructure Protection, or either's designee may choose to provide or authorize access to PCII under one...

  11. 76 FR 76021 - Critical Infrastructure Protection Month, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Independence of the United States of America the two hundred and thirty-sixth. (Presidential Sig.) [FR Doc... Infrastructure Protection Month, 2011 By the President of the United States of America A Proclamation From... stability, public health, or safety. This month, we affirm the fundamental importance of our...

  12. 78 FR 72755 - Version 5 Critical Infrastructure Protection Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...Pursuant to section 215 of the Federal Power Act, the Commission approves the Version 5 Critical Infrastructure Protection Reliability Standards, CIP-002-5 through CIP-011-1, submitted by the North American Electric Reliability Corporation (NERC), the Commission- certified Electric Reliability Organization. The CIP version 5 Standards address the cyber security of the bulk electric system and......

  13. Research to protect water infrastructure: EPA's water security research program

    NASA Astrophysics Data System (ADS)

    Herrmann, Jonathan G.

    2005-05-01

    As the federal lead for water infrastructure security, EPA draws upon its long history of environmental protection to develop new tools and technologies that address potential attacks on drinking water and wastewater systems. The critical research described is improving awareness, preparedness, prevention, response, and recovery from threats or attacks against water systems.

  14. 78 FR 76986 - Version 5 Critical Infrastructure Protection Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... of Tuesday, December 3, 2013 (78 FR 72755). The regulations approved certain reliability standards... issued in this docket.' \\27\\'' In FR Doc. 2013-28628 appearing on page 72758 in the Federal Register of... Energy Regulatory Commission 18 CFR Part 40 Version 5 Critical Infrastructure Protection...

  15. 76 FR 58730 - Version 4 Critical Infrastructure Protection Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ...Under section 215 of the Federal Power Act, the Federal Energy Regulatory Commission (Commission) proposes to approve eight modified Critical Infrastructure Protection (CIP) Reliability Standards, CIP- 002-4 through CIP-009-4, developed and submitted to the Commission for approval by the North American Electric Reliability Corporation (NERC), the Electric Reliability Organization certified by......

  16. 75 FR 39266 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... SECURITY National Protection and Programs Directorate; National Infrastructure Advisory Council AGENCY... Council Meeting. SUMMARY: The National Infrastructure Advisory Council (NIAC) will meet on Tuesday, July... Infrastructure Advisory Council Designated Federal Officer, Department of Homeland Security, telephone...

  17. 75 FR 81284 - National Protection and Programs Directorate; National Infrastructure Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY National Protection and Programs Directorate; National Infrastructure Advisory Council Meeting... Federal Advisory Council Meeting. SUMMARY: The National Infrastructure Advisory Council (NIAC) will meet... security of the critical infrastructure sectors and their information systems. The NIAC will meet...

  18. Pregnancy and Radiation Protection

    NASA Astrophysics Data System (ADS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  19. Pregnancy and Radiation Protection

    SciTech Connect

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-21

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  20. A comprehensive R&D Approach for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Krauthammer, Theodor

    2007-03-01

    This paper provides background on requirements, capabilities and research recommendations for protecting critical infrastructure systems. These activities are needed to develop much more effective solutions to problems that can be currently addressed primarily with conservative, and/or empirical approaches. The expected contributions will have a profound effect on national and international defense and security. Although essential work must be conducted in several important areas, this paper is primarily focused on scientific and technical issues.

  1. Personal Radiation Protection System

    NASA Technical Reports Server (NTRS)

    McDonald, Mark; Vinci, Victoria

    2004-01-01

    A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.

  2. Chemical Protection Against Radiation Damage

    ERIC Educational Resources Information Center

    Campaigne, Ernest

    1969-01-01

    Discusses potential war time and medical uses for chemical compounds giving protection against radiation damage. Describes compounds known to protect, research aimed at discovering such compounds, and problems of toxicity. (EB)

  3. Protection of large alpine infrastructures against natural hazards

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Scheikl, Manfred; Hergarten, Stefan

    2013-04-01

    Large infrastructures in alpine domains are threatened by a variety of natural hazards like debris flows, rock falls and snow avalanches. Especially linear infrastructure including roads, railway lines, pipe lines and power lines passes through the entire mountain range and the impact of natural hazards can be expected along a distance over hundreds of kilometers. New infrastructure projects like storage power plants or ski resorts including access roads are often located in remote alpine domains without any historical record of hazardous events. Mitigation strategies against natural hazards require a detailed analysis on the exposure of the infrastructure to natural hazards. Following conventional concepts extensive mapping and documentation of surface processes over hundreds to several thousand km² of steep alpine domain is essential but can be hardly performed. We present a case study from the Austrian Alps to demonstrate the ability of a multi-level concept to describe the impact of natural hazards on infrastructure by an iterative process. This includes new state of the art numerical models, modern field work and GIS-analysis with an increasing level of refinement at each stage. A set of new numerical models for rock falls, debris flows and snow avalanches was designed to operate with information from field in different qualities and spatial resolutions. Our analysis starts with simple and fast cellular automata for rockfalls and debrisflows to show the exposure of the infrastructure to natural hazards in huge domains and detects "high risk areas" that are investigated in more detail in field in the next refinement level. Finally, sophisticated 2D- depth averaged fluid dynamic models for all kinds of rapid mass movements are applied to support the development of protection structures.

  4. 6 CFR 29.7 - Safeguarding of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Safeguarding of Protected Critical Infrastructure Information. 29.7 Section 29.7 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.7 Safeguarding of Protected Critical Infrastructure Information. (a) Safeguarding....

  5. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Ensure the secure sharing of PCII with appropriate authorities and individuals, as set forth in 6 CFR 29... 6 Domestic Security 1 2014-01-01 2014-01-01 false Protected Critical Infrastructure Information... SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.4 Protected Critical Infrastructure...

  6. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Ensure the secure sharing of PCII with appropriate authorities and individuals, as set forth in 6 CFR 29... 6 Domestic Security 1 2012-01-01 2012-01-01 false Protected Critical Infrastructure Information... SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.4 Protected Critical Infrastructure...

  7. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Ensure the secure sharing of PCII with appropriate authorities and individuals, as set forth in 6 CFR 29... 6 Domestic Security 1 2013-01-01 2013-01-01 false Protected Critical Infrastructure Information... SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.4 Protected Critical Infrastructure...

  8. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Ensure the secure sharing of PCII with appropriate authorities and individuals, as set forth in 6 CFR 29... 6 Domestic Security 1 2010-01-01 2010-01-01 false Protected Critical Infrastructure Information... SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.4 Protected Critical Infrastructure...

  9. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Ensure the secure sharing of PCII with appropriate authorities and individuals, as set forth in 6 CFR 29... 6 Domestic Security 1 2011-01-01 2011-01-01 false Protected Critical Infrastructure Information... SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.4 Protected Critical Infrastructure...

  10. New Approaches to Radiation Protection

    PubMed Central

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923

  11. 6 CFR 29.7 - Safeguarding of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Infrastructure Information. 29.7 Section 29.7 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.7 Safeguarding of Protected Critical Infrastructure Information. (a) Safeguarding. All persons granted access to PCII are responsible for...

  12. 6 CFR 29.7 - Safeguarding of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Infrastructure Information. 29.7 Section 29.7 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.7 Safeguarding of Protected Critical Infrastructure Information. (a) Safeguarding. All persons granted access to PCII are responsible for...

  13. 3 CFR 8910 - Proclamation 8910 of November 30, 2012. Critical Infrastructure Protection and Resilience Month...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Infrastructure Protection and Resilience Month, 2012 8910 Proclamation 8910 Presidential Documents Proclamations Proclamation 8910 of November 30, 2012 Proc. 8910 Critical Infrastructure Protection and Resilience Month... infrastructure to travel and communicate, work and play. The assets and systems we depend on are essential to...

  14. 6 CFR 29.7 - Safeguarding of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Infrastructure Information. 29.7 Section 29.7 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.7 Safeguarding of Protected Critical Infrastructure Information. (a) Safeguarding. All persons granted access to PCII are responsible for...

  15. 6 CFR 29.7 - Safeguarding of Protected Critical Infrastructure Information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Infrastructure Information. 29.7 Section 29.7 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.7 Safeguarding of Protected Critical Infrastructure Information. (a) Safeguarding. All persons granted access to PCII are responsible for...

  16. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The problem of ensuring space flight safety arises from conditions inherent to space flights and outer space and from the existing weight limitations of spacecraft. In estimating radiation hazard during space flights, three natural sources are considered: the Earth's radiation belt, solar radiation, and galactic radiation. This survey first describes the major sources of radiation hazard in outer space with emphasis on those source parameters directly related to shielding manned spacecraft. Then, the current status of the safety criteria used in the shielding calculations is discussed. The rest of the survey is devoted to the rationale for spacecraft radiation shielding calculations. The recently completed long-term space flights indicate the reliability of the radiation safety measures used for the near-Earth space exploration. While planning long-term interplanetary flights, it is necessary to solve a number of complicated technological problems related to the radiation protection of the crew.

  17. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  18. Radiation Protection in Canada

    PubMed Central

    Brown, John R.; Jarvis, Anita A.

    1964-01-01

    A recent survey was carried out with respect to radiobiological and radiological health projects in Canada. Letters of inquiry, followed by two questionnaires, were sent out to every institution where radiation research was likely to have been undertaken. Approximately 75% of those contacted replied. Of the total of 200 studies, 84% were classified as biological and medical studies, the remaining 16% as environmental radiation studies. Responses to the inquiry stressed the inadequacy of the present governmental budget for radiation research, the need for higher salaries for research workers, and the necessity of a more intensive teaching program for technicians and professional personnel. The granting of longer-term grants, rather than annually renewable grants, is urged. PMID:14226104

  19. Trust and Reputation Management for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Caldeira, Filipe; Monteiro, Edmundo; Simões, Paulo

    Today's Critical Infrastructures (CI) depend of Information and Communication Technologies (ICT) to deliver their services with the required level of quality and availability. ICT security plays a major role in CI protection and risk prevention for single and also for interconnected CIs were cascading effects might occur because of the interdependencies that exist among different CIs. This paper addresses the problem of ICT security in interconnected CIs. Trust and reputation management using the Policy Based Management paradigm is the proposed solution to be applied at the CI interconnection points for information exchange. The proposed solution is being applied to the Security Mediation Gateway being developed in the European FP7 MICIE project, to allow for information exchange among interconnected CIs.

  20. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses. PMID:26913507

  1. Radiation protection principles of NCRP.

    PubMed

    Kase, Kenneth R

    2004-09-01

    The current recommendations of the National Council on Radiation Protection and Measurements (NCRP) relative to ionizing radiation are based on radiation protection principles that developed historically as information about radiation effects on human populations became available. Because the NCRP Charter states that the NCRP will cooperate with the International Commission on Radiological Protection (ICRP), the basic principles and recommendations for radiation protection of the NCRP are closely coupled with those of the ICRP. Thus, the fundamental principles of justification, optimization, and dose limitation as initially stated in ICRP Publication 26 have been adopted and applied by the NCRP in its recommendations. ICRP and NCRP recommendations on dose limitation for the general public and for occupationally exposed individuals are based on the same analyses of radiation risk, and, while similar, there are differences reflecting the aspects of radiation application and exposure circumstances unique to the United States. The NCRP has recently extended its guidance to address exposure to individuals engaged in space activities. Several reports have been issued or are in preparation to provide recommendations on dose limitation and the development of radiation safety programs to apply the radiation protection principles in space activities. The biological basis for these recommendations is provided in these and accompanying NCRP reports. Recommendations for the application of basic radiation protection principles have been made in many reports over the years. Those that are most current appear in approximately 50 reports published in the last 15 y. These address radiation safety practices in industrial and medical institutions, control of radionuclides in the environment, protection of the public, and assessment of radiation risk. Some of the aspects of these recommendations will be discussed. Current recommendations related to radiation safety practice are based

  2. 75 FR 14454 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... SECURITY National Protection and Programs Directorate; National Infrastructure Advisory Council AGENCY... Council Meeting. SUMMARY: The National Infrastructure Advisory Council (NIAC) will meet on Tuesday, April...: The National Infrastructure Advisory Council will meet Tuesday, April 13, 2010 from 1:30 p.m. to...

  3. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect

    Not Available

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  4. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given. (KRM)

  5. Federated Modelling and Simulation for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Rome, Erich; Langeslag, Peter; Usov, Andrij

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic models enable consequence analysis and thus may assist in what-if decision-making processes. The simulation of complex scenarios involving several different CI sectors requires the usage of heterogeneous federated simulations of CIs. However, common standards for modelling and interoperability of such federated CI simulations are missing. Also, creating the required abstract models from CIs and other data, setting up the individual federate simulators and integrating all subsystems is a time-consuming and complicated task that requires substantial know-how and resources. In this chapter, we outline applications and benefit of federated modelling, simulation and analysis (MS&A) for Critical Infrastructure Protection (CIP). We review the state of the art in federated MS&A for CIP and categorise common approaches and interoperability concepts like central and lateral coupling of simulators. As examples for the latter two concepts, we will present in more detail an interoperability standard from the military domain, HLA, and an approach developed in the DIESIS project. Special emphasis will also be put on describing the problem of synchronising systems with different time models. Also, we will briefly assess the state of transferring MS&A for CIP research results to practical application by comparing the situations in the USA and in Europe.

  6. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  7. [Radiation protection in interventional cardiology].

    PubMed

    Durán, Ariel

    2015-01-01

    INTERVENTIONAL: cardiology progress makes each year a greater number of procedures and increasing complexity with a very good success rate. The problem is that this progress brings greater dose of radiation not only for the patient but to occupationally exposed workers as well. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability and use of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. PMID:26169040

  8. Radiation protection standards in space.

    PubMed

    Sinclair, W K

    1986-01-01

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space. PMID:11537242

  9. Radiation protection standards in space

    NASA Astrophysics Data System (ADS)

    Sinclair, Warren K.

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space.

  10. 3 CFR 8460 - Proclamation 8460 of December 2, 2009. Critical Infrastructure Protection Month, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Proclamation 8460 of December 2, 2009. Critical Infrastructure Protection Month, 2009 8460 Proclamation 8460 Presidential Documents Proclamations Proclamation 8460 of December 2, 2009 Proc. 8460 Critical Infrastructure Protection Month, 2009By the President of the United States of America...

  11. Future of Radiation Protection Regulations.

    PubMed

    Doss, Mohan

    2016-03-01

    THERE IS considerable disagreement in the scientific community regarding the carcinogenicity of low-dose radiation (LDR), with publications supporting opposing points of view. However, major flaws have been identified in many of the publications claiming increased cancer risk from LDR. The data generally recognized as the most important for assessing radiation effects in humans, the atomic bomb survivor data, are often cited to raise LDR cancer concerns. However, these data no longer support the linear no-threshold (LNT) model after the 2012 update but are consistent with radiation hormesis. Thus, a resolution of the controversy regarding the carcinogenicity of LDR appears to be imminent, with the rejection of the LNT model and acceptance of radiation hormesis. Hence, for setting radiation protection regulations, an alternative approach to the present one based on the LNT model is needed. One approach would be to determine the threshold dose for the carcinogenic effect of radiation from existing data and establish regulations to ensure radiation doses are kept well below the threshold dose. This can be done by setting dose guidelines specifying safe levels of radiation doses, with the requirement that these safe levels, referred to as guidance levels, not be exceeded significantly. Using this approach, a dose guidance level of 10 cGy for acute radiation exposures and 10 cGy y for exposures over extended periods of time are recommended. The concept of keeping doses as low as reasonably achievable, known as ALARA, would no longer be required for low-level radiation exposures not expected to exceed the dose guidance levels significantly. These regulations would facilitate studies using LDR for prevention and treatment of diseases. Results from such studies would be helpful in refining dose guidance levels. The dose guidance levels would be the same for the public and radiation workers to ensure everyone's safety. PMID:26808881

  12. Protection against radiation (biological, pharmacological, chemical, physical)

    NASA Technical Reports Server (NTRS)

    Saksonov, P. P.

    1975-01-01

    Physical, chemical, and biological protection for astronauts from penetrating radiation on long-term space flights is discussed. The status of pharmacochemical protection, development of protective substances, medical use of protective substances, protection for spacecraft ecologic systems, adaptogens and physical conditioning, bone marrow transplants and local protection are discussed. Combined use of local protection and pharmacochemical substances is also briefly considered.

  13. Fiber optic sensor applications in transportation infrastructure protection

    NASA Astrophysics Data System (ADS)

    Krohn, David; Nicholls, Paul

    2009-05-01

    In a recent study (1) on transportation infrastructure, the results are very disturbing. It states that 83% of the United States transportation infrastructure in not capable of meeting the needs of the next 10 years. While other countries have been more aggressive in infrastructure development and monitoring, the United States is lagging behind. There are a broad range of infrastructure sensing applications in transportation that are not being met. Many of these vital assets are aging or not adequately monitored with the potential for catastrophic failure. As examples, the bridge failure in Minneapolis, Minnesota was due to a structural failure. Fire safety problems, with recent life-loss fires, in road tunnels are challenging due to specific features of their infrastructure, nature of traffic using them and insufficient safety rules on vehicles. As a result, road tunnel fire safety issues are a concern. NIST has recognized the need and is funding innovative research for the development of infrastructure monitoring and inspection technologies. Specifically, NIST through its Technology Innovation Program (TIP) will fund the development of a network of distributed, integrated sensor architectures that will monitor bridges, roadways, tunnels, dams and other critical infrastructure applications (2) Many of these applications can be facilitated by using fiber optic sensors. This paper will specifically address monitoring bridges and tunnels using distributed fiber optic sensors to monitor strain, vibration, temperature and the associated benefits.

  14. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. PMID:26432587

  15. Space radiation protection: Destination Mars

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  16. Constructing vulnerabilty and protective measures indices for the enhanced critical infrastructure protection program.

    SciTech Connect

    Fisher, R. E.; Buehring, W. A.; Whitfield, R. G.; Bassett, G. W.; Dickinson, D. C.; Haffenden, R. A.; Klett, M. S.; Lawlor, M. A.; Decision and Information Sciences; LANL

    2009-10-14

    The US Department of Homeland Security (DHS) has directed its Protective Security Advisors (PSAs) to form partnerships with the owners and operators of assets most essential to the Nation's well being - a subclass of critical infrastructure and key resources (CIKR) - and to conduct site visits for these and other high-risk assets as part of the Enhanced Critical Infrastructure Protection (ECIP) Program. During each such visit, the PSA documents information about the facility's current CIKR protection posture and overall security awareness. The primary goals for ECIP site visits (DHS 2009) are to: (1) inform facility owners and operators of the importance of their facilities as an identified high-priority CIKR and the need to be vigilant in light of the ever-present threat of terrorism; (2) identify protective measures currently in place at these facilities, provide comparisons of CIKR protection postures across like assets, and track the implementation of new protective measures; and (3) enhance existing relationships among facility owners and operators; DHS; and various Federal, State, local tribal, and territorial partners. PSAs conduct ECIP visits to assess overall site security; educate facility owners and operators about security; help owners and operators identify gaps and potential improvements; and promote communication and information sharing among facility owners and operators, DHS, State governments, and other security partners. Information collected during ECIP visits is used to develop metrics; conduct sector-by-sector and cross-sector vulnerability comparisons; identify security gaps and trends across CIKR sectors and subsectors; establish sector baseline security survey results; and track progress toward improving CIKR security through activities, programs, outreach, and training (Snyder 2009). The data being collected are used in a framework consistent with the National Infrastructure Protection Plan (NIPP) risk criteria (DHS 2009). The NIPP

  17. The radiation protection system in the United Arab Emirates

    SciTech Connect

    El-Assaly, F.M.

    1994-12-31

    UAE Radiation protection national programme has been designed to protect the health and safety of (a) radiation workers in different fields such as medical applications, logging for oil and ground water, industrial radiography, industry and research, (b) the public from ionizing radiation hazards. The basic radiation protection criteria including formulation of norms and regulations. The drafting of primary legislation (a draft federal decree) was prepared. The Ministry of Health is in charge for implementing the federal decree. The secondary legislation, regulations, guidance notes and codes of practice for particular applications are under preparation. The executive office is within the Ministry of Health to carry out the responsibility of licensing, inspections of users of ionizing radiations. The centre laboratory for radiation protection operates under the Ministry of Health and will be the vital part of radiation protection infrastructure. All workers occupationally exposed to ionizing radiations be included in a regular monitoring practice with TLD and film badges. Their dose records are kept using computer technique. A strategy for dealing with radioactive wastes including not only wastes arising from future operations but also the range of wastes which already exist at various locations will be developed. The emergency planning and preparedness will be established and the necessary training for groups of people on various aspects of radiological emergency will be held with the help of IAEA and other agencies.

  18. Cancer complexity and radiation protection.

    PubMed

    Mossman, Kenneth L

    2014-07-01

    Management of radiological risks typically encountered in environmental and occupational settings is challenging because of uncertainties in the magnitude of the risks and the benefits of risk reduction. In practice, radiation dose instead of risk is measured. However, the relationship between dose and risk is not straightforward because cancer (the major health effect of concern at low doses) is a disease of complexity. Risks at small doses (defined as less than 100 mSv) can never be known exactly because of the inherent uncertainties in cancer as a complex disease. Tumors are complex because of the nonlinear interactions that occur among tumor cells and between the tumor and its local tissue environment. This commentary reviews evidence for cancer complexity and what complexity means for radiation protection. A complexity view of cancer does not mean we must abandon our current system of protection. What it does mean is that complexity requires new ways of thinking about control of cancer-the ideas that cancers can occur without cause, cancers behave unpredictably, and calculated cancer risks following small doses of radiation are highly uncertain. PMID:24849905

  19. Status of radiation protection at different hospitals in Nepal

    PubMed Central

    Adhikari, Kanchan P.; Jha, L.N.; Galan, Montenegro P.

    2012-01-01

    Nepal has a long history of medical radiology since1923 but unfortunately, we still do not have any Radiation Protection Infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five different radiotherapy centers. Questionnaire for radiation workers were used; radiation dose levels were measured and an inventory of availability of radiation equipment made. A corollary objective of the study was to create awareness in among workers on possible radiation health hazard and risk. It was also deemed important to know the level of understanding of the radiation workers in order to initiate steps towards the establishment of Nepalese laws, regulation and code of radiological practice in this field. Altogether, 203 Radiation workers entertained the questionnaire, out of which 41 are from the Radiotherapy and 162 are from diagnostic radiology. The radiation workers who have participated in the questionnaire represent more than 50% of the radiation workers working in this field in Nepal. Almost all X-ray, CT and Mammogram installations were built according to protection criteria and hence found safe. Radiation dose level at the reference points for all the five Radiotherapy centers are within safe limit. Around 65% of the radiation workers have never been monitored for radiation. There is no quality control program in any of the surveyed hospitals except radiotherapy facilities. PMID:23293457

  20. Stakeholder perspectives on radiation protection.

    PubMed

    Ledwidge, Lisa; Moore, LeRoy; Crawford, Lisa

    2004-09-01

    Standards for permissible exposure to radiation and the way they are established must incorporate a set of principles that uphold both health and democracy. When the science is uncertain, the burden of proof that risk is not being imposed should be on the source of the risk, not on the possibly affected public or workforce. Scientific processes must be transparent to the public, must address all relevant risk issues and endpoints (and not only cancer), and must be inclusive of the actual experience and opinion of the people who are exposed to radiation risks. Scientists are too often dismissive of public experience and interests, as for instance with worker illnesses or fallout, even though input from the public and workers has frequently proven to be valuable in the development of radiation protection principles. Incorporating the concerns, views, and experiences of workers and the public in a respectful way while maintaining a high standard of scientific work must be an essential part of the standard-setting process. Further, the clearly enunciated International Commission on Radiological Protection principle that the imposition of risk must be accompanied by a clear benefit needs to be a far more explicit part of standard-setting processes, which must also ensure that all known risks are disclosed and that suspected risks, such as possible synergisms between some radionuclides and hormone-disrupting chemicals, are carefully considered. Finally, given the long-lived nature of risks from many radionuclides and the large uncertainties about future physical, social, economic, and other conditions, the issue of how the interests of future generations can be included in standard setting is a difficult but vital matter. PMID:15303067

  1. 78 FR 5813 - 2013 Assuring Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...The Food and Drug Administration (FDA) is announcing the availability of grant funds for the support of the Center for Devices and Radiological Health (CDRH) radiation protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State, and Tribal activities to achieve effective solutions to present and future radiation control problems. The recipient of......

  2. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    SciTech Connect

    Bachner, Katherine M.; Mladineo, Stephen V.

    2011-07-20

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support the Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.

  3. Risk analysis tools for force protection and infrastructure/asset protection

    SciTech Connect

    Jaeger, C.D.; Duggan, R.A.; Paulus, W.K.

    1998-09-01

    The Security Systems and Technology Center at Sandia National Laboratories has for many years been involved in the development and use of vulnerability assessment and risk analysis tools. In particular, two of these tools, ASSESS and JTS, have been used extensively for Department of Energy facilities. Increasingly, Sandia has been called upon to evaluate critical assets and infrastructures, support DoD force protection activities and assist in the protection of facilities from terrorist attacks using weapons of mass destruction. Sandia is involved in many different activities related to security and force protection and is expanding its capabilities by developing new risk analysis tools to support a variety of users. One tool, in the very early stages of development, is EnSURE, Engineered Surety Using the Risk Equation. EnSURE addresses all of the risk equation and integrates the many components into a single, tool-supported process to help determine the most cost-effective ways to reduce risk. This paper will briefly discuss some of these risk analysis tools within the EnSURE framework.

  4. 77 FR 24594 - Version 4 Critical Infrastructure Protection Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... whose protection may offer only marginal value in preventing widespread cyber attacks on the bulk..., 76 FR 58,730 (Sept. 22, 2011), FERC Stats. & Regs. ] 32,679 (2011) (NOPR). \\14\\ NOPR, FERC Stats... Standards provide a cybersecurity framework for the identification and protection of ``Critical Cyber...

  5. Nevada Test Site Radiation Protection Program

    SciTech Connect

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  6. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose. PMID:18301097

  7. Advanced e-Infrastructures for Civil Protection applications: the CYCLOPS Project

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Ayral, P. A.; Fiorucci, P.; Pina, A.; Oliveira, J.; Sorani, R.

    2009-04-01

    During the full cycle of the emergency management, Civil Protection operative procedures involve many actors belonging to several institutions (civil protection agencies, public administrations, research centers, etc.) playing different roles (decision-makers, data and service providers, emergency squads, etc.). In this context the sharing of information is a vital requirement to make correct and effective decisions. Therefore a European-wide technological infrastructure providing a distributed and coordinated access to different kinds of resources (data, information, services, expertise, etc.) could enhance existing Civil Protection applications and even enable new ones. Such European Civil Protection e-Infrastructure should be designed taking into account the specific requirements of Civil Protection applications and the state-of-the-art in the scientific and technological disciplines which could make the emergency management more effective. In the recent years Grid technologies have reached a mature state providing a platform for secure and coordinated resource sharing between the participants collected in the so-called Virtual Organizations. Moreover the Earth and Space Sciences Informatics provide the conceptual tools for modeling the geospatial information shared in Civil Protection applications during its entire lifecycle. Therefore a European Civil Protection e-infrastructure might be based on a Grid platform enhanced with Earth Sciences services. In the context of the 6th Framework Programme the EU co-funded Project CYCLOPS (CYber-infrastructure for CiviL protection Operative ProcedureS), ended in December 2008, has addressed the problem of defining the requirements and identifying the research strategies and innovation guidelines towards an advanced e-Infrastructure for Civil Protection. Starting from the requirement analysis CYCLOPS has proposed an architectural framework for a European Civil Protection e-Infrastructure. This architectural framework has

  8. 78 FR 34112 - Review and Revision of the National Infrastructure Protection Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... cybersecurity in securing physical assets. \\2\\ EO 13636 can be found at: http://www.gpo.gov/fdsys/pkg/FR-2013-02... SECURITY Review and Revision of the National Infrastructure Protection Plan AGENCY: National Protection and... Plan (NIPP) to conform to the requirements of Presidential Policy Directive 21, Critical...

  9. 75 FR 67989 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    .... SUMMARY: The Department of Homeland Security, National Protection and Programs Directorate, Office of.... Instructions: All submissions received must include the words ``Department of Homeland Security'' and the... Security Act of 2002 and Homeland Security Presidential Directive 7 (HSPD-7) call for the Department...

  10. Radiation protection for nurses. Regulations and guidelines

    SciTech Connect

    Jankowski, C.B. )

    1992-02-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education.

  11. 76 FR 50487 - Protected Critical Infrastructure Information (PCII) Stakeholder Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Collection Request: 1670-NEW SUMMARY: The Department of Homeland Security (DHS), National Protection and..., Department of Homeland Security, Office of Civil Rights and Civil Liberties. Comments must be identified by... ``Department of Homeland Security'' and the docket number for this action. Comments received will be...

  12. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  13. Protecting infrastructure networks from cost-based attacks

    NASA Astrophysics Data System (ADS)

    Wang, Xingang; Guan, Shuguang; Heng Lai, Choy

    2009-03-01

    It is well known that heterogeneous networks are vulnerable to the intentional removal of a small fraction of highly connected or loaded nodes, implying that to protect the network effectively, the important nodes should be allocated more defense resource than the others. However, if too much resource is allocated to the few important nodes, the numerous less-important nodes will be less protected, which if attacked together can still lead to devastating damage. A natural question is therefore how to efficiently distribute the limited defense resource among the network nodes such that the network damage is minimized against any attack strategy. In this paper, taking into account the factor of attack cost, the problem of network security is reconsidered in terms of efficient network defense against cost-based attacks. The results show that, for a general complex network, there exists an optimal distribution of the defense resource with which the network is best protected from cost-based attacks. Furthermore, it is found that the configuration of the optimal defense is dependent on the network parameters. Specifically, networks of larger size, sparser connection and more heterogeneous structure will more likely benefit from the defense optimization.

  14. New affordable options for infrastructure and asset protection

    SciTech Connect

    2009-09-15

    Securitas is one of the leaders evolving with technology and delivering new forms of affordable security for mining facilities. It was called in to protect a large mothballed coal mine in the central USA, the victim of repeated thefts. First, Mobile Surveillance Units (MSUs) were installed but thefts continued. Later, a new wireless video security system called Videofied which used MotionViewers which use infrared detectors to detect movement and send a 10 second clip of the intrusion to an operator. This led to the thieves being caught. 2 photos.

  15. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement a radiation protection program...

  16. RADIATION BIOLOGY: CONCEPTS FOR RADIATION PROTECTION

    EPA Science Inventory

    ABSTRACT

    The opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The...

  17. Using VELMA to Quantify and Visualize the Effectiveness of Green Infrastructure Options for Protecting Water Quality

    EPA Science Inventory

    This webinar describes the use of VELMA, a spatially-distributed ecohydrological model, to identify green infrastructure (GI) best management practices for protecting water quality in intensively managed watersheds. The seminar will include a brief description of VELMA and an ex...

  18. Protective effects in radiation modification of elastomers

    NASA Astrophysics Data System (ADS)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-12-01

    Saturated character of ethylene/octene thermoplastic elastomers demands an application of nonconventional methods of crosslinking connections between chains of molecules. These are organic peroxides, usually in the presence of coagents or an application of ionizing radiation. Several approaches (radiation, peroxide, peroxide/plus radiation and radiation/plus peroxide) were applied in crosslinking of elastomere Engage 8200. Attention was directed to the protection effects by aromatic peroxides and by photo- and thermostabilizers on radiolysis of elastomers. Role of dose of radiation, dose rate of radiation as well as the role of composition of elastomere on the radiation yield of hydrogen and absorbtion of oxygen was investigated. DRS method was used to follow postirradiation degradation. Influence of crosslinking methods on properties of elastomers is described. Results were interpreted from the point of view of protective actions of aromatic compounds.

  19. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  20. An Analysis of IT Governance Practices in the Federal Government: Protecting U.S. Critical Infrastructure from Cyber Terrorist Attacks

    ERIC Educational Resources Information Center

    Johnson, R. LeWayne

    2012-01-01

    Much of the governing process in the United States (U.S.) today depends on a reliable and well protected public information technology (IT) infrastructure. The Department of Homeland Security (DHS) is tasked with the responsibility of protecting the country's IT infrastructure. Critics contend that the DHS has failed to address planning and…

  1. Developing measurement indices to enhance protection and resilience of critical infrastructure and key resources.

    PubMed

    Fisher, Ronald E; Norman, Michael

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities. PMID:20826384

  2. Clear Film Protects Against Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Yavrouian, A.

    1983-01-01

    Acrylic film contains screeing agent filtering ultraviolet radiation up to 380 nanometers in wavelength but passes other components of Sunlight. Film used to protect such materials as rubber and plastics degraded by ultraviolet light. Used as protective cover on outdoor sheets or pipes made of such materials as polyethylene or polypropylene and on solar cells.

  3. Quantities and units in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Jennings, W. A.

    1994-08-01

    A new report, entitled Quantities and Units in Radiation Protection Dosimetry, has recently been published by the international Commission on Radiation Units and Measurements. That report (No. 51) aims to provide a coherent system of quantities and units for purposes of measurement and calculation in the assessment of compliance with dose limitations. The present paper provides an extended summary of that report, including references to the operational quantities needed for area and individual monitoring of external radiations.

  4. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The evaluation of space radiation hazards and shielding requirements is discussed. The proton and electron exposures encountered in earth orbit from the earth radiation belts and solar-flare activity are calculated as functions of orbital altitude and inclination, and the probabilities of exceeding a given dose equivalent are given in tables for missions of varying duration. The Galactic space radiation is characterized and shown to be significant only beyond the earth's vicinity. The Radiation Shielding Design Criteria approved by the USSR Ministry of Health are discussed, and the need for a more heavily shielded shelter module to be used whenever solar-flare activity is detected is indicated. The shielding of interplanetary spacecraft is considered, and it is shown that much heavier shielding is needed for missions longer than about 2 yrs during solar minimum or 3 yrs during solar maximum, or for spacecraft with nuclear energy installations (NEI). A typical shielding thickness requirement is 20 g/sq cm for the radiation shelter of a spacecraft powered by liquid propellant or by a nuclear rocket engine (but without an NEI) on a 600-d interplanetary flight. 7 references.

  5. Influence of time-dependent factors in the evaluation of critical infrastructure protection measures.

    SciTech Connect

    Buehring, W. A.; Samsa, M. E.; Decision and Information Sciences

    2008-03-28

    The examination of which protective measures are the most appropriate to be implemented in order to prevent, protect against, respond to, and recover from attacks on critical infrastructures and key resources typically involves a comparison of the consequences that could occur when the protective measure is implemented to those that could occur when it is not. This report describes a framework for evaluation that provides some additional capabilities for comparing optional protective measures. It illustrates some potentially important time-dependent factors, such as the implementation rate, that affect the relative pros and cons associated with widespread implementation of protective measures. It presents example results from the use of protective measures, such as detectors and pretrained responders, for an illustrative biological incident. Results show that the choice of an alternative measure can depend on whether or not policy and financial support can be maintained for extended periods of time. Choice of a time horizon greatly influences the comparison of alternatives.

  6. Radiation Protection Quantities for Near Earth Environments

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  7. Clothing as solar radiation protection.

    PubMed

    Menter, Julian M; Hatch, Kathryn L

    2003-01-01

    The sun is essential for life. Yet, sunlight can also be a source of such deleterious effects as sunburn, and suntanning, as well as premalignant and malignant lesions. These may all occur in individuals with normal responses to sunlight. In addition, there exist a variety of 'abnormal' photosensitivity responses to sunlight that may result from either endogenous imbalances (e.g. the porphyrias) or from added exogenous factors (e.g. drug photosensitivity). The 'normal' responses to sunlight, by and large, are produced preferentially by UVB (290-320 nm), with minor contribution by UVA (320-400 nm) wavelengths. In contrast, the 'abnormal' photosensitivity responses are, for the most part, elicited predominantly by long UVA and, in some cases, visible light. In the last 20 years or so, considerable attention has been paid to the use of fabrics as photoprotective materials. The vast majority of work in this area has been concerned with fabric protection against sunburn. In addition to in vivo measurement of fabric SPF, in vitro evaluation of fabric UPF has been carried out in numerous laboratories around the world. The UPF is estimated from the wavelength-dependent transmission of the fabric, the solar UV spectrum and the erythemal action spectrum over the wavelength region 290-400 nm. Depending on the fabric, UPF values range from 2 to several thousand. More recently, it has become clear that such environmental influences as laundering, solarization, humidity, wetting and degree of stretching may play a major role in fabric protection. Protection also may be altered by addition of dyes, UV absorbers and fluorescent whitening agents. To date, there have been relatively few studies of fabric protection for endpoints other than sunburn erythema. Yet, many fabrics that provide good protection against sunburn may provide inadequate protection against photosensitization by intrinsic or extrinsic absorbing molecules or against (pre)malignant lesions. Future work should

  8. Protection of critical infrastructure using fiber optic sensors embedded in technical textiles

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-04-01

    Terrorists and criminals more and more attack and destroy important infrastructures like routes, railways, bridges, tunnels, dikes and dams, important buildings. Therefore, reliable on-line and long-term monitoring systems are required to protect such critical infrastructures. Fiber optic sensors are well-suited for that. They can be installed over many kilometers and are able to measure continuously distributed strain, pressure, temperature and further mechanical and physical quantities. The very tiny optical fibers can be integrated into structures and materials and can provide information about any significant changes or damages of the structures. These so-called smart materials and smart structures are able to monitor itself or its environment. Particularly smart technical textiles with embedded fiber optic sensors have become very attractive because of their high importance for the structural health monitoring of geotechnical and masonry infrastructures. Such textiles are usually used for reinforcement of the structures; the embedded fiber optic sensors provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, critical infrastructures can be preventively protected. The paper will introduce this innovative field and will present the results achieved within several German and European projects.

  9. Accreditation of ionizing radiation protection programs

    SciTech Connect

    McDonald, J.C.; Swinth, K.L.; Selby, J.M.

    1991-10-01

    There are over one million workers in the United States who have the potential to be exposed to ionizing radiation. Therefore, it is necessary to determine accurately the quantity of radiation to which they may have been exposed. This quantity if measured by personnel dosimeters that are carried by individuals requiring radiation monitoring. Accreditation of the organizations which evaluate this quantity provides official recognition of the competence of these organizations. Accreditation programs in the field of ionizing radiation protection have been in operation for a number of years, and their experience has demonstrated that such programs can help to improve performance.

  10. Research priorities for occupational radiation protection

    SciTech Connect

    Not Available

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

  11. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included. (KRM)

  12. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  13. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the radiation protection program, including: (1)...

  14. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  15. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  16. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  17. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  18. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J. M.; Nachtwey, D. S.

    1986-01-01

    NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

  19. Radiation protection guidelines for space missions.

    PubMed

    Fry, R J; Nachtwey, D S

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem). PMID:3410682

  20. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.; Nachtwey, D.S.

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  1. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.; Nachtwey, D.S.

    1986-01-01

    The National Aeronautics and Space Administration's current radiation protection guidelines were recommended in 1970. The career limit was set at 400 rem. Today, using the same approach as in 1970, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments that will be experienced in different missions than previously. Since 1970 women have joined their ranks. For these and other reasons it was considered necessary to reexamine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and inclination of the orbit. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (1.0 Sv) for a 24 year old female to 400 rem (4.0 Sv) for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye has been reduced from 600 rem (6.0 Sv) to 400 rem (4.0 Sv). 20 refs., 1 fig., 7 tabs.

  2. Publication and Protection of Sensitive Site Information in a Grid Infrastructure

    SciTech Connect

    Cholia, Shreyas; Cholia, Shreyas; Porter, R. Jefferson

    2008-03-31

    In order to create a successful grid infrastructure, sites and resource providers must be able to publish information about their underlying resources and services. This information makes it easier for users and virtual organizations to make intelligent decisions about resource selection and scheduling, and can be used by the grid infrastructure for accounting and troubleshooting services. However, such an outbound stream may include data deemed sensitive by a resource-providing site, exposing potential security vulnerabilities or private user information to the world at large, including malicious entities. This study analyzes the various vectors of information being published from sites to grid infrastructures. In particular, it examines the data being published to, and collected by the Open Science Grid, including resource selection, monitoring, accounting, troubleshooting, logging and site verification data. We analyze the risks and potential threat models posed by the publication and collection of such data. We also offer some recommendations and best practices for sites and grid infrastructures to manage and protect sensitive data.

  3. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  4. Apollo experience report: Protection against radiation

    NASA Technical Reports Server (NTRS)

    English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.

    1973-01-01

    Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.

  5. Urgent Change Needed to Radiation Protection Policy.

    PubMed

    Cuttler, Jerry M

    2016-03-01

    Although almost 120 y of medical experience and data exist on human exposure to ionizing radiation, advisory bodies and regulators claim there are still significant uncertainties about radiation health risks that require extreme precautions be taken. Decades of evidence led to recommendations in the 1920s for protecting radiologists by limiting their daily exposure. These were shown in later studies to decrease both their overall mortality and cancer mortality below those of unexposed groups. In the 1950s, without scientific evidence, the National Academy of Sciences Biological Effects of Atomic Radiation (BEAR) Committee and the NCRP recommended that the linear no-threshold (LNT) model be used to assess the risk of radiation-induced mutations in germ cells and the risk of cancer in somatic cells. This policy change was accepted by the regulators of every country without a thorough review of its basis. Because use of the LNT model has created extreme public fear of radiation, which impairs vital medical applications of low-dose radiation in diagnostics and therapy and blocks nuclear energy projects, it is time to change radiation protection policy back into line with the data. PMID:26808879

  6. Personal computing in radiation protection programs

    SciTech Connect

    Bunker, A.S. )

    1987-01-01

    In the fall of 1986, Radiation Protection Management surveyed its Correspondents (radiation protection professionals at utilities, universities, national laboratories, consulting firms, and government agencies) on their use of personal computers (PCs). This article presents the results of the survey with profiles of the PC user, the PC equipment, the software, and the work environment. The average PC user is proficient with more than one type of software, is self taught, knows at least one programing language, and uses his/her PC every day. The standard radiation protection PC is an IBM PC/XT/AT or compatible, fully-loaded with 640K of RAM, a hard disk, a modem, etc. Radiation protection professionals use their PCs mainly for word processing and specialty (technical) applications -- their favorite programs are Lotus 1-2-3, Ashton-Tate's dBase series, and MicroPro's WordStar series. Most PCs are shared by several persons, but one of them often uses the PC more than all of the others combined.

  7. 78 FR 59982 - Revisions to Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... FR 66650), the NRC published for public comment the proposed revisions to four sections in Chapter 12... COMMISSION Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard review... Reports for Nuclear Power Plants: LWR Edition'': Section 12.1, ``Assuring that Occupational...

  8. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  9. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  10. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  11. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  12. Shielded radiation protection quantities beyond LEO

    NASA Astrophysics Data System (ADS)

    Clowdsley, M. S.; Wilson, J. W.; Kim, M. Y.; Anderson, B. M.; Nealy, J. E.

    The National Council on Radiation Protection and Measurements (NCRP) has recommended that the quantities used to evaluate health risk to astronauts due to radiation exposure be effective dose and gray-equivalent. The NCRP recommends that effective dose be the limiting quantity for prevention of stochastic effects. Effective dose is a measure of whole body exposure, a weighted average of dose equivalent to a number body tissues for which the NCRP has adopted tissue weighting factors recommended by the International Commission on Radiation Protection (ICRP). For deterministic effects, the NCRP has recommended that gray-equivalent be used. Gray-equivalent is evaluated for specific critical organs and is the weighted sum of absorbed dose from field components to that organ using the relative biological effectiveness (RBE) number for that field component. RBE numbers recommended by the NCRP are used. The NCRP has provided effective dose limits as well as limits for gray-equivalent to eyes, skin, and blood forming organs (BFO) for astronauts in low earth orbit (LEO). As yet, no such limits have been defined for astronaut operations beyond LEO. In this study, the radiation protection quantities, effective dose and gray-equivalent to the eyes, skin, and BFO, are calculated for several environments beyond LEO. The lunar surface and Martian environments are included. For each environment, these radiation protection quantities are calculated behind varying amounts of various types of shielding materials. The results are compared to the exposure limits for LEO, since limits have not yet been defined for interplanetary missions. The benefits of using shielding material containing hydrogen and choosing optimal mission times are discussed.

  13. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  14. A decade of changes in radiation protection.

    PubMed

    Moulder, J E

    1992-04-01

    Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer. PMID:1554578

  15. Multisensor system for the protection of critical infrastructure of a seaport

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Zyczkowski, Marek; Szustakowski, Mieczysław; Trzaskawka, Piotr; Ciurapinski, Wiesław; Grelowska, Grazyna; Gloza, Ignacy; Milewski, Stanislaw; Listewnik, Karol

    2012-06-01

    There are many separated infrastructural objects within a harbor area that may be considered "critical", such as gas and oil terminals or anchored naval vessels. Those objects require special protection, including security systems capable of monitoring both surface and underwater areas, because an intrusion into the protected area may be attempted using small surface vehicles (boats, kayaks, rafts, floating devices with weapons and explosives) as well as underwater ones (manned or unmanned submarines, scuba divers). The paper will present the concept of multisensor security system for a harbor protection, capable of complex monitoring of selected critical objects within the protected area. The proposed system consists of a command centre and several different sensors deployed in key areas, providing effective protection from land and sea, with special attention focused on the monitoring of underwater zone. The initial project of such systems will be presented, its configuration and initial tests of the selected components. The protection of surface area is based on medium-range radar and LLTV and infrared cameras. Underwater zone will be monitored by a sonar and acoustic and magnetic barriers, connected into an integrated monitoring system. Theoretical analyses concerning the detection of fast, small surface objects (such as RIB boats) by a camera system and real test results in various weather conditions will also be presented.

  16. Radiation Protection Using Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  17. Neutron spectrometry for radiation protection: Three examples

    SciTech Connect

    Goldhagen, P.

    1995-12-31

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author`s instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry.

  18. Constructing a resilience index for the Enhanced Critical Infrastructure Protection Program

    SciTech Connect

    Fisher, R. E.; Bassett, G. W.; Buehring, W. A.; Collins, M. J.; Dickinson, D. C.; Eaton, L. K.; Haffenden, R. A.; Hussar, N. E.; Klett, M. S.; Lawlor, M. A.; Millier, D. J.; Petit, F. D.; Peyton, S. M.; Wallace, K. E.; Whitfield, R. G.; Peerenboom, J P

    2010-10-14

    Following recommendations made in Homeland Security Presidential Directive 7, which established a national policy for the identification and increased protection of critical infrastructure and key resources (CIKR) by Federal departments and agencies, the U.S. Department of Homeland Security (DHS) in 2006 developed the Enhanced Critical Infrastructure Protection (ECIP) program. The ECIP program aimed to provide a closer partnership with state, regional, territorial, local, and tribal authorities in fulfilling the national objective to improve CIKR protection. The program was specifically designed to identify protective measures currently in place in CIKR and to inform facility owners/operators of the benefits of new protective measures. The ECIP program also sought to enhance existing relationships between DHS and owners/operators of CIKR and to build relationships where none existed (DHS 2008; DHS 2009). In 2009, DHS and its protective security advisors (PSAs) began assessing CIKR assets using the ECIP program and ultimately produced individual protective measure and vulnerability values through the protective measure and vulnerability indices (PMI/VI). The PMI/VI assess the protective measures posture of individual facilities at their 'weakest link,' allowing for a detailed analysis of the most vulnerable aspects of the facilities (Schneier 2003), while maintaining the ability to produce an overall protective measures picture. The PMI has six main components (physical security, security management, security force, information sharing, protective measures assessments, and dependencies) and focuses on actions taken by a facility to prevent or deter the occurrence of an incident (Argonne National Laboratory 2009). As CIKR continue to be assessed using the PMI/VI and owners/operators better understand how they can prevent or deter incidents, academic research, practitioner emphasis, and public policy formation have increasingly focused on resilience as a necessary

  19. Porous material for protection from electromagnetic radiation

    SciTech Connect

    Kazmina, Olga E-mail: bdushkina89@mail.ru; Dushkina, Maria E-mail: bdushkina89@mail.ru; Suslyaev, Valentin; Semukhin, Boris

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  20. Issues in deep space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  1. Issues in deep space radiation protection.

    PubMed

    Wilson, J W; Shinn, J L; Tripathi, R K; Singleterry, R C; Clowdsley, M S; Thibeault, S A; Cheatwood, F M; Schimmerling, W; Cucinotta, F A; Badhwar, G D; Noor, A K; Kim, M Y; Badavi, F F; Heinbockel, J H; Miller, J; Zeitlin, C; Heilbronn, L

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. PMID:11669118

  2. A reference model for model-based design of critical infrastructure protection systems

    NASA Astrophysics Data System (ADS)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  3. Nevada National Security Site Radiation Protection Program

    SciTech Connect

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  4. Challenges for the Protection of Critical ICT-Based Financial Infrastructures

    NASA Astrophysics Data System (ADS)

    Hämmerli, Bernhard M.; Arendt, Henning H.

    A workshop was held in Frankfurt during September 24-25, 2007, in order to initiate a dialogue between financial industry (FI) stakeholders and Europe’s top-level research community. The workshop focused on identifying research and development challenges for the protection of critical ICT-based financial infrastructures for the next 5 years: “Protection of Massively Distributed Critical Financial Services” and “Trust in New Value Added Business Chains”. The outcome of the workshop contributed to the development of the research agenda from the perspectives of three working groups. A number of project ideas were spawned based on the workshop, including a coordination actions project entitled PARSIFAL, which this paper will focus on.

  5. Radiation protection of astronauts in LEO.

    PubMed

    Melkonian, G; Bourrieau, J

    1989-01-01

    Radiological protection for space flights is often perceived as a technico-scientific problem. All this is the result of the effects of radiation encountered in space and manned flight conditions. The main characteristics of this radiation come from its complex composition and its large energy spectrum which must be taken into account as well as flux variations by both solar activity and the vehicle position on orbit. Inside a vehicle, structures constitute irregularly distributed shields and lead to a specific dose at each location. To be able to protect the crew, it is first necessary to understand the threat and therefore to identify the radiation environment: extraterrestrial and orbital. As the environment varies with both the orbit position and time, the dose received in each critical organ during missions must be determined and compared with acceptable limits. To counter the threat, which may exceed acceptable limits, a strategy is required, including the complementary aspects of prevention, detection, protection and possibly treatment. PMID:11541165

  6. Science Goals in Radiation Protection for Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory

  7. Estrogen Protects against Radiation-Induced Cataractogenesis

    PubMed Central

    Dynlacht, Joseph R.; Valluri, Shailaja; Lopez, Jennifer; Greer, Falon; DesRosiers, Colleen; Caperell-Grant, Andrea; Mendonca, Marc S.; Bigsby, Robert M.

    2008-01-01

    Cataractogenesis is a complication of radiotherapy when the eye is included in the treatment field. Low doses of densely ionizing space radiation may also result in an increased risk of cataracts in astronauts. We previously reported that estrogen (17-β-estradiol), when administered to ovariectomized rats commencing 1 week before γ irradiation of the eye and continuously thereafter, results in a significant increase in the rate and incidence of cataract formation and a decreased latent period compared to an ovariectomized control group. We therefore concluded that estrogen accelerates progression of radiation-induced opacification. We now show that estrogen, if administered continuously, but commencing after irradiation, protects against radiation cataractogenesis. Both the rate of progression and incidence of cataracts were greatly reduced in ovariectomized rats that received estrogen treatment after irradiation compared to ovariectomized rats. As in our previous study, estradiol administered 1 week prior to irradiation at the time of ovariectomy and throughout the period of observation produced an enhanced rate of cataract progression. Estrogen administered for only 1 week prior to irradiation had no effect on the rate of progression but resulted in a slight reduction in the incidence. We conclude that estrogen may enhance or protect against radiation cataractogenesis, depending on when it is administered relative to the time of irradiation, and may differentially modulate the initiation and progression phases of cataractogenesis. These data have important implications for astronauts and radiotherapy patients. PMID:19138041

  8. Primer to Design Safe School Projects in Case of Terrorist Attacks and School Shootings. Buildings and Infrastructure Protection Series. FEMA-428/BIPS-07/January 2012. Edition 2

    ERIC Educational Resources Information Center

    Chipley, Michael; Lyon, Wesley; Smilowitz, Robert; Williams, Pax; Arnold, Christopher; Blewett, William; Hazen, Lee; Krimgold, Fred

    2012-01-01

    This publication, part of the new Building and Infrastructure Protection Series (BIPS) published by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Infrastructure Protection and Disaster Management Division (IDD), serves to advance high performance and integrated design for buildings and infrastructure. This…

  9. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  10. 10 CFR 35.26 - Radiation protection program changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection program changes. 35.26 Section 35.26 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection program without Commission approval if—...

  11. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  12. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  13. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  14. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with...

  15. Towards an advanced e-Infrastructure for Civil Protection applications: Research Strategies and Innovation Guidelines

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Angelini, V.

    2009-04-01

    In the context of the EU co-funded project CYCLOPS (http://www.cyclops-project.eu) the problem of designing an advanced e-Infrastructure for Civil Protection (CP) applications has been addressed. As a preliminary step, some studies about European CP systems and operational applications were performed in order to define their specific system requirements. At a higher level it was verified that CP applications are usually conceived to map CP Business Processes involving different levels of processing including data access, data processing, and output visualization. At their core they usually run one or more Earth Science models for information extraction. The traditional approach based on the development of monolithic applications presents some limitations related to flexibility (e.g. the possibility of running the same models with different input data sources, or different models with the same data sources) and scalability (e.g. launching several runs for different scenarios, or implementing more accurate and computing-demanding models). Flexibility can be addressed adopting a modular design based on a SOA and standard services and models, such as OWS and ISO for geospatial services. Distributed computing and storage solutions could improve scalability. Basing on such considerations an architectural framework has been defined. It is made of a Web Service layer providing advanced services for CP applications (e.g. standard geospatial data sharing and processing services) working on the underlying Grid platform. This framework has been tested through the development of prototypes as proof-of-concept. These theoretical studies and proof-of-concept demonstrated that although Grid and geospatial technologies would be able to provide significant benefits to CP applications in terms of scalability and flexibility, current platforms are designed taking into account requirements different from CP. In particular CP applications have strict requirements in terms of: a) Real

  16. Orion spacecraft: crew radiation protection strategies

    NASA Astrophysics Data System (ADS)

    Gaza, Razvan; Cooper, Tim; Hussein, Hesham; Jarvis, Kandy; Mytyk, Anna; Patel, Chirag; Reddell, Brandon; Shelfer, Tad

    NASA's Project Constellation aims to return humans to the Moon by the year 2020, using a new generation of manned spacecraft. The Orion crew exploration vehicle (CEV) is the Constellation component inhabited by the crew during the trans-lunar transit and return trip. The ionizing radiation environment is significantly harsher in interplanetary space than in LEO, thus posing an increased risk for detrimental health effects. Minimizing crew radiation exposure on board Orion has been addressed by the prime contractor Lockheed Martin starting as early as the design phase of the vehicle. Radiation analysis of the CEV CAD models containing material and mass density information is used to assess the effective dose incurred by crew members. Ray-tracing is employed to reduce the 3D vehicle geometry and detailed anatomical models to sets of layered shielding configurations. Radiation transport is then modeled using 1-D analytical codes such as HZETRN. Shielding optimization is addressed iteratively, by evaluating the radiation exposure impacts of different protection strategies such as design changes (i.e., material selection), crew repositioning and cabin reconfiguration, and deploying individual shielding.

  17. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  18. Radiation Protection for Lunar Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  19. Radiation protectants: current status and future prospects.

    PubMed

    Seed, Thomas M

    2005-11-01

    In today's heightened nuclear/biological/chemical threat environment, there is an increased need to have safe and effective means to protect not only special high-risk service groups, but also the general population at large, from the health hazards of unintended ionizing radiation exposures. An unfulfilled dream has been to have a globally effective pharmacologic that could be easily taken orally without any undue side effects prior to a suspected or impending nuclear/radiological event; such an ideal radioprotective agent has yet to be identified, let alone fully developed and approved for human use. No one would argue against the fact that this is problematic and needs to be corrected, but where might the ultimate solution to this difficult problem be found? Without question, representative species of the aminothiol family [e.g., Amifostine (MedImmune, Gaithersburg, Maryland)] have proven to be potent cytoprotectants for normal tissues subjected to irradiation or to radiomimetic chemicals. Although Amifostine is currently used clinically, drug toxicity, limited times of protection, and unfavorable routes of administration, all serve to limit the drug's utility in nonclinical settings. A full range of research and development strategies is being employed currently in the hunt for new safe and effective radioprotectants. These include: (1) large scale screening of new chemical classes or natural products; (2) restructuring/reformulating older protectants with proven efficacies but unwanted toxicities; (3) using nutraceuticals that are only moderately protective but are essentially nontoxic; (4) using low dose combinations of potentially toxic but efficacious agents that protect through different routes to foster radioprotective synergy; and (5) accepting a lower level of drug efficacy in lieu of reduced toxicity, banking on the premise that the protection afforded can be leveraged by post-exposure therapies. Although it is difficult to predict which of these

  20. Multi-Level Data-Security and Data-Protection in a Distributed Search Infrastructure for Digital Medical Samples.

    PubMed

    Witt, Michael; Krefting, Dagmar

    2016-01-01

    Human sample data is stored in biobanks with software managing digital derived sample data. When these stand-alone components are connected and a search infrastructure is employed users become able to collect required research data from different data sources. Data protection, patient rights, data heterogeneity and access control are major challenges for such an infrastructure. This dissertation will investigate concepts for a multi-level security architecture to comply with these requirements. PMID:27577500

  1. Cyber resilience: a review of critical national infrastructure and cyber security protection measures applied in the UK and USA.

    PubMed

    Harrop, Wayne; Matteson, Ashley

    This paper presents cyber resilience as key strand of national security. It establishes the importance of critical national infrastructure protection and the growing vicarious nature of remote, well-planned, and well executed cyber attacks on critical infrastructures. Examples of well-known historical cyber attacks are presented, and the emergence of 'internet of things' as a cyber vulnerability issue yet to be tackled is explored. The paper identifies key steps being undertaken by those responsible for detecting, deterring, and disrupting cyber attacks on critical national infrastructure in the United Kingdom and the USA. PMID:24457326

  2. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers

    DOE PAGESBeta

    Ramsey, Benjamin W.; Stubbs, Tyler D.; Mullins, Barry E.; Temple, Michael A.; Buckner, Mark A.

    2015-12-11

    We report that low-data-rate wireless networks incorporated in critical infrastructure applications can be protected through 128-bit encryption keys and address-based access control lists. However, these bit-level credentials are vulnerable to interception, extraction and spoofing using software tools available free of charge on the Internet. Recent research has demonstrated that wireless physical layer device fingerprinting can be used to defend against replay and spoofing attacks. However, radio frequency (RF) fingerprinting typically uses expensive signal collection systems; this is because fingerprinting wireless devices with low-cost receivers has been reported to have inconsistent accuracy. In conclusion, this paper demonstrates a robust radio frequencymore » fingerprinting process that is consistently accurate with both high-end and low-cost receivers. Indeed, the results demonstrate that low-cost software-defined radios can be used to perform accurate radio frequency fingerprinting and to identify spoofing attacks in critical IEEE 802.154-based infrastructure networks such as ZigBee.« less

  3. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers

    SciTech Connect

    Ramsey, Benjamin W.; Stubbs, Tyler D.; Mullins, Barry E.; Temple, Michael A.; Buckner, Mark A.

    2015-12-11

    We report that low-data-rate wireless networks incorporated in critical infrastructure applications can be protected through 128-bit encryption keys and address-based access control lists. However, these bit-level credentials are vulnerable to interception, extraction and spoofing using software tools available free of charge on the Internet. Recent research has demonstrated that wireless physical layer device fingerprinting can be used to defend against replay and spoofing attacks. However, radio frequency (RF) fingerprinting typically uses expensive signal collection systems; this is because fingerprinting wireless devices with low-cost receivers has been reported to have inconsistent accuracy. In conclusion, this paper demonstrates a robust radio frequency fingerprinting process that is consistently accurate with both high-end and low-cost receivers. Indeed, the results demonstrate that low-cost software-defined radios can be used to perform accurate radio frequency fingerprinting and to identify spoofing attacks in critical IEEE 802.154-based infrastructure networks such as ZigBee.

  4. Radiation protection enrollments and degrees, 1981

    SciTech Connect

    Little, J R; Shirley, D L; Blair, L M

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  5. Radiation protection in newer imaging technologies.

    PubMed

    Rehani, Madan M

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large-scale surveys of practice and lack of surveys with change in technology. PMID:20142278

  6. Radiation protection in medicine: ethical framework revisited.

    PubMed

    Malone, J F

    2009-07-01

    The ethical framework within which medicine operates has changed radically over the last two decades. This has been stimulated by events leading to controversy, such as the infant organ retention scandals; concerns about blood products; self regulation of medical practice in the wake of the Harold Shipman Enquiry in the UK; and many other events. It has become obvious following investigations and/or public enquiries that a gap has opened up between what is acceptable to the public on the one hand, and what appears reasonable to, or is at least accepted by, the professionals involved on the other. This paper reviews these issues and some conclusions of a workshop held to consider them. It places the developments in the context of the idea that the approach to problems and communication in a group of people/professionals such as doctors, radiologists, radiation protection specialists, or even the general public may be regarded as a 'culture'. Current practice of radiation protection in medicine is examined in the light of these considerations. PMID:19264829

  7. European activities in radiation protection in medicine.

    PubMed

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  8. Overview of radiation protection at the Superconducting Super Collider Laboratory

    SciTech Connect

    Baker, S.; Britvich, G.; Bull, J.; Coulson, L.; Coyne, J.; Mokhov, N.; Romero, V.; Stapleton, G.

    1994-03-01

    The radiation protection program at the Superconducting Super Collider Laboratory is described. After establishing a set of stringent design guidelines for radiation protection, both normal and accidental beam losses for each accelerator were estimated. From these parameters, shielding requirements were specified using Monte-Carlo radiation transport codes. A groundwater activation model was developed to demonstrate compliance with federal drinking water standards. Finally, the environmental radiation monitoring program was implemented to determine the effect of the facility operation on the radiation environment.

  9. The reference individual of radiation protection

    SciTech Connect

    Eckerman, K.F.; Cristy, M.

    1995-12-31

    The 70-kg {open_quotes}standard man{close_quotes} representing a typical Western adult male has been used in physiological models since at least the 1920s. In 1949 at the Chalk River conference, health physicists from the U.S., UK, and Canada agreed on the concept of a standard man to facilitate comparison of internal dose estimates. The 70-kg standard man included specifications of the masses of 25 organs and tissues, total body content of 15 elements, total water intake and output, water content of the body, and some anatomical and physiological data for the respiratory and gastrointestinal tracts. In 1959, in its Publication 2{sup 2} on permissible doses for internal radiation the International Commission on Radiological Protection (ICRP) modified standard man. In 1963 the ICRP established a task group to revise and extend the standard man concept. The name was changed later to Reference Man and the task group`s work was published in 1975 as ICRP Publication 23{sup 3}. Publication 23 similar to Publication 2, updates and documents the sources of the data. Data on women, children, and fetuses were also collected, where available, but these data were limited primarily to anatomical data and only a few reference values were established for these groups. Information assembled during the course of the effort on the Reference Man report was used at Oak Ridge National Laboratory (ORNL) to construct a mathematical representation of the body (a phantom) that was suitable for use with Monte Carlo methods in the calculation of organ doses. That effort was undertaken to improve estimates of dose from photon-emitting radionuclides residing within organs, so-called internal emitters. The phantom, although updated throughout the years, remains today as the basis for organ dose estimates in nuclear medicine and radiation protection and underlies the radiation risk data derived from the epidemiologic studies of the atomic bomb survivors of Hiroshima and Nagasaki.

  10. Radiation protection guidelines for the skin

    SciTech Connect

    Fry, R.J.M.

    1989-01-01

    With the exception of the function of cells in the skin associated with immunocompetence nonstochastic effects have been well characterized and threshold doses are known with a precision appropriate for setting radiation protection standards. A dose limitation of 0.5 Sv per year and a working lifetime dose limit of 20 Sv should protect the worker population adequately and therefore, the current protection standards are quite adequate. The risk estimate for skin cancer is very dependent on the selection of the projection model and on the mortality rate assumed. Based on the relative risk model, a mortality rate of 0.2% and summing risks for both UVR exposed and shielded skin the risk is about twice (1.94/10{sup {minus}4} Sv{sup {minus}1}) that which ICRP derived in 1977. With the absolute model the risk is considerably less, about 0.5/10{sup {minus}4} Sv{sup {minus}1}. 47 refs., 3 figs., 1 tab.

  11. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  12. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  13. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  14. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report...

  15. 77 FR 66650 - Proposed Revisions to Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... COMMISSION Proposed Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard... (NRC or the Commission) is revising the following sections in Chapter 12, ``Radiation Protection'' and... Nuclear Power Plants: LWR Edition,'' Section 12.1, ``Assuring that Occupational Radiation Exposures Are...

  16. Critical infrastructure protection decision support system decision model : overview and quick-start user's guide.

    SciTech Connect

    Samsa, M.; Van Kuiken, J.; Jusko, M.; Decision and Information Sciences

    2008-12-01

    The Critical Infrastructure Protection Decision Support System Decision Model (CIPDSS-DM) is a useful tool for comparing the effectiveness of alternative risk-mitigation strategies on the basis of CIPDSS consequence scenarios. The model is designed to assist analysts and policy makers in evaluating and selecting the most effective risk-mitigation strategies, as affected by the importance assigned to various impact measures and the likelihood of an incident. A typical CIPDSS-DM decision map plots the relative preference of alternative risk-mitigation options versus the annual probability of an undesired incident occurring once during the protective life of the investment, assumed to be 20 years. The model also enables other types of comparisons, including a decision map that isolates a selected impact variable and displays the relative preference for the options of interest--parameterized on the basis of the contribution of the isolated variable to total impact, as well as the likelihood of the incident. Satisfaction/regret analysis further assists the analyst or policy maker in evaluating the confidence with which one option can be selected over another.

  17. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  18. Thoughts on Beijing's Long-Term Rural Infrastructure Management and Protection Issues from the Perspective of the Government to Effectively Perform Their Duties

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    To strengthen rural infrastructure management, give full play to the role of benefit of infrastructure, it has important significance for promoting the development of rural economy and society. Protection-use and facility energy-use issues are outstanding during Beijing rural infrastructure management. The comprehensive and detailed analysis of the cause of the problems put forward the concrete feasible countermeasures from the government to fulfill the effective function to rural infrastructure: A clear property ownership; Implementation of special funds audit system of the rural infrastructure management; Implementation of rural infrastructure maintenance and management assessment methods and so on.

  19. Space Weather Status for Exploration Radiation Protection

    NASA Technical Reports Server (NTRS)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  20. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  1. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  2. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  3. Real-time threat assessment for critical infrastructure protection: data incest and conflict in evidential reasoning

    NASA Astrophysics Data System (ADS)

    Brandon, R.; Page, S.; Varndell, J.

    2012-06-01

    This paper presents a novel application of Evidential Reasoning to Threat Assessment for critical infrastructure protection. A fusion algorithm based on the PCR5 Dezert-Smarandache fusion rule is proposed which fuses alerts generated by a vision-based behaviour analysis algorithm and a-priori watch-list intelligence data. The fusion algorithm produces a prioritised event list according to a user-defined set of event-type severity or priority weightings. Results generated from application of the algorithm to real data and Behaviour Analysis alerts captured at London's Heathrow Airport under the EU FP7 SAMURAI programme are presented. A web-based demonstrator system is also described which implements the fusion process in real-time. It is shown that this system significantly reduces the data deluge problem, and directs the user's attention to the most pertinent alerts, enhancing their Situational Awareness (SA). The end-user is also able to alter the perceived importance of different event types in real-time, allowing the system to adapt rapidly to changes in priorities as the situation evolves. One of the key challenges associated with fusing information deriving from intelligence data is the issue of Data Incest. Techniques for handling Data Incest within Evidential Reasoning frameworks are proposed, and comparisons are drawn with respect to Data Incest management techniques that are commonly employed within Bayesian fusion frameworks (e.g. Covariance Intersection). The challenges associated with simultaneously dealing with conflicting information and Data Incest in Evidential Reasoning frameworks are also discussed.

  4. 3 CFR 8760 - Proclamation 8760 of November 30, 2011. Critical Infrastructure Protection Month, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., electricity grid, financial systems, and other assets and infrastructure. Cybersecurity remains a priority for... public and private organizations the ability to obtain cybersecurity assistance quickly and...

  5. Developing measurement indices to enhance protection and resilience of U.S. critical infrastructure and key resources.

    SciTech Connect

    Fisher, R. E.; Norman, M.

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  6. Improved Spacecraft Materials for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 m

  7. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    PubMed Central

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation. PMID:24665152

  8. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  9. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  10. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  11. 10 CFR 835.101 - Radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements... to this part published on June 8, 2007 shall be achieved no later than July 9, 2010. (g) An update...

  12. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  13. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  14. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  15. Radiation protection for human interplanetary spaceflight and planetary surface operations

    SciTech Connect

    Clark, B.C. ||

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  16. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  17. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  18. Cyber-Critical Infrastructure Protection Using Real-Time Payload-Based Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Düssel, Patrick; Gehl, Christian; Laskov, Pavel; Bußer, Jens-Uwe; Störmann, Christof; Kästner, Jan

    With an increasing demand of inter-connectivity and protocol standardization modern cyber-critical infrastructures are exposed to a multitude of serious threats that may give rise to severe damage for life and assets without the implementation of proper safeguards. Thus, we propose a method that is capable to reliably detect unknown, exploit-based attacks on cyber-critical infrastructures carried out over the network. We illustrate the effectiveness of the proposed method by conducting experiments on network traffic that can be found in modern industrial control systems. Moreover, we provide results of a throughput measuring which demonstrate the real-time capabilities of our system.

  19. Radiobiology and gray science: flaws in landmark new radiation protections.

    PubMed

    Shrader-Frechette, Kristin

    2005-04-01

    The International Commission on Radiological Protection--whose regularly updated recommendations are routinely adopted as law throughout the globe--recently issued the first-ever ICRP protections for the environment. These draft 2005 proposals are significant both because they offer the commission's first radiation protections for any non-human parts of the planet and because they will influence both the quality of radiation risk assessment and environmental protection, as well as the global costs of nuclear-weapons cleanup, reactor decommissioning and radioactive waste management. This piece argues that the 2005 recommendations are scientifically and ethically flawed, or gray, in at least three respects: first, in largely ignoring scientific journals while employing mainly "gray literature;" second, in relying on non-transparent dose estimates and models, rather than on actual radiation measurements; and third, in ignoring classical ethical constraints on acceptable radiation risk. PMID:15915855

  20. Environmental Protection Agency, Office of Air and Radiation

    MedlinePlus

    ... air pollution, pollution from vehicles and engines, radon, acid rain, stratospheric ozone depletion, climate change, and radiation protection. ... It runs market based programs such as the Acid Rain Program and public/private partnership programs such as ...

  1. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  2. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.

    2014-01-01

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  3. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  4. Radiation protection aspects of EMITEL Encyclopaedia of Medical Physics.

    PubMed

    Stoeva, M; Tabakov, S; Lewis, C; Tabakova, V; Thurston, J; Smith, P

    2015-07-01

    The Encyclopaedia of Medical Physics EMITEL was developed under the EU pilot project European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning. This large reference material includes 3400 articles on 2100 pages supported by thousands of illustrations. All materials are available free at the website, www.emitel2.eu. The articles are grouped in seven categories--physics of: X-ray diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. The radiation protection part of EMITEL includes 450 articles. These were organised in several sub-groups including: nuclear and atomic physics; ionizing radiation interactions and biological effects; radiation detection and measurement; dosimetric quantities and units; and general radiation protection and international bodies. EMITEL project was developed over 3 y and attracted as contributors 250+ senior specialists from 35 countries. After its successful launching, EMITEL is actively used by thousands of professionals around the world. PMID:25848099

  5. Has radiation protection become a health hazard?

    SciTech Connect

    Rockwell, T.

    1996-12-31

    Scientists and engineers have a responsibility to speak out when their findings and recommendations lead to public harm. This can happen in several ways. One is when the media misinterpret or sensationalize a scientific fact misleading the public and creating unwarranted fear. Another is when regulations or public policy decision are purportedly based on scientific data but are, in fact, scientifically invalid. Fear of radiation has been far more detrimental to health than radiation itself. The author knows of no deaths to the public from accidental release of radiation, but the consequences of fear have been deadly.

  6. Viewpoint on proposed radiation-protection standards

    SciTech Connect

    Auxier, J.A.

    1982-01-01

    The proposed revision of 10CFR20 is discussed from a personal perspective. A brief historical review of the development of radiation standards is presented, and arguments against the proposed de minimis level elaborated upon. (ACR)

  7. Using computer-based training to facilitate radiation protection review

    SciTech Connect

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs.

  8. PROTECTING THE NATION'S CRITICAL INFRASTRUCTURE: THE VULNERABILITY OF U.S. WATER SUPPLY SYSTEMS

    EPA Science Inventory

    Terrorism in the United States was not considered a serious threat until the second half of the 1990s. However, recent attacks both at home and abroad have forced government planners to consider the possibility that critical elements of the U.S. infrastructure might in fact be vu...

  9. Simple Benchmark Specifications for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  10. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  11. Space activities and radiation protection of crew members

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel

    Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.

  12. Radiation protection enrollments and degrees, 1979 and 1980

    SciTech Connect

    Gove, R.M.; Little, J.R.; Shirley, D.L.

    1981-07-01

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel.

  13. Radiation Protection for Manned Interplanetary Missions - Radiation Sources, Risks, Remedies

    NASA Astrophysics Data System (ADS)

    Facius, R.; Reitz, G.

    Health risks in interplanetary explorative missions differ in two major features significantly from those during the manned missions experienced so far. For one, presently available technologies lead to durations of such missions significantly longer than so far encountered - with the added complication that emergency returns are ruled out. Thus radiation exposures and hence risks for late radiation sequelae like cancer increase proportional to mission duration - similar like most other health and many technical risks too. Secondly, loss of the geomagnetic shielding available in low earth orbits (LEO) does increase the radiation dose rates from galactic cosmic rays (GCR) since significant fractions of the GCR flux below about 10 GeV/n now can reach the space vehicle. In addition, radiation from solar particle events (SPE) which at most in polar orbit segments can contribute to the radiation exposure during LEO missions now can reach the spaceship unattenuated. Radiation doses from extreme SPEs can reach levels where even early acute radiation sickness might ensue - with the added risks from potentially associated crew performance decrements. In contrast to the by and large predictable GCR contribution, the doses and hence risks from large SPEs can only stochastically be assessed. Mission designers face the task to contain the overall health risk within acceptable limits. Towards this end they have to transport the particle fluxes of the radiation fields in free space through the walls of the spaceship and through the tissue of the astronaut to the radiation sensitive organs. To obtain a quantity which is useful for risk assessment, the radiobiological effectiveness as well as the specific sensitivity of a given organ has to be accounted for in such transport calculations which of course require a detailed knowledge of the spatial distribution and the atomic composition of the surrounding shielding material. In doing so the mission designer encounters two major

  14. Countermeasure for Radiation Protection and Repair

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.

  15. Radiation protection strategies in HERMES missions.

    PubMed

    Bourdeaud'hui, J C; Feuillais, N; Contant, J M

    1991-01-01

    This paper describes the environment of radiations for the HERMES spaceplane and the doses received by men for several missions. Safeguard strategies are then studied to avoid dangerous dose levels. In particular, an anomalously large solar event with eruption of energetic protons may lead to inacceptable dose levels. Strategies, with regards to the orbits characteristics, are discussed. PMID:11537129

  16. Flexible shielding system for radiation protection

    NASA Technical Reports Server (NTRS)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  17. A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure.

    PubMed

    Boys, C A; Robinson, W; Miller, B; Pflugrath, B; Baumgartner, L J; Navarro, A; Brown, R; Deng, Z

    2016-05-01

    A piecewise regression approach was used to objectively quantify barotrauma injury thresholds in two physoclistous species, Murray cod Maccullochella peelii and silver perch Bidyanus bidyanus, following simulated infrastructure passage in a barometric chamber. The probability of injuries such as swimbladder rupture, exophthalmia and haemorrhage, and emphysema in various organs increased as the ratio between the lowest exposure pressure and the acclimation pressure (ratio of pressure change, R(NE:A) ) reduced. The relationship was typically non-linear and piecewise regression was able to quantify thresholds in R(NE:A) that once exceeded resulted in a substantial increase in barotrauma injury. Thresholds differed among injury types and between species but by applying a multispecies precautionary principle, the maintenance of exposure pressures at river infrastructure above 70% of acclimation pressure (R(NE:A) of 0·7) should protect downstream migrating juveniles of these two physoclistous species sufficiently. These findings have important implications for determining the risk posed by current infrastructures and informing the design and operation of new ones. PMID:26991929

  18. Protecting Lunar Colonies From Space Radiation

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-08-01

    When Apollo 7 astronaut Walter Cunningham blasted off from Earth on 11 October 1968, the last thing he was thinking about was radiation risks or any risks at all. “Fear doesn’t even enter your mind because you have confidence in yourself, your own ability, your training, and your knowledge,” Cunningham told Space Weather. As a crew member of the first manned mission in the Apollo program and the first three-man American space mission, Cunningham spent 11 days in Earth orbit, testing life-support, propulsion, and control systems on a redesigned command module. In retrospect, compared with immediate risks such as those associated with launch and reentry, “exposure to radiation, which could have long-term effects—we just never gave that a thought,” Cunningham said.

  19. Protection against ionizing radiation with eicosanoids

    SciTech Connect

    Steel, L.K.; Catravas, G.N.

    1988-01-01

    Prostaglandins (PGs) are extremely diverse in their pharmacological activities. They exhibit both antagonistic as well as cytoprotective properties in the pathogenesis of inflammation. Participation of PGs as chemical mediators in the regulation of immune responses and inflammation are increasingly apparent. The antagonistic properties of PGs have been implicated in a variety of symptoms resulting from exposure to ionizing radiation. Post-irradiation increases in small bowel motility, diarrhea, flatulence, abdominal pain, mucositis, and esophagitis have been attributed, in part, to excessive PG production. In contrast, exogenous PGs, particularly of the E type, have been shown to be cytoprotective against a variety of damaging agents, and a deficiency of endogeneous PG has been suggested to contribute to increase susceptibility to injury. These findings have provided much of the impetus to examine the potential cytoprotective effects of PGs in radiation injury.

  20. Infrared thermography system for transport infrastructures survey with inline local atmospheric parameter measurements and offline model for radiation attenuation evaluations

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Boucher, Vincent

    2014-01-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. It is based on low cost infrared thermal cameras linked with a calculation unit in order to produce a corrected thermal map of the surveyed structure at a selected time step. With the inline version, the data collected feed simplified radiative models running a GPU. With the offline version, the thermal map can be corrected when data are collected under different atmospheric conditions up to foggy night conditions. A model for radiative transmission prediction is proposed and limitations are addressed. Furthermore, the results obtained by image and signal processing methods with data acquired on the transport infrastructure opened to traffic are presented. Finally, conclusions and perspectives for new implementation and new functionalities are presented and discussed.

  1. Toward an ontology framework supporting the integration of geographic information with modeling and simulation for critical infrastructure protection

    SciTech Connect

    Ambrosiano, John J; Bent, Russell W; Linger, Steve P

    2009-01-01

    Protecting the nation's infrastructure from natural disasters, inadvertent failures, or intentional attacks is a major national security concern. Gauging the fragility of infrastructure assets, and understanding how interdependencies across critical infrastructures affect their behavior, is essential to predicting and mitigating cascading failures, as well as to planning for response and recovery. Modeling and simulation (M&S) is an indispensable part of characterizing this complex system of systems and anticipating its response to disruptions. Bringing together the necessary components to perform such analyses produces a wide-ranging and coarse-grained computational workflow that must be integrated with other analysis workflow elements. There are many points in both types of work flows in which geographic information (GI) services are required. The GIS community recognizes the essential contribution of GI in this problem domain as evidenced by past OGC initiatives. Typically such initiatives focus on the broader aspects of GI analysis workflows, leaving concepts crucial to integrating simulations within analysis workflows to that community. Our experience with large-scale modeling of interdependent critical infrastructures, and our recent participation in a DRS initiative concerning interoperability for this M&S domain, has led to high-level ontological concepts that we have begun to assemble into an architecture that spans both computational and 'world' views of the problem, and further recognizes the special requirements of simulations that go beyond common workflow ontologies. In this paper we present these ideas, and offer a high-level ontological framework that includes key geospatial concepts as special cases of a broader view.

  2. Physical basis of radiation protection in space travel

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Cucinotta, Francis A.

    2011-10-01

    The health risks of space radiation are arguably the most serious challenge to space exploration, possibly preventing these missions due to safety concerns or increasing their costs to amounts beyond what would be acceptable. Radiation in space is substantially different from Earth: high-energy (E) and charge (Z) particles (HZE) provide the main contribution to the equivalent dose in deep space, whereas γ rays and low-energy α particles are major contributors on Earth. This difference causes a high uncertainty on the estimated radiation health risk (including cancer and noncancer effects), and makes protection extremely difficult. In fact, shielding is very difficult in space: the very high energy of the cosmic rays and the severe mass constraints in spaceflight represent a serious hindrance to effective shielding. Here the physical basis of space radiation protection is described, including the most recent achievements in space radiation transport codes and shielding approaches. Although deterministic and Monte Carlo transport codes can now describe well the interaction of cosmic rays with matter, more accurate double-differential nuclear cross sections are needed to improve the codes. Energy deposition in biological molecules and related effects should also be developed to achieve accurate risk models for long-term exploratory missions. Passive shielding can be effective for solar particle events; however, it is limited for galactic cosmic rays (GCR). Active shielding would have to overcome challenging technical hurdles to protect against GCR. Thus, improved risk assessment and genetic and biomedical approaches are a more likely solution to GCR radiation protection issues.

  3. Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2015-09-01

    Antennas from various wireless communications systems [e.g. mobile phones base transceiver stations (BTS) and handsets used by passengers, public Internet access, staff radiophone transmitters used between engine-drivers and traffic operators] emitting radiofrequency electromagnetic radiation (RF-EMR) are used inside underground metro public transportation. Frequency-selective exposimetric investigations of RF-EMR exposure inside the metro infrastructure in Warsaw (inside metro cars passing between stations and on platforms) were performed. The statistical parameters of exposure to the E-field were analyzed for each frequency range and for a total value (representing the wide-band result of measurements of complex exposure). The recorded exposimetric profiles showed the dominant RF-EMR sources: handsets and BTS of mobile communication systems (GSM 900 and UMTS 2100) and local wireless Internet access (WiFi 2G). Investigations showed that the GSM 900 system is the dominant source of exposure - BTS (incessantly active) on platforms, and handsets - used by passengers present nearby during the tube drive. The recorded E-field varies between sources (for BTS were: medians - 0.22 V/m and 75th percentile - 0.37 V/m; and for handsets: medians - 0.28 V/m and 75th percentile - 0.47 V/m). Maximum levels (peaks) of exposure recorded from mobile handsets exceeded 10 V/m (upper limit of used exposimeters). Broadband measurements of E-field, including the dominant signal emitted by staff radiophones (151 MHz), showed that the level of this exposure of engine-drivers does not exceed 2.5 V/m. PMID:26444204

  4. 75 FR 61160 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... provide the President through the Secretary of Homeland Security with advice on the security of the... permit. Written comments may be sent to Nancy Wong, Department of Homeland Security, National Protection..., National Protection and Programs Directorate, Department of Homeland Security, 245 Murray Lane, Mail...

  5. Importance of establishing radiation protection culture in Radiology Department.

    PubMed

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  6. Importance of establishing radiation protection culture in Radiology Department

    PubMed Central

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-01-01

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  7. Health protection: Toxic agent and radiation control.

    PubMed Central

    1983-01-01

    It is estimated that of the four million chemical compounds which have been synthesized or isolated from natural materials, more than 55,000 are produced commercially. Approximately 1,000 new compounds are introduced annually; pesticide formulations alone contain about 1,500 active chemical ingredients. Diagnostic x-rays are used extensively in medicine and dentistry. Over 2,000 chemicals are suspected carcinogens in laboratory animals--epidemiologic evidence suggests that 26 of these chemicals and/or industrial processes are carcinogenic in humans. More than 20 agents are known to be associated with birth defects in humans; 47 atmospheric contaminants have been identified in animal studies as recognized carcinogens and 128 as mutagens; and, of the 765 contaminants identified in drinking water, 12 were recognized carcinogens, 31 suspected carcinogens, and 59 mutagens. Radiation has known carcinogenic and genetic effects at significant levels of exposure. Problems with toxic agents and radiation sources occur not only in industry, but also in medical and dental care (x-rays and drugs), agriculture (pesticides and herbicides), Government activities (biological and chemical agents), consumer products (incorrect use of consumer products which contain toxic substances), and natural sources (fungal products). PMID:6414020

  8. A COSPAR/ILWS roadmap towards advanced space weather science to protect society's technological infrastructure

    NASA Astrophysics Data System (ADS)

    Schrijver, K.; Kauristie, K.

    2014-12-01

    With the rapid development of the technological infrastructure upon which modern society depends comes a growing appreciation of the hazards presented by the phenomena around our home planet that we call space weather. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant an international approach with feasible, affordable solutions. COSPAR and the steering committee of the International Living With a Star program tasked a multi-disciplinary, international team with the development of a roadmap with the goal of demonstrably improving our observational capabilities for, scientific understanding of, and ability to forecast the various aspects of space weather. We summarize the roadmap, its top-priority recommendations to achieve its goals, and their underlying rationale. More information on the roadmap, including the team's full membership, can be found at http://www.lmsal.com/~schryver/COSPARrm.

  9. A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Jöckel, Patrick; Tost, Holger; Kunze, Markus; Gellhorn, Catrin; Brinkop, Sabine; Frömming, Christine; Ponater, Michael; Steil, Benedikt; Lauer, Axel; Hendricks, Johannes

    2016-06-01

    The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.

  10. Research issues for radiation protection for man during prolonged spaceflight

    SciTech Connect

    Conklin, J.J.; Hagan, M.P.

    1987-01-01

    For the purpose of this article, radiation protection is defined as any physical, chemical, biological, or pharmacological modality that accomplishes the goal of protecting the astronaut from radiation hazard or increases his ability to assist other astronauts or spacecraft. Thoughtful examination of these largely operational considerations led to identification of medical and radiobiological research required to support the industrialization of near-Earth space. The scope of these research efforts involves thematic issues that have been defined after review of the available preliminary research from several scientific disciplines that relate to the problem of radiation protection in space. This article serves to highlight areas of research requiring further investigation. While certain of these needs for research are driven by the planned orbits involving small designated astronaut populations and well-defined durations that may be specific to the military, it is the use of geostationary orbits, permanent lunar basing, and the proposed Mars mission that form the primary basis for these operational considerations.

  11. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  12. [Study on Intelligent Automatic Tracking Radiation Protection Curtain].

    PubMed

    Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong

    2015-09-01

    In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area. PMID:26904877

  13. Radiation Protection in the NLC Test Accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  14. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  15. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  16. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  17. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  18. Synchrotron radiation shielding design and ICRP radiological protection quantities.

    PubMed

    Bassey, Bassey; Moreno, Beatriz; Chapman, Dean

    2015-06-01

    Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision. PMID:25906251

  19. Health physics/radiation protection enrollments and degrees, 1987

    SciTech Connect

    Not Available

    1988-06-01

    The ''Health Physics/Radiation Protection Enrollments and Degrees Survey, 1987'' included 59 institutions with programs offering a major in health physics or an option within another major with equivalent course work which will prepare the graduate to take a major role in conducting, coordinating, directing, or planning a program for the evaluation and control of radiation hazards, i.e., programs which prepare graduates to perform as health physicists. This report discusses the results of this survey.

  20. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation.

    PubMed

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-12-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm²), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  1. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    PubMed Central

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-01-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  2. Setting standards for radiation protection: A time for change

    SciTech Connect

    Patterson, H.W.; Hickman, D.P.

    1996-01-01

    In 1950, the International Commission on Radiation Protection (ICRP) recommended that ``certain radiation effects are irreversible and cumulative.`` Furthermore, the ICRP ``strongly recommended that every effort be made to reduce exposures to all types of ionizing radiations to the lowest possible level.`` Then in 1954, the ICRP published its assumption that human response to ionizing radiation was linear with dose, together with the recommendation that exposures be kept as low as practicable. These concepts are still the foundation of radiation protection policy today, even though, as Evans has stated, ``The linear non-threshold (LNT) model was adopted specifically on a basis of mathematical simplicity, not from radio-biological data.... Groups responsible for setting standards for radiation protection should be abreast of new developments and new data as they are published; however, this does not seem to be the case. For example, there have been many reports in scientific, peer-reviewed, and other publications during the last three decades that have shown the LNT model and the policy of As Low As Reasonably Achievable (ALARA) to be invalid. However, none of these reports has been refuted or even discussed by standard-setting groups. We believe this mandates a change in the standard-setting process.

  3. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    SciTech Connect

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-critical monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).

  4. A roadmap towards advanced space weather science to protect society's technological infrastructure

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus

    As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.

  5. A roadmap towards advanced space weather science to protect society's technological infrastructure: Panel Discussion 2

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus; Kauristie, Kirsti

    This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.

  6. A roadmap towards advanced space weather science to protect society's technological infrastructure: Panel Discussion 1

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus; Kauristie, Kirsti

    This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.

  7. A roadmap towards advanced space weather science to protect society's technological infrastructure: Panel Discussion 3

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus; Kauristie, Kirsti

    This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.

  8. Ascorbic acid (AA) metabolism in protection against radiation damage

    SciTech Connect

    Rose, R.C.; Koch, M.J.

    1986-03-05

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with /sup 14/C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the /sup 14/C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of < 3 minutes compared with nonirradiated samples (t/sub 1/2/ > 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of /sup 14/C-AFR disproportionate, with the net effect of /sup 14/C-dehydroascorbic acid formation from /sup 14/C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23/sup 0/C in the presence of 15 ..mu..M /sup 14/C-AA. Samples of supernatant maintained at 100/sup 0/C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues.

  9. CAD-based radiation protection and shielding in space

    SciTech Connect

    Appleby, M.H.

    1991-01-01

    In the not-too-distant future, astronauts will begin living and working on space station Freedom (SSF), eventually establishing a permanent presence in space. Beyond Freedom, the National Aeronautics and Space Administration (NASA) has set its sights on returning to and eventually establishing outposts on the moon and Mars. Without appropriate methods of identifying protection deficiencies, spacecraft designers often overestimate or defer shielding solutions in both cases burdening the program. To avoid possible penalties such as increased mass, complexity, and cost, radiation analysis should be conducted as part of the preliminary design process. An innovative radiation assessment system combining computer-aided design (CAD) capabilities with established NASA transport codes has been developed permitting fast, accurate analysis of spacecraft. The use of this automated analytical tool the Boeing Radiation Exposure Model (Brem) is discussed in this paper, relative to spacecraft design and the optimization of radiation shielding. Results obtained from recently completed radiation analysis of space station Freedom are also discussed.

  10. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Ku, Emery M.

    2013-06-01

    The OptaSense® Distributed Acoustic Sensing (DAS) technology can turn any cable with single-mode optical fiber into a very large and densely sampled acoustic/seismic sensor array—covering up to a 50 km aperture per system with "virtual" sensor separations as small as 1 meter on the unmodified cable. The system uses Rayleigh scattering from the imperfections in the fiber to return the optical signals measuring local fiber strain from seismic or air and water acoustic signals. The scalable system architecture can provide border monitoring and high-security perimeter and linear asset protection for a variety of industries—from nuclear facilities to oil and gas pipelines. This paper presents various application architectures and system performance examples for detection, localization, and classification of personnel footsteps, vehicles, digging and tunneling, gunshots, aircraft, and earthquakes. The DAS technology can provide a costeffective alternative to unattended ground sensors and geophone arrays, and a complement or alternative to imaging and radar sensors in many applications. The transduction, signal processing, and operator control and display technology will be described, and performance examples will be given from research and development testing and from operational systems on pipelines, critical infrastructure perimeters, railroads, and roadways. Potential new applications will be discussed that can take advantage of existing fiber-optic telecommunications infrastructure as "the sensor"—leading to low-cost and high-coverage systems.