Science.gov

Sample records for radiations lung cancers

  1. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... whether surgery will be helpful for you EXTERNAL BEAM RADIATION THER APY External beam radiation therapy is the safe delivery of high- ... your cancer. A linear accelerator focuses the radiation beam to a precise location in your body for ...

  2. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    PubMed Central

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen; Weissleder, Ralph; Jacks, Tyler

    2010-01-01

    Purpose To image a genetically engineered mouse model of non-small cell lung cancer with micro-CT to measure tumor response to radiation therapy. Methods and Materials The Cre-loxP system was utilized to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers five-fold. Conclusions Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer. PMID:20206017

  3. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    SciTech Connect

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-03-15

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  4. Lung cancer and angiogenesis imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Zhao, Jun; Sun, Jianqi; Gu, Xiang; Xiao, Tiqiao; Liu, Ping; Xu, Lisa X.

    2010-04-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  5. Lung cancer in relation to airborne radiation levels

    SciTech Connect

    Helsing, K.J.; Natta, P.V.; Comstock, G.W. ); Kalin, Heidi ) Chee, E. )

    1992-01-01

    A 1986 aeroradiometric survey of the eastern two-thirds of Washington County, Maryland provided and opportunity to study lung cancers in relation to gamma radiation levels. In the first approach, lung cancer deaths between 1963 and 1975 in four areas of the county categorized as low, moderately low, moderately high, and high showed relative risks of 1.00, 0.93, 1.01, and 1.43, respectively, after adjustment of sex, age, and smoking. A second approach used lung cancer cases diagnosed between 1975 and 1989, controls matched to cases by race, sex, and age, and aerometric radiation readings above the individual residences. In four levels of increasing gamma radiation, odds ratios adjusted for smoking were 1.00, 0.84, 0.90, and 0.92, respectively. No differences were statistically significant.

  6. Role of radiation therapy in lung cancer management - a review.

    PubMed

    Shi, J-G; Shao, H-J; Jiang, F-E; Huang, Y-D

    2016-07-01

    Lung cancer is the leading cause of cancer death worldwide. Furthermore, more than 50% of lung cancer patients are found affected by distant metastases at the time of diagnosis. On the other hand, 20% of these patients are without regional spread and are good candidates for surgical operation. The remaining 30% represent an intermediate group whose tumors have metastasized up to regional lymph nodes. These remain 30% are the most appropriate candidates for radiation therapy. These patients are also called as "locally advanced lung cancer" or stage III lung cancer patients. In these patients strategy of combination therapy viz. radiation therapy in combination with chemotherapy is also tried by various groups in the recent past for this better management. However, long-term survival is still poor with a 5-year survival in 5-25% of patients. During the last decades, there has been a development in radiation strategies. The present review article focuses on different approaches to optimize radiotherapy for these patients. PMID:27466995

  7. Challenges in defining radiation pneumonitis in patients with lung cancer

    SciTech Connect

    Kocak, Zafer; Evans, Elizabeth S.; Zhou Sumin; Miller, Keith L.; Folz, Rodney J.; Shafman, Timothy D.; Marks, Lawrence B. . E-mail: marks@radonc.duke.edu

    2005-07-01

    Purpose: To assess the difficulty of assigning a definitive clinical diagnosis of radiation (RT)-induced lung injury in patients irradiated for lung cancer. Methods: Between 1991 and 2003, 318 patients were enrolled in a prospective study to evaluate RT-induced lung injury. Only patients with lung cancer who had a longer than 6-month follow-up (251 patients) were considered in the current analysis. Of these, 47 of 251 patients had Grade {>=}2 (treated with steroids) increasing shortness of breath after RT, thought possibly consistent with pneumonitis/fibrosis. The treating physician, and one to three additional reviewing physicians, evaluated the patients or their medical records, or both. The presence or absence of confounding clinical factors that made the diagnosis of RT-induced uncertain lung injury were recorded. Results: Thirty-one of 47 patients (66%) with shortness of breath had 'classic' pneumonitis, i.e., they responded to steroids and had a definitive diagnosis of pneumonitis. In 13 of 47 patients (28%), the diagnosis of RT-induced toxicity was confounded by possible infection; exacerbation of preexisting lung disease (chronic obstructive pulmonary disease); tumor regrowth/progression; and cardiac disease in 6, 8, 5, and 1 patients, respectively (some of the patients had multiple confounding factors and were counted more than once). An additional 3 patients (6%) had progressive shortness of breath and an overall clinical course more consistent with fibrosis. All 3 had evidence of bronchial stenosis by bronchoscopy. Conclusions: Scoring of radiation pneumonitis was challenging in 28% of patients treated for lung cancer owing to confounding medical conditions. Recognition of this uncertainty is needed and may limit our ability to understand RT-induced lung injury.

  8. Multidisciplinary lung cancer meetings: improving the practice of radiation oncology and facing future challenges.

    PubMed

    Campbell, Belinda A; Ball, David; Mornex, Françoise

    2015-02-01

    Clinical guidelines widely recognize the importance of multidisciplinary meetings (MDM) in the optimal care of lung cancer patients. The published literature suggest that dedicated Lung Cancer MDM lead to increased treatment utilization rates and improved survival outcomes for patients with lung cancer. For radiation oncologists, Lung Cancer MDM have been proven to support evidence-based practice and improve the utilization of radiotherapy. Lung Cancer MDM also allow for education and promotion of specialty radiotherapy services. The fast pace of modern medicine is also presenting new challenges for the multidisciplinary lung cancer team, and technological advances are likely to lead to new changes in the structure of traditional Lung Cancer MDM. PMID:25581058

  9. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  10. Lung cancer.

    PubMed

    Akhurst, Tim; MacManus, Michael; Hicks, Rodney J

    2015-04-01

    (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) plays a key role in the evaluation of undiagnosed lung nodules, when primary lung cancer is strongly suspected, or when it has already been diagnosed by other techniques. Although technical factors may compromise characterization of small or highly mobile lesions, lesions without apparent FDG uptake can generally be safely observed, whereas FDG-avid lung nodules almost always need further evaluation. FDG-PET/CT is now the primary staging imaging modality for patients with lung cancer who are being considered for curative therapy with either surgery or definitive radiation therapy. PMID:25829084

  11. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  12. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  13. Quality of Life in Patients Undergoing Radiation Therapy for Primary Lung Cancer, Head and Neck Cancer, or Gastrointestinal Cancer

    ClinicalTrials.gov

    2016-04-19

    Anal Cancer; Colorectal Cancer; Esophageal Cancer; Extrahepatic Bile Duct Cancer; Gallbladder Cancer; Gastric Cancer; Head and Neck Cancer; Liver Cancer; Lung Cancer; Pancreatic Cancer; Small Intestine Cancer

  14. Endobronchial radiation therapy (EBRT) in the management of lung cancer

    SciTech Connect

    Roach, M. III; Leidholdt, E.M. Jr.; Tatera, B.S.; Joseph, J. )

    1990-06-01

    Between October 1987 and November 1988, 19 endobronchial Iridium-192 line source placements were attempted in 17 patients with advanced incurable lung cancer. Approximately 30 Gy was delivered to the endobronchus using a low dose rate (LDR) afterloading technique delivering a mean dose of 70 cGy/hr at 5 mm. Improvement in subjective symptoms was noted in 67% of evaluable patients whereas objective responses defined by chest X ray and bronchoscopy were noted in 26% and 60%, respectively. No significant morbidity was observed. The radiation exposure to health care workers was low ranging from 10 to 40 mRem per treatment course with most of the staff receiving less than 10 mRem per treatment course (minimal detectable level 10 mRem). The results of this series are compared with selected series using low dose rate as well as intermediate dose rate (IDR) and high dose rate (HDR) endobronchial radiation therapy (EBRT). Based on bronchoscopic responses from the selected series reviewed, both HDR low total dose per treatment (range 7.5-10 Gy) and LDR high total dose per treatment (range 30-50 Gy) are effective in palliating the vast majority of patients with endobronchial lesions. Intermediate dose rate is also effective using fractions similar to high dose rate but total dose similar to low dose rate. The efficacy of endobronchial radiation therapy in the palliative setting suggest a possible role for endobronchial radiation therapy combined with external beam irradiation with or without chemotherapy in the initial management of localized lung cancer. Defining the optimal total dose, dose rate, and the exact role of endobronchial radiation therapy in the management of lung cancer will require large cooperative trials with standardization of techniques and definitions.

  15. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  16. Metastatic cancer to the lung

    MedlinePlus

    ... Bladder cancer Breast cancer Colon cancer Kidney cancer Neuroblastoma Prostate cancer Sarcoma Wilms tumor Symptoms Symptoms may ... Breast cancer Cancer Chemotherapy Colon cancer Lung cancer Neuroblastoma Prostate cancer Radiation therapy Wilms tumor Update Date ...

  17. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of ... in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  18. Lung cancer

    PubMed Central

    Dong, Jie; Kislinger, Thomas; Jurisica, Igor; Wigle, Dennis A.

    2010-01-01

    High-throughput genomic data for both lung development and lung cancer continue to accumulate. Significant molecular intersection between these two processes has been hypothesized due to overlap in phenotypes and genomic variation. Examining the network biology of both cancer and development of the lung may shed functional light on the individual signaling modules involved. Stem cell biology may explain a portion of this network intersection and consequently studying lung organogenesis may have relevance for understanding lung cancer. This review summarizes our understanding of the potential overlapping mechanisms involved in lung development and lung tumorigenesis. PMID:19202349

  19. Second Primary Lung Cancers Demonstrate Better Survival with Surgery than Radiation.

    PubMed

    Taioli, Emanuela; Lee, Dong-Seok D; Kaufman, Andrew; Wolf, Andrea; Rosenzweig, Kenneth; Gomez, Jorge; Flores, Raja M

    2016-01-01

    Patients who have had curative surgery for lung cancer are at the highest risk of developing a new lung cancer. Individual studies are usually underpowered to describe the clinical characteristics and outcomes in second primary lung cancer (SPLC). The goal of this study is to determine which treatment is best associated with survival in patients who develop a new primary lung cancer. All pathologically proven stage I lung cancer cases that received cancer-directed surgery included in the Surveillance Epidemiology and End Results database between 2004 and 2010 were selected. Cases that received radiation therapy were excluded. Cases that developed a SPLC 6 or more months after the diagnosis of the first cancer were analyzed. The original data set consisted of 9564 stage I lung cancer cases treated with surgery; 520 of them developed a second primary, and completed data were available for 494 of them. Stage I disease was diagnosed in 272 patients with SPLCs (58.5%); 45.8% of these underwent cancer surgery alone, and 31.6% received radiation alone. Surgery was performed more frequently in early stages and younger patients. Surgical patients had statistically significant longer survival than patients treated with radiation (log-rank P < 0.0001) or not treated with surgery or radiation (log-rank P < 0.0001). The incidence of SPLCs was 5.4%. Stage I second primaries had improved survival when compared with later stage disease, and surgery conferred an increased survival benefit as compared with radiation. PMID:27568161

  20. Radiation and smoking effects on lung cancer incidence among atomic bomb survivors.

    PubMed

    Furukawa, Kyoji; Preston, Dale L; Lönn, Stefan; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Egawa, Hiromi; Tokuoka, Shoji; Ozasa, Kotaro; Kasagi, Fumiyoshi; Kodama, Kazunori; Mabuchi, Kiyohiko

    2010-07-01

    While radiation increases the risk of lung cancer among members of the Life Span Study (LSS) cohort of atomic bomb survivors, there are still important questions about the nature of its interaction with smoking, the predominant cause of lung cancer. Among 105,404 LSS subjects, 1,803 primary lung cancer incident cases were identified for the period 1958-1999. Individual smoking history information and the latest radiation dose estimates were used to investigate the joint effects of radiation and smoking on lung cancer rates using Poisson grouped survival regression methods. Relative to never-smokers, lung cancer risks increased with the amount and duration of smoking and decreased with time since quitting smoking at any level of radiation exposure. Models assuming generalized interactions of smoking and radiation fit markedly better than simple additive or multiplicative interaction models. The joint effect appeared to be super-multiplicative for light/moderate smokers, with a rapid increase in excess risk with smoking intensity up to about 10 cigarettes per day, but additive or sub-additive for heavy smokers smoking a pack or more per day, with little indication of any radiation-associated excess risk. The gender-averaged excess relative risk per Gy of lung cancer (at age 70 after radiation exposure at 30) was estimated as 0.59 (95% confidence interval: 0.31-1.00) for nonsmokers with a female : male ratio of 3.1. About one-third of the lung cancer cases in this cohort were estimated to be attributable to smoking while about 7% were associated with radiation. The joint effect of smoking and radiation on lung cancer in the LSS is dependent on smoking intensity and is best described by the generalized interaction model rather than a simple additive or multiplicative model. PMID:20681801

  1. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  2. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  3. COX-2 inhibitor as a radiation enhancer: new strategies for the treatment of lung cancer.

    PubMed

    Saha, Debabrata; Pyo, Hongryull; Choy, Hak

    2003-08-01

    Lung cancer is one of the most common causes of cancer-related mortality throughout the world, and the incidence continues to increase. Smoking is the number one cause of lung cancer. Emerging data have implicated cyclooxygenase-2 (COX-2) and prostanoid production in the pathogenesis of lung carcinoma. In invasive lung tumors, COX-2 upregulation has been reported in up to 90% of cases. COX-2 upregulation is an early event in the development of non-small-cell lung cancer and may be integral to the development of new blood vessels and production of specific proteases that are critical to growth and spread of lung malignancies. COX-2 inhibitors are known to enhance the chemosensitivity in COX-2 overexpressing lung cancer cell lines. Recently, we have demonstrated that selective COX-2 inhibitors also enhance the effect of radiation in COX-2 overexpressed cells. Therefore, inhibitors of COX-2 in combination with chemoradiation therapy may be an alternative strategy that can be tested in clinical trials. The combination of COX-2 inhibitors and radiation suggest a complementary strategy to target angiogenesis while potentially minimizing the impact on quality of life. Currently, several groups are conducting clinical trials in cervix cancer, lung cancer, and brain tumors, using inhibitors of COX-2 in combination with chemotherapy and radiation therapy. These clinical trials will help to elucidate the role of this interesting class. PMID:12902860

  4. What Is Lung Cancer?

    MedlinePlus

    ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ... lung cancer. For more information, visit the National Cancer Institute’s Lung Cancer. Previous Basic Information Basic Information Basic Information ...

  5. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  6. Impact of Preexisting Interstitial Lung Disease on Acute, Extensive Radiation Pneumonitis: Retrospective Analysis of Patients with Lung Cancer

    PubMed Central

    Ozawa, Yuichi; Abe, Takefumi; Omae, Minako; Matsui, Takashi; Kato, Masato; Hasegawa, Hirotsugu; Enomoto, Yasunori; Ishihara, Takeaki; Inui, Naoki; Yamada, Kazunari; Yokomura, Koshi; Suda, Takafumi

    2015-01-01

    Introduction This study investigated the clinical characteristics and predictive factors for developing acute extended radiation pneumonitis with a focus on the presence and radiological characteristics of preexisting interstitial lung disease. Methods Of 1429 irradiations for lung cancer from May 2006 to August 2013, we reviewed 651 irradiations involving the lung field. The presence, compatibility with usual interstitial pneumonia, and occupying area of preexisting interstitial lung disease were retrospectively evaluated by pretreatment computed tomography. Cases of non-infectious, non-cardiogenic, acute respiratory failure with an extended bilateral shadow developing within 30 days after the last irradiation were defined as acute extended radiation pneumonitis. Results Nine (1.4%) patients developed acute extended radiation pneumonitis a mean of 6.7 days after the last irradiation. Although preexisting interstitial lung disease was found in 13% of patients (84 patients), 78% of patients (7 patients) with acute extended radiation pneumonitis cases had preexisting interstitial lung disease, which resulted in incidences of acute extended radiation pneumonitis of 0.35 and 8.3% in patients without and with preexisting interstitial lung disease, respectively. Multivariate logistic analysis indicated that the presence of preexisting interstitial lung disease (odds ratio = 22.6; 95% confidence interval = 5.29–155; p < 0.001) and performance status (≥2; odds ratio = 4.22; 95% confidence interval = 1.06–20.8; p = 0.049) were significant predictive factors. Further analysis of the 84 patients with preexisting interstitial lung disease revealed that involvement of more than 10% of the lung field was the only independent predictive factor associated with the risk of acute extended radiation pneumonitis (odds ratio = 6.14; 95% confidence interval = 1.0–37.4); p = 0.038). Conclusions Pretreatment computed tomography evaluations of the presence of and area size occupied

  7. Radiation and Smoking Effects on Lung Cancer Incidence by Histological Types Among Atomic Bomb Survivors

    PubMed Central

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2014-01-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1–4.6) for small-cell carcinoma, 0.75 (0.3–1.3) for adenocarcinoma, and 0.27 (0–1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses. PMID:22862780

  8. Radiation and smoking effects on lung cancer incidence by histological types among atomic bomb survivors.

    PubMed

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2012-09-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1-4.6) for small-cell carcinoma, 0.75 (0.3-1.3) for adenocarcinoma, and 0.27 (0-1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses. PMID:22862780

  9. Impact of Radiation in Critical Organs in Radiotherapy Treatment of Breast and Lung Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil; Chen, Chiu-Hao; Dhungana, Sudarshan

    2010-02-01

    Various 3D conformal radiotherapy (3DCRT) techniques are commonly used in the treatment of cancerous tumors at appropriate prescription doses (PDs). The purpose of this study was to analyze the impact of radiation in heart and lungs in left breast and left lung cancer patients treated using 3DCRT techniques. Treatment plans for the eight breast cancer patients (n=8), eight lung cancer patients at early stage (m=8), and eight lung cancer patients at stage II and III (k=8) were evaluated. Relative complication probabilities (RCPs) for the irradiated organs were computed from the plans using HART [Med. Phys. 36, p.2547 (2009)] program at PD. The RCPs were found to be (i) 2.3% (n=8, PD=56 Gy), 6.4% (m=8, PD=30.7 Gy), and 16.7% (k=8, PD=54.8 Gy) for the heart, (ii) 1% (n=6, PD=58.4 Gy) for the left lung, and (iii) 7% (m=6, PD=31 Gy) and 5.3% (k=8, PD=54.8 Gy) for the whole lung. Homogeneous target coverage and improved dose conformality were the major advantages in the treatment of breast cancer. Therefore, simple 3DCRT based whole-breast irradiation and partial lung treatment techniques can offer promising results while adequately sparing the organs in the treatment of breast and lung cancers. )

  10. Exposure to low levels of ionizing radiation and lung cancer risk in Florida

    SciTech Connect

    Stockwell, H.G.; Lyman, G.H.; Waltz, J.

    1986-09-01

    The phosphate deposits of central Florida contain levels of uranium and its daughter products 30-60 times greater than average soils. A case-control study was conducted to assess the risk of lung cancer associated with living on these phosphateic soils. Using the records of the state-wide Florida Cancer Data System to address this issue, all cases of lung cancer among Florida residents in 1981 were identified (n = 7049). Information was obtained regarding residence, age, sex, race, and smoking habits. Controls consisted of 6643 individuals with cancers of the colon or rectum. Residents of the central Florida phosphate region experienced a significant increase in lung cancer risk compared to other Florida residents (odds ratio (OR) = 1.4). Excess risks appeared concentrated among squamous cell cancer (OR = 1.6) and small cell cancer (OR = 1.6). When smoking habits as well as residential area was considered, no significant excess risk, associated with residence, was observed among nonsmokers or light smokers. Area residents smoking a pack or more per day experienced a 70% increase in lung cancer risk compared to individuals smoking a similar amount but living elsewhere. Highest risks were observed among persons with squamous cell cancer (OR = 2.1) and small cell cancer (OR = 2.5) who smoked more than 40 cigarettes a day. Results suggest exposure to low levels of ionizing radiation increases the lung cancer risk of residents of this area.

  11. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  12. Stereotactic Body Radiation Therapy in Treating Patients With Metastatic Breast Cancer, Non-small Cell Lung Cancer, or Prostate Cancer

    ClinicalTrials.gov

    2016-06-17

    Male Breast Carcinoma; Prostate Adenocarcinoma; Recurrent Breast Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Prostate Carcinoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Prostate Cancer

  13. Adaptive Stereotactic Body Radiation Therapy Planning for Lung Cancer

    SciTech Connect

    Qin, Yujiao; Zhang, Fan; Yoo, David S.; Kelsey, Chris R.; Yin, Fang-Fang; Cai, Jing

    2013-09-01

    Purpose: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). Methods and Materials: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (P{sub NON}) and adaptive plan (P{sub ADP}), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between P{sub NON} and P{sub ADP} for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (d{sub T-OAR}), initial internal target volume (ITV{sub 1}), ITV change (ΔITV), and effective ITV diameter change (Δd{sub ITV}). Results: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from −59.6% to 13.0%, with a mean (±SD) of −21.0% (±21.4%). On average of all patients, P{sub ADP} resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. Δd{sub ITV}/d{sub T-OAR} was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between Δd{sub ITV}/d{sub T-OAR} and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. Conclusions: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.

  14. CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation

    PubMed Central

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195

  15. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines. PMID:26667337

  16. Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation.

    PubMed

    Zheng, Hang; Wang, Miao; Wu, Jing; Wang, Zhi-Ming; Nan, Hai-Jun; Sun, He

    2016-06-01

    Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation. PMID:26999331

  17. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries. PMID:27535387

  18. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  19. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  20. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-02-08

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  1. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    SciTech Connect

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs.

  2. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... for Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  3. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  4. Towards intelligent tumor tracking and setup verification in radiation therapy for lung cancer

    NASA Astrophysics Data System (ADS)

    Xu, Qianyi

    Lung cancer is the most deadly cancer in the United States. Radiation therapy uses ionizing radiation with high energy to destroy lung tumor cells by damaging their genetic material, preventing those cells from reproducing. The most challenging aspect of modern radiation therapy for lung cancer is the motion of lung tumors caused by patient breathing during treatment. Most gating based radiotherapy derives the tumor motion from external surrogates and generates a respiratory signal to trigger the beam. We propose a method that monitors internal diaphragm motion, which can provide a respiratory signal that is more highly correlated to lung tumor motion compared to the external surrogates. We also investigate direct tracking of the tumor in fluoroscopic video imagery. We tracked fixed tumor contours in fluoroscopic videos for 5 patients. The predominant tumor displacements are well tracked based on optical flow. Some tumors or nearby anatomy features exhibit severe nonrigid deformation, especially in the supradiaphragmatic region. By combining Active Shape Models and the respiratory signal, the deformed contours are tracked within a range defined in the training period. All the tracking results are validated by a human expert and the proposed methods are promising for applications in radiotherapy. Another important aspect of lung patient treatment is patient setup verification, which is needed to reduce inter- and intra-fractions geometry uncertainties and ensure precise dose delivery. Currently, there is no universally accepted method for lung patient verification. We propose to register 4DCT and 2D x-ray images taken before treatment to derive the couch shifts necessary for precise radiotherapy. The proposed technique leads to improved patient care.

  5. Prediction of radiation-induced changes in the lung after stereotactic body radiation therapy of non-small-cell lung cancer

    SciTech Connect

    Kyas, Ina . E-mail: i.kyas@dkfz.de; Hof, Holger; Debus, Juergen; Schlegel, Wolfgang; Karger, Christian P.

    2007-03-01

    Purpose: To estimate the risk of radiation-induced changes in the lung before single-dose treatment (stereotactic body radiation therapy [SBRT]) of lung cancer, the quantitative dose-response and volume-response relations must be known. Methods and Materials: A total of 64 patients treated for non-small-cell lung cancer with single doses of 20-30 Gy were classified according to the occurrence or nonoccurrence of perifocal changes in the lung detected by CT. Patients without toxic events in the lung were required to have {>=}6 months of follow-up. The mean dose (D{sub mean}) in the ipsilateral lung and the volume receiving >7 or 10 Gy (V{sub 7} and V{sub 10}, respectively) were used to calculate the dose-response and volume-response curves. The predictive value of additional variables was also investigated. Results: Of the 64 patients, 83% exhibited the selected endpoint. The tolerance values at a 50% probability of toxic events were 1.2 {+-} 0.7 Gy for the D{sub mean} and 5.8 {+-} 3.0% and 3.1 {+-} 2.0% for V{sub 7} and V{sub 10}, respectively. A nonsignificant shift to higher doses was seen for the dose-response curve for the upper compared with the lower part of the lung. Conclusion: The D{sub mean}, V{sub 7}, and V{sub 10} can be used to predict the risk of lung toxicity after SBRT treatment of non-small-cell lung cancer. Because of the lack of patients with low prescribed doses, however, the related uncertainty of this prediction is still relatively large. The D{sub mean}, V{sub 7}, and V{sub 10} are equally well suited. The additional investigated variables did not provide significant advantages. The lower part of the lung appears to be more radiosensitive than the upper.

  6. Target volume definition for three-dimensional conformal radiation therapy of lung cancer.

    PubMed

    Armstrong, J G

    1998-06-01

    Three-dimensional conformal radiation therapy (3DCRT) is a mode of high precision radiotherapy which has the potential to improve the therapeutic ratio of radiation therapy for locally advanced non-small cell lung cancer. The preliminary clinical experience with 3DCRT has been promising and justifies further endeavour to refine its clinical application and ultimately test its role in randomized trials. There are several steps to be taken before 3DCRT evolves into an effective single modality for the treatment of lung cancer and before it is effectively integrated with chemotherapy. This article addresses core issues in the process of target volume definition for the application of 3DCRT technology to lung cancer. The International Commission on Radiation Units and Measurements Report no. 50 definitions of target volumes are used to identify the factors influencing target volumes in lung cancer. The rationale for applying 3DCRT to lung cancer is based on the frequency of failure to eradicate gross tumour with conventional approaches. It may therefore be appropriate to ignore subclinical or microscopic extensions when designing a clinical target volume, thereby restricting target volume size and allowing dose escalation. When the clinical target volume is expanded to a planning target volume, an optimized margin would result in homogeneous irradiation to the highest dose feasible within normal tissue constraints. To arrive at such optimized margins, multiple factors, including data acquisition, data transfer, patient movement, treatment reproducibility, and internal organ and target volume motion, must be considered. These factors may vary significantly depending on technology and techniques, and published quantitative analyses are no substitute for meticulous attention to detail and audit of performance. PMID:9849380

  7. Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  8. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  9. Stereotactic Ablative Body Radiation Therapy for Octogenarians With Non-Small Cell Lung Cancer

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Eriguchi, Takahisa; Kaneko, Takeshi; Morita, Satoshi; Handa, Hiroshi; Aoki, Yousuke; Oku, Yohei; Kunieda, Etsuo

    2013-06-01

    Purpose: To retrospectively investigate treatment outcomes of stereotactic ablative body radiation therapy (SABR) for octogenarians with non-small cell lung cancer (NSCLC). Methods and Materials: Between 2005 and 2012, 109 patients aged ≥80 years with T1-2N0M0 NSCLC were treated with SABR: 47 patients had histology-unproven lung cancer; 62 patients had pathologically proven NSCLC. The prescribed doses were either 50 Gy/5 fractions for peripheral tumors or 40 Gy/5 fractions for centrally located tumors. The treatment outcomes, toxicities, and the correlating factors for overall survival (OS) were evaluated. Results: The median follow-up duration after SABR was 24.2 (range, 3.0-64.6) months. Only limited toxicities were observed, except for 1 grade 5 radiation pneumonitis. The 3-year local, regional, and distant metastasis-free survival rates were 82.3%, 90.1%, and 76.8%, respectively. The OS and lung cancer-specific survival rates were 53.7% and 70.8%, respectively. Multivariate analysis revealed that medically inoperable, low body mass index, high T stage, and high C-reactive protein were the predictors for short OS. The OS for the operable octogenarians was significantly better than that for inoperable (P<.01). Conclusions: Stereotactic ablative body radiation therapy for octogenarians was feasible, with excellent OS. Multivariate analysis revealed that operability was one of the predictors for OS. For medically operable octogenarians with early-stage NSCLC, SABR should be prospectively compared with resection.

  10. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    SciTech Connect

    Meng, Xue; Frey, Kirk; Matuszak, Martha; Paul, Stanton; Ten Haken, Randall; Yu, Jinming; Kong, Feng-Ming

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL) was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.

  11. Radiation risks in lung cancer screening programs: a comparison with nuclear industry workers and atomic bomb survivors.

    PubMed

    McCunney, Robert J; Li, Jessica

    2014-03-01

    The National Lung Cancer Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) scan reduced lung cancer and overall mortality by 20% and 7%, respectively. The LDCT scanning involves an approximate 2-mSv dose, whereas full-chest CT scanning, the major diagnostic study used to follow up nodules, may involve a dose of 8 mSv. Radiation associated with CT scanning and other diagnostic studies to follow up nodules may present an independent risk of lung cancer. On the basis of the NLST, we estimated the incidence and prevalence of nodules detected in screening programs. We followed the Fleischner guidelines for follow-up of nodules to assess cumulative radiation exposure over 20- and 30-year periods. We then evaluated nuclear worker cohort studies and atomic bomb survivor studies to assess the risk of lung cancer from radiation associated with long-term lung cancer screening programs. The findings indicate that a 55-year-old lung screening participant may experience a cumulative radiation exposure of up to 280 mSv over a 20-year period and 420 mSv over 30 years. These exposures exceed those of nuclear workers and atomic bomb survivors. This assessment suggests that long-term (20-30 years) LDCT screening programs are associated with nontrivial cumulative radiation doses. Current lung cancer screening protocols, if conducted over 20- to 30-year periods, can independently increase the risk of lung cancer beyond cigarette smoking as a result of cumulative radiation exposure. Radiation exposures from LDCT screening and follow-up diagnostic procedures exceed lifetime radiation exposures among nuclear power workers and atomic bomb survivors. PMID:24590022

  12. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-05-26

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  13. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  14. Investigating the impact of audio instruction and audio-visual biofeedback for lung cancer radiation therapy

    NASA Astrophysics Data System (ADS)

    George, Rohini

    Lung cancer accounts for 13% of all cancers in the Unites States and is the leading cause of deaths among both men and women. The five-year survival for lung cancer patients is approximately 15%.(ACS facts & figures) Respiratory motion decreases accuracy of thoracic radiotherapy during imaging and delivery. To account for respiration, generally margins are added during radiation treatment planning, which may cause a substantial dose delivery to normal tissues and increase the normal tissue toxicity. To alleviate the above-mentioned effects of respiratory motion, several motion management techniques are available which can reduce the doses to normal tissues, thereby reducing treatment toxicity and allowing dose escalation to the tumor. This may increase the survival probability of patients who have lung cancer and are receiving radiation therapy. However the accuracy of these motion management techniques are inhibited by respiration irregularity. The rationale of this thesis was to study the improvement in regularity of respiratory motion by breathing coaching for lung cancer patients using audio instructions and audio-visual biofeedback. A total of 331 patient respiratory motion traces, each four minutes in length, were collected from 24 lung cancer patients enrolled in an IRB-approved breathing-training protocol. It was determined that audio-visual biofeedback significantly improved the regularity of respiratory motion compared to free breathing and audio instruction, thus improving the accuracy of respiratory gated radiotherapy. It was also observed that duty cycles below 30% showed insignificant reduction in residual motion while above 50% there was a sharp increase in residual motion. The reproducibility of exhale based gating was higher than that of inhale base gating. Modeling the respiratory cycles it was found that cosine and cosine 4 models had the best correlation with individual respiratory cycles. The overall respiratory motion probability distribution

  15. [Stereotactic body radiation radiotherapy for oligometastatic non-small cell lung cancer (NSCLC): A case report].

    PubMed

    Leduc, C; Antoni, D; Quoix, É; Noël, G

    2015-05-01

    Metastatic non-small cell lung cancer is associated with a poor prognosis, and palliative chemotherapy is the mainstay of treatment. However, long-time survival has been observed in oligometastatic patients treated with locally ablative therapies to all sites of metastatic disease. An 80-year-old man was diagnosed with an adenocarcinoma of the lung. The right upper lobe lesion was classified cT2aN0M0 and was treated with stereotactic body radiation therapy at the dose of 60Gy in eight fractions. A few months after, he successively presented with two brain metastases and one left adrenal metastasis, with a complete response on the primary tumor. The three secondary lesions were treated with stereotactic body radiation therapy alone. Thirty months after the diagnosis and 12months after metastases' apparition, primary and brain lesion kept controlled (complete response). Oligometastatic non-small cell lung cancer management is not clear. Locally ablative therapies such as stereotactic body radiation therapy, surgery and radiofrequency are efficient and should be considered. A phase III study should evaluate radical treatment strategies in such patients. PMID:25841992

  16. Radiation-associated lung cancer: A comparison of the histology of lung cancers in uranium miners and survivors of the atomic bombings of Hiroshima and Nagasaki

    SciTech Connect

    Land, C.E.; Shimosato, Y.; Saccomanno, G.; Tokuoka, S.; Auerbach, O.; Tateishi, R.; Greenberg, S.D.; Nambu, S.; Carter, D.; Akiba, S. )

    1993-05-01

    A binational panel of Japanese and American pulmonary pathologists reviewed tissue slides of lung cancer cases diagnosed among Japanese A-bomb survivors and American uranium miners and classified the cases according to histological subtype. Blind reviews were completed on slides from 92 uranium miners and 108 A-bomb survivors, without knowledge of population, sex, age, smoking history, or level of radiation exposure. Consensus diagnoses were obtained with respect to principal subtype, including squamous-cell cancer, small-cell cancer, adenocarcinoma, and less frequent subtypes. The results were analyzed in terms of population, radiation dose, and smoking history. As expected, the proportion of squamous-cell cancer was positively related to smoking history in both populations. The relative frequencies of small-cell cancer and adenocarcinoma were very different in the two populations, but this difference was accounted for adequately by differences in radiation dose or, more specifically, dose-based relative risk estimates based on published data. Radiation-induced cancers appeared more likely to be of the small-cell subtype, and less likely to be adenocarcinomas, in both populations. The data appeared to require no additional explanation in terms of radiation quality (alpha particles vs gamma rays), uniform or local irradiation, inhaled vs external radiation source, or other population difference.

  17. Analysis of Clinical and Dosimetric Factors Influencing Radiation-Induced Lung Injury in Patients with Lung Cancer

    PubMed Central

    Han, Shuiyun; Gu, Feiying; Lin, Gang; Sun, Xiaojiang; Wang, Yuezhen; Wang, Zhun; Lin, Qingren; Weng, Denghu; Xu, Yaping; Mao, Weimin

    2015-01-01

    Purpose: Dose escalation of thoracic radiation can improve the local tumor control and surivival, and is in the meantime limited by the occurrence of radiation-induced lung injury (RILI). This study investigated the clinical and dosimetric factors influencing RILI in lung-cancer patients receiving chemoradiotherapy for better radiation planning. Methods and Materials: A retrospective analysis was carried out on 161 patients with non-small-cell or small-cell lung cancer (NSCLC and SCLC, respectively), who underwent chemoradiotherapy between April 2010 and May 2011 with a median follow-up time of 545 days (range: 39-1453). Chemotherapy regimens were based on the histological type (squamous cell carcinoma, adenocarcinoma, or SCLC), and radiotherapy was delivered in 1.8-3.0 Gy (median, 2.0 Gy) fractions, once daily, to a total of 39-66 Gy (median, 60 Gy). Univariate analysis was performed to analyze clinical and dosimetric factors associated with RILI. Multivariate analysis using logistic regression identified independent risk factors correlated to RILI. Results: The incidence of symptomatic RILI (≥grade 2) was 31.7%. Univariate analysis showed that V5, V20, and mean lung dose (MLD) were significantly associated with RILI incidence (P=0.029, 0.048, and 0.041, respectively). The association was not statistically significant for histological type (NSCLC vs. SCLC, P = 0.092) or radiation technology (IMRT vs. 3D-CRT, P = 0.095). Multivariate analysis identified MLD as an independent risk factor for symptomatic RILI (OR=1.249, 95%CI=1.055-1.48, P= 0.01). The incidence of bilateral RILI in cases where the tumor was located unilaterally was 22.7% (32/141) and all dosimetric-parameter values were not significantly different (P>0.05) for bilateral versus ipsilateral injury, except grade-1 (low) RILI (P < 0.05). The RILI grade was higher in cases of ipsilateral lung injury than in bilateral cases (Mann-Whitney U test, z=8.216, P< 0.001). Conclusion: The dosimetric parameter

  18. Serum Amyloid A as a Predictive Marker for Radiation Pneumonitis in Lung Cancer Patients

    SciTech Connect

    Wang, Yu-Shan; Chang, Heng-Jui; Chang, Yue-Cune; Huang, Su-Chen; Ko, Hui-Ling; Chang, Chih-Chia; Yeh, Yu-Wung; Jiang, Jiunn-Song; Lee, Cheng-Yen; Chi, Mau-Shin; Chi, Kwan-Hwa

    2013-03-01

    Purpose: To investigate serum markers associated with radiation pneumonitis (RP) grade ≥3 in patients with lung cancer who were treated with radiation therapy. Methods and Materials: Pretreatment serum samples from patients with stage Ib-IV lung cancer who developed RP within 1 year after radiation therapy were analyzed to identify a proteome marker able to stratify patients prone to develop severe RP by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Dosimetric parameters and 3 biological factors were compared. Results: Serum samples from 16 patients (28%) with severe RP (grade 3-4) and 42 patients (72%) with no or mild RP (grade 0-2) were collected for analysis. All patients received a median of 54 Gy (range, 42-70 Gy) of three-dimensional conformal radiation therapy with a mean lung dose (MLD) of 1502 cGy (range, 700-2794 cGy). An m/z peak of 11,480 Da was identified by SELDI-TOF-MS, and serum amyloid A (SAA) was the primary splitter serum marker. The receiver operating characteristic area under the curve of SAA (0.94; 95% confidence interval [CI], 0.87-1.00) was higher than those of C-reactive protein (0.83; 95% CI, 0.72-0.94), interleukin-6 (0.79; 95% CI, 0.65-0.94), and MLD (0.57; 95% CI, 0.37-0.77). The best sensitivity and specificity of combined SAA and MLD for predicting RP were 88.9% and 96.0%, respectively. Conclusions: Baseline SAA could be used as an auxiliary marker for predicting severe RP. Extreme care should be taken to limit the lung irradiation dose in patients with high SAA.

  19. Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer

    PubMed Central

    2013-01-01

    Purpose To compare the risk of secondary cancer from scattered and leakage doses following intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with lung cancer. Methods IMRT, VMAT and TOMO were planned for five lung cancer patients. Organ equivalent doses (OEDs) are estimated from the measured corresponding secondary doses during irradiation at various points 20 to 80 cm from the iso-center by using radio-photoluminescence glass dosimeter (RPLGD). Results The secondary dose per Gy from IMRT, VMAT and TOMO for lung cancer, measured 20 to 80 cm from the iso-center, are 0.02~2.03, 0.03~1.35 and 0.04~0.46 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO, which is normalized by IMRT, ranged between 88.63% and 41.59% revealing 88.63% and 41.59% for thyroid, 82.33% and 41.85% for pancreas, 77.97% and 49.41% for bowel, 73.42% and 72.55% for rectum, 74.16% and 81.51% for prostate. The secondary dose and OED from TOMO became similar to those from IMRT and VMAT as the distance from the field edge increased. Conclusions OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT. PMID:23452670

  20. SU-E-J-190: Characterization of Radiation Induced CT Number Changes in Tumor and Normal Lung During Radiation Therapy for Lung Cancer

    SciTech Connect

    Yang, C; Liu, F; Tai, A; Gore, E; Johnstone, C; Li, X

    2014-06-01

    Purpose: To measure CT number (CTN) changes in tumor and normal lung as a function of radiation therapy (RT) dose during the course of RT delivery for lung cancer using daily IGRT CT images and single respiration phase CT images. Methods: 4D CT acquired during planning simulation and daily 3D CT acquired during daily IGRT for 10 lung cancer cases randomly selected in terms of age, caner type and stage, were analyzed using an in-house developed software tool. All patients were treated in 2 Gy fractions to primary tumors and involved nodal regions. Regions enclosed by a series of isodose surfaces in normal lung were delineated. The obtained contours along with target contours (GTVs) were populated to each singlephase planning CT and daily CT. CTN in term of Hounsfield Unit (HU) of each voxel in these delineated regions were collectively analyzed using histogram, mean, mode and linear correlation. Results: Respiration induced normal lung CTN change, as analyzed from single-phase planning CTs, ranged from 9 to 23 (±2) HU for the patients studied. Normal lung CTN change was as large as 50 (±12) HU over the entire treatment course, was dose and patient dependent and was measurable with dose changes as low as 1.5 Gy. For patients with obvious tumor volume regression, CTN within the GTV drops monotonically as much as 10 (±1) HU during the early fractions with a total dose of 20 Gy delivered. The GTV and CTN reductions are significantly correlated with correlation coefficient >0.95. Conclusion: Significant RT dose induced CTN changes in lung tissue and tumor region can be observed during even the early phase of RT delivery, and may potentially be used for early prediction of radiation response. Single respiration phase CT images have dramatically reduced statistical noise in ROIs, making daily dose response evaluation possible.

  1. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    SciTech Connect

    Nakadate, Yusuke; Kodera, Yasuo; Kitamura, Yuka; Tachibana, Taro; Tamura, Tomohide; Koizumi, Fumiaki

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  2. Evidence-based recommendations of postoperative radiotherapy in lung cancer from Oncologic Group for the Study of Lung Cancer (Spanish Radiation Oncology Society).

    PubMed

    Gómez, A; González, J A; Couñago, F; Vallejo, C; Casas, F; de Dios, N Rodríguez

    2016-04-01

    Locally advanced non-small cell lung cancer (NSCLC) is a diversified illness in which postoperative radiation therapy (PORT) for complete resection with positive hiliar (pN1) and/or mediastinal (pN2) lymph nodes is controversial. Although several studies have shown that PORT has beneficial effects, randomized trials are needed to demonstrate its impact on overall survival. In this review, the Spanish Radiation Oncology Group for Lung Cancer describes the most relevant literature on PORT in NSCLC patients stage pN1-2. In addition, we have outlined the current recommendations of different national and international clinical guidelines and have also specified practical issues regarding treatment volume definition, doses and fractionation. PMID:26280402

  3. Novel radiotherapy approaches for lung cancer: combining radiation therapy with targeted and immunotherapies

    PubMed Central

    Simone, Charles B.; Burri, Stuart H.

    2015-01-01

    Targeted therapies and immunotherapies have quickly become fixtures in the treatment armamentarium for metastatic non-small cell lung cancer (NSCLC). Targeted therapies directed against epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) translocations, and ROS-1 rearrangements have demonstrated improved progression free survival (PFS) and, in selected populations, improved overall survival (OS) compared with cytotoxic chemotherapy. Immunotherapies, including checkpoint inhibitor monoclonal antibodies against programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1), have now also demonstrated improved survival compared with chemotherapy. The use of these novel systemic agents in non-metastatic patient populations and in combination with radiation therapy is not well defined. As radiation therapy has become more effective and more conformal with fewer toxicities, it has increasingly been used in the oligometastatic or oligoprogression setting. This has allowed improvement in PFS and potentially OS, and in the oligoprogressive setting may overcome acquired drug resistance of a specific lesion(s) to allow patients to remain on their targeted therapies. Molecularly targeted therapies and immunotherapies for patients with metastatic NSCLC have demonstrated much success. Advances in radiation therapy and stereotactic body radiotherapy, radiation therapy have led to combination strategies with targeted therapies among patients with lung cancer. Radiation therapy has also been combined with immunotherapies predominantly in the metastatic setting. In the metastatic population, radiation therapy has the ability to provide durable local control and also augment the immune response of systemic agents, which may lead to an abscopal effect of immune-mediated tumor response in disease sites outside of the radiation field in select patients. PMID:26629423

  4. Lung cancer.

    PubMed

    Frödin, J E

    1996-01-01

    This synthesis of the literature on radiotherapy for lung cancer is based on 80 scientific articles, including 2 meta-analyses, 29 randomized studies, 19 prospective studies, and 21 retrospective studies. These studies involve 28172 patients. Basic treatment for limited-stage small cell lung cancer (SCLC), is chemotherapy. Addition of radiotherapy to the primary tumor and mediastinum reduces local recurrence, prolongs long-term survival, and is often indicated. Current, and future, studies can be expected to show successive improvements in results for SCLC by optimizing the combination of radiotherapy and chemotherapy. Should these treatments be given simultaneously or sequentially, and in which order? Which fractionation is best? Probably, no change in resource requirements for radiotherapy will be necessary, with the possible exception of changes in fractionation. Surgery constitutes primary treatment for nonsmall cell lung cancer (NSCLC) stages I and II. Radiotherapy may provide an alternative for patients who are inoperable for medical reasons. The value of radiotherapy following radical surgery for NSCLC remains to be shown. It is not indicated based on current knowledge. For NSCLC stage III, radiotherapy shrinks tumors and prolongs survival at 2 and 3 years. Whether it influences long-term survival after 5 years has not been shown. Considering the side effects of treatment, one must question whether limited improvements in survival motivate routine radiotherapy in these patients. Earlier attempts to add chemotherapy to radiotherapy to improve treatment results of NSCLC have not yielded convincing results. Several studies are currently on-going. Prophylactic cranial irradiation (PCI) greatly reduces the risk for brain metastases from SCLC. However, it has little influence on survival. Many treatment centers give PCI to SCLC patients who have achieved complete remission. This practice may be questioned since PCI is associated with serious complications. PCI is

  5. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: Are patients with pulmonary emphysema also candidates for SBRT for lung cancers?

    SciTech Connect

    Kimura, Tomoki . E-mail: tkkimura@med.kawawa-u.ac.jp; Matsuura, Kanji; Murakami, Yuji; Hashimoto, Yasutoshi; Kenjo, Masahiro; Kaneyasu, Yuko; Wadasaki, Koichi; Hirokawa, Yutaka; Ito, Katsuhide; Okawa, Motoomi

    2006-10-01

    Purpose: The purpose of this study was to analyze the computed tomographic (CT) appearance of radiation injury to the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) and evaluate the difference by the presence of pulmonary emphysema (PE) for small lung cancers. Methods and Materials: In this analysis, 45 patients with 52 primary or metastatic lung cancers were enrolled. We evaluated the CT appearance of acute radiation pneumonitis (within 6 months) and radiation fibrosis (after 6 months) after SBRT. Clinical symptoms were evaluated by Common Terminology Criteria for Adverse Events, version 3.0. We also evaluated the relationship between CT appearance, clinical symptoms, and PE. Results: CT appearance of acute radiation pneumonitis was classified as follows: (1) diffuse consolidation, 38.5%; (2) patchy consolidation and ground-glass opacities (GGO), 15.4%; (3) diffuse GGO, 11.5%; (4) patchy GGO, 2.0%; (5) no evidence of increasing density, 32.6%. CT appearance of radiation fibrosis was classified as follows: (1) modified conventional pattern, 61.5%; (2) mass-like pattern, 17.3%; (3) scar-like pattern, 21.2%. Patients who were diagnosed with more than Grade 2 pneumonitis showed significantly less no evidence of increased density pattern and scar-like pattern than any other pattern (p = 0.0314, 0.0297, respectively). Significantly, most of these patients with no evidence of increased density pattern and scar-like pattern had PE (p = 0.00038, 0.00044, respectively). Conclusion: Computed tomographic appearance after SBRT was classified into five patterns of acute radiation pneumonitis and three patterns of radiation fibrosis. Our results suggest that SBRT can be also safely performed even in patients with PE.

  6. Radiation Therapy for Oligometastatic Non-Small Cell Lung Cancer: Theory and Practice.

    PubMed

    Rusthoven, Chad G; Yeh, Norman; Gaspar, Laurie E

    2015-01-01

    Management paradigms for metastatic non-small cell lung cancer (mNSCLC) are evolving. Locally ablative therapies are now being increasingly integrated into combined-modality treatment strategies for mNSCLC patients with limited burdens of metastatic foci, termed oligometastases. Concurrently, techniques allowing for precise high-dose radiotherapy delivered over 1 to 5 total treatments, termed stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy (SABR), have emerged as a powerful means of noninvasive tumor ablation with broad patient candidacy. Strong rationale exists for ablative therapy in the setting of oligometastatic NSCLC, including patterns-of-failure analyses and data supporting local ablation of oligoprogressive disease for patients with oncogene-addicted mNSCLC treated with tyrosine kinase inhibitors. In this article, we examine the theoretical basis for ablation of oligometastatic NSCLC and review the growing clinical literature of mNSCLC patients treated with ablative radiation therapy. PMID:26389766

  7. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2015-03-17

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  8. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  9. Proteasome inhibition improves fractionated radiation treatment against non-small cell lung cancer: an antioxidant connection.

    PubMed

    Grimes, Kristopher Ray; Daosukho, Chotiros; Zhao, Yunfeng; Meigooni, Ali; St Clair, William

    2005-10-01

    Non-small cell lung cancer frequently presents as a locally advanced disease. In this setting, radiation has a prominent role in cancer therapy. However, tumor adaptation to oxidative stress may lessen the efficacy of radiation therapy. Recent studies demonstrate that proteasome inhibitors increase the efficacy of radiation against a range of tumors. Although proteasome inhibition impacts on NF-kappaB translocation, the precise mechanism through which proteasome inhibitors induce tumor cell death and promote radiation efficacy remains unclear. The purpose of this study is to evaluate the potential of the proteasome inhibitor, MG-132, to improve the efficacy of radiation therapy and to determine whether its effect is linked to the suppression of the antioxidant enzyme, manganese superoxide dismutase (MnSOD). Human NSCLC (A549) cells were utilized both in vivo and in vitro to evaluate proteasome inhibition on radiation response. In vivo, mice that received combined treatments of 2.5 microg/g body weight MG-132 and 30 Gy demonstrated a delay in tumor regrowth in comparison to the 30 Gy control group. In vitro, clonegenic survival assays confirmed a dose-dependent enhancement of radiation sensitivity in combination with MG-132 and a significant interaction between the two. The levels of IkappaB-alpha, a NF-kappaB target gene and also an inhibitor of NF-kappaB nuclear translocation, decreased in a time-dependent manner following administration of MG-132 confirming the inhibition of the 26S proteasome. The MnSOD protein level was increased consistent with lower levels of IkappaB-alpha, confirming a NF-kappaB-mediated effect. Cells treated with radiation demonstrated an induction of MnSOD; however, the administration of MG-132 suppressed this induction These results support the hypothesis that proteasome inhibitors such as MG-132 can increase the efficacy of radiation therapy, in part, by suppression of cytoprotective NF-kappaB-mediated MnSOD expression. PMID:16142322

  10. Predictive Factors of Late Radiation Fibrosis: A Prospective Study in Non-Small Cell Lung Cancer

    SciTech Connect

    Mazeron, Renaud; Etienne-Mastroianni, Benedicte; Perol, David; Arpin, Dominique; Vincent, Michel; Falchero, Lionel; Martel-Lafay, Isabelle; Carrie, Christian; Claude, Line

    2010-05-01

    Purpose: To determine predictive factors of late radiation fibrosis (RF) after conformal radiotherapy (3D-RT) in non-small cell lung cancer (NSCLC). Methods and Materials: Ninety-six patients with Stage IA-IIIB NSCLC were included in a prospective trial. Clinical evaluation, chest X-ray, and pulmonary functional tests including diffusion parameters were performed before and 6 months after radiotherapy. An independent panel of experts prospectively analyzed RF, using Late Effects in Normal Tissues-Subjective, Objective, Management and Analytic scales classification. Logistic regression analysis was performed to identify relationships between clinical, functional, or treatment parameters and incidence of RF. Variations of circulating serum levels of pro-inflammatory (interleukin-6, tumor necrosis factor alpha, tumor growth factor beta1) and anti-inflammatory (interleukin-10) cytokines during 3D-RT were examined to identify correlations with RF. Results: Of the 96 patients included, 72 were evaluable for RF at 6 months. Thirty-seven (51.4%) developed RF (Grade >=1), including six severe RF (Grades 2-3; 8.3%). In univariate analysis, only poor Karnofsky Performance Status and previous acute radiation pneumonitis were associated with RF (p < 0.05). Dosimetric factors (mean lung dose, percentage of lung volume receiving more than 10, 20, 30, 40, and 50 Gy) were highly correlated with RF (p < 0.001). In multivariate analysis, previous acute radiation pneumonitis and dosimetric parameters were significantly correlated with RF occurrence. It was not significantly correlated either with cytokines at baseline or with their variation during 3D-RT. Conclusions: This study confirms the importance of dosimetric parameters to limit the risk of RF. Contrary to acute radiation pneumonitis, RF was not correlated to cytokine variations during 3D-RT.

  11. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    PubMed Central

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-01-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts. PMID:26883914

  12. Controversies in Lung Cancer Screening.

    PubMed

    Gill, Ritu R; Jaklitsch, Michael T; Jacobson, Francine L

    2016-02-01

    There remains an extensive debate over lung cancer screening, with lobbying for and against screening for very compelling reasons. The National Lung Screening Trial, International Early Lung Cancer Program, and other major screening studies favor screening with low-dose CT scans and have shown a reduction in lung cancer-specific mortality. The increasing incidence of lung cancer and the dismal survival rate for advanced disease despite improved multimodality therapy have sparked an interest in the implementation of national lung cancer screening. Concerns over imaging workflow, radiation dose, management of small nodules, overdiagnosis bias, lead-time and length-time bias, emerging new technologies, and cost-effectiveness continue to be debated. The authors address each of these issues as they relate to radiologic practice. PMID:26846531

  13. Epidemiology of Lung Cancer

    PubMed Central

    Ridge, Carole A.; McErlean, Aoife M.; Ginsberg, Michelle S.

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promising molecular targets for treatment. PMID:24436524

  14. Case report of two patients having successful surgery for lung cancer after treatment for Grade 2 radiation pneumonitis

    PubMed Central

    Nakajima, Yuki; Akiyama, Hirohiko; Kinoshita, Hiroyasu; Atari, Maiko; Fukuhara, Mitsuro; Saito, Yoshihiro; Sakai, Hiroshi; Uramoto, Hidetaka

    2015-01-01

    Introduction Surgery for locally advanced lung cancer is carried out following chemoradiotherapy. However, there are no reports clarifying what the effects on the subsequent prognosis are when surgery is carried out in cases with radiation pneumonitis. In this paper, we report on 2 cases of non-small cell lung cancer with Grade 2 radiation pneumonitis after induction chemoradiotherapy, in which we were able to safely perform radical surgery subsequent to the treatment for pneumonia. Presentation of cases Case 1 was a 68-year-old male with a diagnosis of squamous cell lung cancer cT2aN2M0, Stage IIIA. Sixty days after completion of the radiotherapy, Grade 2 radiation pneumonitis was diagnosed. After administration of predonine, and upon checking that the radiation pneumonitis had improved, radical surgery was performed. Case 2 was a 63-year-old male. He was diagnosed with squamous cell lung cancer cT2bN1M0, Stage IIB. One hundred and twenty days after completion of the radiotherapy, he was diagnosed with Grade 2 radiation pneumonitis. After administration of predonine, the symptoms disappeared, and radical surgery was performed. In both cases, the postoperative course was favorable, without complications, and the patients were discharged. Conclusion Surgery for lung cancer on patients with Grade 2 radiation pneumonitis should be deferred until the patients complete steroid therapy, and the clinical pneumonitis is cured. Moreover, it is believed that it is important to remove the resolved radiation pneumonitis without leaving any residual areas and not to cut into any areas of active radiation pneumonitis as much as possible. PMID:26793310

  15. Lung cancer prevention.

    PubMed

    Slatore, Christopher; Sockrider, Marianna

    2014-11-15

    Lung cancer is a common form of cancer.There are things you can do to lower your risk of lung cancer. Stop smoking tobacco. Ask your health care provider for help in quitting, including use of medicines to help with nicotine dependence. discuss with your healthcare provider,what you are taking or doing to decrease your risk for lung cancer PMID:25398122

  16. Epidemiology of Lung Cancer.

    PubMed

    Mao, Yousheng; Yang, Ding; He, Jie; Krasna, Mark J

    2016-07-01

    Lung cancer has been transformed from a rare disease into a global problem and public health issue. The etiologic factors of lung cancer become more complex along with industrialization, urbanization, and environmental pollution around the world. Currently, the control of lung cancer has attracted worldwide attention. Studies on the epidemiologic characteristics of lung cancer and its relative risk factors have played an important role in the tertiary prevention of lung cancer and in exploring new ways of diagnosis and treatment. This article reviews the current evolution of the epidemiology of lung cancer. PMID:27261907

  17. Nintedanib Compared With Placebo in Treating Against Radiation-Induced Pneumonitis in Patients With Non-small Cell Lung Cancer That Cannot Be Removed by Surgery and Are Undergoing Chemoradiation Therapy

    ClinicalTrials.gov

    2016-04-27

    Radiation-Induced Pneumonitis; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  18. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint.

    PubMed

    Nakadate, Yusuke; Kodera, Yasuo; Kitamura, Yuka; Tachibana, Taro; Tamura, Tomohide; Koizumi, Fumiaki

    2013-11-29

    Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy. PMID:24211580

  19. Patterns of Care for Lung Cancer in Radiation Oncology Departments of Turkey

    SciTech Connect

    Demiral, Ayse Nur Alicikus, Zuemre Arican; Isil Ugur, Vahide; Karadogan, Ilker; Yoeney, Adnan; Andrieu, Meltem Nalca; Yalman, Deniz; Pak, Yuecel; Aksu, Gamze; Ozyigit, Goekhan; Ozkan, Luetfi; Kilciksiz, Sevil; Koca, Sedat; Caloglu, Murat; Yavuz, Ali Aydin; Basak Caglar, Hale; Beyzadeoglu, Murat; Igdem, Sefik

    2008-12-01

    Purpose: To determine the patterns of care for lung cancer in Turkish radiation oncology centers. Methods and Materials: Questionnaire forms from 21 of 24 (87.5%) centers that responded were evaluated. Results: The most frequent histology was non-small cell lung cancer (NSCLC) (81%). The most common postoperative radiotherapy (RT) indications were close/(+) surgical margins (95%) and presence of pN2 disease (91%). The most common indications for postoperative chemotherapy (CHT) were '{>=} IB' disease (19%) and the presence of pN2 disease (19%). In Stage IIIA potentially resectable NSCLC, the most frequent treatment approach was neoadjuvant concomitant chemoradiotherapy (CHRT) (57%). In Stage IIIA unresectable and Stage IIIB disease, the most frequent approach was definitive concomitant CHRT (91%). In limited SCLC, the most common treatment approach was concomitant CHRT with cisplatin+etoposide for cycles 1-3, completion of CHT to cycles 4-6, and finally prophylactic cranial irradiation in patients with complete response (71%). Six cycles of cisplatin + etoposide CHT and palliative thoracic RT, when required, was the most commonly used treatment (81%) in extensive SCLC. Sixty-two percent of centers did not have endobronchial brachytherapy (EBB) facilities. Conclusion: There is great variation in diagnostic testing, treatment strategies, indications for postoperative RT and CHT, RT features, and EBB availability for LC cases. To establish standards, national guidelines should be prepared using a multidisciplinary approach.

  20. Interinstitutional Variations in Planning for Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Matsuo, Yukinori; Takayama, Kenji; Nagata, Yasushi . E-mail: nag@kuhp.kyoto-u.ac.jp; Kunieda, Etsuo; Tateoka, Kunihiko; Ishizuka, Naoki; Mizowaki, Takashi; Norihisa, Yoshiki; Sakamoto, Masato; Narita, Yuichiro; Ishikura, Satoshi; Hiraoka, Masahiro

    2007-06-01

    Purpose: The aim of this study was to assess interinstitutional variations in planning for stereotactic body radiation therapy (SBRT) for lung cancer before the start of the Japan Clinical Oncology Group (JCOG) 0403 trial. Methods and Materials: Eleven institutions created virtual plans for four cases of solitary lung cancer. The created plans should satisfy the target definitions and the dose constraints for the JCOG 0403 protocol. Results: FOCUS/XiO (CMS) was used in six institutions, Eclipse (Varian) in 3, Cadplan (Varian) in one, and Pinnacle3 (Philips/ADAC) in one. Dose calculation algorithms of Clarkson with effective path length correction and superposition were used in FOCUS/XiO; pencil beam convolution with Batho power law correction was used in Eclipse and Cadplan; and collapsed cone convolution superposition was used in Pinnacle3. For the target volumes, the overall coefficient of variation was 16.6%, and the interinstitutional variations were not significant. For maximal dose, minimal dose, D95, and the homogeneity index of the planning target volume, the interinstitutional variations were significant. The dose calculation algorithm was a significant factor in these variations. No violation of the dose constraints for the protocol was observed. Conclusion: There can be notable interinstitutional variations in planning for SBRT, including both interobserver variations in the estimate of target volumes as well as dose calculation effects related to the use of different dose calculation algorithms.

  1. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention

    SciTech Connect

    Mehta, Vivek . E-mail: Vivek.Mehta@swedish.org

    2005-09-01

    Although radiotherapy improves locoregional control and survival in patients with non-small-cell lung cancer, radiation pneumonitis is a common treatment-related toxicity. Many pulmonary function tests are not significantly altered by pulmonary toxicity of irradiation, but reductions in DL{sub CO}, the diffusing capacity of carbon monoxide, are more commonly associated with pneumonitis. Several patient-specific factors (e.g. age, smoking history, tumor location, performance score, gender) and treatment-specific factors (e.g. chemotherapy regimen and dose) have been proposed as potential predictors of the risk of radiation pneumonitis, but these have not been consistently demonstrated across different studies. The risk of radiation pneumonitis also seems to increase as the cumulative dose of radiation to normal lung tissue increases, as measured by dose-volume histograms. However, controversy persists about which dosimetric parameter optimally predicts the risk of radiation pneumonitis, and whether the volume of lung or the dose of radiation is more important. Radiation oncologists ought to consider these dosimetric factors when designing radiation treatment plans for all patients who receive thoracic radiotherapy. Newer radiotherapy techniques and technologies may reduce the exposure of normal lung to irradiation. Several medications have also been evaluated for their ability to reduce radiation pneumonitis in animals and humans, including corticosteroids, amifostine, ACE inhibitors or angiotensin II type 1 receptor blockers, pentoxifylline, melatonin, carvedilol, and manganese superoxide dismutase-plasmid/liposome. Additional research is warranted to determine the efficacy of these medications and identify nonpharmacologic strategies to predict and prevent radiation pneumonitis.

  2. Radiation Therapy and MK-3475 for Patients With Recurrent/Metastatic Head and Neck Cancer, Renal Cell Cancer, Melanoma, and Lung Cancer

    ClinicalTrials.gov

    2016-07-06

    Head and Neck Squamous Cell Carcinoma; Metastatic Renal Cell Cancer; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IV Lung Cancer; Stage IV Skin Melanoma

  3. High NOTCH activity induces radiation resistance in non small cell lung cancer

    PubMed Central

    Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2016-01-01

    Background and purpose Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy. PMID:23891097

  4. Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor.

    PubMed

    Cui, Y-H; Suh, Y; Lee, H-J; Yoo, K-C; Uddin, N; Jeong, Y-J; Lee, J-S; Hwang, S-G; Nam, S-Y; Kim, M-J; Lee, S-J

    2015-10-16

    Despite ionizing radiation (IR) is being widely used as a standard treatment for lung cancer, many evidences suggest that IR paradoxically promotes cancer malignancy. However, its molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that exposure to fractionated radiation (2 Gy per day for 3 days) induces the secretion of granulocyte-colony-stimulating factor (G-CSF) that has been commonly used in cancer therapies to ameliorate neutropenia. Intriguingly, radiation-induced G-CSF promoted the migratory and invasive properties by triggering the epithelial-mesenchymal cell transition (EMT) in non-small-cell lung cancer cells (NSCLCs). By irradiation, G-CSF was upregulated transcriptionally by β-catenin/TCF4 complex that binds to the promoter region of G-CSF as a transcription factor. Importantly, irradiation increased the stability of β-catenin through the activation of PI3K/AKT (phosphatidylinositol 3-kinase/AKT), thereby upregulating the expression of G-CSF. Radiation-induced G-CSF is recognized by G-CSFR and transduced its intracellular signaling JAK/STAT3 (Janus kinase/signal transducers and activators of transcription), thereby triggering EMT program in NSCLCs. Taken together, our findings suggest that the application of G-CSF in cancer therapies to ameliorate neutropenia should be reconsidered owing to its effect on cancer progression, and G-CSF could be a novel therapeutic target to mitigate the harmful effect of radiotherapy for the treatment of NSCLC. PMID:25639867

  5. Occupational lung cancer.

    PubMed

    Cone, J E

    1987-01-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed. PMID:3303381

  6. Occupational lung cancer

    SciTech Connect

    Cone, J.E.

    1987-04-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed.

  7. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm2) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ˜1 cm). For the phantom, square fields of 1 × 1 cm2, 3 × 3 cm2, or 5 × 5 cm2 were applied. However, in the patient, 3 × 1 cm2, 3 × 2 cm2, 3 × 2.5 cm2, or 3 × 3 cm2 field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was

  8. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.

    PubMed

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour

  9. Dosimetric comparison of patient setup strategies in stereotactic body radiation therapy for lung cancer

    SciTech Connect

    Wu Jianzhou; He, Tongming T.; Betzing, Christopher; Fuss, Martin; D'Souza, Warren D.

    2013-05-15

    Purpose: In this work, the authors retrospectively compared the accumulated dose over the treatment course for stereotactic body radiation therapy (SBRT) of lung cancer for three patient setup strategies. Methods: Ten patients who underwent lung SBRT were selected for this study. At each fraction, patients were immobilized using a vacuum cushion and were CT scanned. Treatment plans were performed on the simulation CT. The planning target volume (PTV) was created by adding a 5-mm uniform margin to the internal target volume derived from the 4DCT. All plans were normalized such that 99% of the PTV received 60 Gy. The plan parameters were copied onto the daily CT images for dose recalculation under three setup scenarios: skin marker, bony structure, and soft tissue based alignments. The accumulated dose was calculated by summing the dose at each fraction along the trajectory of a voxel over the treatment course through deformable image registration of each CT with the planning CT. The accumulated doses were analyzed for the comparison of setup accuracy. Results: The tumor volume receiving 60 Gy was 91.7 {+-} 17.9%, 74.1 {+-} 39.1%, and 99.6 {+-} 1.3% for setup using skin marks, bony structures, and soft tissue, respectively. The isodose line covering 100% of the GTV was 55.5 {+-} 7.1, 42.1 {+-} 16.0, and 64.3 {+-} 7.1 Gy, respectively. The corresponding average biologically effective dose of the tumor was 237.3 {+-} 29.4, 207.4 {+-} 61.2, and 258.3 {+-} 17.7 Gy, respectively. The differences in lung biologically effective dose, mean dose, and V20 between the setup scenarios were insignificant. Conclusions: The authors' results suggest that skin marks and bony structure are insufficient for aligning patients in lung SBRT. Soft tissue based alignment is needed to match the prescribed dose delivered to the tumors.

  10. Combining Physical and Biologic Parameters to Predict Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer Treated With Definitive Radiation Therapy

    SciTech Connect

    Stenmark, Matthew H.; Cai Xuwei; Shedden, Kerby; Hayman, James A.; Yuan Shuanghu; Ritter, Timothy; Ten Haken, Randall K.; Lawrence, Theodore S.; Kong Fengming

    2012-10-01

    Purpose: To investigate the plasma dynamics of 5 proinflammatory/fibrogenic cytokines, including interleukin-1beta (IL-1{beta}), IL-6, IL-8, tumor necrosis factor alpha (TNF-{alpha}), and transforming growth factor beta1 (TGF-{beta}1) to ascertain their value in predicting radiation-induced lung toxicity (RILT), both individually and in combination with physical dosimetric parameters. Methods and Materials: Treatments of patients receiving definitive conventionally fractionated radiation therapy (RT) on clinical trial for inoperable stages I-III lung cancer were prospectively evaluated. Circulating cytokine levels were measured prior to and at weeks 2 and 4 during RT. The primary endpoint was symptomatic RILT, defined as grade 2 and higher radiation pneumonitis or symptomatic pulmonary fibrosis. Minimum follow-up was 18 months. Results: Of 58 eligible patients, 10 (17.2%) patients developed RILT. Lower pretreatment IL-8 levels were significantly correlated with development of RILT, while radiation-induced elevations of TGF-ss1 were weakly correlated with RILT. Significant correlations were not found for any of the remaining 3 cytokines or for any clinical or dosimetric parameters. Using receiver operator characteristic curves for predictive risk assessment modeling, we found both individual cytokines and dosimetric parameters were poor independent predictors of RILT. However, combining IL-8, TGF-ss1, and mean lung dose into a single model yielded an improved predictive ability (P<.001) compared to either variable alone. Conclusions: Combining inflammatory cytokines with physical dosimetric factors may provide a more accurate model for RILT prediction. Future study with a larger number of cases and events is needed to validate such findings.

  11. Lung cancer in women.

    PubMed

    Coscio, Angela M; Garst, Jennifer

    2006-07-01

    Lung cancer is the most common cancer in both men and women; however, there are some clear gender-based differences. As the incidence of lung cancer is declining in men, the incidence of lung cancer is increasing in women. Women are more likely than men to have adenocarcinoma, a histologic subtype that correlates with worsened prognosis, but women have improved survival compared with men. Genetic predisposition and the presence of estrogen receptors in lung cancer cells may predispose women to developing lung cancer. Further studies are needed to understand the mechanism and significance of these findings. PMID:17254523

  12. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer

    PubMed Central

    2014-01-01

    Background A retrospective analysis is performed to determine if pre-treatment [18 F]-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography (FDG PET/CT) image derived parameters can predict radiation pneumonitis (RP) clinical symptoms in lung cancer patients. Methods and Materials We retrospectively studied 100 non-small cell lung cancer (NSCLC) patients who underwent FDG PET/CT imaging before initiation of radiotherapy (RT). Pneumonitis symptoms were evaluated using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAEv4) from the consensus of 5 clinicians. Using the cumulative distribution of pre-treatment standard uptake values (SUV) within the lungs, the 80th to 95th percentile SUV values (SUV80 to SUV95) were determined. The effect of pre-RT FDG uptake, dose, patient and treatment characteristics on pulmonary toxicity was studied using multiple logistic regression. Results The study subjects were treated with 3D conformal RT (n = 23), intensity modulated RT (n = 64), and proton therapy (n = 13). Multiple logistic regression analysis demonstrated that elevated pre-RT lung FDG uptake on staging FDG PET was related to development of RP symptoms after RT. A patient of average age and V30 with SUV95 = 1.5 was an estimated 6.9 times more likely to develop grade ≥ 2 radiation pneumonitis when compared to a patient with SUV95 = 0.5 of the same age and identical V30. Receiver operating characteristic curve analysis showed the area under the curve was 0.78 (95% CI = 0.69 – 0.87). The CT imaging and dosimetry parameters were found to be poor predictors of RP symptoms. Conclusions The pretreatment pulmonary FDG uptake, as quantified by the SUV95, predicted symptoms of RP in this study. Elevation in this pre-treatment biomarker identifies a patient group at high risk for post-treatment symptomatic RP. PMID:24625207

  13. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    SciTech Connect

    Warren, Samantha; Panettieri, Vanessa; Panakis, Niki; Bates, Nicholas; Lester, Jason F.; Jain, Pooja; Landau, David B.; Nahum, Alan E.; Mayles, W. Philip M.; Fenwick, John D.

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  14. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  15. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    SciTech Connect

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-05-15

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D{sub m,m}) and dose-to-water in medium (D{sub w,m}), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%-4.4% to AXB doses (both D{sub m,m} and D{sub w,m}); and within 2.5%-6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes ({+-}3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB{sub Dm,m}, and AXB{sub Dw,m}, respectively. The differences between AXB and AAA in dose-volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord

  16. Radiation-Stimulated Epigenetic Reprogramming of Adaptive-Response Genes in the Lung: An Evolutionary Gift for Mounting Adaptive Protection Against Lung Cancer

    PubMed Central

    Scott, Bobby R.; Belinsky, Steven A.; Leng, Shuguang; Lin, Yong; Wilder, Julie A.; Damiani, Leah A.

    2009-01-01

    Humans are continuously exposed to low-level ionizing radiation from natural sources. However, harsher radiation environments persisted during our planet’s early years and mammals survived via an evolutionary gift - a system of radiation-induced natural protective measures (adaptive protection). This system includes antioxidants, DNA repair, apoptosis of severely damaged cells, epigenetically regulated apoptosis (epiapoptosis) pathways that selectively remove precancerous and other aberrant cells, and immunity against cancer. We propose a novel model in which the protective system is regulated at least in part via radiation-stress-stimulated epigenetic reprogramming (epireprogramming) of adaptive-response genes. High-dose radiation can promote epigenetically silencing of adaptive-response genes (episilencing), for example via promoter-associated DNA and/or histone methylation and/or histone deacetylation. Evidence is provided for low linear-energy-transfer (LET) radiation-activated natural protection (ANP) against high-LET alpha-radiation-induced lung cancer in plutonium-239 exposed rats and radon-progeny-exposed humans. Using a revised hormetic relative risk model for cancer induction that accounts for both epigenetic activation (epiactivation) and episilencing of genes, we demonstrate that, on average, >80% of alpha-radiation-induced rat lung cancers were prevented by chronic, low-rate gamma-ray ANP. Interestingly, lifetime exposure to residential radon at the Environmental Protection Agency’s action level of 4 pCi L−1 appears to be associated with on average a > 60% reduction in lung cancer cases, rather than an increase. We have used underlined italics to indicate newly introduced terminology. PMID:19543479

  17. Cellular lung dosimetry for inhaled radon decay products as a base for radiation-induced lung cancer risk assessment. II. Microdosimetric calculations.

    PubMed

    Hofmann, W

    1982-01-01

    Lung dose calculations for inhaled radon decay products presented in part I have revealed that mean basal cell doses are significantly dependent on various personal and environmental factors. Whereas these macroscopic dosimetric methods have been applied with great success to radiation protection problems, the interpretation of radiobiological effects, such as lung cancer incidence, needs some refinement of these methods. Energy deposition at the microscopic level as the physical input quantity and radiation carcinogenesis as the biological endpoint are by nature stochastic processes. Therefore, a microdosimetric model was developed taking into consideration the randomness of physical and biological parameters involved, Part II of the paper presents results on specific energy distributions in lung cells, demonstrating that single event density distributions together with the number of cells receiving single hits represent more appropriate parameters than mean radiation doses. PMID:6285407

  18. X-Radiation Induces Non-Small-Cell Lung Cancer Apoptosis by Upregulation of Axin Expression

    SciTech Connect

    Han Yang; Wang Yan; Xu Hongtao; Yang Lianhe; Wei Qiang; Liu Yang; Zhang Yong; Zhao Yue; Dai Shundong; Miao Yuan; Yu Juanhan; Zhang Junyi; Li, Guang; Yuan Ximing; Wang Enhua

    2009-10-01

    Purpose: Axis inhibition (Axin) is an important negative regulator of the Wnt pathway. This study investigated the relationship between Axin expression and sensitivity to X-rays in non-small-cell lung cancer (NSCLC) to find a useful indicator of radiosensitivity. Methods and Materials: Tissue from NSCLC patients, A549 cells, and BE1 cells expressing Axin were exposed to 1-Gy of X-radiation. Axin and p53 expression levels were detected by immunohistochemistry and reverse transcription-PCR. Apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and FACS (fluorescence-activate cell sorter) analysis. Caspase-3 activity was determined by Western blotting. Phospho-JNK expression was determined by immunofluorescence. Results: The expression of Axin was significantly lower in NSCLC tissues than in normal lung tissues (p < 0.05). Axin expression correlates with differentiation, TNM staging, and lymph node metastasis of NSCLC (p < 0.05). Its expression negatively correlates with the expression of p53(mt) (p=0.000) and positively correlates with apoptosis (p=0.002). The prognosis of patients with high expression of Axin was better than those with low expression. X-radiation increases Axin expression in NSCLC tissue, and caspase-3 is significantly higher in samples in which Axin is increased (p < 0.05). Both X-radiation and Axin induce apoptosis of A549 and BE1 cells; however, the combination of the two enhances the apoptotic effect (p < 0.05). In A549 cells, inhibition of p53 blocks Axin-induced apoptosis, whereas in BE1 cells, the JNK pathway is required. Conclusions: Axin induces the p53 apoptotic pathway in cells where this pathway is intact; however, in cells expressing p53(mt), Axin induces apoptosis via the JNK pathway. Elevated Axin expression following X-ray exposure is a reliable indicator for determining the radiosensitivity of NSCLC.

  19. Differential response to ablative ionizing radiation in genetically distinct non-small cell lung cancer cells.

    PubMed

    Oweida, Ayman; Sharifi, Zeinab; Halabi, Hani; Xu, Yaoxian; Sabri, Siham; Abdulkarim, Bassam

    2016-04-01

    Stereotactic ablative radiotherapy (SABR) has emerged as a highly promising treatment for medically inoperable early-stage non-small cell lung cancer patients. Treatment outcomes after SABR have been excellent compared to conventional fractionated radiotherapy (CFRT). However, the biological determinants of the response to ablative doses of radiation remain poorly characterized. Furthermore, there's little data on the cellular and molecular response of genetically distinct NSCLC subtypes to radiation. We assessed the response of 3 genetically distinct lung adenocarcinoma cell lines to ablative and fractionated ionizing radiation (AIR and FIR). We studied clonogenic survival, cell proliferation, migration, invasion, apoptosis and senescence. We also investigated the effect of AIR and FIR on the expression of pro-invasive proteins, epithelial-to-mesenchymal transition (EMT), extracellular signal-regulated kinases (ERK1/2) and the transmembrane receptor cMET. Our findings reveal that AIR significantly reduced cell proliferation and clonogenic survival compared to FIR in A549 cells only. This differential response was not observed in HCC827 or H1975 cells. AIR significantly enhanced the invasiveness of A549 cells, but not HCC827 or H1975 cells compared to FIR. Molecular analysis of pathways involved in cell proliferation and invasion revealed that AIR significantly reduced phosphorylation of ERK1/2 and upregulated cMET expression in A549 cells. Our results show a differential proliferative and invasive response to AIR that is dependent on genetic subtype and independent of intrinsic radioresistance. Further examination of these findings in a larger panel of NSCLC cell lines and in pre-clinical models is warranted for identification of biomarkers of tumor response to AIR. PMID:27096542

  20. Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death

    SciTech Connect

    Peng Peiling; Kuo, W.-H.; Tseng, H.-C.; Chou, F.-P.

    2008-02-01

    Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application of berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.

  1. Risks of Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  2. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  3. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-09-07

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  4. From mice and men to earth and space: joint NASA-NCI workshop on lung cancer risk resulting from space and terrestrial radiation.

    PubMed

    Shay, Jerry W; Cucinotta, Francis A; Sulzman, Frank M; Coleman, C Norman; Minna, John D

    2011-11-15

    On June 27-28, 2011, scientists from the National Cancer Institute (NCI), NASA, and academia met in Bethesda to discuss major lung cancer issues confronting each organization. For NASA, available data suggest that lung cancer is the largest potential cancer risk from space travel for both men and women and quantitative risk assessment information for mission planning is needed. In space, the radiation risk is from high energy and charge (HZE) nuclei (such as Fe) and high-energy protons from solar flares and not from gamma radiation. In contrast, the NCI is endeavoring to estimate the increased lung cancer risk from the potential widespread implementation of computed tomographic (CT) screening in individuals at high risk for developing lung cancer based on the National Lung Cancer Screening Trial (NLST). For the latter, exposure will be X-rays from CT scans from the screening (which uses "low-dose" CT scans) and also from follow-up scans used to evaluate abnormalities found during initial screening. Topics discussed included the risk of lung cancer arising after HZE particle, proton, and low-dose exposure to Earth's radiation. The workshop examined preclinical models, epidemiology, molecular markers, "omics" technology, radiobiology issues, and lung stem cells that relate to the development of lung cancer. PMID:21900398

  5. Lung cancer

    MedlinePlus

    ... any symptoms. Symptoms depend on the type of cancer you have, but may include: Chest pain Cough that does not go away Coughing up blood Fatigue Losing weight without trying Loss of appetite Shortness of breath ...

  6. Drugs Approved for Lung Cancer

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer ... in lung cancer that are not listed here. Drugs Approved for Non-Small Cell Lung Cancer Abitrexate ( ...

  7. Radiation dose is associated with prognosis of small cell lung cancer with superior vena cava syndrome

    PubMed Central

    Wang, Zhen-Bo; Ning, Fang-Ling; Wang, Xiao-Le; Cheng, Yu-Feng; Dong, Xin-Jun; Liu, Chang-Min; Chen, Shao-Shui

    2015-01-01

    Approximately 10% of small cell lung cancer (SCLC) cases develop superior vena cava syndrome (SVCS). Many SCLC patients with SVCS have relatively limited disease, requiring curative rather than palliative treatment. Besides chemotherapy, radiotherapy is important for treating SCLC with SVCS. We retrospectively evaluated the influence of radiotherapy dose on the prognosis of 57 patients with SCLC with SVCS treated with concurrent chemoradiotherapy. The mean biological equivalent radiation dose was 71.5 Gy. We administered etoposide/cisplatin as sequential and concurrent chemotherapy. All patients received at least one cycle of concurrent chemotherapy. All patients had partial or complete response; SVCS-associated symptoms were reduced in 87.7% (50/57) of patients within 3-10 days after treatment. Radiation dose did not affect 2-year local control (74.2% vs. 80.8%). Patients who received high-dose radiation had a lower 2-year overall survival rate than those who received low-dose radiation (11.6 vs. 33%; P = 0.024). The high dose group median survival was 15.0 months (95% confidence interval [CI]: 11.2-19.0) compared with 18.7 months (95% CI: 13.9-23.6) in the low dose group. Grade 3/4 neutropenia occurred in 22/26 high dose patients (84.6%) and 21/31 low dose patients (67.7%). In the high dose group, 30.8% of patients had grade 3/4 esophagitis compared with 19.4% of low dose patients. Only 29.0% of low dose patients received < 4 cycles of chemotherapy in the first 12 weeks after treatment began compared with 46.2% of high dose patients. Concurrent chemoradiotherapy is a tolerable modality for treating stage IIIA/IIIB SCLC with SVCS. Moderate-dose radiotherapy is preferable. PMID:26064339

  8. Impact of Neoadjuvant Radiation on Survival in Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Koshy, Matthew; Goloubeva, Olga; Suntharalingam, Mohan

    2011-04-01

    Purpose: The role of surgery in Stage III non-small-cell lung cancer (NSCLC) is controversial. This study was undertaken to assess the impact of neoadjuvant radiation therapy for Stage III NSCLC. Methods and Materials: This was a retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database that included patients who were 18 years and older with NSCLC classified as Stage III and who underwent definitive therapy from 1988 to 2004. Patients were characterized by type of treatment received. Survival functions were estimated by the Kaplan-Meier method, and Cox regression model was used to analyze trends in overall (OS) and cause-specific survival (CSS). Results: A total of 48,131 patients were selected, with a median follow-up of 10 months (range, 0-203 months). By type of treatment, the 3-year OS was 10% with radiation therapy (RT), 37% with surgery (S), 34% with surgery and postoperative radiation (S-RT), and 45% with neoadjuvant radiation followed by surgery (Neo-RT) (p = 0.0001). Multivariable Cox model identified sex, race, laterality, T stage, N stage, and type of treatment as factors affecting survival. Estimated hazard ratios (HR) adjusted for other variables in regression model showed the types of treatment: S (HR, 1.3; 95% confidence interval [CI], 1.2-1.4), S-RT (HR, 1.2; 95% CI, 1.1-1.3), and RT (HR, 2.3; 95% CI, 2.15-2.53) were associated with significantly worse overall survival when compared with Neo-RT (p = 0.0001). Conclusion: This population based study demonstrates that patients with Stage III NSCLC receiving Neo-RT had significantly improved overall survival when compared with other treatment groups.

  9. Association Between White Blood Cell Count Following Radiation Therapy With Radiation Pneumonitis in Non-Small Cell Lung Cancer

    SciTech Connect

    Tang, Chad; Gomez, Daniel R.; Wang, Hongmei; Levy, Lawrence B.; Zhuang, Yan; Xu, Ting; Nguyen, Quynh; Komaki, Ritsuko; Liao, Zhongxing

    2014-02-01

    Purpose: Radiation pneumonitis (RP) is an inflammatory response to radiation therapy (RT). We assessed the association between RP and white blood cell (WBC) count, an established metric of systemic inflammation, after RT for non-small cell lung cancer. Methods and Materials: We retrospectively analyzed 366 patients with non-small cell lung cancer who received ≥60 Gy as definitive therapy. The primary endpoint was whether WBC count after RT (defined as 2 weeks through 3 months after RT completion) was associated with grade ≥3 or grade ≥2 RP. Median lung volume receiving ≥20 Gy (V{sub 20}) was 31%, and post-RT WBC counts ranged from 1.7 to 21.2 × 10{sup 3} WBCs/μL. Odds ratios (ORs) associating clinical variables and post-RT WBC counts with RP were calculated via logistic regression. A recursive-partitioning algorithm was used to define optimal post-RT WBC count cut points. Results: Post-RT WBC counts were significantly higher in patients with grade ≥3 RP than without (P<.05). Optimal cut points for post-RT WBC count were found to be 7.4 and 8.0 × 10{sup 3}/μL for grade ≥3 and ≥2 RP, respectively. Univariate analysis revealed significant associations between post-RT WBC count and grade ≥3 (n=46, OR=2.6, 95% confidence interval [CI] 1.4‒4.9, P=.003) and grade ≥2 RP (n=164, OR=2.0, 95% CI 1.2‒3.4, P=.01). This association held in a stepwise multivariate regression. Of note, V{sub 20} was found to be significantly associated with grade ≥2 RP (OR=2.2, 95% CI 1.2‒3.4, P=.01) and trended toward significance for grade ≥3 RP (OR=1.9, 95% CI 1.0-3.5, P=.06). Conclusions: Post-RT WBC counts were significantly and independently associated with RP and have potential utility as a diagnostic or predictive marker for this toxicity.

  10. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study

    SciTech Connect

    Howe, G.R.

    1995-06-01

    Current lung cancer risk estimates after exposure to low-linear energy transfer radiation such as X rays are based on studies of people exposed to such radiation at high dose rates, for example the atomic bomb survivors. Radiobiology and animal experiments suggest that risks from exposure at low to moderate dose rates, for example medical diagnostic procedures, may be overestimated by such risk models, but data for humans to examine this issue are limited. In this paper we report on lung cancer mortality between 1950 and 1987 in a cohort of 64,172 Canadian tuberculosis patients, of whom 39% were exposed to highly fractionated multiple chest fluoroscopies leading to a mean lung radiation dose of 1.02 Sv received at moderate dose rates. These data have been used to estimate the excess relative risk per sievert of lung cancer mortality, and this is compared directly to estimates derived from 75,991 atomic bomb survivors. Based on 1,178 lung cancer deaths in the fluoroscopy study, there was no evidence of any positive association between risk and dose, with the relative risk at 1 Sv being 1.00 (95% confidence interval 0.94, 1.07), which contrasts with that based on the atomic bomb survivors, 1.60 (1.27, 1.99). The difference in effect between the two studies almost certainly did not arise by chance (P = 0.0001). This study provides strong support from data for humans for a substantial fractionation/dose-rate effect for low-linear energy transfer radiation and lung cancer risk. This implies that lung cancer risk from exposures to such radiation at present-day dose rates is likely to be lower than would be predicted by current radiation risk models based on studies of high-dose-rate exposures. 25 refs., 8 tabs.

  11. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    SciTech Connect

    Son, Cheol-Hun; Bae, Jae-Ho; Shin, Dong-Yeok; Lee, Hong-Rae; Jo, Wol-Soon; Yang, Kwangmo; Park, You-Soo

    2015-06-01

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy.

  12. Rare lung cancers.

    PubMed

    2015-12-01

    There are several different kinds of lung cancer, often referred to as lung cancer subtypes. Some of these occur more often than others. In this factsheet we will specifically look at the subtypes of cancers that do not happen very often and are considered 'rare'. PMID:27066129

  13. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  14. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2016-08-31

    Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  15. [Positron emission tomography and stereotactic body radiation therapy for lung cancer: From treatment planning to response evaluation].

    PubMed

    Bibault, J-E; Oudoux, A; Durand-Labrunie, J; Mirabel, X; Lartigau, É; Kolesnikov-Gauthier, H

    2015-12-01

    Stereotactic body radiation therapy is the standard treatment for inoperable patients with early-stage lung cancer. Local control rates range from 80 to 90 % 2 years after treatment. The role of positron emission tomography in patient selection is well known, but its use for target definition or therapeutic response evaluation is less clear. We reviewed the literature in order to assess the current state of knowledge in this area. PMID:26476702

  16. Immunotherapy for lung cancer.

    PubMed

    Steven, Antonius; Fisher, Scott A; Robinson, Bruce W

    2016-07-01

    Treatment of lung cancer remains a challenge, and lung cancer is still the leading cause of cancer-related mortality. Immunotherapy has previously failed in lung cancer but has recently emerged as a very effective new therapy, and there is now growing worldwide enthusiasm in cancer immunotherapy. We summarize why immune checkpoint blockade therapies have generated efficacious and durable responses in clinical trials and why this has reignited interest in this field. Cancer vaccines have also been explored in the past with marginal success. Identification of optimal candidate neoantigens may improve cancer vaccine efficacy and may pave the way to personalized immunotherapy, alone or in combination with other immunotherapy such as immune checkpoint blockade. Understanding the steps in immune recognition and eradication of cancer cells is vital to understanding why previous immunotherapies failed and how current therapies can be used optimally. We hold an optimistic view for the future prospect in lung cancer immunotherapy. PMID:27101251

  17. A case-cohort study of lung cancer, ionizing radiation, and tobacco smoking among males at the Hanford Site

    SciTech Connect

    Petersen, G.R.; Gilbert, E.S.; Buchanan, J.A.; Stevens, R.G. )

    1990-01-01

    Results of several epidemiological studies of workers exposed occupationally to low levels of radiation have been reported but have not included data on smoking. The authors conducted a case-cohort study of male workers at the Hanford Site with an objective of investigating the association between lung-cancer risk and occupational radiation exposure with appropriate adjustment for tobacco use. Eighty-six lung-cancer deaths for the period 1965-1980 and a stratified random sample of 445 subcohort members were included in the study. Tobacco-use data were obtained from medical records collected over each subject's period of employment. Data from this study were analyzed using methods that took into account both the case-cohort design and changes over time in the quality of the tobacco-use data collected. Tobacco use was not strongly related to the level of radiation exposure, and adjustment for tobacco use did not greatly modify results of analyses assessing the association between lung-cancer risk and cumulative dose equivalent. With or without adjustment for tobacco use, the estimated risks per unit of cumulative dose equivalent were negative, but the 95% confidence intervals were wide and included values several times those estimated from populations with high levels of irradiation.

  18. Genetics Home Reference: lung cancer

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions lung cancer lung cancer Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Lung cancer is a disease in which certain cells ...

  19. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-04-05

    Metastatic Malignant Neoplasm in the Brain; Stage IIIA Large Cell Lung Carcinoma; Stage IIIA Lung Adenocarcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Large Cell Lung Carcinoma; Stage IIIB Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Non-Small Cell Lung Cancer

  20. A methodology for automatic intensity-modulated radiation treatment planning for lung cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Xiaoqiang; Quan, Enzhuo M.; Pan, Xiaoning; Li, Yupeng

    2011-07-01

    In intensity-modulated radiotherapy (IMRT), the quality of the treatment plan, which is highly dependent upon the treatment planner's level of experience, greatly affects the potential benefits of the radiotherapy (RT). Furthermore, the planning process is complicated and requires a great deal of iteration, and is often the most time-consuming aspect of the RT process. In this paper, we describe a methodology to automate the IMRT planning process in lung cancer cases, the goal being to improve the quality and consistency of treatment planning. This methodology (1) automatically sets beam angles based on a beam angle automation algorithm, (2) judiciously designs the planning structures, which were shown to be effective for all the lung cancer cases we studied, and (3) automatically adjusts the objectives of the objective function based on a parameter automation algorithm. We compared treatment plans created in this system (mdaccAutoPlan) based on the overall methodology with plans from a clinical trial of IMRT for lung cancer run at our institution. The 'autoplans' were consistently better, or no worse, than the plans produced by experienced medical dosimetrists in terms of tumor coverage and normal tissue sparing. We conclude that the mdaccAutoPlan system can potentially improve the quality and consistency of treatment planning for lung cancer.

  1. TUBERCULOSIS AND LUNG CANCER.

    PubMed

    Tamura, Atsuhisa

    2016-01-01

    The occurrence of pulmonary tuberculosis (PTB) and lung cancer as comorbidities has been extensively discussed in many studies. In the past, it was well known that lung cancer is a specific epidemiological successor of PTB and that lung cancer often develops in scars caused by PTB. In recent years, the relevance of the two diseases has drawn attention in terms of the close epidemiological connection and chronic inflammation-associated carcinogenesis. In Japanese case series studies, most lung cancer patients with tuberculous sequelae received supportive care alone in the past, but more recently, the use of aggressive lung cancer treatment is increasing. Many studies on PTB and lung cancer as comorbidities have revealed that active PTB is noted in 2-5% of lung cancer cases, whereas lung cancer is noted in 1-2% of active PTB cases. In such instances of comorbidity, many active PTB cases showed Type II (non-extensively cavitary disease) and Spread 2-3 (intermediate-extensive diseases) on chest X-rays, but standard anti-tuberculosis treatment easily eradicates negative conversion of sputum culture for M. tuberculosis; lung cancer cases were often stage III- IV and squamous cell carcinoma predominant, and the administration of aggressive treatment for lung cancer is increasing. The major clinical problems associated with PTB and lung cancer as comorbidities include delay in diagnosis (doctor's delay) and therapeutic limitations. The former involves two factors of radiographic interpretation: the principles of parsimony (Occam's razor) and visual search; the latter involves three factors of lung cancer treatment: infectivity of M.tuberculosis, anatomical limitation due to lung damage by tuberculosis, and drug-drug interactions between rifampicin and anti-cancer drugs, especially molecularly targeted drugs. The comorbidity of these two diseases is an important health-related issue in Japan. In the treatment of PTB, the possibility of concurrent lung cancer should be kept

  2. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    SciTech Connect

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, Jose

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  3. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  4. Stereotactic Body Radiation Therapy for Early-Stage Non-Small-Cell Lung Cancer: The Pattern of Failure Is Distant

    SciTech Connect

    Bradley, Jeffrey D.; El Naqa, Issam; Drzymala, Robert E.; Trovo, Marco; Jones, Griffin; Denning, Mary Dee

    2010-07-15

    Background: Stereotactic body radiation therapy (SBRT) represents a substantial paradigm shift in the treatment of patients with medically inoperable Stage I/II non-small-cell lung cancer. We reviewed our experience using either three- or five-fraction SBRT for peripheral or central tumors, respectively. Methods and Materials: A total of 91 patients signed an institutional review board-approved consent form, were treated with SBRT, and have had {>=}6 months of follow-up. Patients were referred for SBRT because of underlying comorbidities (poor performance status in 31 or poor lung function in 52) or refusal of surgery (8 patients). Of the cancers, 83 were peripheral and eight were central. Peripheral cancers received a mean dose of 18 Gy x three fractions. Cancers within 2 cm of the bronchus, esophagus, or brachial plexus were treated with 9 Gy x five fractions. Results: The median follow-up duration for these patients was 18 months (range, 6-42 months). TNM staging was as follows: 58 patients with T1N0M0, 22 with T2N0M0, 2 with T3N0M0 (chest wall), and 6 with T1N0M1 cancers. The median tumor diameter was 2 cm (range, 1-5 cm). The median forced expiratory volume in 1 s was 46% (range, 17-133%) and the median carbon monoxide diffusing capacity (DLCO) was 49% (range, 15-144%). Two-year local tumor control was achieved in 86% of patients. The predominant pattern of failure was the development of distant metastasis or second lung cancer. The development of distant metastasis was the only significant prognostic factor for overall survival on multivariate analysis. Conclusions: Local tumor control was shown to be high using SBRT for non-small-cell lung cancer. Overall survival is highly coerrelated with the development of distant metastasis.

  5. Early detection of lung cancer

    PubMed Central

    Midthun, David E.

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  6. Early detection of lung cancer.

    PubMed

    Midthun, David E

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  7. Combined Effects of Suberoylanilide Hydroxamic Acid and Cisplatin on Radiation Sensitivity and Cancer Cell Invasion in Non-Small Cell Lung Cancer.

    PubMed

    Feng, Jianguo; Zhang, Shirong; Wu, Kan; Wang, Bing; Wong, Jeffrey Y C; Jiang, Hong; Xu, Rujun; Ying, Lisha; Huang, Haixiu; Zheng, Xiaoliang; Chen, Xufeng; Ma, Shenglin

    2016-05-01

    Lung cancer is a leading cause of cancer-related mortality worldwide, and concurrent chemoradiotherapy has been explored as a therapeutic option. However, the chemotherapeutic agents cannot be administered for most patients at full doses safely with radical doses of thoracic radiation, and further optimizations of the chemotherapy regimen to be given with radiation are needed. In this study, we examined the effects of suberoylanilide hydroxamic acid (SAHA) and cisplatin on DNA damage repairs, and determined the combination effects of SAHA and cisplatin on human non-small cell lung cancer (NSCLC) cells in response to treatment of ionizing radiation (IR), and on tumor growth of lung cancer H460 xenografts receiving radiotherapy. We also investigated the potential differentiation effect of SAHA and its consequences on cancer cell invasion. Our results showed that SAHA and cisplatin compromise distinct DNA damage repair pathways, and treatment with SAHA enhanced synergistic radiosensitization effects of cisplatin in established NSCLC cell lines in a p53-independent manner, and decreased the DNA damage repair capability in cisplatin-treated primary NSCLC tumor tissues in response to IR. SAHA combined with cisplatin also significantly increased inhibitory effect of radiotherapy on tumor growth in the mouse xenograft model. In addition, SAHA can induce differentiation in stem cell-like cancer cell population, reduce tumorigenicity, and decrease invasiveness of human lung cancer cells. In conclusion, our data suggest a potential clinical impact for SAHA as a radiosensitizer and as a part of a chemoradiotherapy regimen for NSCLC. Mol Cancer Ther; 15(5); 842-53. ©2016 AACR. PMID:26839308

  8. Staging of Lung Cancer

    MedlinePlus

    ... of N2 means cancer has spread to the middle part of the chest (called the mediastinum). A rating ... so that the surgeon can remove the cancerous part of the lung and/or lymph node ... biopsied are your lungs, bones, and brain. These types of biopsies can be done with ...

  9. The influence of radiation and nonradiation factors on the lung cancer incidence among the workers of the nuclear enterprise Mayak

    SciTech Connect

    Tokarskaya, Z.B.; Okladnikova, N.D.; Belyaeva, Z.D.; Drozhko, E.G.

    1995-09-01

    For the estimation of radiation lung cancer risk for a human being it is important to take into account different etiological factors because of the polyetiology of this disease. This work was the aim of a retrospective investigation ({open_quotes}case-control{close_quotes}) of 500 workers of a nuclear enterprise that had been gamma-irradiated in a wide dose range and had had exposure to airborne {sup 239}Pu. One hundred sixty-two persons contracted lung cancer (morbidity), and 338 persons that had not fallen ill served as pair control. Eleven potential risk factors were evaluated using a logistic regression model, five insignificant factors were excluded, and the remaining factors were arranged (by odds ratio) in decreasing order: smoking > plutonium pneumosclerosis > plutonium incorporation in body > chronic obstructive pulmonary disease (COPD) > decrease of body mass > external gamma-irradiation. The percentage of histologically confirmed adenocarcinoma among the nuclear enterprise workers was 74% which is significantly higher than 33% among the population that did not work at the enterprise, particularly in the case of high (more than 11 kBq) plutonium incorporation by the nuclear workers. The localization of tumors in this cohort is more frequently in the lower and middle lung lobes at the periphery. Each of the histological types of lung cancer has manifested a different degree of correlation with particular factors. 32 refs., 1 fig., 3 tabs.

  10. Lung cancer stem cells—characteristics, phenotype

    PubMed Central

    George, Rachel; Sethi, Tariq

    2016-01-01

    Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype. PMID:27413709

  11. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines.

    PubMed Central

    Groen, H. J.; Sleijfer, S.; Meijer, C.; Kampinga, H. H.; Konings, A. W.; De Vries, E. G.; Mulder, N. H.

    1995-01-01

    The interaction between moderate-dose radiation and cisplatin or carboplatin was studied in a cisplatin-sensitive (GLC4) and -resistant (GLC4-CDDP) human small-cell lung cancer cell line. Cellular toxicity was analysed under oxic conditions with the microculture tetrazolium assay. For the platinum and radiation toxicity with the clinically relevant dose ranges applied, this assay was used to obtain information on cell survival after the treatments. Apart from effects on cell survival effects on DNA were also investigated. Configurational DNA changes could be induced by platinum drugs and thereby these drugs might change the frequency of DNA double-strand breaks (dsbs). DNA fragmentation assayed with the clamped homogeneous electric field (CHEF) technique was used as a measure for dsbs in DNA. The radiosensitising effect of the platinum drugs was expressed as enhancement ratio (ER) calculated directly from survival levels of the initial slope of the curve. The highest ER for cisplatin in GLC4 was 1.39 and in GLC4-CDDP 1.38. These were all at 75% cell survival. Carboplatin showed increased enhancement with prolonged incubation up to 1.21 in GLC4 and was equally effective as cisplatin in GLC4-CDDP. According to isobologram analysis, prolonged incubation with both platinum drugs showed at least additivity with radiation for both cell lines at clinically achievable doses. GLC4-CDDP showed cross-resistance to radiation. The radiosensitising capacity of both lung cancer cell lines was not dependent on their platinum sensitivity. The formation of dsbs in DNA directly after radiation was not influenced by pretreatment of either drug in the sensitive or in the resistant cell line. Drug treatment resulted in decreased DNA extractability in control as well as in irradiated cells. Modest enhancement ratio for radiosensitisation by platinum drugs cannot be explained on the level of dsb formation in DNA in both cell lines. Interaction of radiation with the clinically less toxic

  12. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  13. Synergistic killing of lung cancer cells by cisplatin and radiation via autophagy and apoptosis.

    PubMed

    Liu, Min; Ma, Shumei; Liu, Mingbo; Hou, Yufei; Liang, Bing; Su, Xu; Liu, Xiaodong

    2014-06-01

    Cisplatin is a commonly used drug for chemotherapy, however, whether it may be used synergistically with radiotherapy remains unclear. The present study investigated the underlying mechanisms of synergistic killing by radiosensitization and cisplatin, with a focus on the growth inhibition, apoptosis and autophagy of non-small cell human lung cancer cells in vitro and in a tumor xenograft in vivo. A549 cells were used for the in vitro experiments and divided into the following four treatment groups: Sham-irradiated; conventional radiotherapy (CRT) of five doses of 2 Gy every day; hyperfractionated radiotherapy of five doses of 2 Gy (1 Gy twice a day at 4 h intervals) every day; and CRT plus cisplatin. A xenograft tumor-bearing C57BL/6 model was established for the in vivo experiments and the above-mentioned treatments were administered. MTT and colony formation assays were used to detect cell viability and western blotting was performed to detect the levels of protein expression. Monodansylcadaverine staining and the immunofluorescence technique were used to analyze the autophagy rate, while flow cytometry and immunohistochemistry were performed to detect the expression levels of the genes associated with apoptosis and autophagy, including microtubule-associated protein 1 light chain 3 (MAPLC3)-II, phosphoinositide 3-kinase (PI3K) III, Beclin1, phosphorylated protein kinase B (p-AKT), damage-regulated autophagy modulator (DRAM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, caspase-3 and p21. The MTT assay demonstrated that cisplatin exhibits a dose-dependent cytotoxicity in A549 cells and synergizes with radiation to promote the cell-killing effect of radiation. In the xenograft mouse model of Lewis cells, cisplatin plus ionizing radiation (IR) (five doses of 2 Gy) yielded the most significant tumor suppression. The autophagic vacuoles, the ratio of MAPLC3-II to MAPLC3-I (LC3-II/LC3-I) and the levels of Beclin1 were found to increase in all treatment

  14. ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    SciTech Connect

    Xiong, Huihua; Liao, Zhongxing; Liu, Zhensheng; Xu, Ting; Wang, Qiming; Liu, Hongliang; Komaki, Ritsuko; Gomez, Daniel; Wang, Li-E; Wei, Qingyi

    2013-03-15

    Purpose: The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). Methods and Materials: We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. Results: Of 362 patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. Conclusions: ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings.

  15. Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Zhang Fan; Hu Jing; Kelsey, Chris R.; Yoo, David; Yin Fangfang; Cai Jing

    2012-11-01

    Purpose: To evaluate the reproducibility of tumor motion probability distribution function (PDF) in stereotactic body radiation therapy (SBRT) of lung cancer using cine megavoltage (MV) images. Methods and Materials: Cine MV images of 20 patients acquired during three-dimensional conformal (6-11 beams) SBRT treatments were retrospectively analyzed to extract tumor motion trajectories. For each patient, tumor motion PDFs were generated per fraction (PDF{sub n}) using three selected 'usable' beams. Patients without at least three usable beams were excluded from the study. Fractional PDF reproducibility (R{sub n}) was calculated as the Dice similarity coefficient between PDF{sub n} to a 'ground-truth' PDF (PDF{sub g}), which was generated using the selected beams of all fractions. The mean of R{sub n}, labeled as R{sub m}, was calculated for each patient and correlated to the patient's mean tumor motion rang (A{sub m}). Change of R{sub m} during the course of SBRT treatments was also evaluated. Intra- and intersubject coefficient of variation (CV) of R{sub m} and A{sub m} were determined. Results: Thirteen patients had at least three usable beams and were analyzed. The mean of R{sub m} was 0.87 (range, 0.84-0.95). The mean of A{sub m} was 3.18 mm (range, 0.46-7.80 mm). R{sub m} was found to decrease as A{sub m} increases following an equation of R{sub m} = 0.17e{sup -0.9Am} + 0.84. R{sub m} also decreased slightly throughout the course of treatments. Intersubject CV of R{sub m} (0.05) was comparable to intrasubject CV of R{sub m} (range, 0.02-0.09); intersubject CV of A{sub m} (0.73) was significantly greater than intrasubject CV of A{sub m} (range, 0.09-0.24). Conclusions: Tumor motion PDF can be determined using cine MV images acquired during the treatments. The reproducibility of lung tumor motion PDF decreased exponentially as the tumor motion range increased and decreased slightly throughout the course of the treatments.

  16. Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo.

    PubMed

    Grimes, Kristopher R; Warren, Graham W; Fang, Fang; Xu, Yong; St Clair, William H

    2006-10-01

    Lung cancer is the leading cause of cancer-related deaths in the United States. Despite improvements in radiation, surgery and chemotherapy the 5 year survival statistics of non-small cell lung cancer (NSCLC) have improved little over the past two decades. It has been proposed that NF-kappaB is a participant in the cytoprotection against several redox-mediated therapeutic agents including ionizing radiation. Cyclooxygenase-2 (COX-2) inhibition has become an attractive target for enhancing the efficacy of radiation and chemotherapy. Numerous mechanistic pathways have been proposed as the means through which COX-2 inhibition enhances the efficacy of radiation. We hypothesize that the COX-2 inhibitor, nimesulide, will improve the efficacy of radiation therapy (RT), at least in part, via the suppression of NF-kappaB mediated cytoprotective pathways. In this study we used the COX-2 inhibitor nimesulide to improve the efficacy of RT when measured by tumor regrowth assays in vivo and clonegenic survival in vitro. For the in vivo assay, A549 tumor cells representing NSCLC were subcutaneously injected into the right flanks of female athymic nude mice (n=10/group). Mice were given nimesulide via drinking water at a concentration of 5 microg/g body weight (b.w.) and the water was replenished daily. Tumors were treated with 30 Gy fractionated radiation and measured bi-weekly. For our in vitro study, clonogenic survival assays were evaluated to determine the effect of nimesulide, radiation, and the combination. The NF-kappaB mediated mechanism of nimesulide was measured by Western blot analysis of NF-kappaB target genes, MnSOD and survivin. In vivo, mice that received combined treatments of 5 microg/g b.w. nimesulide and 30 Gy radiation (3 Gy/fraction, 10 daily fractions) had significant reduction in tumor size in comparison to the 30 Gy radiation control group (p<0.05). In vitro, nimesulide alone produced a significant decrease in clonogenic survival at doses from 0-300 micro

  17. Dose escalation with stereotactic body radiation therapy boost for locally advanced non small cell lung cancer

    PubMed Central

    2013-01-01

    Introduction Low survival outcomes have been reported for the treatment of locally advanced non small cell lung cancer (LA-NSCLC) with the standard of care treatment of concurrent chemoradiation (cCRT). We present our experience of dose escalation using stereotactic body radiosurgery (SBRT) following conventional cCRT for patients with LA-NSCLC. Methods Sixteen patients with a median age of 67.5 treated with fractionated SBRT from 2010 to 2012 were retrospectively analyzed. Nine (56%) of the patients had stage IIIB, 6 (38%) has stage IIIA, and 1 (6%) had recurrent disease. Majority of the patients (63%) presented with N2 disease. All patients had a PET CT for treatment planning. Patients received conventional cCRT to a median dose of 50.40 Gy (range 45–60) followed by an SBRT boost with an average dose of 25 Gy (range 20–30) given over 5 fractions. Results With a median follow-up of 14 months (range, 1–14 months), 1-year overall survival (OS), progression free survival (PFS), local control (LC), regional control (RC), and distant control (DC) rates were, 78%, 42%, 76%, 79%, and 71%, respectively. Median times to disease progression and regional failure were 10 months and 18 months, respectively. On univariate analysis, advanced age and nodal status were worse prognostic factors of PFS (p < 0.05). Four patients developed radiation pneumonitis and one developed hemoptysis. Treatment was interrupted in one patient who required hospitalization due to arrhythmias and pneumonia. Conclusion Risk adaptive dose escalation with SBRT following external beam radiotherapy is possible and generally tolerated treatment option for patients with LA-NSCLC. PMID:23842112

  18. Lung cancer susceptibility among atomic bomb survivors in relation to CA repeat number polymorphism of epidermal growth factor receptor gene and radiation dose.

    PubMed

    Yoshida, Kengo; Nakachi, Kei; Imai, Kazue; Cologne, John B; Niwa, Yasuharu; Kusunoki, Yoichiro; Hayashi, Tomonori

    2009-12-01

    Lung cancer is a leading cause of cancer death worldwide. Prevention could be improved by identifying susceptible individuals as well as improving understanding of interactions between genes and etiological environmental agents, including radiation exposure. The epidermal growth factor receptor (EGFR)-signaling pathway, regulating cellular radiation sensitivity, is an oncogenic cascade involved in lung cancer, especially adenocarcinoma. The cytosine adenine (CA) repeat number polymorphism in the first intron of EGFR has been shown to be inversely correlated with EGFR production. It is hypothesized that CA repeat number may modulate individual susceptibility to lung cancer. Thus, we carried out a case-cohort study within the Japanese atomic bomb (A-bomb) survivor cohort to evaluate a possible association of CA repeat polymorphism with lung cancer risk in radiation-exposed or negligibly exposed (<5 mGy) A-bomb survivors. First, by dividing study subjects into Short and Long genotypes, defined as the summed CA repeat number of two alleles < or = 37 and > or = 38, respectively, we found that the Short genotype was significantly associated with an increased risk of lung cancer, specifically adenocarcinoma, among negligibly exposed subjects. Next, we found that prior radiation exposure significantly enhanced lung cancer risk of survivors with the Long genotype, whereas the risk for the Short genotype did not show any significant increase with radiation dose, resulting in indistinguishable risks between these genotypes at a high radiation dose. Our findings imply that the EGFR pathway plays a crucial role in assessing individual susceptibility to lung adenocarcinoma in relation to radiation exposure. PMID:19843645

  19. Stereotactic body radiation therapy for the treatment of a post-chemotherapy remnant lung mass in extensive-stage small-cell lung cancer: A case report

    PubMed Central

    Yeo, Seung-Gu; Kim, Min-Jeong

    2016-01-01

    Stereotactic body radiation therapy (SBRT) can significantly improve the treatment outcomes of patients with inoperable stage I non-small-cell lung cancer. Similarly, a few case studies have reported the effectiveness of SBRT for stage I small-cell lung cancer (SCLC). However, no study has investigated the use of SBRT for extensive-stage SCLC (ES-SCLC). Compared with conventional RT, SBRT is able to deliver a higher radiation dose precisely and safely to small targets in short-duration treatments. The present study reports the outcome of a patient with ES-SCLC who responded favorably to initial chemotherapy and received SBRT for a residual mass in the peripheral lung. A 62-year-old female presented with pathologically determined SCLC at clinical stage T4N3M0-T4 as separate tumor nodules were present in different ipsilateral lobes. The patient received 6 cycles of standard chemotherapy with cisplatin and etoposide. The response of the patient to chemotherapy was evaluated using contrast-enhanced chest computed tomography and 18F-fluorodeoxyglucose positron emission tomography-computed tomography. The only suspected residual viable tumor was a 1.5-cm mass in the right upper lobe. Targeting this mass, intensity-modulated SBRT was performed with 48 Gy in 4 fractions and 6 MV photons. In addition, prophylactic cranial irradiation was conducted with 25 Gy in 10 fractions. The patient is alive with no evidence of disease 4 years after treatment. SBRT toxicity was limited to radiation pneumonitis or fibrosis without pulmonary symptoms. This case report suggests the efficacy of SBRT in select ES-SCLC patients with small residual lung disease following chemotherapy.

  20. Afatinib increases sensitivity to radiation in non-small cell lung cancer cells with acquired EGFR T790M mutation

    PubMed Central

    Huang, Haixiu; Wu, Kan; Wang, Bing; Chen, Xufeng; Ma, Shenglin

    2015-01-01

    Afatinib is a second-generation of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and has shown a significant clinical benefit in non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, the potential therapeutic effects of afatinib combining with other modalities, including ionizing radiation (IR), are not well understood. In this study, we developed a gefitinib-resistant cell subline (PC-9-GR) with a secondary EGFR mutation (T790M) from NSCLC PC-9 cells after chronic exposures to increasing doses of gefitinib. The presence of afatinib significantly increases the cell killing effect of radiation in PC-9-GR cells harboring acquired T790M, but not in H1975 cells with de novo T790M or in H460 cells that express wild-type EGFR. In PC-9-GR cells, afatinib remarkable blocks baseline of EGFR and ERK phosphorylations, and causes delay of IR-induced AKT phosphorylation. Afatinib treatment also leads to increased apoptosis and suppressed DNA damage repair in irradiated PC-9-GR cells, and enhanced tumor growth inhibition when combined with IR in PC-9-GR xenografts. Our findings suggest a potential therapeutic impact of afatinib as a radiation sensitizer in lung cancer cells harboring acquired T790M mutation, providing a rationale for a clinical trial with combination of afatinib and radiation in NSCLCs with EGFR T790M mutation. PMID:25714021

  1. Lung cancer in Australia.

    PubMed

    McLennan, G; Roder, D M

    1989-02-20

    Lung cancer is the leading cause of death of cancer in Australian men and the third leading cause in Australian women. Efforts are being made to reduce the incidence of this disease by smoking-cessation programmes and improved industrial hygiene, and these measures need to be encouraged strongly by all sectors of the community. On a population basis, insufficient evidence is available to justify screening procedures for the early detection of lung cancer in "at-risk" groups. Cure is possible by surgical resection in early cases. Improvements in therapeutic results with traditional cancer treatments largely have reached a plateau, but a number of newer therapies, and combinations of standard therapies, currently are being evaluated. Of particular interest is concurrent radiotherapy and chemotherapy in localized non-small-cell lung cancer; laser "debulking" in conjunction with radiotherapy in non-small-cell lung cancer, and biological response-modifying agents in non-small-cell and small-cell lung cancer. It is important that data be collected adequately to define epidemiological changes and to evaluate treatment results (including repeat bronchoscopy, to assess local control of tumour), and that the quality of life is recorded and reported in the evaluation process. Finally, phase-III studies in lung-cancer treatments require adequate numbers of subjects to enable meaningful conclusions to be achieve objectives within a reasonable study period. PMID:2469943

  2. Lung and Bronchus Cancer

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 224,390 % of All New Cancer Cases 13.3% Estimated Deaths in 2016 158,080 % of All Cancer ... of This Cancer : In 2013, there were an estimated 415,707 people living with lung and bronchus ...

  3. SU-E-J-169: The Dosimetric and Temporal Effects of Respiratory-Gated Radiation Therapy in Lung Cancer Patients

    SciTech Connect

    Rouabhi, O; Gross, B; Xia, J; Bayouth, J

    2015-06-15

    Purpose: To evaluate the dosimetric and temporal effects of high dose rate treatment mode for respiratory-gated radiation therapy in lung cancer patients. Methods: Treatment plans from five lung cancer patients (3 nongated (Group 1), 2 gated at 80EX-80IN (Group 2)) were retrospectively evaluated. The maximum tumor motions range from 6–12 mm. Using the same planning criteria, four new treatment plans, corresponding to four gating windows (20EX–20IN, 40EX–40IN, 60EX–60IN, and 80EX–80IN), were generated for each patient. Mean tumor dose (MTD), mean lung dose (MLD), and lung V20 were used to assess the dosimetric effects. A MATLAB algorithm was developed to compute treatment time by considering gantry rotation time, time to position collimator leaves, dose delivery time (scaled relative to the gating window), and communication overhead. Treatment delivery time for each plan was estimated using a 500 MU/min dose rate for the original plans and a 1500 MU/min dose rate for the gated plans. Results: Differences in MTD were less than 1Gy across plans for all five patients. MLD and lung V20 were on average reduced between −16.1% to −6.0% and −20.0% to −7.2%, respectively for non-gated plans when compared with the corresponding gated plans, and between − 5.8% to −4.2% and −7.0% to −5.4%, respectively for plans originally gated at 80EX–80IN when compared with the corresponding 20EX-20IN to 60EX– 60IN gated plans. Treatment delivery times of gated plans using high dose rate were reduced on average between −19.7% (−1.9min) to −27.2% (−2.7min) for originally non-gated plans and −15.6% (−0.9min) to −20.3% (−1.2min) for originally 80EX-80IN gated plans. Conclusion: Respiratory-gated radiation therapy in lung cancer patients can reduce lung toxicity, while maintaining tumor dose. Using a gated high-dose-rate treatment, delivery time comparable to non-gated normal-dose-rate treatment can be achieved. This research is supported by Siemens

  4. Lung Cancer Screening Update.

    PubMed

    Ruchalski, Kathleen L; Brown, Kathleen

    2016-07-01

    Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients. PMID:27306387

  5. Lung cancer: Biology and treatment options.

    PubMed

    Lemjabbar-Alaoui, Hassan; Hassan, Omer Ui; Yang, Yi-Wei; Buchanan, Petra

    2015-12-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  6. Overexpression of the regulator of G-protein signaling 5 reduces the survival rate and enhances the radiation response of human lung cancer cells.

    PubMed

    Xu, Zumin; Zuo, Yufang; Wang, Jin; Yu, Zhonghua; Peng, Fang; Chen, Yuanyuan; Dong, Yong; Hu, Xiao; Zhou, Qichao; Ma, Honglian; Bao, Yong; Chen, Ming

    2015-06-01

    Regulator of G protein signaling 5 (RGS5) belongs to the R4 subfamily of RGS proteins, a family of GTPase activating proteins, which is dynamically regulated in various biological processes including blood pressure regulation, smooth muscle cell pathology, fat metabolism and tumor angiogenesis. Low-expression of RGS5 was reported to be associated with tumor progression in lung cancer. In the present study, we examined the potential roles of RGS5 in human lung cancer cells by overexpressing RGS5 in the cancer cells and further explored the underlying molecular mechanisms. The RGS5 gene was cloned and transfected into the human lung cancer cell lines A549 and Calu-3. The cells were tested for apoptosis with flow cytometry, for viability with MTT, for mobility and adhesion capacity. The radiosensitization effect of RGS5 was measured by a colony formation assay. The mechanisms of RGS5 functioning was also investigated by detection of protein expression with western blot analysis, including PARP, caspase 3 and 9, bax, bcl2, Rock1, Rock2, CDC42, phospho-p53 (Serine 15) and p53. The present study demonstrated that RGS5 overexpression remarkably induced apoptosis in human lung cancer cells, which was suggested to be through mitochondrial mechanisms. Overexpression of RGS5 resulted in significantly lower adhesion and migration abilities of the lung cancer cells (P<0.01). Furthermore, overexpression of RGS5 sensitized the lung cancer cells to radiation. In conclusion, the present study showed that RGS5 played an inhibitory role in human lung cancer cells through induction of apoptosis. Furthermore, RGS5 enhanced the cytotoxic effect of radiation in the human lung cancer cells. Our results indicated that RGS5 may be a potential target for cancer therapy. PMID:25891540

  7. Lung Cancer Prevention

    MedlinePlus

    ... from the breakdown of uranium in rocks and soil. It seeps up through the ground, and leaks ... substances increases the risk of lung cancer: Asbestos . Arsenic . Chromium. Nickel. Beryllium. Cadmium . Tar and soot. These ...

  8. Women and Lung Cancer

    MedlinePlus

    ... Horrigan Conners Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, April, ... Lung Cancer in Women: The Differences in Epidemiology, Biology and Treatment Outcomes, Maria Patricia Rivera MD Expert ...

  9. Alpha/Beta Ratio for Normal Lung Tissue as Estimated From Lung Cancer Patients Treated With Stereotactic Body and Conventionally Fractionated Radiation Therapy

    SciTech Connect

    Scheenstra, Alize E.H.; Rossi, Maddalena M.G.; Belderbos, José S.A.; Damen, Eugène M.F.; Lebesque, Joos V.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: To estimate the α/β ratio for which the dose-dependent lung perfusion reductions for stereotactic body radiation therapy (SBRT) and conventionally fractionated radiation therapy (CFRT) are biologically equivalent. Methods and Materials: The relations between local dose and perfusion reduction 4 months after treatment in lung cancer patients treated with SBRT and CFRT were scaled according to the linear-quadratic model using α/β ratios from 0 Gy to ∞ Gy. To test for which α/β ratio both treatments have equal biological effect, a 5-parameter logistic model was optimized for both dose–effect relationships simultaneously. Beside the α/β ratio, the other 4 parameters were d{sub 50}, the steepness parameter k, and 2 parameters (M{sub SBRT} and M{sub CFRT}) representing the maximal perfusion reduction at high doses for SBRT and CFRT, respectively. Results: The optimal fitted model resulted in an α/β ratio of 1.3 Gy (0.5-2.1 Gy), M{sub SBRT} = 42.6% (40.4%-44.9%), M{sub CFRT} = 66.9% (61.6%-72.1%), d{sub 50} = 35.4 Gy (31.5-9.2 Gy), and k = 2.0 (1.7-2.3). Conclusions: An equal reduction of lung perfusion in lung cancer was observed in SBRT and CFRT if local doses were converted by the linear-quadratic model with an α/β ratio equal to 1.3 Gy (0.5-2.1 Gy)

  10. Lycopene and Lung Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  11. Lung Cancer Rates by State

    MedlinePlus

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who ...

  12. Immunotherapy in lung cancer.

    PubMed Central

    Al-Moundhri, M.; O'Brien, M.; Souberbielle, B. E.

    1998-01-01

    More research and new treatment options are needed in all stages of lung cancer. To this end immunotherapy needs a revival in view of recent improved technologies and greater understanding of the underlying biology. In this review we discuss mechanisms of tumour immunotherapy, non-specific, specific and adoptive, with particular reference to a direct therapeutic action on all subtypes of lung cancer. PMID:9703271

  13. Chemoprevention of lung cancer.

    PubMed

    Keith, Robert L

    2009-04-15

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to common malignancies other than lung. Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to determine higher risk populations and the understanding of lung tumor and pre-malignant biology continues to advance. Additional biomarkers of risk continue to be investigated and validated. The World Health Organization/International Association for the Study of Lung Cancer classification for lung cancer now recognizes distinct histologic lesions that can be reproducibly graded as precursors of non-small cell lung cancer. For example, carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive squamous cell cancer. Similar precursor lesions exist for adenocarcinoma, and these pre-malignant lesions are targeted by chemopreventive agents in current and future trials. At this time, chemopreventive agents can only be recommended as part of well-designed clinical trials, and multiple trials are currently in progress and additional trials are in the planning stages. This review will discuss the principles of chemoprevention, summarize the completed trials, and discuss ongoing and potential future trials with a focus on targeted pathways. PMID:19349487

  14. [Pathology of lung cancer].

    PubMed

    Theegarten, D; Hager, T

    2016-09-01

    Lung cancer is the leading cause of cancer death in men and the second most frequent cause in women. The pathology of lung tumors is of special relevance concerning therapy and prognosis and current classification systems have to be taken into consideration. The results of molecular tissue subtyping allow further classification and therapeutic options. The histological entities are mainly associated with typical X‑ray morphological features. PMID:27495784

  15. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.

    PubMed

    Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M

    2016-07-01

    This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031

  16. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-06-17

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  17. HSPB1 polymorphisms might be associated with radiation-induced damage risk in lung cancer patients treated with radiotherapy.

    PubMed

    Li, Xiaofeng; Xu, Sheng; Cheng, Yu; Shu, Jun

    2016-05-01

    Several studies investigating the association between heat shock protein beta-1 (HSPB1) polymorphisms and radiation-induced damage in lung cancer patients administrated with radiotherapy have derived conflicting results. This meta-analysis aimed to assess the association between the HSPB1 genes' (rs2868370 and rs2868371) polymorphisms and the risk of radiation-induced damage in lung cancer patients. After an electronic literature search, four articles including six studies were found to be eligible for this meta-analysis. No association was observed between rs2868370 genotypes and radiation-induced damage risk. However, rs2868371 showed a statistically increased risk of radiation-induced damage under CC vs. CG/GG model (OR = 1.59, 95 % CI = 1.10-2.29). Subgroup analysis by ethnicity showed that the genotypes of rs2868371 were also associated with a significantly increased risk of radiation-induced damage in CC vs. CG/GG model (OR = 1.86, 95 % CI = 1.21-2.83) among mixed ethnicities which are mainly comprised of white people. When the data was stratified by organ-damaged, a significant association was only observed in the esophagus group (OR = 2.94, 95 % CI = 1.35-6.37, for CC vs. CG/GG model). In conclusion, the present study demonstrated that the rs2868371 genotypes of HSPB1 might be associated with radiation-induced esophagus damage risk, especially in Caucasians but not in the Asian population. PMID:26874728

  18. Lung cancer screening guidelines: common ground and differences

    PubMed Central

    Gulati, Swati

    2014-01-01

    Lung cancer accounts for almost one-third of all cancer related deaths. Lung cancer risk persists even after smoking cessation and so many lung cancers now are diagnosed in former smokers. Five-year survival of lung cancer has marginally improved over decades and significantly lags behind that of colon, breast and prostate cancer. Over the past one decade, lung cancer screening trials have shown promising results. Results from National Lung Cancer Screening Trial (NLST), have shown a significant 20% reduction in mortality with annual low dose computed tomography (LDCT) screening. Based on these results, annual LDCT testing has been recommended for lung cancer screening in high risk population. However, development and acceptance of lung cancer screening as a public health policy is still in the nascent stages. Major concerns relate to risk of radiation, overdiagnosis bias, proportion of false positives and cost benefit analysis. This article reviews the literature pertaining to lung cancer screening guidelines and above mentioned concerns. PMID:25806292

  19. Lung cancer screening guidelines: common ground and differences.

    PubMed

    Gulati, Swati; Mulshine, James L

    2014-06-01

    Lung cancer accounts for almost one-third of all cancer related deaths. Lung cancer risk persists even after smoking cessation and so many lung cancers now are diagnosed in former smokers. Five-year survival of lung cancer has marginally improved over decades and significantly lags behind that of colon, breast and prostate cancer. Over the past one decade, lung cancer screening trials have shown promising results. Results from National Lung Cancer Screening Trial (NLST), have shown a significant 20% reduction in mortality with annual low dose computed tomography (LDCT) screening. Based on these results, annual LDCT testing has been recommended for lung cancer screening in high risk population. However, development and acceptance of lung cancer screening as a public health policy is still in the nascent stages. Major concerns relate to risk of radiation, overdiagnosis bias, proportion of false positives and cost benefit analysis. This article reviews the literature pertaining to lung cancer screening guidelines and above mentioned concerns. PMID:25806292

  20. Lung cancer treatment outcomes in recipients of lung transplant

    PubMed Central

    Du, Lingling; Pennell, Nathan A.; Elson, Paul

    2015-01-01

    Background Lung transplant recipients develop lung cancer more commonly than the general population. The best treatment approach for these patients is unclear. The goal of this study is to evaluate treatment outcomes in this population. Methods We used the Cleveland Clinic lung transplant database to identify patients diagnosed with lung cancer at the time of or after lung transplant. Transplant and lung cancer-related data were retrospectively reviewed. Results Among 847 patients underwent lung transplant between 2005 and 2013, 17 (2%) were diagnosed with lung cancer and included. Median age was 61 (range, 48–70) years. Majority were stage I/II (n=11), one had stage IIIA, five had stage IV. Non-small cell lung cancer (NSCLC) were more common than small cell lung cancer (SCLC) (n=15 vs. 2). Curative treatment was performed as lobectomy in native lung (n=1), and radiation in transplanted lung (n=2). Chemotherapy was given in 10 patients, primarily carboplatin-based doublets with docetaxel, pemetrexed, or etoposide. Six of these received palliative chemotherapy for either metastases at diagnosis (n=3) or recurrence after early stage disease (n=3). Except for one patient with complete response, all others had progressive disease following palliative chemotherapy. Overall, patients who received chemotherapy had a median survival of 7.5 months from the initiation of chemotherapy, but 30% developed grade 5 sepsis. Median survival for stage I–IIIA and stage IV were 23.2 and 2.5 months respectively. Conclusions Lung cancer in lung transplant recipients carries various clinical courses. Patients with metastatic disease have substantial toxicities from chemotherapy and poor survival. Early stage patients should be offered treatment with modified dosages to decrease the risk of severe toxicities. PMID:26798588

  1. [Chemoprevention of lung cancer].

    PubMed

    Tsuchida, Takaaki; Saito, Makoto; Honda, Hidetoshi; Hirata, Takeshi; Kato, Harubumi

    2003-02-01

    Since a high concentration of beta-carotene in blood reduces the risk of lung cancer, a large-scale intervention examination containing beta-carotene was conducted, mainly by the National Cancer Institute. The results showed that the risk of lung cancer increased with administration of beta-carotene. This result demonstrates that continuation of smoking is an important factor in the increased risk, and not smoking is confirmed to be the most important prevention method. The authors examined the treatment effect of raising the concentration of folic acid and vitamin B12 in blood on bronchial dysplasia as a pre-cancerous lesion. A significant medical treatment effect was see in the folic acid and vitamin B12 medication groups, which seems promising for the chemoprevention of lung cancer. PMID:12610863

  2. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes

    PubMed Central

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation. Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells. PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro. Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  3. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Ganesh, Nandita; Bailey, Lisa; Basse, Per; Gibson, Michael; Epperly, Michael; Levina, Vera

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation.Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells.PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro.Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  4. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  5. Radon and lung cancer.

    PubMed

    Sethi, Tarsheen K; El-Ghamry, Moataz N; Kloecker, Goetz H

    2012-03-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Radon exposure is the second leading cause of lung cancer, following tobacco smoke. Radon is not only an independent risk factor; it also increases the risk of lung cancer in smokers. Numerous cohort, case-control, and experimental studies have established the carcinogenic potential of radon. The possibility of radon having a causative effect on other cancers has been explored but not yet proven. One of the postulated mechanisms of carcinogenesis is DNA damage by alpha particles mediated by the production of reactive oxygen species. The latter are also thought to constitute one of the common mechanisms underlying the synergistic effect of radon and tobacco smoke. With an estimated 21,000 lung cancer deaths attributable to radon in the United States annually, the need for radon mitigation is well acknowledged. The Environmental Protection Agency (EPA) has established an indoor limit of 4 picocuries (pCi)/L, and various methods are available for indoor radon reduction when testing shows higher levels. Radon mitigation should accompany smoking cessation measures in lung cancer prevention efforts. PMID:22402423

  6. SU-E-T-551: Monitor Unit Optimization in Stereotactic Body Radiation Therapy for Stage I Lung Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: The study aims to reduce the monitor units (MUs) in the stereotactic body radiation therapy (SBRT) treatment for lung cancer by adjusting the optimizing parameters. Methods: Fourteen patients suffered from stage I Non-Small Cell Lung Cancer (NSCLC) were enrolled. Three groups of parameters were adjusted to investigate their effects on MU numbers and organs at risk (OARs) sparing: (1) the upper objective of planning target volume (UOPTV); (2) strength setting in the MU constraining objective; (3) max MU setting in the MU constraining objective. Results: We found that the parameters in the optimizer influenced the MU numbers in a priority, strength and max MU dependent manner. MU numbers showed a decreasing trend with the UOPTV increasing. MU numbers with low, medium and high priority for the UOPTV were 428±54, 312±48 and 258±31 MU/Gy, respectively. High priority for UOPTV also spared the heart, cord and lung while maintaining comparable PTV coverage than the low and medium priority group. It was observed that MU numbers tended to decrease with the strength increasing and max MU setting decreasing. With maximum strength, the MU numbers reached its minimum while maintaining comparable or improved dose to the normal tissues. It was also found that the MU numbers continued to decline at 85% and 75% max MU setting but no longer to decrease at 50% and 25%. Combined with high priority for UOPTV and MU constraining objectives, the MU numbers can be decreased as low as 223±26 MU/Gy. Conclusion:: The priority of UOPTV, MU constraining objective in the optimizer impact on the MU numbers in SBRT treatment for lung cancer. Giving high priority to the UOPTV, setting the strength to maximum value and the max MU to 50% in the MU objective achieves the lowest MU numbers while maintaining comparable or improved OAR sparing.

  7. Stereotactic Ablative Radiation Therapy as First Local Therapy for Lung Oligometastases From Colorectal Cancer: A Single-Institution Cohort Study

    SciTech Connect

    Filippi, Andrea Riccardo; Badellino, Serena; Ceccarelli, Manuela; Guarneri, Alessia; Franco, Pierfrancesco; Monagheddu, Chiara; Spadi, Rosella; Ragona, Riccardo; Racca, Patrizia; Ricardi, Umberto

    2015-03-01

    Purpose: To estimate stereotactic ablative radiation therapy (SABR) efficacy and its potential role as an alternative to surgery for the treatment of lung metastases from colorectal cancer. Methods and Materials: Forty consecutive patients who received SABR as first local therapy at the time of lung progression were included, from 2004 to 2014. The primary study endpoint was overall survival. Secondary endpoints were progression-free survival and safety. Results: A single nodule was treated in 26 patients (65%), 2 nodules in 10 patients (25%), 3 in 3 patients (7.5%), and 4 in 1 patient (2.5%), for a total of 59 lesions. The median delivered biological effective dose was 96 Gy, in 1 to 8 daily fractions. Median follow-up time was 20 months (range, 3-72 months). Overall survival rates at 1, 2, and 5 years were, respectively, 84%, 73%, and 39%, with 14 patients (35%) dead. Median overall survival was 46 months. Progression occurred in 25 patients (62.5%), at a median interval of 8 months; failure at SABR site was observed in 3 patients (7.5%). Progression-free survival rates were 49% and 27% at 1 and 2 years, respectively. Discussion: The results of this retrospective exploratory analysis suggest safety and efficacy of SABR in patients affected with colorectal cancer lung oligometastases and urge inclusion of SABR in prospective clinical trials.

  8. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  9. Radiation dose for normal organs by helical tomotherapy for lung cancer.

    PubMed

    Tseng, Hsien-Chun; Liu, Wen-Shan; Tsai, Hsiao-Han; Chu, Hsin-Yi; Lin, Jye-Bin; Chen, Chien-Yi

    2015-08-01

    This study derived a simple equation of effective dose (E) versus normal organ of patients with varying body weights undergoing lung cancer treatment of helical tomotherapy (TOMO). Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients. This study then measured E and equivalent dose of organ or tissues (DT) using thermoluminescent dosimetry (TLD-100H). The TLD-100H was calibrated using TOMO 6MV photons, then inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. Both E and DT were evaluated by ICRP 103. Peripheral doses varied markedly at positions close to the tumor center. The maximum statistical and total errors were 16.7-22.3%. This analytical result indicates that E of Rando and tissue-equivalent phantoms was in the ranged of 9.44±1.70 (10kg) to 4.58±0.83 (90kg)mSv/Gy. Notably, E decreased exponentially as phantom weight increased. Peripheral doses were also evaluated by TLD as a function of distance from the tumor center. Finally, experimental results are compared with those in literature. These findings will prove useful to patients, physicians, radiologists, and the public. PMID:25935507

  10. Lung cancer chemoprevention.

    PubMed

    Keith, Robert L

    2012-05-01

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. Although avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established, advanced-stage disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or block the carcinogenic process and has been successfully applied to common malignancies other than lung (including recent reports on the prevention of breast cancer in high-risk individuals). Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to define the highest-risk populations and the understanding of lung tumor and premalignant biology continue to make advances. Squamous cell carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive cancer. Precursor lesions also have been identified for adenocarcinoma, and these premalignant lesions are targeted by chemopreventive agents in current and future trials. Chemopreventive agents can currently only be recommended as part of well-designed clinical trials, and multiple trials have recently been completed or are enrolling subjects. PMID:22550242

  11. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directional block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.

  12. Lung cancer among Navajo uranium miners

    SciTech Connect

    Gottlieb, L.S.; Husen, L.A.

    1982-04-01

    Lung cancer has been a rare disease among the Indians of the southwestern United States. However, the advent of uranium mining in the area has been associated with an increased incidence of lung cancer among Navajo uranium miners. This study centers on Navajo men with lung cancer who were admitted to the hospital from February 1965 to May 1979. Of a total of 17 patients with lung cancer, 16 were uranium miners, and one was a nonminer. The mean value of cumulative radon exposure for this group was 1139.5 working level months (WLMs). The predominant cancer type was the small cell undifferentiated category (62.5 percent). The low frequency of cigarette smoking in this group supports the view that radiation is the primary cause of lung cancer among uranium miners and that cigarette smoking acts as a promoting agent.

  13. Enhancement of Radiation Sensitivity in Lung Cancer Cells by a Novel Small Molecule Inhibitor That Targets the β-Catenin/Tcf4 Interaction.

    PubMed

    Zhang, Qinghao; Gao, Mei; Luo, Guifen; Han, Xiaofeng; Bao, Wenjing; Cheng, Yanyan; Tian, Wang; Yan, Maocai; Yang, Guanlin; An, Jing

    2016-01-01

    Radiation therapy is an important treatment choice for unresectable advanced human lung cancers, and a critical adjuvant treatment for surgery. However, radiation as a lung cancer treatment remains far from satisfactory due to problems associated with radiation resistance in cancer cells and severe cytotoxicity to non-cancer cells, which arise at doses typically administered to patients. We have recently identified a promising novel inhibitor of β-catenin/Tcf4 interaction, named BC-23 (C21H14ClN3O4S), which acts as a potent cell death enhancer when used in combination with radiation. Sequential exposure of human p53-null non-small cell lung cancer (NSCLC) H1299 cells to low doses of x-ray radiation, followed 1 hour later by administration of minimally cytotoxic concentrations of BC-23, resulted in a highly synergistic induction of clonogenic cell death (combination index <1.0). Co-treatment with BC-23 at low concentrations effectively inhibits Wnt/β-catenin signaling and down-regulates c-Myc and cyclin D1 expression. S phase arrest and ROS generation are also involved in the enhancement of radiation effectiveness mediated by BC-23. BC-23 therefore represents a promising new class of radiation enhancer. PMID:27014877

  14. Enhancement of Radiation Sensitivity in Lung Cancer Cells by a Novel Small Molecule Inhibitor That Targets the β-Catenin/Tcf4 Interaction

    PubMed Central

    Luo, Guifen; Han, Xiaofeng; Bao, Wenjing; Cheng, Yanyan; Tian, Wang; Yan, Maocai; Yang, Guanlin; An, Jing

    2016-01-01

    Radiation therapy is an important treatment choice for unresectable advanced human lung cancers, and a critical adjuvant treatment for surgery. However, radiation as a lung cancer treatment remains far from satisfactory due to problems associated with radiation resistance in cancer cells and severe cytotoxicity to non-cancer cells, which arise at doses typically administered to patients. We have recently identified a promising novel inhibitor of β-catenin/Tcf4 interaction, named BC-23 (C21H14ClN3O4S), which acts as a potent cell death enhancer when used in combination with radiation. Sequential exposure of human p53-null non-small cell lung cancer (NSCLC) H1299 cells to low doses of x-ray radiation, followed 1 hour later by administration of minimally cytotoxic concentrations of BC-23, resulted in a highly synergistic induction of clonogenic cell death (combination index <1.0). Co-treatment with BC-23 at low concentrations effectively inhibits Wnt/β-catenin signaling and down-regulates c-Myc and cyclin D1 expression. S phase arrest and ROS generation are also involved in the enhancement of radiation effectiveness mediated by BC-23. BC-23 therefore represents a promising new class of radiation enhancer. PMID:27014877

  15. Lung cancer screening

    PubMed Central

    Pastorino, U

    2010-01-01

    Lung cancer is the primary cause of cancer mortality in developed countries. First diagnosis only when disease has already reached the metastatic phase is the main reason for failure in treatment. To this regard, although low-dose spiral computed tomography (CT) has proven to be effective in the early detection of lung cancer (providing both higher resectability and higher long-term survival rates), the capacity of annual CT screening to reduce lung cancer mortality in heavy smokers has yet to be demonstrated. Numerous ongoing large-scale randomised trials are under way in high-risk individuals with different study designs. The initial results should be available within the next 2 years. PMID:20424610

  16. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels.

    PubMed

    Mendes, Fernando; Sales, Tiago; Domingues, Cátia; Schugk, Susann; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Teixo, Ricardo; Silva, Rita; Casalta-Lopes, João; Rocha, Clara; Laranjo, Mafalda; Simões, Paulo César; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena; Rosa, Manuel Santos

    2015-12-01

    Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5-60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success. PMID:26582337

  17. Concomitant 5-fluorouracil infusion and high-dose radiation for stage III non-small cell lung cancer

    SciTech Connect

    Lokich, J.; Chaffey, J.; Neptune, W. )

    1989-09-01

    Thirty patients with Stage III non-small cell lung cancer were entered on a trial to evaluate the feasibility of combined radiation and concomitant 5-fluorouracil infusion. Patients had received prior debulking surgery (nine), induction chemotherapy (16), or no therapy (five). Radiation employed standard fractionation (180-200 rad/day) administered to a median cumulative dose of 5500 rad (range, 4500-6200 rad). 5-Fluorouracil was infused 24 hours per day throughout the period of radiation at a dose of 300 mg/m2/day for a median of 42 days (range, 28-56 days). Radiation complications included pneumonitis three of 30 (10%) and esophagitis (27%). Chemotherapy complications included stomatitis, two of 27 (7%), and hand-foot syndrome, three of 30 (10%). Treatment interruptions were necessary in six of 30 (20%) and four of 30 required parenteral nutrition. At a median follow-up of 12 months 26/30 (87%) maintained local control and eight had distant metastases (three of whom presented with Stage IV disease). 5-Fluorouracil delivered continuously throughout standard fractionation radiation to high cumulative doses is feasible and practical. Comparative clinical trials of the various combined radiation and chemotherapy schedules employed are in order. One additional clinical observation was the identification of six of 30 (20%) with brain metastases at presentation or after 12 months, all of whom had adenocarcinoma histologic subtype.

  18. Radiation Effects on Mortality from Solid Cancers Other than Lung, Liver, and Bone Cancer in the Mayak Worker Cohort: 1948–2008

    PubMed Central

    Sokolnikov, Mikhail; Preston, Dale; Gilbert, Ethel; Schonfeld, Sara; Koshurnikova, Nina

    2015-01-01

    Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948–2008. The cohort of Mayak Production Association (PA) workers in Russia offers a unique opportunity to study the effects of prolonged low dose rate external gamma exposures and exposure to plutonium in a working age population. We examined radiation effects on the risk of mortality from solid cancers excluding sites of primary plutonium deposition (lung, liver, and bone surface) among 25,757 workers who were first employed in 1948–1982. During the period 1948–2008, there were 1,825 deaths from cancers other than lung, liver and bone. Using colon dose as a representative external dose, a linear dose response model described the data well. The excess relative risk per Gray for external gamma exposure was 0.16 (95% CI: 0.07 – 0.26) when unadjusted for plutonium exposure and 0.12 (95% CI 0.03 – 0.21) when adjusted for plutonium dose and monitoring status. There was no significant effect modification by sex or attained age. Plutonium exposure was not significantly associated with the group of cancers analyzed after adjusting for monitoring status. Site-specific risks were uncertainly estimated but positive for 13 of the 15 sites evaluated with a statistically significant estimate only for esophageal cancer. Comparison with estimates based on the acute exposures in atomic bomb survivors suggests that the excess relative risk per Gray for prolonged external exposure in Mayak workers may be lower than that for acute exposure but, given the uncertainties, the possibility of equal effects cannot be dismissed. PMID:25719381

  19. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-01-10

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  20. [{sup 18}F]fluorodeoxyglucose Uptake Patterns in Lung Before Radiotherapy Identify Areas More Susceptible to Radiation-Induced Lung Toxicity in Non-Small-Cell Lung Cancer Patients

    SciTech Connect

    Petit, Steven F.; Elmpt, Wouter J.C. van; Oberije, Cary J.G.; Vegt, Erik; Dingemans, Anne-Marie C.; Lambin, Philippe; Dekker, Andre L.A.J.; De Ruysscher, Dirk

    2011-11-01

    Purpose: Our hypothesis was that pretreatment inflammation in the lung makes pulmonary tissue more susceptible to radiation damage. The relationship between pretreatment [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) uptake in the lungs (as a surrogate for inflammation) and the delivered radiation dose and radiation-induced lung toxicity (RILT) was investigated. Methods and Materials: We retrospectively studied a prospectively obtained cohort of 101 non-small-cell lung cancer patients treated with (chemo)radiation therapy (RT). [{sup 18}F]FDG-positron emission tomography-computed tomography (PET-CT) scans used for treatment planning were studied. Different parameters were used to describe [{sup 18}F]FDG uptake patterns in the lungs, excluding clinical target volumes, and the interaction with radiation dose. An increase in the dyspnea grade of 1 (Common Terminology Criteria for Adverse Events version 3.0) or more points compared to the pre-RT score was used as an endpoint for analysis of RILT. The effect of [{sup 18}F]FDG and CT-based variables, dose, and other patient or treatment characteristics that effected RILT was studied using logistic regression. Results: Increased lung density and pretreatment [{sup 18}F]FDG uptake were related to RILT after RT with univariable logistic regression. The 95th percentile of the [{sup 18}F]FDG uptake in the lungs remained significant in multivariable logistic regression (p = 0.016; odds ratio [OR] = 4.3), together with age (p = 0.029; OR = 1.06), and a pre-RT dyspnea score of {>=}1 (p = 0.005; OR = 0.20). Significant interaction effects were demonstrated among the 80th, 90th, and 95th percentiles and the relative lung volume receiving more than 2 and 5 Gy. Conclusions: The risk of RILT increased with the 95th percentile of the [{sup 18}F]FDG uptake in the lungs, excluding clinical tumor volume (OR = 4.3). The effect became more pronounced as the fraction of the 5%, 10%, and 20% highest standardized uptake value voxels that

  1. An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables;Lung cancer; Radiation pneumonitis; Dose-volume histogram; Angiotensin converting enzyme inhibitor

    SciTech Connect

    Jenkins, Peter; Watts, Joanne

    2011-07-15

    Purpose: Single dose-volume metrics are of limited value for the prediction of radiation pneumonitis (RP) in day-to-day clinical practice. We investigated whether multiparametric models that incorporate clinical and physiologic factors might have improved accuracy. Methods and Materials: The records of 160 patients who received radiation therapy for non-small-cell lung cancer were reviewed. All patients were treated to the same dose and with an identical technique. Dosimetric, pulmonary function, and clinical parameters were analyzed to determine their ability to predict for the subsequent development of RP. Results: Twenty-seven patients (17%) developed RP. On univariate analysis, the following factors were significantly correlated with the risk of pneumonitis: fractional volume of lung receiving >5-20 Gy, absolute volume of lung spared from receiving >5-15 Gy, mean lung dose, craniocaudal position of the isocenter, transfer coefficient for carbon monoxide (KCOc), total lung capacity, coadministration of angiotensin converting enzyme inhibitors, and coadministration of angiotensin receptor antagonists. By combining the absolute volume of lung spared from receiving >5 Gy with the KCOc, we defined a new parameter termed Transfer Factor Spared from receiving >5 Gy (TFS{sub 5}). The area under the receiver operator characteristic curve for TFS{sub 5} was 0.778, increasing to 0.846 if patients receiving modulators of the renin-angiotensin system were excluded from the analysis. Patients with a TFS{sub 5} <2.17 mmol/min/kPa had a risk of RP of 30% compared with 5% for the group with a TFS{sub 5} {>=}2.17. Conclusions: TFS{sub 5} represents a simple parameter that can be used in routine clinical practice to more accurately segregate patients into high- and low-risk groups for developing RP.

  2. Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky non–small cell lung cancer

    SciTech Connect

    Amin, Neha P.; Miften, Moyed; Thornton, Dale; Ryan, Nicole; Kavanagh, Brian; Gaspar, Laurie E

    2013-10-01

    Patients with bulky non–small cell lung cancer (NSCLC) may be at a high risk for radiation pneumonitis (RP) if treated with up-front concurrent chemoradiation. There is limited information about the effect of induction chemotherapy on the volume of normal lung subsequently irradiated. This study aims to estimate the reduction in risk of RP in patients with NSCLC after receiving induction chemotherapy. Between 2004 and 2009, 25 patients with Stage IV NSCLC were treated with chemotherapy alone (no surgery or radiation therapy [RT]) and had computed tomography (CT) scans before and after 2 cycles of chemotherapy. Simulated RT plans were created for the prechemotherapy and postchemotherapy scans so as to deliver 60 Gy to the thoracic disease in patients who had either a >20% volumetric increase or decrease in gross tumor volume (GTV) from chemotherapy. The prechemotherapy and postchemotherapy scans were analyzed to compare the percentage of lung volume receiving≥20 Gy (V20), mean lung dose (MLD), and normal tissue complication probability (NTCP). Eight patients (32%) had a GTV reduction >20%, 2 (8%) had GTV increase >20%, and 15 (60%) had stable GTV. In the 8 responders, there was an absolute median GTV decrease of 88.1 cc (7.3 to 351.6 cc) or a 48% (20% to 62%) relative reduction in tumor burden. One had >20% tumor progression during chemotherapy, yet had an improvement in dosimetric parameters postchemotherapy. Among these 9 patients, the median decrease in V20, MLD, and NTCP was 2.6% (p<0.01), 2.1 Gy (p<0.01), and 5.6% (p<0.01), respectively. Less than one-third of patients with NSCLC obtain >20% volumetric tumor reduction from chemotherapy alone. Even with that amount of volumetric reduction, the 5% reduced risk of RP was only modest and did not convert previously ineligible patients to safely receive definitive thoracic RT.

  3. The ALCHEMIST Lung Cancer Trial

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  4. Screening for lung cancer.

    PubMed Central

    Carter, D.

    1981-01-01

    The survival from bronchogenic carcinoma is highly dependent upon stage at the time of treatment. This is particularly true for squamous cell carcinoma, adenocarcinoma, and large cell carcinoma, but holds true for small cell carcinoma as well. The problem presented to the medical profession has been to find a practical means of detecting lung cancer while it is still at an early stage. Three studies in progress have indicated that a larger proportion of the patients may be found to have early stage lung cancer when screened with a combination of chest X-rays and sputum cytology. However, the detection of these early stage cases has not yet been translated into an improvement in the overall mortality rate from lung cancer. PMID:6278787

  5. [Smoking and lung cancer].

    PubMed

    Postmus, P E

    1999-11-01

    Since fifty years it is clear now that smoking of tobacco products is responsible for the lung cancer epidemic that is currently in progress worldwide. Although in the Western world a small decrease of lung cancer in males is found, the number of female patients is steadily increasing. Changes in tobacco production have resulted in exposition of smokers to other carcinogens. This is probably the cause of the change in the histological pattern with an increase of adenocarcinoma and stabilisation of squamous cell lung cancer. Despite the bad prognosis there is some hope that with improvement of early detection methods more patients can be cured. However, for a real change it is necessary to discourage smoking by all means. PMID:11930407

  6. Stereotactic body radiation therapy in stage I inoperable lung cancer: from palliative to curative options.

    PubMed

    Boujelbene, Noureddine; Elloumi, Fatma; Kamel, Mohamed E; Abeidi, Hamdi; Matzinger, Oscar; Mirimanoff, René-Olivier; Khanfir, Kaouthar

    2013-01-01

    Surgery has historically been the standard of care for operable stage I non-small cell lung cancer (NSCLC). However, nearly one-quarter of patients with stage I NSCLC will not undergo surgery because of medical comorbidity or other factors. Stereotactic ablative radiotherapy (SABR) is the new standard of care for these patients. SABR offers high local tumour control rates rivalling the historical results of surgery and is generally well tolerated by patients with both peripheral and centrally located tumours. This article reviews the history of SABR for stage I NSCLC, summarises the currently available data on efficacy and toxicity, and describes some of the currently controversial aspects of this treatment. PMID:23740331

  7. Morbidity of cranial relapse in small cell lung cancer and the impact of radiation therapy

    SciTech Connect

    Lucas, C.F.; Robinson, B.; Hoskin, P.J.; Yarnold, J.R.; Smith, I.E.; Ford, H.T.

    1986-05-01

    Thirty-nine of 225 patients with small cell lung cancer developed brain metastases after the initiation of chemotherapy. Treatment with high-dose dexamethasone in all 39 patients and cranial irradiation in 32 patients resulted in a complete neurological recovery in only eight of 39 patients (20%). Twenty-one of 39 patients (53%) failed to derive lasting benefit from their palliative treatment. Thirteen of 24 patients with limited disease with cranial relapse had no clinical evidence of other distant metastases prior to death and in these patients the CNS disease was an important cause of morbidity. On the basis of this study, it appears that palliative treatment of overt cranial metastases is relatively unsuccessful and that patients with limited disease represent a group with much to gain from effective prophylactic cranial irradiation.

  8. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation.

    PubMed

    Wang, Li; Mason, Kathy A; Ang, K Kian; Buchholz, Thomas; Valdecanas, David; Mathur, Anjili; Buser-Doepner, Carolyn; Toniatti, Carlo; Milas, Luka

    2012-12-01

    The poly-(ADP-ribose) polymerase (PARP) inhibitor, MK-4827, is a novel potent, orally bioavailable PARP-1 and PARP-2 inhibitor currently in phase I clinical trials for cancer treatment. No preclinical data currently exist on the combination of MK-4827 with radiotherapy. The current study examined combined treatment efficacy of MK-4827 and fractionated radiotherapy using a variety of human tumor xenografts of differing p53 status: Calu-6 (p53 null), A549 (p53 wild-type [wt]) and H-460 (p53 wt) lung cancers and triple negative MDA-MB-231 human breast carcinoma. To mimic clinical application of radiotherapy, fractionated radiation (2 Gy per fraction) schedules given once or twice daily for 1 to 2 weeks combined with MK-4827, 50 mg/kg once daily or 25 mg/kg twice daily, were used. MK-4827 was found to be highly and similarly effective in both radiation schedules but maximum radiation enhancement was observed when MK-4827 was given at a dose of 50 mg/kg once daily (EF = 2.2). MK-4827 radiosensitized all four tumors studied regardless of their p53 status. MK-4827 reduced PAR levels in tumors by 1 h after administration which persisted for up to 24 h. This long period of PARP inhibition potentially adds to the flexibility of design of future clinical trials. Thus, MK-4827 shows high potential to improve the efficacy of radiotherapy. PMID:22127459

  9. Small Cell Lung Cancer

    PubMed Central

    Kalemkerian, Gregory P.; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura QM; Downey, Robert J.; Gandhi, Leena; Ganti, Apar Kishor P.; Govindan, Ramaswamy; Grecula, John C.; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W.; Merritt, Robert E.; Moran, Cesar A.; Niell, Harvey B.; O’Malley, Janis; Patel, Jyoti D.; Ready, Neal; Rudin, Charles M.; Williams, Charles C.; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted. PMID:23307984

  10. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    SciTech Connect

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-07-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose.

  11. Radiation effects in the lung.

    PubMed Central

    Coggle, J E; Lambert, B E; Moores, S R

    1986-01-01

    This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. The latter is an inflammatory reaction with intra-alveolar and septal edema accompanied by epithelial and endothelial desquamation. The critical role of type II pneumonocytes is discussed. One favored hypothesis suggests that the primary response of the lung is an increase in microvascular permeability. The plasma proteins overwhelm the lymphatic and other drainage mechanisms and this elicits the secondary response of type II cell hyperplasia. This, in its turn, produces an excess of surfactant that ultimately causes the fall in compliance, abnormal gas exchange values, and even respiratory failure. The inflammatory early reaction may progress to chronic fibrosis. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. Emphasis is placed on

  12. Precision Hypofractionated Radiation Therapy in Poor Performing Patients With Non-Small Cell Lung Cancer: Phase 1 Dose Escalation Trial

    SciTech Connect

    Westover, Kenneth D.; Loo, Billy W.; Gerber, David E.; Iyengar, Puneeth; Choy, Hak; Diehn, Maximilian; Hughes, Randy; Schiller, Joan; Dowell, Jonathan; Wardak, Zabi; Sher, David; Christie, Alana; Xie, Xian-Jin; Corona, Irma; Sharma, Akanksha; Wadsworth, Margaret E.; Timmerman, Robert

    2015-09-01

    Purpose: Treatment regimens for locally advanced non-small cell lung cancer (NSCLC) give suboptimal clinical outcomes. Technological advancements such as radiation therapy, the backbone of most treatment regimens, may enable more potent and effective therapies. The objective of this study was to escalate radiation therapy to a tumoricidal hypofractionated dose without exceeding the maximally tolerated dose (MTD) in patients with locally advanced NSCLC. Methods and Materials: Patients with stage II to IV or recurrent NSCLC and Eastern Cooperative Oncology Group performance status of 2 or greater and not candidates for surgical resection, stereotactic radiation, or concurrent chemoradiation were eligible. Highly conformal radiation therapy was given to treat intrathoracic disease in 15 fractions to a total of 50, 55, or 60 Gy. Results: Fifty-five patients were enrolled: 15 at the 50-Gy, 21 at the 55-Gy, and 19 at the 60-Gy dose levels. A 90-day follow-up was completed in each group without exceeding the MTD. With a median follow-up of 12.5 months, there were 93 grade ≥3 adverse events (AEs), including 39 deaths, although most AEs were considered related to factors other than radiation therapy. One patient from the 55- and 60-Gy dose groups developed grade ≥3 esophagitis, and 5, 4, and 4 patients in the respective dose groups experienced grade ≥3 dyspnea, but only 2 of these AEs were considered likely related to therapy. There was no association between fraction size and toxicity (P=.24). The median overall survival was 6 months with no significant differences between dose levels (P=.59). Conclusions: Precision hypofractionated radiation therapy consisting of 60 Gy in 15 fractions for locally advanced NSCLC is generally well tolerated. This treatment regimen could provide patients with poor performance status a potent alternative to chemoradiation. This study has implications for the cost effectiveness of lung cancer therapy. Additional studies of long

  13. Stereotactic body radiation therapy for nonmetastatic lung cancer: An analysis of 75 patients treated over 5 years

    SciTech Connect

    Beitler, Jonathan J. . E-mail: jbeitler92@alumni.gsb.columbia.edu; Badine, Edgard A.; El-Sayah, Danny; Makara, Denise; Friscia, Phillip; Silverman, Phillip; Terjanian, Terenig

    2006-05-01

    Purpose: Non-small-cell lung cancer (NSCLC) may not be medically operable even in patients with surgically resectable disease. For patients who either refuse surgery or are medically inoperable, radiation therapy may be the best therapeutic choice. Stereotactic body radiation therapy (SBRT) employs external fixation and hypofractionation to deliver a high dose per fraction of radiation to a small target volume. Methods and Materials: Retrospective review of 75 patients treated over 5 years at Staten Island University Hospital as definitive treatment for NSCLC or presumed NSCLC. Patients received a median of 5 fractions of 8 Gy per fraction over 27 days. Results: Overall 1-, 2-, and 5-year actuarial survivals were 63%, 45%, and 17%. Patients with a gross tumor volume (GTV) less than 65 cm{sup 3} enjoyed a longer median survival (25.7 vs. 9.9 months, p < 0.003), and at 5 years, the actuarial survival for the patients with GTVs less than 65 cm{sup 3} was 24% vs. 0% for those with GTVs larger than 65 cm{sup 3}. Conclusions: Stereotactic body radiation therapy as delivered was ineffective for curing the patients whose GTVs were larger than 65 cm{sup 3}. SBRT was promising for those with GTVs less than 65 cm{sup 3}.

  14. Validation and optimization of a predictive model for radiation pneumonitis in patients with lung cancer

    PubMed Central

    Mörth, Charlott; Kafantaris, Ioannis; Castegren, Markus; Valachis, Antonios

    2016-01-01

    The aim of the current retrospective study was to validate a predictive model for radiation pneumonitis (STRIPE) in an independent dataset and to investigate whether the addition of other potential risk factors could strengthen the accuracy of the model. Consecutive patients with non-small cell lung carcinoma (NSCLC; n=71) treated with definitive concurrent chemotherapy and radiotherapy were retrospectively assessed for radiation pneumonitis (RP). The results identified that 16 (23%) patients developed grade ≥2 RP. Furthermore, STRIPE score (intermediate vs. low risk) was independently associated with the development of RP [odds ratio (OR), 3.72; 95% confidence interval (CI), 1.00–13.89], whereas current smoking status was found to be protective against RP (OR, 0.09; 95% CI, 0.01–0.78). Similar discriminatory power of the STRIPE score was observed as in the original study. The addition of smoking status strengthened the model's discriminatory ability to predict RP. Thus, the addition of smoking status as a risk factor may strengthen the accuracy of the model for predicting RP in patients with NSCLC. PMID:27446409

  15. Lung Cancer – Vaccines

    PubMed Central

    Kelly, Ronan J.; Giaccone, Giuseppe

    2011-01-01

    In lung cancer, early attempts to modulate the immune system via vaccine based therapeutics have to date, been unsuccessful. An improved understanding of tumor immunology has facilitated the production of more sophisticated lung cancer vaccines. It is anticipated, that it will likely require multiple epitopes of a diverse set of genes restricted to multiple haplotypes to generate a truly effective vaccine that is able to overcome the various immunologic escape mechanisms that tumors employ. Other issues to overcome include optimal patient selection, which adjuvant agent to use and how to adequately monitor for an immunological response. This review discusses the most promising vaccination strategies for non small cell lung cancer including the allogeneic tumor cell vaccine belagenpumatucel-L, which is a mixture of 4 allogeneic non small cell lung cancer cell lines genetically modified to secrete an antisense oligonucleotide to TGF-β2 and three other target protein-specific vaccines designed to induce responses against melanoma-associated antigen A3 (MAGE-A3), mucin 1 (MUC1) and epidermal growth factor (EGF). PMID:21952280

  16. Nonsmall cell lung cancer.

    PubMed

    Sculier, Jean-Paul

    2013-03-01

    The objective of this review is to report the Clinical Year in Review proceedings in the field of nonsmall cell lung cancer that were presented at the 2012 European Respiratory Society Congress in Vienna, Austria. Various topics were reviewed, including epidemiology, screening, diagnosis, treatment, prognosis, and palliative and end of life care. PMID:23457162

  17. Update in Lung Cancer 2014.

    PubMed

    Spira, Avrum; Halmos, Balazs; Powell, Charles A

    2015-08-01

    In the past 2 years, lung cancer research and clinical care have advanced significantly. Advancements in the field have improved outcomes and promise to lead to further reductions in deaths from lung cancer, the leading cause of cancer death worldwide. These advances include identification of new molecular targets for personalized targeted therapy, validation of molecular signatures of lung cancer risk in smokers, progress in lung tumor immunotherapy, and implementation of population-based lung cancer screening with chest computed tomography in the United States. In this review, we highlight recent research in these areas and challenges for the future. PMID:26230235

  18. Lung cancer screening and management.

    PubMed

    Jones, G S; Baldwin, D R

    2015-12-01

    Deaths from lung cancer are greater than for any other type of malignancy. Many people present with advanced stage cancer at diagnosis and survival is limited. Low radiation dose CT (LDCT) screening appears to offer part of the solution to this. The US National Lung Screening Trial (NLST) showed a 20% reduction in cancer related mortality and a 6.7% reduction in all cause mortality in patients who had LDCT compared to chest X-ray. Lung Cancer screening is now being implemented in the US using the NLST screening criteria but many questions remain about the details of the methodology of screening and its cost effectiveness. Many of these questions are being answered by ongoing European trials that are reporting their findings. In this review we objectively analyse current research evidence and explore the issues that need to be resolved before implementation, including technical considerations, selection criteria and effective nodule management protocols. We discuss the potential barriers that will be faced when beginning a national screening programme and possible solutions to them. PMID:26605556

  19. A Population-Based Comparative Effectiveness Study of Radiation Therapy Techniques in Stage III Non-Small Cell Lung Cancer

    SciTech Connect

    Harris, Jeremy P.; Murphy, James D.; Hanlon, Alexandra L.; Le, Quynh-Thu; Loo, Billy W.; Diehn, Maximilian

    2014-03-15

    Purpose: Concerns have been raised about the potential for worse treatment outcomes because of dosimetric inaccuracies related to tumor motion and increased toxicity caused by the spread of low-dose radiation to normal tissues in patients with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). We therefore performed a population-based comparative effectiveness analysis of IMRT, conventional 3-dimensional conformal radiation therapy (3D-CRT), and 2-dimensional radiation therapy (2D-RT) in stage III NSCLC. Methods and Materials: We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to identify a cohort of patients diagnosed with stage III NSCLC from 2002 to 2009 treated with IMRT, 3D-CRT, or 2D-RT. Using Cox regression and propensity score matching, we compared survival and toxicities of these treatments. Results: The proportion of patients treated with IMRT increased from 2% in 2002 to 25% in 2009, and the use of 2D-RT decreased from 32% to 3%. In univariate analysis, IMRT was associated with improved overall survival (OS) (hazard ratio [HR] 0.90, P=.02) and cancer-specific survival (CSS) (HR 0.89, P=.02). After controlling for confounders, IMRT was associated with similar OS (HR 0.94, P=.23) and CSS (HR 0.94, P=.28) compared with 3D-CRT. Both techniques had superior OS compared with 2D-RT. IMRT was associated with similar toxicity risks on multivariate analysis compared with 3D-CRT. Propensity score matched model results were similar to those from adjusted models. Conclusions: In this population-based analysis, IMRT for stage III NSCLC was associated with similar OS and CSS and maintained similar toxicity risks compared with 3D-CRT.

  20. Brachial Plexopathy in Apical Non-Small Cell Lung Cancer Treated With Definitive Radiation: Dosimetric Analysis and Clinical Implications

    SciTech Connect

    Eblan, Michael J.; Corradetti, Michael N.; Lukens, J. Nicholas; Xanthopoulos, Eric; Mitra, Nandita; Christodouleas, John P.; Grover, Surbhi; Fernandes, Annemarie T.; Langer, Corey J.; Evans, Tracey L.; Stevenson, James; Rengan, Ramesh; Apisarnthanarax, Smith

    2013-01-01

    Purpose: Data are limited on the clinical significance of brachial plexopathy in patients with apical non-small cell lung cancers (NSCLC) treated with definitive radiation therapy. We report the rates of radiation-induced brachial plexopathy (RIBP) and tumor-related brachial plexopathy (TRBP) and associated dosimetric parameters in apical NSCLC patients. Methods and Materials: Charts of NSCLC patients with primary upper lobe or superiorly located nodal disease who received {>=}50 Gy of definitive conventionally fractionated radiation or chemoradiation were retrospectively reviewed for evidence of brachial plexopathy and categorized as RIBP, TRBP, or trauma-related. Dosimetric data were gathered on ipsilateral brachial plexuses (IBP) contoured according to Radiation Therapy Oncology Group atlas guidelines. Results: Eighty patients were identified with a median follow-up and survival time of 17.2 and 17.7 months, respectively. The median prescribed dose was 66.6 Gy (range, 50.4-84.0), and 71% of patients received concurrent chemotherapy. RIBP occurred in 5 patients with an estimated 3-year rate of 12% when accounting for competing risk of death. Seven patients developed TRBP (estimated 3-year rate of 13%), comprising 24% of patients who developed locoregional failures. Grade 3 brachial plexopathy was more common in patients who experienced TRBP than RIBP (57% vs 20%). No patient who received {<=}78 Gy to the IBP developed RIBP. On multivariable competing risk analysis, IBP V76 receiving {>=}1 cc, and primary tumor failure had the highest hazard ratios for developing RIBP and TRBP, respectively. Conclusions: RIBP is a relatively uncommon complication in patients with apical NSCLC tumors receiving definitive doses of radiation, while patients who develop primary tumor failures are at high risk for developing morbid TRBP. These findings suggest that the importance of primary tumor control with adequate doses of radiation outweigh the risk of RIBP in this population of

  1. World conference on lung cancer.

    PubMed

    Felip, Enriqueta; Rosell, Rafael

    2003-12-01

    Lung cancer is the most frequent cause of cancer death. Improving this dismal outcome requires cooperation among several specialists. The 10th World Conference on Lung Cancer was held in Vancouver, Canada last month. The meeting was organised on behalf of the International Association for the Study of Lung Cancer (IASLC) and the British Columbia Cancer Agency. This Conference was chaired by Nevin Murray and the scientific sessions took place 10 - 14 August, with > 3000 participating lung cancer experts. The Vancouver programme included > 140 invited speakers throughout the 'meet the professor', plenary and interactive sessions, as well as 300 oral and 500 poster presentations. PMID:14640956

  2. A Novel Method to Evaluate Local Control of Lung Cancer in Stereotactic Body Radiation Therapy (SBRT) Treatment Using 18F-FDG Positron Emission Tomography (PET)

    NASA Astrophysics Data System (ADS)

    Kathriarachchi, Vindu Wathsala

    An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.

  3. Quantification of an External Motion Surrogate for Quality Assurance in Lung Cancer Radiation Therapy

    PubMed Central

    Lettmaier, Sebastian

    2014-01-01

    The purpose of this work was to validate the stability of the end exhale position in deep expiration breath hold (DEBH) technique for quality assurance in stereotactic lung tumor radiation therapy. Furthermore, a motion analysis was performed for 20 patients to evaluate breathing periods and baseline drifts based on an external surrogate. This trajectory was detected using stereo infrared (IR) cameras and reflective body markers. The respiratory waveform showed large interpatient differences in the end exhale position during irradiation up to 18.8 mm compared to the global minimum. This position depends significantly on the tumor volume. Also the baseline drifts, which occur mostly in posterior direction, are affected by the tumor size. Breathing periods, which depend mostly on the patient age, were in a range between 2.4 s and 7.0 s. Fifteen out of 20 patients, who showed a reproducible end exhale position with a deviation of less than 5 mm, might benefit from DEBH due to smaller planning target volumes (PTV) compared to free breathing irradiation and hence sparing of healthy tissue. Patients with larger uncertainties should be treated with more complex motion compensation techniques. PMID:25525599

  4. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  5. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  6. A prospective randomized comparison of radiation therapy plus lonidamine versus radiation therapy plus placebo as initial treatment of clinically localized but nonresectable nonsmall cell lung cancer

    SciTech Connect

    Scarantino, C.W.; McCunniff, A.J.; Evans, G.; Young, C.W.; Paggiarino, D.A.

    1994-07-30

    The purpose was, by means of a multicenter, prospective randomized, placebo-controlled study, to assess the impact of adding the radiation-enhancing agent lonidamine to standard {open_quotes}curative-intent{close_quotes} radiation therapy upon overall survival, progression-free survival, and local progression-free survival of patients with clinically localized but nonresectable nonsmall cell lung cancer. Lonidamine, or the lonidamine-placebo, was administered at a dose of 265 mg/m{sup 2} in three divided daily doses. Drug therapy began 2 days prior to the initiation of radiation therapy and continued until progression of disease mandated a change in therapy. The radiation therapy dose was 55-60 Gy, at a daily dose of 1.8 Gy and five treatments per week. Patients with clinical Stage II or III nonsmall cell lung cancer were stratified within the treatment center, and within two histologic strata: epidermoid vs. other nonsmall cell cancers. A total of 310 patients were enlisted on study, 152 on the placebo arm and 158 on the lonidamine arm. The median survival durations were 326 and 392 days for the placebo and lonidamine-treated groups respectively, p = 0.41 for a comparison of the survival curves. Median progression-free survival and median local progression-free survival durations were 197 days and 341 days for placebo + radiation therapy vs. 230 days and 300 days for lonidamine + radiation therapy; p-values for the respective curves were 0.75 and 0.42. Although there were proportionately more lonidamine-treated patients than placebo-treated patients demonstrating continued local control in excess of 12 months, the numbers of patients still at risk after 24 months were too small for meaningful statistical analysis. This multicenter Phase III study failed to demonstrate a significant advantage in the lonidamine-treated population in overall patient survival, in progression-free survival, or in the median duration of local control. 25 refs., 3 figs., 3 tabs.

  7. Pulmonary Artery Invasion, High-Dose Radiation, and Overall Survival in Patients With Non-Small Cell Lung Cancer

    SciTech Connect

    Han, Cheng-Bo; Wang, Wei-Li; Quint, Leslie; Xue, Jian-Xin; Matuszak, Martha; Ten Haken, Randall; Kong, Feng-Ming

    2014-06-01

    Purpose: To investigate whether high-dose radiation to the pulmonary artery (PA) affects overall survival (OS) in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Patients with medically inoperable/unresectable NSCLC treated with definitive radiation therapy in prospective studies were eligible for this study. Pulmonary artery involvement was defined on the basis of pretreatment chest CT and positron emission tomography/CT fusion. Pulmonary artery was contoured according to the Radiation Therapy Oncology Group protocol 1106 atlas, and dose-volume histograms were generated. Results: A total of 100 patients with a minimum follow-up of 1 year for surviving patients were enrolled: 82.0% underwent concurrent chemoradiation therapy. Radiation dose ranged from 60 to 85.5 Gy in 30-37 fractions. Patients with PA invasion of grade ≤2, 3, 4, and 5 had 1-year OS and median survival of 67% and 25.4 months (95% confidence interval [CI] 15.7-35.1), 62% and 22.2 months (95% CI 5.8-38.6), 90% and 35.8 months (95% CI 28.4-43.2), and 50% and 7.0 months, respectively (P=.601). Two of the 4 patients with grade 5 PA invasion died suddenly from massive hemorrhage at 3 and 4.5 months after completion of radiation therapy. Maximum and mean doses to PA were not significantly associated with OS. The V45, V50, V55, and V60 of PA were correlated significantly with a worse OS (P<.05). Patients with V45 >70% or V60 >37% had significantly worse OS (13.3 vs 37.9 months, P<.001, and 13.8 vs 37.9 months, P=.04, respectively). Conclusions: Grade 5 PA invasion and PA volume receiving more than 45-60 Gy may be associated with inferior OS in patients with advanced NSCLC treated with concurrent chemoradiation.

  8. Lung cancer: Current status and prospects for the future

    SciTech Connect

    Mountain, C.F.; Carr, D.T.

    1986-01-01

    This book contains 32 papers. Some of the titles are: Activation of cellular ras genes in human neoplasms; The valve of definitive radiation therapy of unresectable squamous cell carcinoma, large cell carcinoma, and adenocarcinoma of the lung; Current concepts of chemotherapy and radiotherapy for small cell lung cancer, and Current status of immunotherapy for lung cancer.

  9. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    SciTech Connect

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole; Testa, Mauro; Tang, Shikui; Gheorghiu, Liliana; Biggs, Peter; Paganetti, Harald; Efstathiou, Jason A.; Lu, Hsiao-Ming; Held, Kathryn D.; Willers, Henning

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  10. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Valdes, Gilmer; Solberg, Timothy D.; Heskel, Marina; Ungar, Lyle; Simone, Charles B., II

    2016-08-01

    To develop a patient-specific ‘big data’ clinical decision tool to predict pneumonitis in stage I non-small cell lung cancer (NSCLC) patients after stereotactic body radiation therapy (SBRT). 61 features were recorded for 201 consecutive patients with stage I NSCLC treated with SBRT, in whom 8 (4.0%) developed radiation pneumonitis. Pneumonitis thresholds were found for each feature individually using decision stumps. The performance of three different algorithms (Decision Trees, Random Forests, RUSBoost) was evaluated. Learning curves were developed and the training error analyzed and compared to the testing error in order to evaluate the factors needed to obtain a cross-validated error smaller than 0.1. These included the addition of new features, increasing the complexity of the algorithm and enlarging the sample size and number of events. In the univariate analysis, the most important feature selected was the diffusion capacity of the lung for carbon monoxide (DLCO adj%). On multivariate analysis, the three most important features selected were the dose to 15 cc of the heart, dose to 4 cc of the trachea or bronchus, and race. Higher accuracy could be achieved if the RUSBoost algorithm was used with regularization. To predict radiation pneumonitis within an error smaller than 10%, we estimate that a sample size of 800 patients is required. Clinically relevant thresholds that put patients at risk of developing radiation pneumonitis were determined in a cohort of 201 stage I NSCLC patients treated with SBRT. The consistency of these thresholds can provide radiation oncologists with an estimate of their reliability and may inform treatment planning and patient counseling. The accuracy of the classification is limited by the number of patients in the study and not by the features gathered or the complexity of the algorithm.

  11. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy.

    PubMed

    Valdes, Gilmer; Solberg, Timothy D; Heskel, Marina; Ungar, Lyle; Simone, Charles B

    2016-08-21

    To develop a patient-specific 'big data' clinical decision tool to predict pneumonitis in stage I non-small cell lung cancer (NSCLC) patients after stereotactic body radiation therapy (SBRT). 61 features were recorded for 201 consecutive patients with stage I NSCLC treated with SBRT, in whom 8 (4.0%) developed radiation pneumonitis. Pneumonitis thresholds were found for each feature individually using decision stumps. The performance of three different algorithms (Decision Trees, Random Forests, RUSBoost) was evaluated. Learning curves were developed and the training error analyzed and compared to the testing error in order to evaluate the factors needed to obtain a cross-validated error smaller than 0.1. These included the addition of new features, increasing the complexity of the algorithm and enlarging the sample size and number of events. In the univariate analysis, the most important feature selected was the diffusion capacity of the lung for carbon monoxide (DLCO adj%). On multivariate analysis, the three most important features selected were the dose to 15 cc of the heart, dose to 4 cc of the trachea or bronchus, and race. Higher accuracy could be achieved if the RUSBoost algorithm was used with regularization. To predict radiation pneumonitis within an error smaller than 10%, we estimate that a sample size of 800 patients is required. Clinically relevant thresholds that put patients at risk of developing radiation pneumonitis were determined in a cohort of 201 stage I NSCLC patients treated with SBRT. The consistency of these thresholds can provide radiation oncologists with an estimate of their reliability and may inform treatment planning and patient counseling. The accuracy of the classification is limited by the number of patients in the study and not by the features gathered or the complexity of the algorithm. PMID:27461154

  12. Lung Cancer in Never Smokers.

    PubMed

    Rivera, Gabriel Alberto; Wakelee, Heather

    2016-01-01

    Lung cancer is predominantly associated with cigarette smoking; however, a substantial minority of patients with the disease have never smoked. In the US it is estimated there are 17,000-26,000 annual deaths from lung cancer in never smokers, which as a separate entity would be the seventh leading cause of cancer mortality. Controversy surrounds the question of whether or not the incidence of lung cancer in never-smokers is increasing, with more data to support this observation in Asia. There are several factors associated with an increased risk of developing lung cancer in never smokers including second hand smoke, indoor air pollution, occupational exposures, and genetic susceptibility among others. Adenocarcinoma is the most common histology of lung cancer in never smokers and in comparison to lung cancer in smokers appears less complex with a higher likelihood to have targetable driver mutations. PMID:26667338

  13. Biological Modeling Based Outcome Analysis (BMOA) in 3D Conformal Radiation Therapy (3DCRT) Treatments for Lung and Breast Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil; Chen, Chiu-Hao; Dhungana, Sudarshan

    2010-03-01

    3DCRT treatments are the most commonly used techniques in the treatment of lung and breast cancers. The purpose of this study was to perform the BMOA of the 3DCRT plans designed for the treatment of breast and lung cancers utilizing HART program (Med. Phys. 36, p.2547(2009)). The BMOA parameters include normal tissue complication probability (NTCP), tumor control probability (TCP), and the complication-free tumor control probability (P+). The 3DCRT plans were designed for (i) the palliative treatment of 8 left lung cancer patients (CPs) at early stage (m=8), (ii) the curative treatment of 8 left lung CPs at stages II and III (k=8), and (iii) the curative treatment of 8 left breast CPs (n=8). The NTCPs were noticeably small (<2%) for heart, lungs and cord in both types of treatments except for the esophagus in lung CPs (k=8). Assessments of the TCPs and P+s also indicated good improvements in local tumor control in all plans. Homogeneous target coverage and improved dose conformality were the major advantages of such techniques in the treatment of breast cancer. These achievements support the efficacy of the 3DCRT techniques for the efficient treatment of various types of cancer.

  14. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells.

    PubMed

    Gupta, Seema; Koru-Sengul, Tulay; Arnold, Susanne M; Devi, Gayathri R; Mohiuddin, Mohammed; Ahmed, Mansoor M

    2011-02-01

    In this study, the role of hyper-radiation sensitivity (HRS) in potentiating the effects of cisplatin by low-dose fractionated radiation (LDFRT) was evaluated in four human non-small cell lung cancer cell lines. Presence of HRS and cisplatin enhancement ratio (CER) by LDFRT/2 Gy was assessed using colony-forming and apoptotic assays. Cell-cycle disturbances were studied by flow cytometry. Expression of genes involved in apoptosis was assessed using real-time reverse transcriptase PCR arrays. H-157 cells showed a distinct HRS region, followed by UKY-29 and A549 cells, whereas it was absent in H460 cells, which when lack HRS showed maximum CER with LDFRT (4 × 0.5 Gy) both by clonogenic inhibition and by apoptosis compared with single fraction of 2 Gy whereas the most radioresistant A549 cells had the least CER, with no significant differences between LDFRT or 2 Gy. Interestingly, in H-157 cells, a more pronounced CER was observed with LDFRT when assessed by apoptosis but clonogenic inhibition-CER was higher with 2 Gy than with LDFRT. Excluding H-157 cells, the CER by LDFRT was inversely proportional to radioresistance [(determined by D(0), the dose to reduce survival by 67% from any point on the linear portion of the survival curve or surviving fraction (SF) at 2 Gy (SF(2))] of the cells. LDFRT alone or in combination with cisplatin induced larger number of proapoptotic genes than 2 Gy or cisplatin + 2 Gy in cells showing HRS when compared to H460 cells that lack HRS. These findings indicate that chemopotentiation by LDFRT is correlated more with the intrinsic radiation sensitivity of the non-small lung cancer cells than the HRS phenomenon whereas the mode of cell killing is both through apoptosis and clonogenic inhibition. PMID:21216938

  15. Daily Alignment Results of In-Room Computed Tomography-Guided Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Ikushima, Hitoshi; Balter, Peter; Komaki, Ritsuko; Hunjun, Sandeep; Bucci, M. Kara; Liao Zhongxing; McAleer, Mary F.; Yu, Zhiqian H.; Zhang, Yongbin; Chang, Joe Y.; Dong, Lei

    2011-02-01

    Purpose: To determine the extent of interfractional setup errors and day-to-day organ motion errors by assessing daily bone alignment results and changes in soft tissue tumor position during hypofractionated, in-room computed tomography (CT)-guided stereotactic body radiation therapy (SBRT) of lung cancer. Methods and Materials: Daily alignment results during SBRT were analyzed for 117 tumors in 112 patients. Patients received 40-50 Gy of SBRT in four to five fractions using an integrated CT-LINAC system. The free-breathing CT scans acquired during treatment setup were retrospectively realigned to match with each of the bony references and the gross tumor volume (GTV) defined on the reference CT by rigid-body registration, and the daily deviations were calculated. Results: The mean magnitude ({+-} SD) three-dimensional shift from the initial skin marks to the final bone-aligned positions was 9.4 {+-} 5.7 mm. The mean daily GTV deviation from the bone position was 0.1 {+-} 3.8 mm in the anterior-posterior direction, -0.01 {+-} 4.2 mm in the superior-inferior direction, and 0.2 {+-} 2.5 mm in the lateral direction. A clinically noteworthy trend (net change >5 mm in any direction) in GTV position relative to the bone was observed in 23 cases (20%). Conclusions: Soft tissue target position can change significantly beyond the motion envelope defined in the original internal target volume in four-dimensional CT-based treatment planning for SBRT of lung cancer. Additional margin should be considered for adequate coverage of interfractional changes.

  16. Predicting Radiation Pneumonitis After Chemoradiation Therapy for Lung Cancer: An International Individual Patient Data Meta-analysis

    SciTech Connect

    Palma, David A.; Senan, Suresh; Tsujino, Kayoko; Barriger, Robert B.; Rengan, Ramesh; Moreno, Marta; Bradley, Jeffrey D.; Kim, Tae Hyun; Ramella, Sara; Marks, Lawrence B.; De Petris, Luigi; Stitt, Larry; Rodrigues, George

    2013-02-01

    Background: Radiation pneumonitis is a dose-limiting toxicity for patients undergoing concurrent chemoradiation therapy (CCRT) for non-small cell lung cancer (NSCLC). We performed an individual patient data meta-analysis to determine factors predictive of clinically significant pneumonitis. Methods and Materials: After a systematic review of the literature, data were obtained on 836 patients who underwent CCRT in Europe, North America, and Asia. Patients were randomly divided into training and validation sets (two-thirds vs one-third of patients). Factors predictive of symptomatic pneumonitis (grade {>=}2 by 1 of several scoring systems) or fatal pneumonitis were evaluated using logistic regression. Recursive partitioning analysis (RPA) was used to define risk groups. Results: The median radiation therapy dose was 60 Gy, and the median follow-up time was 2.3 years. Most patients received concurrent cisplatin/etoposide (38%) or carboplatin/paclitaxel (26%). The overall rate of symptomatic pneumonitis was 29.8% (n=249), with fatal pneumonitis in 1.9% (n=16). In the training set, factors predictive of symptomatic pneumonitis were lung volume receiving {>=}20 Gy (V{sub 20}) (odds ratio [OR] 1.03 per 1% increase, P=.008), and carboplatin/paclitaxel chemotherapy (OR 3.33, P<.001), with a trend for age (OR 1.24 per decade, P=.09); the model remained predictive in the validation set with good discrimination in both datasets (c-statistic >0.65). On RPA, the highest risk of pneumonitis (>50%) was in patients >65 years of age receiving carboplatin/paclitaxel. Predictors of fatal pneumonitis were daily dose >2 Gy, V{sub 20}, and lower-lobe tumor location. Conclusions: Several treatment-related risk factors predict the development of symptomatic pneumonitis, and elderly patients who undergo CCRT with carboplatin-paclitaxel chemotherapy are at highest risk. Fatal pneumonitis, although uncommon, is related to dosimetric factors and tumor location.

  17. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

    NASA Astrophysics Data System (ADS)

    Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Oh, Se An

    2013-07-01

    Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

  18. Screening for lung cancer.

    PubMed

    Miettinen, O S

    2000-05-01

    Screening for lung cancer serves to prevent deaths from this disease insofar as earlier resections are associated with higher rates of cure. There is good reason to believe that this is the case: in stage I, the 5-year survival rate with resection is 70%, whereas without resection the corresponding rate is only 10%. Before this evidence emerged, various authoritative organizations and agencies in North America advised against screening for lung cancer on the grounds of the results of several RCTs. As for CXR, I argue that the study results are consistent with up to 40% reduction in the fatality rate. Moreover, modern helical CT screening provides for detecting much smaller tumors than were detected in those studies. It is time to revoke the conclusion that screening for lung cancer does not serve to prevent deaths from this disease, and to quantify the usefulness of CT screening in particular. As for the requisite research, the prevailing orthodoxy has it that RCTs are to be used, but I argue that more meaningful results are obtainable, more rapidly and much less expensively, by the use of noncomparative (and hence unrandomized) studies. PMID:10855255

  19. A Pattern of Early Radiation-Induced Inflammatory Cytokine Expression Is Associated with Lung Toxicity in Patients with Non-Small Cell Lung Cancer

    PubMed Central

    Siva, Shankar; MacManus, Michael; Kron, Tomas; Best, Nickala; Smith, Jai; Lobachevsky, Pavel; Ball, David; Martin, Olga

    2014-01-01

    Purpose Lung inflammation leading to pulmonary toxicity after radiotherapy (RT) can occur in patients with non-small cell lung cancer (NSCLC). We investigated the kinetics of RT induced plasma inflammatory cytokines in these patients in order to identify clinical predictors of toxicity. Experimental Design In 12 NSCLC patients, RT to 60 Gy (30 fractions over 6 weeks) was delivered; 6 received concurrent chemoradiation (chemoRT) and 6 received RT alone. Blood samples were taken before therapy, at 1 and 24 hours after delivery of the 1st fraction, 4 weeks into RT, and 12 weeks after completion of treatment, for analysis of a panel of 22 plasma cytokines. The severity of respiratory toxicities were recorded using common terminology criteria for adverse events (CTCAE) v4.0. Results Twelve cytokines were detected in response to RT, of which ten demonstrated significant temporal changes in plasma concentration. For Eotaxin, IL-33, IL-6, MDC, MIP-1α and VEGF, plasma concentrations were dependent upon treatment group (chemoRT vs RT alone, all p-values <0.05), whilst concentrations of MCP-1, IP-10, MCP-3, MIP-1β, TIMP-1 and TNF-α were not. Mean lung radiation dose correlated with a reduction at 1 hour in plasma levels of IP-10 (r2 = 0.858, p<0.01), MCP-1 (r2 = 0.653, p<0.01), MCP-3 (r2 = 0.721, p<0.01), and IL-6 (r2 = 0.531, p = 0.02). Patients who sustained pulmonary toxicity demonstrated significantly different levels of IP-10 and MCP-1 at 1 hour, and Eotaxin, IL-6 and TIMP-1 concentration at 24 hours (all p-values <0.05) when compared to patients without respiratory toxicity. Conclusions Inflammatory cytokines were induced in NSCLC patients during and after RT. Early changes in levels of IP-10, MCP-1, Eotaxin, IL-6 and TIMP-1 were associated with higher grade toxicity. Measurement of cytokine concentrations during RT could help predict lung toxicity and lead to new therapeutic strategies. PMID:25289758

  20. Elevation of Plasma TGF-{beta}1 During Radiation Therapy Predicts Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer: A Combined Analysis From Beijing and Michigan

    SciTech Connect

    Zhao Lujun; Wang Luhua Ji Wei; Wang Xiaozhen; Zhu Xiangzhi; Hayman, James A.; Kalemkerian, Gregory P.; Yang Weizhi; Brenner, Dean; Lawrence, Theodore S.; Kong, F.-M.

    2009-08-01

    Purpose: To test whether radiation-induced elevations of transforming growth factor-{beta}1 (TGF-{beta}1) during radiation therapy (RT) correlate with radiation-induced lung toxicity (RILT) in patients with non-small-cell lung cancer (NSCLC) and to evaluate the ability of mean lung dose (MLD) to improve the predictive power. Methods and Materials: Eligible patients included those with Stage I-III NSCLC treated with RT with or without chemotherapy. Platelet-poor plasma was obtained pre-RT and at 4-5 weeks (40-50 Gy) during RT. TGF-{beta}1 was measured using an enzyme-linked immunosorbent assay. The primary endpoint was {>=} Grade 2 RILT. Mann-Whitney U test, logistic regression, and chi-square were used for statistical analysis. Results: A total of 165 patients were enrolled in this study. The median radiation dose was 60 Gy, and the median MLD was 15.3 Gy. Twenty-nine patients (17.6%) experienced RILT. The incidence of RILT was 46.2% in patients with a TGF-{beta}1 ratio > 1 vs. 7.9% in patients with a TGF-{beta}1 ratio {<=} 1 (p < 0.001), and it was 42.9% if MLD > 20 Gy vs. 17.4% if MLD {<=} 20 Gy (p = 0.024). The incidence was 4.3% in patients with a TGF-{beta}1 ratio {<=} 1 and MLD {<=} 20 Gy, 47.4% in those with a TGF-{beta}1 ratio >1 or MLD > 20 Gy, and 66.7% in those with a TGF-{beta}1 ratio >1 and MLD > 20 Gy (p < 0.001). Conclusions: Radiation-induced elevation of plasma TGF-{beta}1 level during RT is predictive of RILT. The combination of TGF- {beta}1 and MLD may help stratify the patients for their risk of RILT.

  1. Change in Diffusing Capacity After Radiation as an Objective Measure for Grading Radiation Pneumonitis in Patients Treated for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose Luis; Gomez, Daniel; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-08-01

    Purpose: Scoring of radiation pneumonitis (RP), a dose-limiting toxicity after thoracic radiochemotherapy, is subjective and thus inconsistent among studies. Here we investigated whether the extent of change in diffusing capacity of the lung for carbon monoxide (DLCO) after radiation therapy (RT) for non-small-cell lung cancer (NSCLC) could be used as an objective means of quantifying RP. Patients and Methods: We analyzed potential correlations between DLCO and RP in 140 patients who received definitive RT ({>=}60 Gy) with or without chemotherapy for primary NSCLC. All underwent DLCO analysis before and after RT. Post-RT DLCO values within 1 week of the RP diagnosis (Grade 0, 1, 2, or 3) were selected and compared with that individual's preradiation values. Percent reductions in DLCO and RP grade were compared by point biserial correlation in the entire patient group and in subgroups stratified according to various clinical factors. Results: Patients experiencing Grade 0, 1, 2, or 3 RP had median percentage changes in DLCO after RT of 10.7%, 13%, 22.1%, or 35.2%. Percent reduction in DLCO correlated with RP Grade {<=}1 vs. {>=}2 (p = 0.0004). This association held for the following subgroups: age {>=}65 years, advanced stage, smokers, use of chemotherapy, volume of normal lung receiving at least 20 Gy {>=}30%, and baseline DLCO or forced expiratory volume in 1 second {>=}60%. Conclusions: By correlating percent change in DLCO from pretreatment values at the time of diagnosis of RP with RP grade, we were able to identify categories of RP based on the change in DLCO. These criteria provide a basis for an objective scoring system for RP based on change in DLCO.

  2. A Single Nucleotide Polymorphism in the MTHFR Gene is Associated with Risk of Radiation Pneumonitis in Lung Cancer Patients Treated with Thoracic Radiation Therapy

    PubMed Central

    Mak, Raymond H.; Alexander, Brian M.; Asomaning, Kofi; Heist, Rebecca S.; Liu, Chen-yu; Su, Li; Zhai, Rihong; Ancukiewicz, Marek; Napolitano, Brian; Niemierko, Andrzej; Willers, Henning; Choi, Noah C.; Christiani, David C.

    2011-01-01

    Background To study the association between functional single nucleotide polymorphisms (SNPs) in candidate genes from oxidative stress pathways, and risk of radiation pneumonitis (RP) in patients treated with thoracic radiation therapy (RT) for locally advanced lung cancer (LC). Methods We reviewed 136 patients treated with RT for LC between 2001 and 2007, and had prior genotyping of functional SNPs in oxidative stress genes including superoxide dismutase 2 (SOD2; rs4880) and methylenetetrahydrofolate reductase (MTHFR; rs1801131, rs1801133). RP events were retrospectively scored using the Common Terminology Criteria for Adverse Events, version 4.0. Cox proportional hazard regression was performed to identify clinical variables and genotypes associated with risk of grade ≥2 and grade ≥3 RP on univariate and multivariate analysis. P-values were corrected for multiple hypothesis testing. Results With a median follow-up of 21.4 months, the incidence of ≥grade 2 RP was 29% and ≥grade 3 RP was 14%. On multivariate analysis, after adjusting for clinical factors such as concurrent chemotherapy, and consolidation docetaxel, and lung dosimetric parameters such as V20 and mean lung dose, MTHFR genotype (rs1801131; AA versus AC/CC) was significantly associated with risk of ≥grade 2 RP (Hazard ratio [HR]: 0.37; 95% confidence interval [CI]: 0.18-0.76; p=0.006, corrected p=0.018) and ≥grade 3 RP (HR: 0.21; 95% CI: 0.06-0.70; p=0.01; corrected p=0.03). SOD2 genotype was not associated with RP. Conclusions Our study showed an association between MTHFR genotype and risk of clinically significant RP. Further study of MTHFR-related pathways may provide insight into the mechanisms behind RP. PMID:22144047

  3. Image Guided Hypofractionated 3-Dimensional Radiation Therapy in Patients With Inoperable Advanced Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Osti, Mattia Falchetto; Agolli, Linda; Valeriani, Maurizio; Falco, Teresa; Bracci, Stefano; De Sanctis, Vitaliana; Enrici, Riccardo Maurizi

    2013-03-01

    Purpose: Hypofractionated radiation therapy (HypoRT) can potentially improve local control with a higher biological effect and shorter overall treatment time. Response, local control, toxicity rates, and survival rates were evaluated in patients affected by inoperable advanced stage non-small cell lung cancer (NSCLC) who received HypoRT. Methods and Materials: Thirty patients with advanced NSCLC were enrolled; 27% had stage IIIA, 50% had stage IIIB, and 23% had stage IV disease. All patients underwent HypoRT with a prescribed total dose of 60 Gy in 20 fractions of 3 Gy each. Radiation treatment was delivered using an image guided radiation therapy technique to verify correct position. Toxicities were graded according to Radiation Therapy Oncology Group morbidity score. Survival rates were estimated using the Kaplan-Meier method. Results: The median follow-up was 13 months (range, 4-56 months). All patients completed radiation therapy and received the total dose of 60 Gy to the primary tumor and positive lymph nodes. The overall response rate after radiation therapy was 83% (3 patients with complete response and 22 patients with partial response). The 2-year overall survival and progression-free survival rates were 38.1% and 36%, respectively. Locoregional recurrence/persistence occurred in 11 (37%) patients. Distant metastasis occurred in 17 (57%) patients. Acute toxicities occurred consisting of grade 1 to 2 hematological toxicity in 5 patients (17%) and grade 3 in 1 patient; grade 1 to 2 esophagitis in 12 patients (40%) and grade 3 in 1 patient; and grade 1 to 2 pneumonitis in 6 patients (20%) and grade 3 in 2 patients (7%). Thirty-three percent of patients developed grade 1 to 2 late toxicities. Only 3 patients developed grade 3 late adverse effects: esophagitis in 1 patient and pneumonitis in 2 patients. Conclusions: Hypofractionated curative radiation therapy is a feasible and well-tolerated treatment for patients with locally advanced NSCLC. Randomized

  4. Preoperative concurrent radiation therapy and cisplatinum continuous infusion in IIIa (N2) non small cell lung cancer. A pilot study.

    PubMed

    Maggi, G; Casadio, C; Cianci, R; Oliaro, A; Molinatti, M; Bretti, S; Clerico, M; Boidi-Trotti, A; Rovea, P

    1994-08-01

    From April 1991 to September 1993, 18 patients affected by a presumed operable IIIa (N2) non small cell lung cancer (NSCLC) with histologically confirmed bulky mediastinal metastases, received preoperative concurrent radiation therapy and continuous infusion of cisplatinum (CDDP). The radiotherapy consisted of 2 Gy given 5 days a week for a total dose of 50 Gy; CDDP was administered by means of a central catheter and a portable pump at the daily dose of 6 mg/m2 given on the same days as the radiation therapy (total dose: 150 mg/m2). Two weeks after the end of the treatment, the patients were reevaluated: 5 patients had either local or distant disease progression, the other 13 were submitted to thoracotomy: 12 received a complete resection and 1 patient underwent only a mediastinal lymphadenectomy, because pneumonectomy was impossible due to lack of respiratory function. No histological evidence of cancer cells was observed in the specimens of 6 patients (33%). Radiological response rate was 61% (11/18); resection rate was 66% (12/18) and complete resection rate was 61% (11/18). There was one postoperative death (5%). The 3 year actuarial survival rate is 63.6% for the patients who received a resection with a median survival time of 18 months. All non operated patients died within one year. Combined preoperative treatment was well tolerated. Better results were achieved in patients with squamous cell carcinoma who had a complete resection following a total tumor sterilization with radio-chemotherapy. PMID:7929550

  5. Antitumor Effects of MEHD7945A, a Dual-Specific Antibody against EGFR and HER3, in Combination with Radiation in Lung and Head and Neck Cancers.

    PubMed

    Li, Chunrong; Huang, Shyhmin; Armstrong, Eric A; Francis, David M; Werner, Lauryn R; Sliwkowski, Mark X; van der Kogel, Albert; Harari, Paul M

    2015-09-01

    Human epidermal growth factor receptor family members (EGFR, HER2, HER3, and HER4) play important roles in tumorigenesis and response to cancer therapeutics. In this study, we evaluated the capacity of the dual-target antibody MEHD7945A that simultaneously targets EGFR and HER3 to modulate radiation response in lung and head and neck cancer models. Antitumor effects of MEHD7945A in combination with radiation were evaluated in cell culture and tumor xenograft models. Mechanisms that may contribute to increased radiation killing by MEHD7945A, including DNA damage and inhibition of EGFR-HER signaling pathways, were analyzed. Immunohistochemical analysis of tumor xenografts was conducted to evaluate the effect of MEHD7945A in combination with radiation on tumor growth and microenvironment. MEHD7945A inhibited basal and radiation-induced EGFR and HER3 activation resulting in the inhibition of tumor cell growth and enhanced radiosensitivity. MEHD7945A was more effective in augmenting radiation response than treatment with individual anti-EGFR or anti-HER3 antibodies. An increase in DNA double-strand breaks associated γ-H2AX was observed in cells receiving combined treatment with MEHD7945A and radiation. Immunohistochemical staining evaluation in human tumor xenografts showed that MEHD7945A combined with radiation significantly reduced the expression of markers of tumor proliferation and tumor vasculature. These findings reveal the capacity of MEHD7945A to augment radiation response in lung and head and neck cancers. The dual EGFR/HER3-targeting action of MEHD7945A merits further investigation and clinical trial evaluation as a radiation sensitizer in cancer therapy. PMID:26141946

  6. Stereotactic Body Radiation Therapy for Re-irradiation of Persistent or Recurrent Non-Small Cell Lung Cancer

    SciTech Connect

    Trovo, Marco; Minatel, Emilio; Durofil, Elena; Polesel, Jerry; Avanzo, Michele; Baresic, Tania; Bearz, Alessandra; Del Conte, Alessandro; Franchin, Giovanni; Gobitti, Carlo; Rumeileh, Imad Abu; Trovo, Mauro G.

    2014-04-01

    Purpose: To retrospectively assess toxicity and outcome of re-irradiation with stereotactic body radiation therapy (SBRT) in patients with recurrent or persistent non-small cell lung cancer (NSCLC), who were previously treated with radical radiation therapy (50-60 Gy). The secondary endpoint was to investigate whether there are dosimetric parameter predictors of severe radiation toxicity. Methods and Materials: The analysis was conducted in 17 patients with “in-field” recurrent/persistent centrally located NSCLC, who underwent re-irradiation with SBRT. SBRT consisted of 30 Gy in 5 to 6 fractions; these prescriptions would be equivalent for the tumor to 37.5 to 40 Gy, bringing the total 2-Gy-per-fraction cumulative dose to 87 to 100 Gy, considering the primary radiation therapy treatment. Actuarial analyses and survival were calculated by the Kaplan-Meier method, and P values were estimated by the log-rank test, starting from the date of completion of SBRT. Dosimetric parameters from the subgroups with and without grade ≥3 pulmonary toxicity were compared using a 2-tailed Student t test. Results: The median follow-up was 18 months (range, 4-57 months). Only 2 patients had local failure, corresponding to a local control rate of 86% at 1 year. The Kaplan-Meier estimates of overall survival (OS) rates at 1 and 2 years were 59% and 29%, respectively; the median OS was 19 months. Four patients (23%) experienced grade 3 radiation pneumonitis, and 1 patient developed fatal pneumonitis. One patient died of fatal hemoptysis 2 months after the completion of SBRT. Unexpectedly, heart maximum dose, D5 (minimum dose to at least 5% of the heart volume), and D10 were correlated with risk of radiation pneumonitis (P<.05). Conclusions: Re-irradiation with SBRT for recurrent/persistent centrally located NSCLC achieves excellent results in terms of local control. However, the high rate of severe toxicity reported in our study is of concern.

  7. Increasing Radiation Therapy Dose Is Associated With Improved Survival in Patients Undergoing Stereotactic Body Radiation Therapy for Stage I Non–Small-Cell Lung Cancer

    SciTech Connect

    Koshy, Matthew; Malik, Renuka; Weichselbaum, Ralph R.; Sher, David J.

    2015-02-01

    Purpose: To determine the comparative effectiveness of different stereotactic body radiation therapy (SBRT) dosing regimens for early-stage non–small-cell lung cancer, using a large national database, focusing on the relative impact of dose as a function of tumor stage. Methods and Materials: The study included patients in the National Cancer Database from 2003 to 2006 with T1-T2N0M0 inoperable lung cancer (n=498). The biologically effective dose (BED) was calculated according to the linear quadratic formula using an α/β ratio of 10. High versus lower-dose (HD vs LD) SBRT was defined as a calculated BED above or below 150 Gy. Overall survival was estimated using Kaplan-Meier methods and Cox proportional hazard regression. Results: The 5 most common dose fractionation schemes (percentage of cohort) used were 20 Gy × 3 (34%), 12 Gy × 4 (16%), 18 Gy × 3 (10%), 15 Gy × 3 (10%), and 16 Gy × 3 (4%). The median calculated BED was 150 Gy (interquartile range 106-166 Gy). The 3-year overall survival (OS) for patients who received HD versus LD was 55% versus 46% (log–rank P=.03). On subset analysis of the T1 cohort there was no association between calculated BED and 3-year OS (61% vs 60% with HD vs LD, P=.9). Among the T2 cohort, patients receiving HD experienced superior 3-year OS (37% vs 24%, P=.01). On multivariable analysis, factors independently prognostic for mortality were female gender (hazard ratio [HR] 0.76, P=.01), T2 tumor (HR 1.99, P=.0001), and HD (HR 0.68, P=.001). Conclusions: This comparative effectiveness analysis of SBRT dose for patients with stage I non–small-cell lung cancer suggests that higher doses (>150 Gy BED) are associated with a significant survival benefit in patients with T2 tumors.

  8. Mutational profiling of second primary lung cancers in patients who have received radiation for the treatment of Hodgkin's disease.

    PubMed

    Bond, David Alan; Dunavin, Neil; Otterson, Gregory Alan

    2015-03-01

    Lung cancer (LC) represents the most common solid tumor in survivors of Hodgkin's disease (HD), and the assessment of the mutational status of oncogenic driver mutations in LC is now standard. We compiled clinical and mutation data (EGFR, KRAS, and ALK) from the medical records of patients with LC and a remote history of HD. 13 cases of LC following HD were seen, including seven with mutational data. Two had EGFR mutations, none had KRAS mutations or ALK translocations. Our conclusions are limited by the small sample size, however this report reinforces the need to identify driver mutations in lung cancers. PMID:25615851

  9. Drugs Approved for Lung Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for lung cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  10. Quality of Life (QOL) Analysis of a Randomized Radiation Dose Escalation Non-Small Cell Lung Cancer (NSCLC) Study: Radiation Therapy Oncology Group (RTOG) Trial 0617

    PubMed Central

    Movsas, Benjamin; Hu, Chen; Sloan, Jeffrey; Bradley, Jeffrey; Komaki, Ritsuko; Masters, Gregory; Kavadi, Vivek; Narayan, Samir; Michalski, Jeff; Johnson, Douglas W.; Koprowski, Christopher; Curran, Walter J.; Garces, Yolanda I.; Gaur, Rakesh; Wynn, Raymond B.; Schallenkamp, John; Gelblum, Daphna Y.; MacRae, Robert M; Paulus, Rebecca; Choy, Hak

    2015-01-01

    Importance A recent randomized radiation dose escalation trial in unresectable stage III NSCLC showed a lower survival in the high-dose arm (74Gy vs. 60Gy) with concurrent chemotherapy. Quality of life (QOL), an important secondary endpoint, is presented here. Objective The primary QOL hypothesis predicted a clinically meaningful decline (CMD) in QOL via the Functional Assessment of Cancer Therapy-Lung Cancer Subscale (FACT-LCS) in the high-dose RT-arm at 3 months. Design RTOG 0617 was a randomized phase III study (conducted from Nov 2007 to Nov 2011) in stage III NSCLC using a 2×2 factorial design and stratified by histology, PET staging, performance status and radiation technique (3D-conformal RT [3DCRT] vs. intensity-modulated radiation [IMRT]). Setting 185 institutions in the USA and Canada. Participants Of 424 eligible stage III NSCLC patients randomized, 360 (85%) consented to QOL, of whom 313 (88%) completed baseline QOL assessments. Intervention for Clinical Trials 74Gy vs. 60Gy with concurrent and consolidation carboplatin/paclitaxel +/− cetuximab. Main Outcomes and Measures QOL was collected prospectively via FACT-Trial Outcome Index (FACT-TOI), equaling Physical-Well-Being (PWB) + Functional-Well-Being (FWB) + Lung Cancer Subscale (LCS). Data are presented at baseline & 3 and 12 months via minimal clinically meaningful changes of >=2 points for PWB, FWB or LCS or >=5 points for TOI. Results Patient demographics and baseline QOL scores were comparable between the 74Gy and 60Gy arms. Two-hundred-nineteen (72%) of living patients who completed QOL at baseline did so at 3 months and 137 (57%) of living patients did so at 12 months. Significantly more patients on 74Gy arm had clinically meaningful decline in FACT-LCS at 3 months than on the 60Gy arm (45% vs. 30%, p=0.02). At 12 months, fewer patients who received IMRT (vs 3DCRT) had clinically meaningful decline in FACT-LCS (21% vs 46%, p=0.003). Baseline FACT-TOI was associated with overall survival in

  11. A Dose-Volume Analysis of Radiation Pneumonitis in Non-Small Cell Lung Cancer Patients Treated With Stereotactic Body Radiation Therapy

    SciTech Connect

    Barriger, R. Bryan; Forquer, Jeffrey A.; Brabham, Jeffrey G.; Andolino, David L.; Shapiro, Ronald H.; Henderson, Mark A.; Johnstone, Peter A.S.; Fakiris, Achilles J.

    2012-01-01

    Purpose: To examine the rates and risk factors of radiation pneumonitis (RP) in non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT). Methods and Materials: Dosimetry records for 251 patients with lymph node-negative Stage I-IIB NSCLC and no prior chest radiation therapy (RT) treated with SBRT were reviewed. Patients were coded on the basis of the presence of at least Grade (G) 2 RP using the Common Toxicity Criteria version 2 criteria. Radiation doses, V5, V10, V20, and mean lung dose (MLD) data points were extracted from the dose-volume histogram (DVH). Results: Median PTV volume was 48 cc. Median prescribed radiation dose was 60 Gy delivered in three fractions to the 80% isodose line. Median age at treatment was 74 years. Median follow-up was 17 months. RP was reported after treatment of 42 lesions: G1 in 19 (8%), G2 in 17 (7%), G3 in 5 (2%), and G4 in 1 (0.4%). Total lung DVHs were available for 143 patients. For evaluable patients, median MLD, V5, V10, and V20 were 4.1 Gy, 20%, 12%, and 4%, respectively. Median MLDs were 4 Gy and 5 Gy for G0-1 and G2-4 groups, respectively (p = 0.14); median V5 was 20% for G0-1 and 24% for G2-4 (p = 0.70); median V10 was 12% in G0-1 and 16% in G2-4 (p = 0.08), and median V20 was 4% in G0-1 and 6.6% in G2-4 (p = 0.05). G2-4 RP was noted in 4.3% of patients with MLD {<=}4 Gy compared with 17.6% of patients with MLD >4 Gy (p = 0.02), and in 4.3% of patients with V20 {<=}4% compared with 16.4% of patients with V20 >4% (p = 0.03). Conclusion: Overall rate of G2-4 RP in our population treated with SBRT was 9.4%. Development of symptomatic RP in this series correlated with MLD and V20.

  12. Screening for Lung Cancer.

    PubMed

    Stiles, Brendon M; Pua, Bradley; Altorki, Nasser K

    2016-07-01

    Lung cancer is a global health burden and is among the most common and deadliest of all malignancies worldwide. The goal of screening programs is to detect tumors in earlier, curable stages, consequently reducing disease-specific mortality. The issue of screening has great relevance to thoracic surgeons, who should play a leading role in the debate over screening and its consequences. The burden is on thoracic surgeons to work in a multidisciplinary setting to guide and treat these patients safely and responsibly, ensuring low morbidity and mortality of potential diagnostic or therapeutic interventions. PMID:27261909

  13. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    SciTech Connect

    Lan, Fengming; Yue, Xiao; Ren, Gang; Li, Hongqi; Ping, Li; Wang, Yingjie; Xia, Tingyi

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

  14. Stereotactic Body Radiotherapy and Ablative Therapies for Lung Cancer.

    PubMed

    Abbas, Ghulam; Danish, Adnan; Krasna, Mark J

    2016-07-01

    The treatment paradigm for early stage lung cancer and oligometastatic disease to the lung is rapidly changing. Ablative therapies, especially stereotactic body radiation therapy, are challenging the surgical gold standard and have the potential to be the standard for operable patients with early stage lung cancer who are high risk due to co- morbidities. The most commonly used ablative modalities include stereotactic body radiation therapy, microwave ablation, and radiofrequency ablation. PMID:27261915

  15. UK partnership targets lung cancer.

    PubMed

    2014-07-01

    Cancer Research UK has joined with two major pharmaceutical companies to launch a large multiarm clinical trial, dubbed the National Lung Matrix trial, to test the effectiveness of promising experimental therapies in treating rare forms of advanced lung cancer. PMID:25002593

  16. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    PubMed Central

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  17. SU-E-J-31: Monitor Interfractional Variation of Tumor Respiratory Motion Using 4D KV Conebeam Computed Tomography for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Tai, A; Prior, P; Gore, E; Johnstone, C; Li, X

    2015-06-15

    Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linear amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.

  18. [Grading of lung cancer].

    PubMed

    Bohle, R M; Schnabel, P A

    2016-07-01

    In comparison with other tumor entities there is no common generally accepted grading system for lung cancer with clearly defined criteria and clinical relevance. In the recent fourth edition of the World Health Organization (WHO) classification from 2015 of tumors of the lungs, pleura, thymus and heart, there is no generally applicable grading for pulmonary adenocarcinomas, squamous cell carcinomas or rarer forms of carcinoma. Since the new IASLC/ATS/ERS classification of adenocarcinomas published in 2011, 5 different subtypes with significantly different prognosis are proposed. This results in an architectural (histologic) grading, which is usually applied to resection specimens. For squamous cell carcinoma the number of different histological subtypes in the new WHO classification was reduced compared to earlier versions but without a common grading system. In recent publications nesting and budding were proposed as the main (histologic) criteria for a grading of squamous cell carcinomas. The grading of neuroendocrine tumors (NET) of the lungs in comparison with NET in other organs is presented in a separate article in this issue. Certain rare tumor types are high grade per definition: small cell, large cell and pleomorphic carcinomas, carcinosarcomas and pulmonary blastomas. In the future it is to be expected that these developments will be further refined, e. g. by adding further subtypes for adenocarcinomas and cytologic and/or nuclear criteria for adenocarcinoma and/or squamous cell carcinomas. PMID:27356985

  19. [The epidemiology of lung cancer].

    PubMed

    Kosacka, Monika; Jankowska, Renata

    2007-01-01

    Lung cancer is currently most frequently diagnosed neoplasm in males and the fifth most frequent cancer in females. In developed countries only breast cancer is diagnosed more often in women. Worldwide, lung cancer is the most common cause of cancer mortality in males and females. In the Europe lung cancer accounts for 21% of all cancer cases in males and 29% of all cancer deaths. The rapid increase in lung cancer incidence was observed the since beginning of the XX century till 1990-1994. The incidence in males decreased recently, but still increases in females, especially in young women. The changes in frequency of various histological subtypes of lung cancer are observed too. Despite many clinical trials, modern diagnostic techniques and improved supportive care, the prognosis remains unfavourable and long-term survival almost did not change. In Poland the incidence of lung cancer in 2002 was 81.9/100 000 in males and 22.2/100 000 in females. In both genders 1-year and 5-year survivals time are one of the shortest in Europe. PMID:17541915

  20. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    SciTech Connect

    Shusharina, Nadya Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.

  1. Bronchoscopy of Lung Cancer

    PubMed Central

    Emslander, H. P.

    1994-01-01

    Lung cancer is a leading cancer site in men and women with a high incidence and mortality rate. Most patients are diagnosed when the disease has already spread. An early, detection and immediate and accurate histological or cytological diagnosis are essential for a hopeful outcome. In most patients, bronchoscopy is the method of choice in establishing a suspected lung neoplasm. With the rigid and flexible method, two complementary techniques are available. The methods bear a very low mortality rate if sufficient monitoring and resuscitative instrumentation is available. Rigid bronchoscopy offers the possibility of obtaining large biopsy specimens from the tumorous tissue and provides an effective tool in the control of major haemorrhage. However, it cannot be used for the inspection of further peripherally located parts of the bronchial system and needs general anaesthesia. In contrast, the flexible method can be quickly and readily performed at practically any location using portable equipment. Bronchi can be inspected up to the 8th order and with bronchial washing, forceps biopsy, brush biopsy and fluorescence bronchoscopy techniques with a high diagnostic yield are available. This holds true, especially if these sampling techniques are used as complementary methods. PMID:18493335

  2. Polonium and Lung Cancer

    PubMed Central

    Zagà, Vincenzo; Lygidakis, Charilaos; Chaouachi, Kamal; Gattavecchia, Enrico

    2011-01-01

    The alpha-radioactive polonium 210 (Po-210) is one of the most powerful carcinogenic agents of tobacco smoke and is responsible for the histotype shift of lung cancer from squamous cell type to adenocarcinoma. According to several studies, the principal source of Po-210 is the fertilizers used in tobacco plants, which are rich in polyphosphates containing radio (Ra-226) and its decay products, lead 210 (Pb-210) and Po-210. Tobacco leaves accumulate Pb-210 and Po-210 through their trichomes, and Pb-210 decays into Po-210 over time. With the combustion of the cigarette smoke becomes radioactive and Pb-210 and Po-210 reach the bronchopulmonary apparatus, especially in bifurcations of segmental bronchi. In this place, combined with other agents, it will manifest its carcinogenic activity, especially in patients with compromised mucous-ciliary clearance. Various studies have confirmed that the radiological risk from Po-210 in a smoker of 20 cigarettes per day for a year is equivalent to the one deriving from 300 chest X-rays, with an autonomous oncogenic capability of 4 lung cancers per 10000 smokers. Po-210 can also be found in passive smoke, since part of Po-210 spreads in the surrounding environment during tobacco combustion. Tobacco manufacturers have been aware of the alpha-radioactivity presence in tobacco smoke since the sixties. PMID:21772848

  3. Radiation-induced matrix metalloproteinases limit natural killer cell-mediated anticancer immunity in NCI-H23 lung cancer cells.

    PubMed

    Heo, Woong; Lee, Young Shin; Son, Cheol Hun; Yang, Kwangmo; Park, You Soo; Bae, Jaeho

    2015-03-01

    Radiotherapy has been used to treat cancer for >100 years and is required by numerous patients with cancer. Ionizing radiation effectively inhibits the growth of cancer cells by inducing cell death and increasing anticancer immunity, through the induction of natural killer group 2 member D ligands (NKG2DLs); however, adverse effects have also been reported, including the promotion of metastasis. Matrix metalloproteinases (MMPs) are induced by ionizing radiation and have an important role in the invasion and metastasis of cancer cells. Previously, MMPs were demonstrated to increase the shedding of NKG2DLs, which may reduce the surface expression of NKG2DLs on cancer cells. As a consequence, the cancer cells may escape natural killer (NK)‑mediated anticancer immunity. In the present study, NCI‑H23 human non‑small cell lung cancer cells were used to investigate the combined effects of ionizing radiation and MMP inhibitors on the expression levels of NKG2DLs. Ionizing radiation increased the expression of MMP2 and ADAM metalloproteinase domain 10 protease, as well as NKG2DLs. The combined treatment of ionizing radiation and MMP inhibitors increased the surface expression levels of NKG2DLs and resulted in the increased susceptibility of the cancer cells to NK‑92 natural killer cells. Furthermore, soluble NKG2DLs were increased in the media by ionizing radiation and blocked by MMP inhibitors. The present study suggests that radiotherapy may result in the shedding of soluble NKG2DLs, through the induction of MMP2, and combined treatment with MMP inhibitors may minimize the adverse effects of radiotherapy. PMID:25385045

  4. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    SciTech Connect

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na; Choe, Tae-Boo; Hong, Seok-Il; Yi, Jae-Youn; Hwang, Sang-Gu; Lee, Hyun-Gyu; Lee, Yun-Han; Park, In-Chul

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  5. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients a)

    PubMed Central

    Cunliffe, Alexandra R.; Contee, Clay; Armato, Samuel G.; White, Bradley; Justusson, Julia; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-01

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (dE) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of dE, dose (D), dose standard deviation (SDdose) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average dE across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of dE (0.42 Gy/mm), D (0.05 Gy/Gy), SDdose (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation

  6. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  7. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    SciTech Connect

    Rotstein, S.; Lax, I.; Svane, G. )

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered to 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.

  8. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease: special reference to survival and radiation-induced pneumonitis

    PubMed Central

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report—prolonged minimal RIP (pmRIP)—after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD −) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. PMID:25887042

  9. A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089

    PubMed Central

    Sharma, Khushboo; Goehe, Rachel W; Di, Xu; Hicks, Mark Anthony; Torti, Suzy V; Torti, Frank M; Harada, Hisashi; Gewirtz, David A.

    2015-01-01

    The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC. PMID:25629933

  10. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  11. DIETARY AGENTS FOR PREVENTION AND TREATMENT OF LUNG CANCER

    PubMed Central

    Khan, Naghma; Mukhtar, Hasan

    2015-01-01

    Lung cancer is a prominent cause of cancer-associated mortality worldwide. The main reason for high mortality due to lung cancer is attributable to the fact that the diagnosis is generally made when it has spread beyond a curable stage and cannot be treated surgically or with radiation therapy. Therefore, new approaches like dietary modifications could be extremely useful in reducing lung cancer incidences. Several fruits and vegetables offer a variety of bioactive compounds to afford protection against several diseases, including lung cancer. A number of research studies involving dietary agents provide strong evidence for their role in the prevention and treatment of lung cancer, and have identified their molecular mechanisms of action and potential targets. In this review article, we summarize data from in-vitro and in-vivo studies and where available, in clinical trials, on the effects of some of the most promising dietary agents against lung cancer. PMID:25644088

  12. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  13. Modeling Local Control After Hypofractionated Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer: A Report From the Elekta Collaborative Lung Research Group

    SciTech Connect

    Ohri, Nitin; Werner-Wasik, Maria; Grills, Inga S.; Belderbos, Jose; Hope, Andrew; Yan Di; Kestin, Larry L.; Guckenberger, Matthias; Sonke, Jan-Jakob; Bissonnette, Jean-Pierre; Xiao, Ying

    2012-11-01

    Purpose: Hypofractionated stereotactic body radiation therapy (SBRT) has emerged as an effective treatment option for early-stage non-small cell lung cancer (NSCLC). Using data collected by the Elekta Lung Research Group, we generated a tumor control probability (TCP) model that predicts 2-year local control after SBRT as a function of biologically effective dose (BED) and tumor size. Methods and Materials: We formulated our TCP model as follows: TCP = e{sup [BED10-c Asterisk-Operator L-TCD50]/k} Division-Sign (1 + e{sup [BED10-c Asterisk-Operator L-TCD50]/k}), where BED10 is the biologically effective SBRT dose, c is a constant, L is the maximal tumor diameter, and TCD50 and k are parameters that define the shape of the TCP curve. Least-squares optimization with a bootstrap resampling approach was used to identify the values of c, TCD50, and k that provided the best fit with observed actuarial 2-year local control rates. Results: Data from 504 NSCLC tumors treated with a variety of SBRT schedules were available. The mean follow-up time was 18.4 months, and 26 local recurrences were observed. The optimal values for c, TCD50, and k were 10 Gy/cm, 0 Gy, and 31 Gy, respectively. Thus, size-adjusted BED (sBED) may be defined as BED minus 10 times the tumor diameter (in centimeters). Our TCP model indicates that sBED values of 44 Gy, 69 Gy, and 93 Gy provide 80%, 90%, and 95% chances of tumor control at 2 years, respectively. When patients were grouped by sBED, the model accurately characterized the relationship between sBED and actuarial 2-year local control (r=0.847, P=.008). Conclusion: We have developed a TCP model that predicts 2-year local control rate after hypofractionated SBRT for early-stage NSCLC as a function of biologically effective dose and tumor diameter. Further testing of this model with additional datasets is warranted.

  14. Early diagnosis of lung cancer

    NASA Astrophysics Data System (ADS)

    Saccomanno, Geno; Bechtel, Joel J.

    1991-06-01

    Lung cancer remains the leading cause of death in the United States. Although the incidence of cigarette smoking is decreasing in the United States it appears to be increasing worldwide. The five-year survival rate has not improved in cases with advanced disease, but several articles have indicated that survival can be improved in cases diagnosed early by sputum cytology and chest x-ray. In cases diagnosed while the lesion is in the in-situ stage or measures less than 1 cm in diameter, surgical excision and/or radiation therapy improves survival; therefore, the early diagnosis of high-risk patients should be vigorously pursued. A recent study at a community hospital in Grand Junction, Colorado, presented 45 lung cancer cases diagnosed with positive sputum cytology and negative chest x-ray, and indicates that early diagnosis does improve survival. This study has been conducted during the past six years; 16 cases have survived three years and six cases show five-year survival.

  15. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    SciTech Connect

    Stanic, Sinisa; Paulus, Rebecca; Timmerman, Robert D.; Michalski, Jeff M.; Barriger, Robert B.; Bezjak, Andrea; Videtic, Gregory M.M.; Bradley, Jeffrey

    2014-04-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.

  16. Lung Cancer Surgery Worthwhile for Older Patients

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found those ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have lung ...

  17. Lung Cancer Surgery Worthwhile for Older Patients

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found those ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have lung ...

  18. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    SciTech Connect

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.; Devery, Aoife M.; Ryan, Anderson J.

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg, orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a

  19. Occupational exposure and lung cancer

    PubMed Central

    Spyratos, Dionysios; Porpodis, Konstantinos; Tsakiridis, Kosmas; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Kougioumtzi, Ioanna; Dryllis, Georgios; Kallianos, Anastasios; Rapti, Aggeliki; Li, Chen; Zarogoulidis, Konstantinos

    2013-01-01

    Lung cancer is the leading cause of cancer death for male and the second most usual cancer for women after breast cancer. Currently there are available several non-specific cytotoxic agents and several targeted agents for lung cancer therapy. However; early stage diagnosis is still unavailable and several efforts are being made towards this direction. Novel biomarkers are being investigated along with new biopsy techniques. The occupational and environmental exposure to carcinogenic agents is an everyday phenomenon. Therefore until efficient early diagnosis is available, avoidance of exposure to carcinogenic agents is necessary. In the current mini-review occupational and environmental carcinogenic agents will be presented. PMID:24102018

  20. A Novel Bioluminescence Orthotopic Mouse Model for Advanced Lung Cancer

    PubMed Central

    Li, Bo; Torossian, Artour; Li, Wenyan; Schleicher, Stephen; Niu, Kathy; Giacalone, Nicholas J.; Kim, Sung June; Chen, Heidi; Gonzalez, Adriana; Moretti, Luigi; Lu, Bo

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States despite recent advances in our understanding of this challenging disease. An animal model for high-throughput screening of therapeutic agents for advanced lung cancer could help promote the development of more successful treatment interventions. To develop our orthotopic lung cancer model, luciferase-expressing A549 cancer cells were injected into the mediastinum of athymic nude mice. To determine whether the model would allow easy monitoring of response to therapeutic interventions, tumors were treated with 30 mg/kg Paclitaxel or were irradiated with 5 fractions of 2 Gy, and tumor burden was monitored using bioluminescence imaging. Evidence of radiation-induced lung injury was assessed using immunohistochemical staining for phospho-Smad2/3 and cleaved caspase-3. We found that tumor implantation recapitulated advanced human lung cancer as evidenced by tumor establishment and proliferation within the mediastinum. The tumor responded to Paclitaxel or radiation as shown by decreased tumor bioluminescence and improved overall survival. Immunohistochemistry revealed increased phospho-Smad2/3 and cleaved caspase-3 in irradiated lungs, consistent with radiation-induced lung injury. This orthotopic lung cancer model may help provide a method to assess therapeutic interventions in a preclinical setting that recapitulates locally advanced lung cancer. PMID:21663394

  1. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway.

    PubMed

    Wang, Lei; Li, Xiankui; Song, Yi-Min; Wang, Bin; Zhang, Fu-Rui; Yang, Rui; Wang, Hua-Qi; Zhang, Guo-Jun

    2015-07-01

    At present, it is elusive how non-small cell lung cancer (NSCLC) develops resistance to γ-radiation; however, the transcription factor nuclear factor-κB (NF-κB) and NF-κB-regulated gene products have been proposed as mediators. Ginsenoside Rg3 is a steroidal saponin, which was isolated from Panax ginseng. Ginsenoside Rg3 possesses high pharmacological activity and has previously been shown to suppress NF-κB activation in various types of tumor cell. Therefore, the present study aimed to determine whether Rg3 could suppress NF-κB activation in NSCLC cells and sensitize NSCLC to γ-radiation, using an NSCLC cell line and NSCLC xenograft. A clone formation assay and lung tumor xenograft experiment were used to assess the radiosensitizing effects of ginsenoside Rg3. NF-κB/inhibitor of NF-κB (IκB) modulation was ascertained using an electrophoretic mobility shift assay and western blot analysis. NF-κB-regulated gene products were monitored by western blot analysis. The present study demonstrated that ginsenoside Rg3 was able to sensitize A549 and H1299 lung carcinoma cells to γ-radiation and significantly enhance the efficacy of radiation therapy in C57BL/6 mice bearing a Lewis lung carcinoma cell xenograft tumor. Furthermore, ginsenoside Rg3 suppressed NF-κB activation, phosphorylation of IκB protein and expression of NF-κB-regulated gene products (cyclin D1, c-myc, B-cell lymphoma 2, cyclooxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor), a number of which were induced by radiation therapy and mediate radioresistance. In conclusion, the results of the present study suggested that ginsenoside Rg3 may potentiate the antitumor effects of radiation therapy in NSCLC by suppressing NF-κB activity and NF-κB-regulated gene products, leading to the inhibition of tumor progression. PMID:25738799

  2. Stereotactic Body Radiation Therapy in Centrally and Superiorly Located Stage I or Isolated Recurrent Non-Small-Cell Lung Cancer

    SciTech Connect

    Chang, Joe Y. Balter, Peter A.; Dong Lei; Yang Qiuan; Liao Zhongxing; Jeter, Melenda; Bucci, M. Kara; McAleer, Mary F.; Mehran, Reza J.; Roth, Jack A.; Komaki, Ritsuko

    2008-11-15

    Purpose: To evaluate the efficacy and adverse effects of image-guided stereotactic body radiation therapy (SBRT) in centrally/superiorly located non-small-cell lung cancer (NSCLC). Materials and Methods: We delivered SBRT to 27 patients, 13 with Stage I and 14 with isolated recurrent NSCLC. A central/superior location was defined as being within 2 cm of the bronchial tree, major vessels, esophagus, heart, trachea, pericardium, brachial plexus, or vertebral body, but 1 cm away from the spinal canal. All patients underwent four-dimensional computed tomography-based planning, and daily computed tomography-on-rail guided SBRT. The prescribed dose of 40 Gy (n = 7) to the planning target volume was escalated to 50 Gy (n = 20) in 4 consecutive days. Results: With a median follow-up of 17 months (range, 6-40 months), the crude local control at the treated site was 100% using 50 Gy. However, 3 of 7 patients had local recurrences when treated using 40 Gy. Of the patients with Stage I disease, 1 (7.7%) and 2 (15.4%) developed mediastinal lymph node metastasis and distant metastases, respectively. Of the patients with recurrent disease, 3 (21.4%) and 5 (35.7%) developed mediastinal lymph node metastasis and distant metastasis, respectively. Four patients (28.6%) with recurrent disease but none with Stage I disease developed Grade 2 pneumonitis. Three patients (11.1%) developed Grade 2-3 dermatitis and chest wall pain. One patient developed brachial plexus neuropathy. No esophagitis was noted in any patient. Conclusions: Image-guided SBRT using 50 Gy delivered in four fractions is feasible and resulted in excellent local control.

  3. Management of small-cell lung cancer with radiotherapy—a pan-Canadian survey of radiation oncologists

    PubMed Central

    Shahi, J.; Wright, J.R.; Gabos, Z.; Swaminath, A.

    2016-01-01

    Background The management of small-cell lung cancer (sclc) with radiotherapy (rt) varies, with many treatment regimens having been described in the literature. We created a survey to assess patterns of practice and clinical decision-making in the management of sclc by Canadian radiation oncologists (ros). Methods A 35-item survey was sent by e-mail to Canadian ros. The questions investigated the role of rt, the dose and timing of rt, target delineation, and use of prophylactic cranial irradiation (pci) in limited-stage (ls) and extensive-stage (es) sclc. Results Responses were received from 52 eligible ros. For ls-sclc, staging (98%) and simulation or dosimetric (96%) computed tomography imaging were key determinants of rt suitability. The most common dose and fractionation schedule was 40–45 Gy in 15 once-daily fractions (40%), with elective nodal irradiation performed by 31% of ros. Preferred management of clinical T1/2aN0 sclc favoured primary chemoradiotherapy (64%). For es-sclc, consolidative thoracic rt was frequently offered (88%), with a preferred dose and fractionation schedule of 30 Gy in 10 once-daily fractions (70%). Extrathoracic consolidative rt would not be offered by 23 ros (44%). Prophylactic cranial irradiation was generally offered in ls-sclc (100%) and es-sclc (98%) after response to initial treatment. Performance status, baseline cognition, and pre-pci brain imaging were important patient factors assessed before an offer of pci. Conclusions Canadian ros show practice variation in sclc management. Future clinical trials and national treatment guidelines might reduce variability in the treatment of early-stage disease, optimization of dose and targeting in ls-sclc, and definition of suitability for pci or consolidative rt. PMID:27330347

  4. Prognosis and predictors of site of first metastasis after definitive radiation therapy for non-small cell lung cancer.

    PubMed

    Tang, Chad; Liao, Zhongxing; Hess, Kenneth; Chance, William W; Zhuang, Yan; Jensen, Garrett; Xu, Ting; Komaki, Ritsuko; Gomez, Daniel R

    2016-08-01

    Background and purpose Evidence suggests that distinct biologic phenomenon produce different patterns of distant metastatic (DM) failures. We attempted to identify prognostically poor sites of first DM and to define factors predictive of their development. Methods and materials A total of 1074 patients treated with ≥60 Gy definitive radiation for initially non-metastatic non-small cell lung cancer (NSCLC) were analyzed. Uni- and multivariate Cox regression was utilized to associate clinical factors with DM site, and metastatic site with overall survival (OS). To account for competing events, multivariate Fine and Gray regression was utilized to identify treatment and disease factors predictive of site-specific metastases. Results Sites of first DM associated with worse survival were liver (median OS: 5 months after DM) and bone (median OS: 6.7 months after DM). Multivariate regression identified non-squamous histology to be associated with first DM within the liver (HR = 2.04, 95% CI 1.16-3.60, p = 0.01), while delay between diagnosis and RT (third vs. first tertile: HR = 2.3, 95% CI 1.26-4.21, p = 0.007) in addition to advanced stage (stage III vs. II/I: HR = 2.37, 95% CI 1.11-5.06, p = 0.03) were associated with first DM within bone. Conclusions Liver and bone as site of first DM is associated with worse prognosis and are predicted by different disease and treatment factors. PMID:27055359

  5. Target Therapy in Lung Cancer.

    PubMed

    Cafarotti, Stefano; Lococo, Filippo; Froesh, Patrizia; Zappa, Francesco; Andrè, Dutly

    2016-01-01

    Lung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens. For this reason and in order to address advances in lung cancer treatment an international multidisciplinary classification was proposed by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), further increasing the histological heterogeneity and improving the existing WHO-classification. Is now the beginning of personalized therapy era that is ideally finalized to treat each individual case of lung cancer in different way. PMID:26667341

  6. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  7. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    PubMed Central

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-01-01

    IntroductionThis study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. MethodsThe CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error () and random error () set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. ResultsThe margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. ConclusionsThe delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors. PMID:26229633

  8. Radiation Treatment Planning Using Positron Emission and Computed Tomography for Lung and Pharyngeal Cancers: A Multiple-Threshold Method for [{sup 18}F]Fluoro-2-Deoxyglucose Activity

    SciTech Connect

    Okubo, Mitsuru; Nishimura, Yasumasa; Nakamatsu, Kiyoshi; Okumura, Masahiko R.T.; Shibata, Toru; Kanamori, Shuichi; Hanaoka, Kouhei R.T.; Hosono, Makoto

    2010-06-01

    Purpose: Clinical applicability of a multiple-threshold method for [{sup 18}F]fluoro-2-deoxyglucose (FDG) activity in radiation treatment planning was evaluated. Methods and Materials: A total of 32 patients who underwent positron emission and computed tomography (PET/CT) simulation were included; 18 patients had lung cancer, and 14 patients had pharyngeal cancer. For tumors of <=2 cm, 2 to 5 cm, and >5 cm, thresholds were defined as 2.5 standardized uptake value (SUV), 35%, and 20% of the maximum FDG activity, respectively. The cervical and mediastinal lymph nodes with the shortest axial diameter of >=10 mm were considered to be metastatic on CT (LNCT). The retropharyngeal lymph nodes with the shortest axial diameter of >=5 mm on CT and MRI were also defined as metastatic. Lymph nodes showing maximum FDG activity greater than the adopted thresholds for radiation therapy planning were designated LNPET-RTP, and lymph nodes with a maximum FDG activity of >=2.5 SUV were regarded as malignant and were designated LNPET-2.5 SUV. Results: The sizes of gross tumor volumes on PET (GTVPET) with the adopted thresholds in the axial plane were visually well fitted to those of GTV on CT (GTVCT). However, the volumes of GTVPET were larger than those of GTVCT, with significant differences (p < 0.0001) for lung cancer, due to respiratory motion. For lung cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 29, 28, and 34, respectively. For pharyngeal cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 14, 9, and 15, respectively. Conclusions: Our multiple thresholds were applicable for delineating the primary target on PET/CT simulation. However, these thresholds were inaccurate for depicting malignant lymph nodes.

  9. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance. PMID:23606351

  10. Dose-Volume Parameters Predict for the Development of Chest Wall Pain After Stereotactic Body Radiation for Lung Cancer

    SciTech Connect

    Mutter, Robert W.; Liu Fan; Abreu, Andres; Yorke, Ellen; Jackson, Andrew; Rosenzweig, Kenneth E.

    2012-04-01

    Purpose: Chest wall (CW) pain has recently been recognized as an important adverse effect of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). We developed a dose-volume model to predict the development of this toxicity. Methods and Materials: A total of 126 patients with primary, clinically node-negative NSCLC received three to five fractions of SBRT to doses of 40-60 Gy and were prospectively followed. The dose-absolute volume histograms of two different definitions of the CW as an organ at risk (CW3cm and CW2cm) were examined for all 126 patients. Results: With a median follow-up of 16 months, the 2-year estimated actuarial incidence of Grade {>=} 2 CW pain was 39%. The median time to onset of Grade {>=} 2 CW pain (National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0) was 9 months. There was no predictive advantage for biologically corrected dose over physical dose. Neither fraction number (p = 0.07) nor prescription dose (p = 0.07) were significantly correlated with the development of Grade {>=} 2 CW pain. Cox Proportional Hazards analysis identified significant correlation with a broad range of dose-volume combinations, with the CW volume receiving 30 Gy (V30) as one of the strongest predictors (p < 0.001). CW2cm consistently enabled better prediction of CW toxicity. When a physical dose of 30 Gy was received by more than 70 cm{sup 3} of CW2cm, there was a significant correlation with Grade {>=} 2 CW pain (p = 0.004). Conclusions: CW toxicity after SBRT is common and long-term follow-up is needed to identify affected patients. A volume of CW {>=} 70 cm{sup 3} receiving 30 Gy is significantly correlated with Grade {>=} 2 CW pain. We are currently applying this constraint at our institution for patients receiving thoracic SBRT. An actuarial atlas of our data is provided as an electronic supplement to facilitate data-sharing and meta-analysis relating to CW pain.

  11. DOSE–VOLUME PARAMETERS PREDICT FOR THE DEVELOPMENT OF CHEST WALL PAIN AFTER STEREOTACTIC BODY RADIATION FOR LUNG CANCER

    PubMed Central

    Mutter, Robert W.; Liu, Fan; Abreu, Andres; Yorke, Ellen; Jackson, Andrew; Rosenzweig, Kenneth E.

    2013-01-01

    Purpose Chest wall (CW) pain has recently been recognized as an important adverse effect of stereotactic body radiation therapy (SBRT) for non–small-cell lung cancer (NSCLC). We developed a dose–volume model to predict the development of this toxicity. Methods and Materials A total of 126 patients with primary, clinically node-negative NSCLC received three to five fractions of SBRT to doses of 40–60 Gy and were prospectively followed. The dose–absolute volume histograms of two different definitions of the CW as an organ at risk (CW3cm and CW2cm) were examined for all 126 patients. Results With a median follow-up of 16 months, the 2-year estimated actuarial incidence of Grade ≥ 2 CW pain was 39%. The median time to onset of Grade ≥ 2 CW pain (National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0) was 9 months. There was no predictive advantage for biologically corrected dose over physical dose. Neither fraction number (p = 0.07) nor prescription dose (p = 0.07) were significantly correlated with the development of Grade ≥ 2 CW pain. Cox Proportional Hazards analysis identified significant correlation with a broad range of dose-volume combinations, with the CW volume receiving 30 Gy (V30) as one of the strongest predictors (p < 0.001). CW2cm consistently enabled better prediction of CW toxicity. When a physical dose of 30 Gy was received by more than 70 cm3 of CW2cm, there was a significant correlation with Grade ≥ 2 CW pain (p = 0.004). Conclusions CW toxicity after SBRT is common and long-term follow-up is needed to identify affected patients. A volume of CW ≥ 70 cm3 receiving 30 Gy is significantly correlated with Grade ≥ 2 CW pain. We are currently applying this constraint at our institution for patients receiving thoracic SBRT. An actuarial atlas of our data is provided as an electronic supplement to facilitate data-sharing and meta-analysis relating to CW pain. PMID:21868173

  12. Risk Factors for Brain Metastases in Locally Advanced Non-Small Cell Lung Cancer With Definitive Chest Radiation

    SciTech Connect

    Ji, Zhe; Bi, Nan; Wang, Jingbo; Hui, Zhouguang; Xiao, Zefen; Feng, Qinfu; Zhou, Zongmei; Chen, Dongfu; Lv, Jima; Liang, Jun; Fan, Chengcheng; Liu, Lipin; Wang, Luhua

    2014-06-01

    Purpose: We intended to identify risk factors that affect brain metastases (BM) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving definitive radiation therapy, which may guide the choice of selective prevention strategies. Methods and Materials: The characteristics of 346 patients with stage III NSCLC treated with thoracic radiation therapy from January 2008 to December 2010 in our institution were retrospectively reviewed. BM rates were analyzed by the Kaplan-Meier method. Multivariate Cox regression analysis was performed to determine independent risk factors for BM. Results: The median follow-up time was 48.3 months in surviving patients. A total of 74 patients (21.4%) experienced BM at the time of analysis, and for 40 (11.7%) of them, the brain was the first site of failure. The 1-year and 3-year brain metastasis rates were 15% and 28.1%, respectively. In univariate analysis, female sex, age ≤60 years, non-squamous cell carcinoma, T3-4, N3, >3 areas of lymph node metastasis, high lactate dehydrogenase and serum levels of tumor markers (CEA, NSE, CA125) before treatment were significantly associated with BM (P<.05). In multivariate analysis, age ≤60 years (P=.004, hazard ratio [HR] = 0.491), non-squamous cell carcinoma (P=.000, HR=3.726), NSE >18 ng/mL (P=.008, HR=1.968) and CA125 ≥ 35 U/mL (P=.002, HR=2.129) were independent risk factors for BM. For patients with 0, 1, 2, and 3 to 4 risk factors, the 3-year BM rates were 7.3%, 18.9%, 35.8%, and 70.3%, respectively (P<.001). Conclusions: Age ≤60 years, non-squamous cell carcinoma, serum NSE >18 ng/mL, and CA125 ≥ 35 U/mL were independent risk factors for brain metastasis. The possibilities of selectively using prophylactic cranial irradiation in higher-risk patients with LA-NSCLC should be further explored in the future.

  13. Screening for occult lung cancer.

    PubMed Central

    Barclay, T. H.; MacIntosh, J. H.

    1983-01-01

    A pilot screening program for the early detection of lung cancer was carried out in Saskatchewan in 1968 using chest roentgenography and cytologic examination of sputum samples. The yield from 23 000 men aged 40 years and over was only 10 cases. Nine of the men had advanced disease. One had occult lung cancer. A period of 31 months elapsed between the discovery of malignant cells in this patient's sputum and roentgenographic localization of the tumour. Following pneumonectomy he has survived with no discernible residual or metastatic tumour for 12 years. The morphologic changes in the resected lung provided a basis for discussing the preclinical phase of squamous cancer of the lung, the treatment of occult cancer and multicentric primary pulmonary tumours. The survey would have been more successful with a narrower target group and more frequent examination. Images FIG. 1 FIG. 2 FIG. 3 PMID:6299495

  14. [Photodynamic Therapy for Lung Cancer].

    PubMed

    Ohtani, Keishi; Ikeda, Norihiko

    2016-07-01

    In Japan, Photodynamic therapy (PDT) is recommended as a treatment option for centrally located early-stage lung cancers (CLELCs). It is a minimally invasive treatment with excellent anti-tumor effects. The 2nd generation photosensitizer, talaporfin sodium has strong anti-tumor effects with much less photosensitivity than porfimer sodium. Moreover, the laser equipment is compact and portable, and talaporfin sodium is now the current mainstay of PDT for lung cancer. For successful PDT, accurate evaluation of tumor extent and bronchial invasion is crucial. Detailed examination of the tumor using autofluorescence bronchoscopy and endobronchial ultrasonography or optical coherence tomography is extremely useful before PDT. At present, PDT has become the 1st choice of treatment for CLELC in institutions with the necessary equipment. It can also be effective for advanced lung cancer causing tracheobronchial obstruction. With such advances in PDT for CLELC, we are expanding the indications of PDT for not only CLELC, but also peripheral type lung cancer. PMID:27440036

  15. Lung Cancer Screening Recommendation Questioned.

    PubMed

    2016-06-01

    According to a retrospective analysis of data from the National Lung Screening Trial, participants with a history of heavy smoking who test negative for abnormalities suggestive of lung cancer on an initial low-dose CT screen may not need yearly CT scans. Instead, they could work with their doctors to devise an appropriate screening schedule based on individual risk factors. PMID:27076372

  16. Lung Cancer and Hispanics: Know the Facts

    MedlinePlus

    ... other segments of the American population. However, lung cancer is still the leading cause of cancer death among Hispanic men and the second-leading cause among Hispanic women. November is Lung Cancer Awareness ...

  17. Quantification and Minimization of Uncertainties of Internal Target Volume for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Ge Hong; Cai Jing; Kelsey, Chris R.; Yin Fangfang

    2013-02-01

    Purpose: To quantify uncertainties in delineating an internal target volume (ITV) and to understand how these uncertainties may be individually minimized for stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC). Methods and Materials: Twenty patients with NSCLC who were undergoing SBRT were imaged with free-breathing 3-dimensional computed tomography (3DCT) and 10-phase 4-dimensional CT (4DCT) for delineating gross tumor volume (GTV){sub 3D} and ITV{sub 10Phase} (ITV3). The maximum intensity projection (MIP) CT was also calculated from 10-phase 4DCT for contouring ITV{sub MIP} (ITV1). Then, ITV{sub COMB} (ITV2), ITV{sub 10Phase+GTV3D} (ITV4), and ITV{sub 10Phase+ITVCOMB} (ITV5) were generated by combining ITV{sub MIP} and GTV{sub 3D}, ITV{sub 10phase} and GTV{sub 3D}, and ITV{sub 10phase} and ITV{sub COMB}, respectively. All 6 volumes (GTV{sub 3D} and ITV1 to ITV5) were delineated in the same lung window by the same radiation oncologist. The percentage of volume difference (PVD) between any 2 different volumes was determined and was correlated to effective tumor diameter (ETD), tumor motion ranges, R{sub 3D}, and the amplitude variability of the recorded breathing signal (v) to assess their volume variations. Results: The mean (range) tumor motion (R{sub SI}, R{sub AP}, R{sub ML}, and R{sub 3D}) and breathing variability (v) were 7.6 mm (2-18 mm), 4.0 mm (2-8 mm), 3.3 mm (0-7.5 mm), 9.9 mm (4.1-18.7 mm), and 0.17 (0.07-0.37), respectively. The trend of volume variation was GTV{sub 3D}

  18. Differences in rates of radiation-induced true and false rib fractures after stereotactic body radiation therapy for Stage I primary lung cancer

    PubMed Central

    Miura, Hideharu; Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    The purpose of this study was to analyze the dosimetry and investigate the clinical outcomes of radiation-induced rib fractures (RIRFs) after stereotactic body radiotherapy (SBRT). A total of 126 patients with Stage I primary lung cancer treated with SBRT, who had undergone follow-up computed tomography (CT) at least 12 months after SBRT and who had no previous overlapping radiation exposure were included in the study. We used the Mantel–Haenszel method and multiple logistic regression analysis to compare risk factors. We analyzed D(0.5 cm3) (minimum absolute dose received by a 0.5-cm3 volume) and identified each rib that received a biologically effective dose (BED) (BED3, using the linear–quadratic (LQ) formulation assuming an α/β = 3) of at least 50 Gy. Of the 126 patients, 46 (37%) suffered a total of 77 RIRFs. The median interval from SBRT to RIRF detection was 15 months (range, 3–56 months). The 3-year cumulative probabilities were 45% (95% CI, 34–56%) and 3% (95% CI, 0–6%), for Grades 1 and 2 RIRFs, respectively. Multivariate analysis showed that tumor location was a statistically significant risk factor for the development of Grade 1 RIRFs. Of the 77 RIRFs, 71 (92%) developed in the true ribs (ribs 1–7), and the remaining six developed in the false ribs (ribs 8–12). The BED3 associated with 10% and 50% probabilities of RIRF were 55 and 210 Gy to the true ribs and 240 and 260 Gy to the false ribs. We conclude that RIRFs develop more frequently in true ribs than in false ribs. PMID:25504640

  19. Targeted Therapies in Lung Cancer

    PubMed Central

    Chirieac, Lucian R.; Dacic, Sanja

    2010-01-01

    An ongoing research and multiple clinical trials involve new targeted therapies and less aggressive treatment regimens that improve survival in patients with lung cancer. Targeted therapeutic agents are based on the concept of discovering genetic alterations and the signaling pathways altered in cancer and have added significantly to our armamentarium in order to prolong patient survival and minimizing drug toxicity. Among 34 molecularly targeted drugs approved by U.S. Food and Drug Administration (FDA) for treatment of various cancers since 1998 three targeted therapies have been approved for treatment of lung cancer (gefitinib in 2002, erlotinib in 2003, and bevacizumab in 2006). This review focuses on the targeted therapies in lung cancer, the molecular biomarkers that help identify patients that will benefit for these targeted therapies, describes the basic molecular biology principles and selected molecular diagnostic techniques and the pathological features correlated with molecular abnormalities in lung cancer. Lastly, new molecular abnormalities described in lung cancer that are predictive to novel promising targeted agents in various phases of clinical trials are discussed. PMID:20680095

  20. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  1. Intensity-modulated Radiation Therapy (IMRT) for Inoperable Non-small Cell Lung Cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) Experience

    PubMed Central

    Sura, Sonal; Gupta, Vishal; Yorke, Ellen; Jackson, Andrew; Amols, Howard; Rosenzweig, Kenneth E.

    2009-01-01

    Introduction Intensity-modulated radiation therapy (IMRT) is an advanced treatment delivery technique that can improve the therapeutic dose ratio. Its use in the treatment of inoperable non-small cell lung cancer (NSCLC) has not been well studied. This report reviews our experience with IMRT for patients with inoperable NSCLC. Methods and Materials We performed a retrospective review of fifty-five patients with stage I–IIIB inoperable NSCLC treated with IMRT at our institution between 2001–2005. The study endpoints were toxicity, local control, and overall survival. Results With a median follow-up of 26 months, the 2-year local control and overall survival rates for stage I/II patients were 50% and 55% respectively. For the stage III patients, 2-year local control and overall survival rates were 58% and 58% respectively with median survival time of 25 months. Six patients (11%) experienced grade 3 acute pulmonary toxicity. There were no acute treatment-related deaths. Two patients (4%) had grade 3 or worse late treatment-related pulmonary toxicity. Conclusions IMRT treatment resulted in promising outcomes for inoperable NSCLC patients. PMID:18343515

  2. Impact of Pretreatment Tumor Growth Rate on Outcome of Early-Stage Lung Cancer Treated With Stereotactic Body Radiation Therapy

    SciTech Connect

    Atallah, Soha; Cho, B.C. John; Allibhai, Zishan; Taremi, Mojgan; Giuliani, Meredith; Le, Lisa W.; Brade, Anthony; Sun, Alexander; Bezjak, Andrea; Hope, Andrew J.

    2014-07-01

    Purpose: To determine the influence of pretreatment tumor growth rate on outcomes in patients with early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). Methods and Materials: A review was conducted on 160 patients with T1-T2N0M0 NSCLC treated with SBRT at single institution. The patient's demographic and clinical data, time interval (t) between diagnostic and planning computed tomography (CT), vital status, disease status, and cause of death were extracted from a prospectively kept database. Differences in gross tumor volume between diagnostic CT (GTV1) and planning CT (GTV2) were recorded, and growth rate was calculated by use of specific growth rate (SGR). Kaplan-Meier curves were constructed for overall survival (OS). Differences between groups were compared with a log-rank test. Multivariate analyses were performed by use of the Cox proportional hazard model with SGR and other relevant clinical factors. Cumulative incidence was calculated for local, regional, and distant failures by use of the competing risk approach and was compared with Gray's test. Results: The median time interval between diagnostic and planning CT was 82 days. The patients were divided into 2 groups, and the median SGR was used as a cut-off. The median survival times were 38.6 and 27.7 months for the low and high SGR groups, respectively (P=.03). Eastern Cooperative Oncology Group performance status (P=.01), sex (P=.04), SGR (P=.03), and GTV2 (P=.002) were predictive for OS in multivariable Cox regression analysis and, except sex, were similarly predictive for failure-free survival (FFS). The 3-year cumulative incidences of regional failure were 19.2% and 6.0% for the high and low SGR groups, respectively (P=.047). Conclusion: High SGR was correlated with both poorer OS and FFS in patients with early-stage NSCLC treated with SBRT. If validated, this measurement may be useful in identifying patients most likely to benefit from adjuvant

  3. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy

    PubMed Central

    2014-01-01

    Background To analyze the clinical and dosimetric risk factors of acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concomitant chemoradiotherapy. Methods Seventy-six NSCLC patients treated with concomitant chemoradiotherapy were retrospectively analyzed. Forty-one patients received concomitant chemoradiotherapy with vinorelbine/cisplatin (VC), 35 with docetaxel/cisplatin (DC). AE was graded according to criteria of the Radiation Therapy Oncology Group (RTOG). The following clinical and dosimetric parameters were analyzed: gender, age, clinical stage, Karnofsky performance status (KPS), pretreatment weight loss, concomitant chemotherapy agents (CCA) (VC vs. DC), percentage of esophagus volume treated to ≥20 (V20), ≥30 (V30), ≥40 (V40), ≥50 (V50) and ≥60 Gy (V60), and the maximum (Dmax) and mean doses (Dmean) delivered to esophagus. Univariate and multivariate logistic regression analysis were used to test the association between the different factors and AE. Results Seventy patients developed AE (Grade 1, 19 patients; Grade 2, 36 patients; and Grade 3, 15 patients). By multivariate logistic regression analysis, V40 was the only statistically significant factor associated with Grade ≥2 AE (p<0.001, OR = 1.159). A V40 of <23% had a 33.3% (10/30) risk of Grade ≥2 AE, which increased to 89.1% (41/46) with a V40 of ≥23% (p<0.001). CCA (p =0.01; OR = 9.686) and V50 (p<0.001; OR = 1.122) were most significantly correlated with grade 3 AE. A V50 of <26.5% had a 6.7% (3/45) risk of Grade 3 AE, which increased to 38.7% (12/31) with a V50 of ≥26.5% (p = 0.001). On the linear regression analysis, V50 and CCA were significant independent factors affecting AE duration. Patients who received concomitant chemotherapy with VC had a decreased risk of grade 3 AE and shorter duration compared with DC. Conclusions Concomitant chemotherapy agents have potential influence on AE. Concomitant chemotherapy with VC led to

  4. Carotenoids and lung cancer prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular actions of carotenoids is critical for human studies involving carotenoids for prevention of lung cancer and cancers at other tissue sites. While the original hypothesis prompting the beta-carotene intervention trials was that beta-carotene exerts beneficial effects thro...

  5. CIGARETTE SMOKE AND LUNG CANCER

    EPA Science Inventory

    Cigarette smoke has been implicated in a causal relationship with carcinoma of the lung. An intriguing feature of the disease is the site-selectivity with which bronchogenic cancer manifests itself; most cancers are detected in the main, lobar and segmental bronchi, perhaps speci...

  6. Palliative Care in Lung Cancer.

    PubMed

    Shinde, Arvind M; Dashti, Azadeh

    2016-01-01

    Lung cancer is the most common cancer worldwide and is the leading cause of cancer death for both men and women in the USA. Symptom burden in patients with advanced lung cancer is very high and has a negative impact on their quality of life (QOL). Palliative care with its focus on the management of symptoms and addressing physical, psychosocial, spiritual, and existential suffering, as well as medically appropriate goal setting and open communication with patients and families, significantly adds to the quality of care received by advanced lung cancer patients. The Provisional Clinical Opinion (PCO) of American Society of Clinical Oncology (ASCO) as well as the National Cancer Care Network's (NCCN) clinical practice guidelines recommends early integration of palliative care into routine cancer care. In this chapter, we will provide an overview of palliative care in lung cancer and will examine the evidence and recommendations with regard to a comprehensive and interdisciplinary approach to symptom management, as well as discussions of goals of care, advance care planning, and care preferences. PMID:27535397

  7. Lung Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  8. Functional imaging in lung cancer

    PubMed Central

    Harders, S W; Balyasnikowa, S; Fischer, B M

    2014-01-01

    Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional imaging modalities such as dynamic contrast-enhanced CT (DCE-CT) and diffusion-weighted MR imaging (DW-MRI) have demonstrated promising results within this field. The purpose of this review is to provide the reader with a brief and balanced introduction to these three functional imaging modalities and their current or potential application in the care of patients with lung cancer. PMID:24289258

  9. Radiation Exposure and Cancer

    MedlinePlus

    ... what we know about these types of high-energy radiation and how they affect cancer risk. Cancer Compensation Programs for People Exposed to Radiation as Part of Nuclear Weapons Testing Between 1945 and 1962, several countries ...

  10. Lung function and radiation response.

    PubMed

    Hong, A; Dische, S; Saunders, M I; Lockwood, P; Crocombe, K

    1991-12-01

    This study investigated whether impaired respiratory function affected the response to radiotherapy. A prospective study was performed in which lung function, arterial oxygen and haemoglobin concentration were examined, before treatment with radical radiotherapy, in 141 patients with advanced non-small cell lung cancer and head and neck cancer. The findings were considered to reflect the physiological conditions present at the time of radiotherapy and these were related to acute normal tissue reactions and tumour control. Although 53% of the patients showed some impairment of lung function and 47% demonstrated a haemoglobin oxygen saturation below the normal range, oxygen partial pressure was below expected levels in fewer patients (27%) and total arterial oxygen content was below normal in only 12% of patients. No correlation was found between the tests performed and the severity of acute morbidity or with local tumour control. In the patients with carcinoma of the bronchus, there was a trend for incomplete tumour control to be associated with a lower haemoglobin level, but this did not reach statistical significance. In patients selected for curative radiotherapy, lung function would not appear to be an important factor influencing the response of normal tissues or tumour to irradiation. PMID:1663411

  11. Quantitative analysis of tumor shrinkage due to chemotherapy and its implication for radiation treatment planning in limited-stage small-cell lung cancer

    PubMed Central

    2013-01-01

    Background The optimal timing of chemoradiotherapy in limited-stage small-cell lung cancer (LS-SCLC) hasn’t been established, although evidence from studies supported that patients can benefit from early radiation therapy. The purpose of this study was to quantify tumor shrinkage in response to induction chemotherapy (IC), evaluate the impact of tumor shrinkage on radiation dosimetric parameters and determine its implication for the timing of radiation therapy for patients with LS-SCLC. Methods Twenty patients with LS-SCLC who were treated with IC followed by concomitant radiation therapy were investigated retrospectively. Ten patients received 1 cycle of IC, and 10 patients received 2 cycles of IC. Pre-IC CT imaging was coregistered with a simulation CT, and virtual radiation plans were created for pre- and post-IC thoracic disease in each case. The changes in the gross target volume (GTV), planning target volume (PTV) and dosimetric factors associated with the lungs, esophagus and heart were analyzed. Results The mean GTV and PTV for all of the patients decreased by 60.9% and 40.2%, respectively, which resulted in a significant reduction in the radiation exposure to the lungs, esophagus and heart. Changes in the PTV and radiation exposure of normal tissue were not significantly affected by the number of chemotherapy cycles delivered, although patients who received 2 cycles of IC had a greater decrease in GTV than those who received only 1 cycle of IC (69.6% vs. 52.1%, p = 0.273). Conclusions Our data showed that targeting the tumor post-IC may reduce the radiation dose to normal tissue in patients with LS-SCLC. However, the benefit to the normal tissue was not increased by an additional cycle of IC. These findings suggest that the first cycle of chemotherapy is very important for tumor shrinkage and that initiating thoracic radiation therapy at the second cycle of chemotherapy may be a reasonable strategy for timing of radiation therapy in LS

  12. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  13. Molecular oncology of lung cancer.

    PubMed

    Toyooka, Shinichi; Mitsudomi, Tetsuya; Soh, Junichi; Aokage, Keiju; Yamane, Masaomi; Oto, Takahiro; Kiura, Katsuyuki; Miyoshi, Shinichiro

    2011-08-01

    Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities. PMID:21850578

  14. Prevention of radiation esophagitis by polaprezinc (zinc L-carnosine) in patients with non-small cell lung cancer who received chemoradiotherapy

    PubMed Central

    Yanase, Komei; Funaguchi, Norihiko; Iihara, Hirotoshi; Yamada, Maya; Kaito, Daizo; Endo, Junki; Ito, Fumitaka; Ohno, Yasushi; Tanaka, Hidekazu; Itoh, Yoshinori; Minatoguchi, Shinya

    2015-01-01

    Background: Concurrent chemoradiotherapy (CCRT) plays an important role in multimodality therapy for non-small cell lung cancer. However, esophagitis often develops as a complication of CCRT, causing treatment delays and reducing the patient’s quality of life. We examined the efficacy of polaprezinc (PZ), zinc L-carnosine used for the therapy of gastric ulcer, against the onset of esophagitis caused by CCRT for lung cancer. Patients and Methods: Patients who concurrently underwent chemotherapy with carboplatin and paclitaxel and thoracic radiotherapy at Gifu University Hospital during a period of January 2011 and May 2015 were the subjects of the present study. Patients received a mixture of sodium alginate solution and aluminum-magnesium hydroxide gel with (PZ group) or without (control group) PZ for prevention of radiation esophagitis. Results: PZ significantly inhibited the development of grade ≥2 radiation esophagitis (HR 0.397, 95% confidence interval, 0.160-0.990; P=0.047). In addition, PZ lowered the incidence of grade ≥2 esophagitis at the time point of 40 Gy irradiation (26.3% versus 63.2%, P=0.05). However, there were no significant differences in the incident rates of other adverse events associated with chemoradiotherapy between the PZ group and control group. Moreover, PZ had no significant influence on the tumor response rate. Conclusion: PZ significantly retarded the development as well as the incidence of grade ≥2 esophagitis without affecting the tumor response. PMID:26629136

  15. Association of P53 and ATM Polymorphisms With Risk of Radiation-Induced Pneumonitis in Lung Cancer Patients Treated With Radiotherapy

    SciTech Connect

    Yang Ming; Zhang Li; Bi Nan; Ji Wei; Tan Wen; Zhao Lujun; Yu Dianke; Wu Chen; Wang Luhua

    2011-04-01

    Purpose: Radiation-induced pneumonitis (RP) is the most common dose-limiting complication in lung cancer patients treated with radiotherapy. Accumulating evidence indicates that P53 and the ataxia telangiectasia-mutated protein (ATM)-dependent signaling response cascade play a crucial role in radiation-induced diseases. Consistent with this, our previous study showed that a functional genetic ATM polymorphism was associated with increased RP risk. Methods and Materials: To evaluate the role of genetic P53 polymorphism in RP, we analyzed the P53 Arg72Pro polymorphism in a cohort including 253 lung cancer patients receiving thoracic irradiation. Results: We found that the P53 72Arg/Arg genotype was associated with increased RP risk compared with the 72Pro/Pro genotype. Furthermore, the P53 Arg72Pro and ATM -111G>A polymorphisms display an additive combination effect in intensifying the risk of developing RP. The cross-validation test showed that 63.2% of RP cases can be identified by P53 and ATM genotypes. Conclusions: These results indicate that genetic polymorphisms in the ATM-P53 pathway influence susceptibility to RP and genotyping P53 and ATM polymorphisms might help to identify patients susceptible to developing RP when receiving radiotherapy.

  16. Lung cancer and air pollution.

    PubMed Central

    Cohen, A J; Pope, C A

    1995-01-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung cancer rates associated with exposure to respirable particles. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the United States continue to be exposed to pollutant mixtures containing known or suspected carcinogens. It is not known how many people in the United States are exposed to levels of fine respirable particles that have been associated with lung cancer in recent epidemiologic studies. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the United States based largely on the results of animal studies, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution among the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer associated with air pollution. PMID:8741787

  17. Epidemiology of lung cancer in China

    PubMed Central

    Chen, Wanqing; Zheng, Rongshou; Zeng, Hongmei; Zhang, Siwei

    2015-01-01

    Background Lung cancer is the most common cancer and the leading cause of cancer death in China. Along with socioeconomic development, environmental problems have intensified and the burden of lung cancer continues to increase. Methods In this study, national cancer registry data was used for evaluating incidence, mortality, time trend, and prediction. Results In China in 2010, 605 900 patients were diagnosed and 486 600 patients died of lung cancer. Throughout the last three decades, the mortality of lung cancer has dramatically increased, as shown in national death surveys. From 2000 to 2010, age specific incidence of lung cancer increased in most age groups. It is estimated that in 2015, the total number of new cases of lung cancer will reach 733 300. Conclusions Lung cancer is a serious disease affecting public health and an effective control strategy is needed in China. PMID:26273360

  18. Magnetic resonance imaging biomarkers of chronic obstructive pulmonary disease prior to radiation therapy for non-small cell lung cancer

    PubMed Central

    Sheikh, Khadija; Capaldi, Dante P.I.; Hoover, Douglas A.; Palma, David A.; Yaremko, Brian P.; Parraga, Grace

    2015-01-01

    Objective In this prospectively planned interim-analysis, the prevalence of chronic obstructive lung disease (COPD) phenotypes was determined using magnetic resonance imaging (MRI) and X-ray computed tomography (CT) in non-small-cell-lung-cancer (NSCLC) patients. Materials and methods Stage-III-NSCLC patients provided written informed consent for pulmonary function tests, imaging and the 6-min-walk-test. Ventilation defect percent (VDP) and CT lung density (relative-of-CT-density-histogram <−950, RA950) were measured. Patients were classified into three subgroups based on qualitative and quantitative COPD and tumour-specific imaging phenotypes: (1) tumour-specific ventilation defects (TSD), (2) tumour-specific and other ventilation defects without emphysema (TSDV), and, (3) tumour-specific and other ventilation defects with emphysema (TSDVE). Results Seventeen stage-III NSCLC patients were evaluated (68 ± 7 years, 7 M/10 F, mean FEV1 = 77%pred) including seven current and 10 ex-smokers and eight patients with a prior lung disease diagnosis. There was a significant difference for smoking history (p = .02) and FEV1/FVC (p = .04) for subgroups classified using quantitative imaging. Patient subgroups classified using qualitative imaging findings were significantly different for emphysema (RA950, p < .001). There were significant relationships for whole-lung VDP (p < .05), but not RECIST or tumour-lobe VDP measurements with pulmonary function and exercise measurements. Preliminary analysis for non-tumour burden ventilation abnormalities using Reader-operator-characteristic (ROC) curves reflected a 94% classification rate for smoking pack-years, 93% for FEV1/FVC and 82% for RA950. ROC sensitivity/specificity/positive/negative likelihood ratios were also generated for pack-years, (0.92/0.80/4.6/0.3), FEV1/FVC (0.92/0.80/4.6/0.3), RA950 (0.92/0.80/4.6/0.3) and RECIST (0.58/0.80/2.9/1.1). Conclusions In this prospectively planned interim-analysis of a

  19. Outcomes by Tumor Histology and KRAS Mutation Status After Lung Stereotactic Body Radiation Therapy for Early-Stage Non–Small-Cell Lung Cancer

    PubMed Central

    Mak, Raymond H.; Hermann, Gretchen; Lewis, John H.; Aerts, Hugo J.W.L.; Baldini, Elizabeth H.; Chen, Aileen B.; Colson, Yolonda L.; Hacker, Fred H.; Kozono, David; Wee, Jon O.; Chen, Yu-Hui; Catalano, Paul J.; Wong, Kwok-Kin; Sher, David J.

    2015-01-01

    We analyzed outcomes after lung stereotactic body radiotherapy (SBRT) for early-stage non–small-cell lung carcinoma in patients by histology and KRAS mutation status. Histology was not associated with outcomes, but KRAS mutation was associated with lower freedom from recurrence on univariable analysis and decreased cancer-specific survival on multivariable analysis. Given the small sample sizes, these results are hypothesis generating, and further study of SBRT outcomes by tumor genotype in larger data sets is needed. Background We analyzed outcomes after lung stereotactic body radiotherapy (SBRT) for early-stage non–small cell lung-carcinoma (NSCLC) by histology and KRAS genotype. Patients and Methods We included 75 patients with 79 peripheral tumors treated with SBRT (18 Gy × 3 or 10 to 12 Gy × 5) at our institution from 2009 to 2012. Genotyping for KRAS mutations was performed in 10 patients. Outcomes were analyzed by the Kaplan-Meier method/Cox regression, or cumulative incidence method/Fine-Gray analysis. Results The median patient age was 74 (range, 46 to 93) years, and Eastern Cooperative Oncology Group performance status was 0 to 1 in 63%. Tumor histology included adenocarcinoma (44%), squamous cell carcinoma (25%), and NSCLC (18%). Most tumors were T1a (54%). Seven patients had KRAS-mutant tumors (9%). With a median follow-up of 18.8 months among survivors, the 1-year estimate of overall survival was 88%, cancer-specific survival (CSS) 92%, primary tumor control 94%, and freedom from recurrence (FFR) 67%. In patients with KRAS-mutant tumors, there was a significantly lower tumor control (67% vs. 96%; P = .04), FFR (48% vs. 69%; P = .03), and CSS (75% vs. 93%; P = .05). On multivariable analysis, histology was not associated with outcomes, but KRAS mutation (hazard ratio, 10.3; 95% confidence interval, 2.3–45.6; P = .0022) was associated with decreased CSS after adjusting for age. Conclusion In this SBRT series, histology was not associated with

  20. Uranium miner lung cancer study. Final report

    SciTech Connect

    Saccomanno, G.

    1986-06-01

    This study on uranium miners was started in 1957 and extended through June 30, 1986. It consisted of the routine screening of sputum from uranium miners of the Colorado Plateau, and collection of surgical and autopsy material from uranium miners who developed lung cancer. The projects resulted in: (1) Proof, for the first time, that cancer takes from 10 to 15 years to develop from the maximum accumulated carcinogenic insult and can be demonstrated through progressive cellular changes of the bronchial tree; (2) Development of a method for preserving, concentrating, and processing sputum samples. This is known as the Saccomanno Technique, and is used worldwide in diagnosing lung cancer; (3) Publication of the 1st and 2nd editions of a full-color textbook entitled ''Diagnostic Pulmonary Cytology;'' (4) Presentation of conclusive data on the effects of cigarette smoking and alpha progeny radiation on uranium miners, and information on safe radiation exposure levels; (5) Development of a brush-wash tube for collecting, concentrating, and preparing bronchial brushings and washings; (6) Development of cytological criteria which has improved sensitivity from 30% to about 60%; (7) Development of criteria for cytologic identification of carcinoma in situ, making it possible to diagnose lung cancer before it can be detected on chest x-ray.

  1. Do Angiotensin-Converting Enzyme Inhibitors Reduce the Risk of Symptomatic Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer After Definitive Radiation Therapy? Analysis of a Single-Institution Database

    SciTech Connect

    Wang, Hongmei; Liao, Zhongxing; Zhuang, Yan; Xu, Ting; Nguyen, Quynh-Nhu; Levy, Lawrence B.; O'Reilly, Michael; Gold, Kathryn A.; Gomez, Daniel R.

    2013-12-01

    Purpose: Preclinical studies have suggested that angiotensin-converting enzyme inhibitors (ACEIs) can mitigate radiation-induced lung injury. We sought here to investigate possible associations between ACEI use and the risk of symptomatic radiation pneumonitis (RP) among patients undergoing radiation therapy (RT) for non–small cell lung cancer (NSCLC). Methods and Materials: We retrospectively identified patients who received definitive radiation therapy for stages I to III NSCLC between 2004 and 2010 at a single tertiary cancer center. Patients must have received a radiation dose of at least 60 Gy for a single primary lung tumor and have had imaging and dosimetric data available for analysis. RP was quantified according to Common Terminology Criteria for Adverse Events, version 3.0. A Cox proportional hazard model was used to assess potential associations between ACEI use and risk of symptomatic RP. Results: Of 413 patients analyzed, 65 were using ACEIs during RT. In univariate analysis, the rate of RP grade ≥2 seemed lower in ACEI users than in nonusers (34% vs 46%), but this apparent difference was not statistically significant (P=.06). In multivariate analysis of all patients, ACEI use was not associated with the risk of symptomatic RP (hazard ratio [HR] = 0.66; P=.07) after adjustment for sex, smoking status, mean lung dose (MLD), and concurrent carboplatin and paclitaxel chemotherapy. Subgroup analysis showed that ACEI use did have a protective effect from RP grade ≥2 among patients who received a low (≤20-Gy) MLD (P<.01) or were male (P=.04). Conclusions: A trend toward reduction in symptomatic RP among patients taking ACEIs during RT for NSCLC was not statistically significant on univariate or multivariate analyses, although certain subgroups may benefit from use (ie, male patients and those receiving low MLD). The evidence at this point is insufficient to establish whether the use of ACEIs does or does not reduce the risk of RP.

  2. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  3. Risk Profiling May Improve Lung Cancer Screening

    Cancer.gov

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  4. Stereotactic Body Radiation Therapy Can Be Used Safely to Boost Residual Disease in Locally Advanced Non-Small Cell Lung Cancer: A Prospective Study

    SciTech Connect

    Feddock, Jonathan; Arnold, Susanne M.; Shelton, Brent J.; Sinha, Partha; Conrad, Gary; Chen, Li; Rinehart, John; McGarry, Ronald C.

    2013-04-01

    Purpose: To report the results of a prospective, single-institution study evaluating the feasibility of conventional chemoradiation (CRT) followed by stereotactic body radiation therapy (SBRT) as a means of dose escalation for patients with stage II-III non-small cell lung cancer (NSCLC) with residual disease. Methods and Materials: Patients without metastatic disease and with radiologic evidence of limited residual disease (≤5 cm) within the site of the primary tumor and good or complete nodal responses after standard CRT to a target dose of 60 Gy were considered eligible. The SBRT boost was done to achieve a total combined dose biological equivalent dose >100 Gy to the residual primary tumor, consisting of 10 Gy × 2 fractions (20 Gy total) for peripheral tumors, and 6.5 Gy × 3 fractions (19.5 Gy total) for medial tumors using the Radiation Therapy Oncology Group protocol 0813 definitions. The primary endpoint was the development of grade ≥3 radiation pneumonitis (RP). Results: After a median follow-up of 13 months, 4 patients developed acute grade 3 RP, and 1 (2.9%) developed late and persistent grade 3 RP. No patients developed grade 4 or 5 RP. Mean lung dose, V2.5, V5, V10, and V20 values were calculated for the SBRT boost, and none were found to significantly predict for RP. Only advancing age (P=.0147), previous smoking status (P=.0505), and high CRT mean lung dose (P=.0295) were significantly associated with RP development. At the time of analysis, the actuarial local control rate at the primary tumor site was 82.9%, with only 6 patients demonstrating recurrence. Conclusions: Linear accelerator-based SBRT for dose escalation of limited residual NSCLC after definitive CRT was feasible and did not increase the risk for toxicity above that for standard radiation therapy.

  5. Targeting lung cancer through inhibition of checkpoint kinases

    PubMed Central

    Syljuåsen, Randi G.; Hasvold, Grete; Hauge, Sissel; Helland, Åslaug

    2015-01-01

    Inhibitors of checkpoint kinases ATR, Chk1, and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin, or radiation. Altogether, inhibitors of ATR, Chk1, and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways. PMID:25774168

  6. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    SciTech Connect

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-15

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTV{sub P}) and involved lymph nodes (GTV{sub LN}) to simulate the localization process in image-guided radiation therapy. Techniques included ''standard'' (direct registration of weekly images to a planning CT), ''seeded'' (manual prealignment of targets to guide standard registration), ''transitive-based'' (alignment of pretreatment and planning CTs through one or more intermediate images), and ''rereferenced'' (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 {+-} 5.4 mm and 5.4 {+-} 3.4 mm for the GTV{sub P} and GTV{sub LN}, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTV{sub P} centroid LE to 4.7 {+-} 3.7 mm (p = 0.011) and 4.3 {+-} 2.5 mm (p < 1 x 10{sup -3}), respectively, but the smallest GTV{sub P} LE of 2.4 {+-} 2.1 mm was provided by rereferenced registration (p < 1 x 10{sup -6}). Standard registration significantly reduced GTV{sub LN} centroid LE to 3.2 {+-} 2.5 mm (p < 1 x 10{sup -3}) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low

  7. Tobacco Smoking and Lung Cancer

    PubMed Central

    Furrukh, Muhammad

    2013-01-01

    Tobacco smoking remains the most established cause of lung carcinogenesis and other disease processes. Over the last 50 years, tobacco refinement and the introduction of filters have brought a change in histology, and now adenocarcinoma has become the most prevalent subtype. Over the last decade, smoking also has emerged as a strong prognostic and predictive patient characteristic along with other variables. This article briefly reviews scientific facts about tobacco, and the process and molecular pathways involved in lung carcinogenesis in smokers and never-smokers. The evidence from randomised trials about tobacco smoking’s impact on lung cancer outcomes is also reviewed. PMID:23984018

  8. Mouse models for lung cancer.

    PubMed

    Kwon, Min-chul; Berns, Anton

    2013-04-01

    Lung cancer is a devastating disease and a major therapeutic burden with poor survival rates. It is responsible for 30% of all cancer deaths. Lung cancer is strongly associated with smoking, although some subtypes are also seen in non-smokers. Tumors in the latter group are mostly adenocarcinomas with many carrying mutations in the epidermal growth factor receptor (EGFR). Survival statistics of lung cancer are grim because of its late detection and frequent local and distal metastases. Although DNA sequence information from tumors has revealed a number of frequently occurring mutations, affecting well-known tumor suppressor genes and proto-oncogenes, many of the driver mutations remain ill defined. This is likely due to the involvement of numerous rather infrequently occurring driver mutations that are difficult to distinguish from the very large number of passenger mutations detected in smoking-related lung cancers. Therefore, experimental model systems are indispensable to validate putative driver lesions and to gain insight into their mechanisms of action. Whereas a large fraction of these analyzes can be performed in cell cultures in vitro, in many cases the consequences of the mutations have to be assessed in the context of an intact organism, as this is the context in which the Mendelian selection process of the tumorigenic process took place and the advantages of particular mutations become apparent. Current mouse models for cancer are very suitable for this as they permit mimicking many of the salient features of human tumors. The capacity to swiftly re-engineer complex sets of lesions found in human tumors in mice enables us to assess the contribution of defined combinations of lesions to distinct tumor characteristics such as metastatic behavior and response to therapy. In this review we will describe mouse models of lung cancer and how they are used to better understand the disease and how they are exploited to develop better intervention strategies

  9. Acute Skin Toxicity Following Stereotactic Body Radiation Therapy for Stage I Non-Small-Cell Lung Cancer: Who's at Risk?

    SciTech Connect

    Hoppe, Bradford S.; Laser, Benjamin; Kowalski, Alex V.; Fontenla, Sandra C.; Pena-Greenberg, Elizabeth; Yorke, Ellen D.; Lovelock, D. Michael; Hunt, Margie A.; Rosenzweig, Kenneth E.

    2008-12-01

    Purpose: We examined the rate of acute skin toxicity within a prospectively managed database of patients treated for early-stage non-small-cell lung cancer (NSCLC) and investigated factors that might predict skin toxicity. Methods: From May 2006 through January 2008, 50 patients with Stage I NSCLC were treated at Memorial Sloan-Kettering Cancer Center with 60 Gy in three fractions or 44-48 Gy in four fractions. Patients were treated with multiple coplanar beams (3-7, median 4) with a 6 MV linac using intensity-modulated radiotherapy (IMRT) and dynamic multileaf collimation. Toxicity grading was performed and based on the National Cancer Institute Common Terminology Criteria for Adverse Effects. Factors associated with Grade 2 or higher acute skin reactions were calculated by Fisher's exact test. Results: After a minimum 3 months of follow-up, 19 patients (38%) developed Grade 1, 4 patients (8%) Grade 2, 2 patients (4%) Grade 3, and 1 patient Grade 4 acute skin toxicity. Factors associated with Grade 2 or higher acute skin toxicity included using only 3 beams (p = 0.0007), distance from the tumor to the posterior chest wall skin of less than 5 cm (p = 0.006), and a maximum skin dose of 50% or higher of the prescribed dose (p = 0.02). Conclusions: SBRT can be associated with significant skin toxicity. One must consider the skin dose when evaluating the treatment plan and consider the bolus effect of immobilization devices.

  10. Penetration of Recommended Procedures for Lung Cancer Staging and Management in the United States Over 10 Years: A Quality Research in Radiation Oncology Survey

    SciTech Connect

    Komaki, Ritsuko; Khalid, Najma; Langer, Corey J.; Kong, Feng-Ming; Owen, Jean B.; Crozier, Cheryl L.; Wilson, J. Frank; Wei, Xiong; Movsas, Benjamin

    2013-03-15

    Purpose: To document the penetration of clinical trial results, practice guidelines, and appropriateness criteria into national practice, we compared the use of components of staging and treatment for lung cancer among patients treated in 2006-2007 with those used in patients treated in 1998-1999. Methods and Materials: Patient, staging work-up, and treatment characteristics were extracted from the process survey database of the Quality Research in Radiation Oncology (QRRO), consisting of records of 340 patients with locally advanced non-small cell lung cancer (LA-NSCLC) at 44 institutions and of 144 patients with limited-stage small cell lung cancer (LS-SCLC) at 39 institutions. Data were compared for patients treated in 2006-2007 versus those for patients treated in 1998-1999. Results: Use of all recommended procedures for staging and treatment was more common in 2006-2007. Specifically, disease was staged with brain imaging (magnetic resonance imaging or computed tomography) and whole-body imaging (positron emission tomography or bone scanning) in 66% of patients with LA-NSCLC in 2006-2007 (vs 42% in 1998-1999, P=.0001) and in 84% of patients with LS-SCLC in 2006-2007 (vs 58.3% in 1998-1999, P=.0011). Concurrent chemoradiation was used for 77% of LA-NSCLC patients (vs 45% in 1998-1999, P<.0001) and for 90% of LS-SCLC patients (vs 62.5% in 1998-1999, P<.0001). Use of the recommended radiation dose (59-74 Gy for NSCLC and 60-70 Gy as once-daily therapy for SCLC) did not change appreciably, being 88% for NSCLC in both periods and 51% (2006-2007) versus 43% (1998-1999) for SCLC. Twice-daily radiation for SCLC was used for 21% of patients in 2006-2007 versus 8% in 1998-1999. Finally, 49% of patients with LS-SCLC received prophylactic cranial irradiation (PCI) in 2006-2007 (vs 21% in 1998-1999). Conclusions: Although adherence to all quality indicators improved over time, brain imaging and recommended radiation doses for stage III NSCLC were used in <90% of cases. Use

  11. [Lung Cancer as an Occupational Disease].

    PubMed

    Baur, X; Woitowitz, H-J

    2016-08-01

    Lung cancer is one of the most frequently encountered cancer types. According to the latest WHO data, about 10 % of this disease are due to occupational exposure to cancerogens. Asbestos is still the number one carcinogen. Further frequent causes include quarz and ionizing radiation (uranium mining). Probable causes of the disease can be identified only with the help of detailed occupational history taken by a medical specialist and qualified exposure assessment. Without clarifying the cause of the disease, there is neither a correct insurance procedure nor compensation for the victim, and furthermore, required preventive measures cannot be initiated. PMID:27512930

  12. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  13. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    SciTech Connect

    Su Xiaoming; Takahashi, Akihisa; Guo Guozhen; Mori, Eiichiro; Okamoto, Noritomo; Ohnishi, Ken; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-06-01

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-{mu}mol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 {mu}mol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  14. The Potential Role of Respiratory Motion Management and Image Guidance in the Reduction of Severe Toxicities Following Stereotactic Ablative Radiation Therapy for Patients with Centrally Located Early Stage Non-Small Cell Lung Cancer or Lung Metastases

    PubMed Central

    Chi, Alexander; Nguyen, Nam Phong; Komaki, Ritsuko

    2014-01-01

    Image guidance allows delivery of very high doses of radiation over a few fractions, known as stereotactic ablative radiotherapy (SABR). This treatment is associated with excellent outcome for early stage non-small cell lung cancer and metastases to the lungs. In the delivery of SABR, central location constantly poses a challenge due to the difficulty of adequately sparing critical thoracic structures that are immediately adjacent to the tumor if an ablative dose of radiation is to be delivered to the tumor target. As of current, various respiratory motion management and image guidance strategies can be used to ensure accurate tumor target localization prior and/or during daily treatment, which allows for maximal and safe reduction of set up margins. The incorporation of both may lead to the most optimal normal tissue sparing and the most accurate SABR delivery. Here, the clinical outcome, treatment related toxicities, and the pertinent respiratory motion management/image guidance strategies reported in the current literature on SABR for central lung tumors are reviewed. PMID:25009800

  15. Impact of Toxicity Grade and Scoring System on the Relationship Between Mean Lung Dose and Risk of Radiation Pneumonitis in a Large Cohort of Patients With Non-Small Cell Lung Cancer

    SciTech Connect

    Tucker, Susan L.; Jin Hekun; Wei Xiong

    2010-07-01

    Purpose: To compute the risk of radiation pneumonitis (RP) as a function of mean lung dose (MLD), with RP scored using three grading systems and analyzed at four threshold levels of toxicity in a large cohort of patients with non-small cell lung cancer (NSCLC) treated with definitive radiotherapy (RT). Methods and Materials: On the basis of medical records and radiographic images, RP was scored retrospectively in 442 patients with NSCLC who had {>=}6 months of follow-up after the end of RT. The severity of RP was scored for each patient using the National Cancer Institute (NCI) Common Toxicity Criteria, version 2.0 (CTC2.0); the NCI Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE3.0); and the grading system of the Radiation Therapy Oncology Group (RTOG). For each grading system and for each of four levels of toxicity (Grade {>=}1, {>=}2, {>=}3, {>=}4), the Lyman, logistic, and log-logistic normal tissue complication probability (NTCP) models were fitted to the data as functions of MLD. The parameter estimates from the model fits are listed in table form, and the RP risk estimates are presented graphically for the Lyman and log-logistic NTCP models. Results: The results presented here illustrate the impact of scoring system and level of toxicity on the relationship between MLD and RP risk. Conclusions: These results facilitate quantitative comparisons between our data and studies of RP risk reported by others, and several examples of such comparisons are provided.

  16. SU-E-J-179: Assessment of Tumor Volume Change and Movement During Stereotactic Body Radiotherapy (SBRT) for Lung Cancer: Is Adaptive Radiation Therapy (ART) Necessary?

    SciTech Connect

    Lee, C; Lee, C

    2015-06-15

    Purpose: Delineation of gross tumor volumes (GTVs) is important for stereotactic body radiotherapy (SBRT). However, tumor volume changes during treatment response. Here, we have investigated tumor volume changes and movement during SBRT for lung cancer, as a means of examining the need for adaptive radiation therapy (ART). Methods: Fifteen tumors in 15 patients with lung cancer were treated with SBRT (total dose: 60 Gy in 4 fractions). GTVs were obtained from cone-beam computed tomography scans (CBCT1–4) taken before each of the 4 fractions was administered. GTVs were delineated and measured by radiation oncologists using a treatment planning system. Variance in the tumor position was assessed between the planning CT and the CBCT images. To investigate the dosimetric effects of tumor volume changes, planning CT and CBCT4 treatment plans were compared using the conformity index (CI), homogeneity index (HI), and Paddick’s index (PCI). Results: The GTV on CBCT1 was employed as a baseline for comparisons. GTV had decreased by a mean of 20.4% (range: 0.7% to 47.2%) on CBCT4. Most patients had smaller GTVs on CBCT4 than on CBCT1. The interfractional shifts of the tumor position between the planning CT and CBCT1–4 were as follows: right-left, −0.4 to 1.3 mm; anterior-posterior, −0.8 to 0.5 mm; and superiorinferior, −0.9 to 1.1 mm. Indices for plans from the planning CT and CBCT4 were as follows: CI = 0.94±0.02 and 1.11±0.03; HI= 1.1±0.02 and 1.10±0.03; and PCI = 1.35±0.16 and 1.11±0.02, respectively. Conclusion: CI, HI, and PCI did not differ between the planning CT and CBCTs. However, daily CBCT revealed a significant decrease in the GTV during lung SBRT. Furthermore, there was an obvious interfractional shift in tumor position. Using ART could potentially lead to a reduced GTV margin and improved regional tumor control for lung cancer patients with significantly decreased GTV.

  17. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and γ-radiation sensitivity

    SciTech Connect

    Kim, In Gyu; Kim, Seo Yoen; Kim, Hyun A; Kim, Jeong Yul; Lee, Jae Ha; Choi, Soo Im; Han, Jeong Ran; Kim, Kug Chan; Cho, Eun Wie

    2014-01-03

    Highlights: •DKK1 was expressed differently among non-small-cell lung cancer cell lines. •DKK1 negatively regulated ROMO1 gene expression. •Disturbance of DKK1 level induced the imbalance of cellular ROS. •DKK1/ROMO1-induced ROS imbalance is involved in cell survival in NSCLC. -- Abstract: Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cells than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.

  18. Atmospheric pollution and lung cancer.

    PubMed Central

    Doll, R

    1978-01-01

    Lung cancer is consistently more common in urban areas than in rural. The excess cannot be accounted for by specific occupational hazards but some of it might be due to the presence of carcinogens in urban air. The excess cannot be wholly due to such agents, because the excess in nonsmokers is small and variable. Cigarette consumption has also been greater in urban areas, but it is difficult to estimate how much of the excess it can account for. Occupational studies confirm that pollutants present in town air are capable of causing lung cancer in man and suggest that the pollutants and cigarette smoke act synergistically. The trends in the mortality from lung cancer in young and middle-aged men in England and Wales provide uncertain evidence but support the belief that atmospheric pollution has contributed to the production of the disease. In the absence of cigarette smoking, the combined effect of all atmospheric carcinogens is not responsible for more than about 5 cases of lung cancer per 100,000 persons per year in European populations. PMID:648488

  19. Lung Cancer Staging and Prognosis.

    PubMed

    Woodard, Gavitt A; Jones, Kirk D; Jablons, David M

    2016-01-01

    The seventh edition of the non-small cell lung cancer (NSCLC) TNM staging system was developed by the International Association for the Staging of Lung Cancer (IASLC) Lung Cancer Staging Project by a coordinated international effort to develop data-derived TNM classifications with significant survival differences. Based on these TNM groupings, current 5-year survival estimates in NSLCC range from 73 % in stage IA disease to 13 % in stage IV disease. TNM stage remains the most important prognostic factor in predicting recurrence rates and survival times, followed by tumor histologic grade, and patient sex, age, and performance status. Molecular prognostication in lung cancer is an exploding area of research where interest has moved beyond TNM stage and into individualized genetic tumor analysis with immunohistochemistry, microarray, and mutation profiles. However, despite intense research efforts and countless publications, no molecular prognostic marker has been adopted into clinical use since most fail in subsequent cross-validation with few exceptions. The recent interest in immunotherapy for NSCLC has identified new biomarkers with early evidence that suggests that PD-L1 is a predictive marker of a good response to new immunotherapy drugs but a poor prognostic indicator of overall survival. Future prognostication of outcomes in NSCLC will likely be based on a combination of TNM stage and molecular tumor profiling and yield more precise, individualized survival estimates and treatment algorithms. PMID:27535389

  20. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  1. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  2. Pretreatment Modified Glasgow Prognostic Score Predicts Clinical Outcomes After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Kishi, Takahiro; Matsuo, Yukinori Ueki, Nami; Iizuka, Yusuke; Nakamura, Akira; Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2015-07-01

    Purpose: This study aimed to evaluate the prognostic significance of the modified Glasgow Prognostic Score (mGPS) in patients with non-small cell lung cancer (NSCLC) who received stereotactic body radiation therapy (SBRT). Methods and Materials: Data from 165 patients who underwent SBRT for stage I NSCLC with histologic confirmation from January 1999 to September 2010 were collected retrospectively. Factors, including age, performance status, histology, Charlson comorbidity index, mGPS, and recursive partitioning analysis (RPA) class based on sex and T stage, were evaluated with regard to overall survival (OS) using the Cox proportional hazards model. The impact of the mGPS on cause of death and failure patterns was also analyzed. Results: The 3-year OS was 57.9%, with a median follow-up time of 3.5 years. A higher mGPS correlated significantly with poor OS (P<.001). The 3-year OS of lower mGPS patients was 66.4%, whereas that of higher mGPS patients was 44.5%. On multivariate analysis, mGPS and RPA class were significant factors for OS. A higher mGPS correlated significantly with lung cancer death (P=.019) and distant metastasis (P=.013). Conclusions: The mGPS was a significant predictor of clinical outcomes for SBRT in NSCLC patients.

  3. Comparison of three IMRT inverse planning techniques that allow for partial esophagus sparing in patients receiving thoracic radiation therapy for lung cancer.

    PubMed

    Xiao, Ying; Werner-Wasik, Maria; Michalski, D; Houser, C; Bednarz, G; Curran, W; Galvin, James

    2004-01-01

    The purpose of this study is to compare 3 intensity-modulated radiation therapy (IMRT) inverse treatment planning techniques as applied to locally-advanced lung cancer. This study evaluates whether sufficient radiotherapy (RT) dose is given for durable control of tumors while sparing a portion of the esophagus, and whether large number of segments and monitor units are required. We selected 5 cases of locally-advanced lung cancer with large central tumor, abutting the esophagus. To ensure that no more than half of the esophagus circumference at any level received the specified dose limit, it was divided into disk-like sections and dose limits were imposed on each. Two sets of dose objectives were specified for tumor and other critical structures for standard dose RT and for dose escalation RT. Plans were generated using an aperture-based inverse planning (ABIP) technique with the Cimmino algorithm for optimization. Beamlet-based inverse treatment planning was carried out with a commercial simulated annealing package (CORVUS) and with an in-house system that used the Cimmino projection algorithm (CIMM). For 3 of the 5 cases, results met all of the constraints from the 3 techniques for the 2 sets of dose objectives. The CORVUS system without delivery efficiency consideration required the most segments and monitor units. The CIMM system reduced the number while the ABIP techniques showed a further reduction, although for one of the cases, a solution was not readily obtained using the ABIP technique for dose escalation objectives. PMID:15324918

  4. Possible Misinterpretation of Demarcated Solid Patterns of Radiation Fibrosis on CT Scans as Tumor Recurrence in Patients Receiving Hypofractionated Stereotactic Radiotherapy for Lung Cancer

    SciTech Connect

    Takeda, Atsuya; Kunieda, Etsuo Takeda, Toshiaki; Tanaka, Michio; Sanuki, Naoko; Fujii, Hirofumi; Shigematsu, Naoyuki; Kubo, Atsushi M.D.

    2008-03-15

    Purpose: To retrospectively analyze opacity changes near primary lung cancer tumors irradiated by using hypofractionated stereotactic radiotherapy (HSRT) to determine the presence or absence of tumor recurrence. Methods and Materials: After review-board approval for a retrospective study, we examined data from 50 patients treated with curative intent for proven or highly suspected localized peripheral-lung cancer and followed up for at least 12 months. All patients had received 50 Gy in five fractions (80% isodose) and were followed up monthly with chest X-ray until clinical and X-ray findings stabilized. Follow-up computed tomography scans were performed 1 and 3 months after HSRT and thereafter at 3-month intervals during the first 2 years. Results: Median follow-up was 30.4 months (range, 12.0-73.8 months). Abnormal opacities that were suspicious for recurrent tumor appeared in 20 patients at a median of 20.7 months (range, 5.9-61.4 months). Only 3 patients were finally found to have recurrence; 14 were recurrence free but were suspected to have fibrosis, and findings for the other 3 patients were considered equivocal because of a short follow-up period ({<=}6 months). Conclusion: Radiation fibrosis, which may occur 1 year or longer after completion of HSRT, is difficult to distinguish from tumor recurrence. Even when opacities increase on follow-up radiologic scans, recurrence cannot be diagnosed conclusively based on image findings; biopsy occasionally is warranted.

  5. Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging, With Potential Applicability in Radiation Therapy Planning

    SciTech Connect

    Campbell, Belinda A.; Callahan, Jason; Bressel, Mathias; Simoens, Nathalie; Everitt, Sarah; Hofman, Michael S.; Hicks, Rodney J.; Burbury, Kate; MacManus, Michael

    2015-08-01

    Purpose: Proliferating bone marrow is exquisitely sensitive to ionizing radiation. Knowledge of its distribution could improve radiation therapy planning to minimize unnecessary marrow exposure and avoid consequential prolonged myelosuppression. [18F]-Fluoro-3-deoxy-3-L-fluorothymidine (FLT)–positron emission tomography (PET) is a novel imaging modality that provides detailed quantitative images of proliferating tissues, including bone marrow. We used FLT-PET imaging in cancer patients to produce an atlas of marrow distribution with potential clinical utility. Methods and Materials: The FLT-PET and fused CT scans of eligible patients with non-small cell lung cancer (no distant metastases, no prior cytotoxic exposure, no hematologic disorders) were reviewed. The proportions of skeletal FLT activity in 10 predefined bony regions were determined and compared according to age, sex, and recent smoking status. Results: Fifty-one patients were studied: 67% male; median age 68 (range, 31-87) years; 8% never smokers; 70% no smoking in the preceding 3 months. Significant differences in marrow distribution occurred between sex and age groups. No effect was detected from smoking in the preceding 3 months. Using the mean percentages of FLT uptake per body region, we created an atlas of the distribution of functional bone marrow in 4 subgroups defined by sex and age. Conclusions: This atlas has potential utility for estimating the distribution of active marrow in adult cancer patients to guide radiation therapy planning. However, because of interindividual variation it should be used with caution when radiation therapy risks ablating large proportions of active marrow; in such cases, individual FLT-PET scans may be required.

  6. Lung cancer in never smokers Epidemiology and risk prediction models

    PubMed Central

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  7. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Cai Xuwi; Shedden, Kerby; Ao Xiaoping; Davis, Mary

    2010-07-01

    Purpose: To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade {>=}2 (RILT2). Methods and Materials: A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2. Results: More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively. Conclusions: This proteomic approach identified new plasma protein markers for future studies on RILT prediction.

  8. Lung cancer screening: from imaging to biomarker.

    PubMed

    Xiang, Dong; Zhang, Bicheng; Doll, Donald; Shen, Kui; Kloecker, Goetz; Freter, Carl

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential curative therapy is surgical resection of early stage lung cancer. Therefore, early detection of lung cancer could potentially increase the chance of cure by surgery and underlines the importance of screening and detection of lung cancer. In the past fifty years, screening of lung cancer by chest X-Ray (CXR), sputum cytology, computed tomography (CT), fluorescence endoscopy and low-dose spiral CT (LDCT) has not improved survival except for the recent report in 2010 by the National Lung Screening Trial (NLST), which showed a 20 percent mortality reduction in high risk participants screened with LDCT compared to those screened with CXRs. Furthermore, serum biomarkers for detection of lung cancer using free circulating DNA and RNA, exosomal microRNA, circulating tumor cells and various lung cancer specific antigens have been studied extensively and novel screening methods are being developed with encouraging results. The history of lung cancer screening trials using CXR, sputum cytology and LDCT, as well as results of trials involving various serum biomarkers, are reviewed herein. PMID:24252206

  9. Lung cancer screening: from imaging to biomarker

    PubMed Central

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential curative therapy is surgical resection of early stage lung cancer. Therefore, early detection of lung cancer could potentially increase the chance of cure by surgery and underlines the importance of screening and detection of lung cancer. In the past fifty years, screening of lung cancer by chest X-Ray (CXR), sputum cytology, computed tomography (CT), fluorescence endoscopy and low-dose spiral CT (LDCT) has not improved survival except for the recent report in 2010 by the National Lung Screening Trial (NLST), which showed a 20 percent mortality reduction in high risk participants screened with LDCT compared to those screened with CXRs. Furthermore, serum biomarkers for detection of lung cancer using free circulating DNA and RNA, exosomal microRNA, circulating tumor cells and various lung cancer specific antigens have been studied extensively and novel screening methods are being developed with encouraging results. The history of lung cancer screening trials using CXR, sputum cytology and LDCT, as well as results of trials involving various serum biomarkers, are reviewed herein. PMID:24252206

  10. TP53 Mutations in Nonsmall Cell Lung Cancer

    PubMed Central

    Mogi, Akira; Kuwano, Hiroyuki

    2011-01-01

    The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC) and nonsmall cell lung cancer (NSCLC). The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC. PMID:21331359

  11. [Geographic spreading of lung cancer in Azerbaijan].

    PubMed

    Soltanov, A A

    2009-01-01

    Lung cancer is the second most common cancer and the leading cause of cancer death for both men and women. The impact of geographic as well as of exogenous factor and factors of risk, life style and environment play an important role in etiology of lung cancer. Geographic spread of lung cancer data in literature is fragmentary. The limited existing literature does not report a consistent story of geographic variation in Azerbaijan for the incidence associated with lung cancer. The aim of this study was to evaluate the impact of geographic variation on spread of lung cancer in Azerbaijan. Frequency of lung cancer in various regions of Azerbaijan; different histological types, sex, age and particular risk factors were investigated. It was revealed that epidermoid cancer was the most common histological type in all regions. The highest rate of epidermoid cancer 230 (55.56%) was revealed in industrial regions and industrial cities (Baku and Sumgait). The lowest rate of lung cancer was found in mountain region 12 (3.76%). Smoking and drinking alcohol increases risk of epidermoid cancer (41.2% of patients smoke and drink alcohol). The highest morbidity (13.55 per 100,000 population) and mortality (0.11) rates from lung cancer were observed in industrial regions. Analyses revealed that different endogenous and exogenous factors are associated with lung cancer. PMID:19202230

  12. Guidance molecules in lung cancer

    PubMed Central

    Nasarre, Patrick; Potiron, Vincent; Drabkin, Harry

    2010-01-01

    Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed. PMID:20139699

  13. Functional Promoter Variant rs2868371 of HSPB1 Is Associated With Risk of Radiation Pneumonitis After Chemoradiation for Non-Small Cell Lung Cancer

    SciTech Connect

    Pang, Qingsong; Wei, Qingyi; Xu, Ting; Yuan, Xianglin; Lopez Guerra, Jose Luis; Levy, Lawrence B.; Liu, Zhensheng; Gomez, Daniel R.; Zhuang, Yan; Wang, Li-E.; Mohan, Radhe; Komaki, Ritsuko; Liao, Zhongxing

    2013-04-01

    Purpose: To date, no biomarkers have been found to predict, before treatment, which patients will develop radiation pneumonitis (RP), a potentially fatal toxicity, after chemoradiation for lung cancer. We investigated potential associations between single nucleotide polymorphisms (SNPs) in HSPB1 and risk of RP after chemoradiation for non-small cell lung cancer (NSCLC). Methods and Materials: Subjects were patients with NSCLC treated with chemoradiation at 1 institution. The training data set comprised 146 patients treated from 1999 to July 2004; the validation data set was 125 patients treated from August 2004 to March 2010. We genotyped 2 functional SNPs of HSPB1 (rs2868370 and rs2868371) from all patients. We used Kaplan-Meier analysis to assess the risk of grade ≥2 or ≥3 RP in both data sets and a parametric log-logistic survival model to evaluate the association of HSPB1 genotypes with that risk. Results: Grade ≥3 RP was experienced by 13% of those with CG/GG and 29% of those with CC genotype of HSPB1 rs2868371 in the training data set (P=.028); corresponding rates in the validation data set were 2% CG/GG and 14% CC (P=.02). Univariate and multivariate analysis confirmed the association of CC of HSPB1 rs2868371 with higher risk of grade ≥3 RP than CG/GG after adjustment for sex, age, performance status, and lung mean dose. This association was validated both in the validation data set and with Harrell's C statistic. Conclusions: The CC genotype of HSPB1 rs2868371 was associated with severe RP after chemoradiation for NSCLC.

  14. Phase impact factor: a novel parameter for determining optimal CT phase in 4D radiation therapy treatment planning for mobile lung cancer

    NASA Astrophysics Data System (ADS)

    Song, Yulin; Huang, Xiaolei; Mueller, Boris; Mychalczak, Borys

    2008-03-01

    Due to respiratory motion, lung tumor can move up to several centimeters. If respiratory motion is not carefully considered during the radiation treatment planning, the highly conformal dose distribution with steep gradients could miss the target. To address this issue, the common strategy is to add a population-derived safety margin to the gross tumor volume (GTV). However, during a free breathing CT simulation, the images could be acquired at any phase of a breathing cycle. With such a generalized uniform margin, the planning target volume (PTV) may either include more normal lung tissue than required or miss the GTV at certain phases of a breathing cycle. Recently, respiration correlated CT (4DCT) has been developed and implemented. With 4DCT, it is now possible to trace the tumor 3D trajectories during a breathing cycle and to define the tumor volume as the union of these 3D trajectories. The tumor volume defined in this way is called the internal target volume (ITV). In this study, we introduced a novel parameter, the phase impact factor (PIF), to determine the optimal CT phase for intensity modulated radiation therapy (IMRT) treatment planning for lung cancer. A minimum PIF yields a minimum probability for the GTV to move out of the ITV during the course of an IMRT treatment, providing a minimum probability of a geometric miss. Once the CT images with the optimal phase were determined, an IMRT plan with three to five co-planner beams was computed and optimized using the inverse treatment planning technique.

  15. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  16. A phase II study of nab-paclitaxel plus carboplatin in combination with thoracic radiation in patients with locally advanced non–small-cell lung cancer

    PubMed Central

    Hasegawa, Takaaki; Futamura, Yohei; Horiba, Akane; Yoshida, Tsutomu; Suzuki, Toshitaka; Kato, Tatsuo; Kaito, Daizo; Ohno, Yasuhi; Iida, Takayoshi; Hayashi, Shinya; Sawa, Toshiyuki

    2016-01-01

    We investigated the efficacy and safety of albumin-bound paclitaxel (nab-PTX) and carboplatin (CBDCA) with concurrent radiotherapy for unresectable locally advanced non–small-cell lung cancer (NSCLC). Patients with Stage III NSCLC and an Eastern Cooperative Oncology Group performance status of 0 or 1 were eligible. Concurrent chemoradiotherapy consisted of weekly administration of nab-PTX (40 mg/m2) plus CBDCA (area under the plasma concentration time curve (AUC) 2) and thoracic radiotherapy (60 Gy/30 fractions) for a total of 6 weeks. After concurrent chemoradiotherapy, patients received an additional two cycles of consolidation phase chemotherapy that consisted of 4-week cycles of nab-PTX (100 mg/m2 on Days 1, 8 and 15)/CBDCA (AUC 5 mg/ml/min on Day 1). Response was evaluated in accordance with the Response Evaluation Criteria in Solid Tumors. Progression-free survival and overall survival were estimated using the Kaplan–Meier method. Toxicity was graded using the National Cancer Institute Common Terminology Criteria for Adverse Events. A total of 10 patients were enrolled in this trial between September 2013 and January 2014 from three institutes. The overall response rate was 40.0% and the median progression-free survival was 6.7 months. Treatment-related death occurred in two patients. Grade 2 or worse severe radiation pneumonitis was observed in all three patients that had the volume of lung receiving at least 20 Gy (V20) >30%. The results of this study indicate that no further investigation is warranted into nab-PTX and CBDCA with concurrent thoracic radiation for Stage III NSCLC with V20 > 30% due to severe toxicity. PMID:26442970

  17. Phosphoproteomics and Lung Cancer Research

    PubMed Central

    López, Elena; Cho, William C. S.

    2012-01-01

    Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed. PMID:23202899

  18. Biological considerations in lung cancer.

    PubMed

    Almand, B; Carbone, D P

    2001-01-01

    Our understanding of lung cancer biology has rapidly expanded in recent years. Lung cancer, unlike most human cancers, can be traced to an environmental risk factor in the majority of cases, and this fact is reflected in the vast number of genetic alterations discovered in lung tumors whose pathogenesis is believed to be mediated by carcinogen exposure. The discovery of these alterations has led to a greater understanding of tumor development. The dramatic progress in the understanding of the genetic and molecular basis of oncogenesis and the induction of immunity has led to a rejuvenation of efforts to apply this new knowledge to this common and refractory disease. Further, the resurgent interest in cancer immunology and tumor-host interactions holds promise for the development of new approaches to treatment based on harvesting the immune systems ability to recognize these alterations. Hopefully, this understanding will lead to novel approaches with real and convincing clinical efficacy once some of these strategies are tested in carefully performed randomized clinical trials with appropriate power to detect meaningful differences. PMID:11224984

  19. An analysis of tumor control probability of stereotactic body radiation therapy for lung cancer with a regrowth model

    NASA Astrophysics Data System (ADS)

    Tai, An; Liu, Feng; Gore, Elizabeth; Li, X. Allen

    2016-05-01

    We report a modeling study of tumor response after stereotactic body radiation therapy (SBRT) for early-stage non-small-cell lung carcinoma using published clinical data with a regrowth model. A linear-quadratic inspired regrowth model was proposed to analyze the tumor control probability (TCP) based on a series of published data of SBRT, in which a tumor is controlled for an individual patient if number of tumor cells is smaller than a critical value K cr. The regrowth model contains radiobiological parameters such as α, α/β the potential doubling time T p. This model also takes into account the heterogeneity of tumors and tumor regrowth after radiation treatment. The model was first used to fit TCP data from a single institution. The extracted fitting parameters were then used to predict the TCP data from another institution with a similar dose fractionation scheme. Finally, the model was used to fit the pooled TCP data selected from 48 publications available in the literature at the time when this manuscript was written. Excellent agreement between model predictions and single-institution data was found and the extracted radiobiological parameters were α  =  0.010  ±  0.001 Gy‑1, α /β  =  21.5  ±  1.0 Gy and T p  =  133.4  ±  7.6 d. These parameters were α  =  0.072  ±  0.006 Gy‑1, α/β  =  15.9  ±  1.0 Gy and T p  =  85.6  ±  24.7 d when extracted from multi-institution data. This study shows that TCP saturates at a BED of around 120 Gy. A few new dose-fractionation schemes were proposed based on the extracted model parameters from multi-institution data. It is found that the regrowth model with an α/β around 16 Gy can be used to predict the dose response of lung tumors treated with SBRT. The extracted radiobiological parameters may be useful for comparing clinical outcome data of various SBRT trials and for designing new treatment regimens.

  20. An analysis of tumor control probability of stereotactic body radiation therapy for lung cancer with a regrowth model.

    PubMed

    Tai, An; Liu, Feng; Gore, Elizabeth; Li, X Allen

    2016-05-21

    We report a modeling study of tumor response after stereotactic body radiation therapy (SBRT) for early-stage non-small-cell lung carcinoma using published clinical data with a regrowth model. A linear-quadratic inspired regrowth model was proposed to analyze the tumor control probability (TCP) based on a series of published data of SBRT, in which a tumor is controlled for an individual patient if number of tumor cells is smaller than a critical value K cr. The regrowth model contains radiobiological parameters such as α, α/β the potential doubling time T p. This model also takes into account the heterogeneity of tumors and tumor regrowth after radiation treatment. The model was first used to fit TCP data from a single institution. The extracted fitting parameters were then used to predict the TCP data from another institution with a similar dose fractionation scheme. Finally, the model was used to fit the pooled TCP data selected from 48 publications available in the literature at the time when this manuscript was written. Excellent agreement between model predictions and single-institution data was found and the extracted radiobiological parameters were α  =  0.010  ±  0.001 Gy(-1), α /β  =  21.5  ±  1.0 Gy and T p  =  133.4  ±  7.6 d. These parameters were α  =  0.072  ±  0.006 Gy(-1), α/β  =  15.9  ±  1.0 Gy and T p  =  85.6  ±  24.7 d when extracted from multi-institution data. This study shows that TCP saturates at a BED of around 120 Gy. A few new dose-fractionation schemes were proposed based on the extracted model parameters from multi-institution data. It is found that the regrowth model with an α/β around 16 Gy can be used to predict the dose response of lung tumors treated with SBRT. The extracted radiobiological parameters may be useful for comparing clinical outcome data of various SBRT trials and for designing new treatment regimens

  1. Lung cancer in pregnancy.

    PubMed

    Holzmann, Kornelia; Kropfmüller, Roland; Schinko, Herwig; Bogner, Stephan; Fellner, Franz; Arzt, Wolfgang; Lamprecht, Bernd

    2015-08-01

    In the 26th week of gestation, a 29-year-old pregnant office employee was referred to the pulmonary department of Linz General Hospital (AKH) under the suspicion of tuberculosis. She complained of a cough with intermittent hemoptysis and pain in the thoracic spine from which she had been suffering the past 9 weeks. A plain chest X-ray showed a dense infiltrate on the right side and multiple smaller shadows in both lungs. Laboratory testing revealed anemia, leukocytosis, and an increase of C-reactive protein. All tests for tuberculosis were negative.A bronchoscopy was performed and biopsies were taken from the right upper and middle lobe. The histopathological examination found cells of an adenocarcinoma. A magnetic resonance imaging (MRI) revealed a large tumor and surrounding atelectasis were seen in the right upper and middle lobe, as well as multiple intrapulmonary metastases in both lungs. In addition, not only metastases in the thoracic spine (level Th2/3) but also at other osseous locations and multiple cerebral metastases were detected. The patient received one cycle of chemotherapy consisting of docetaxel and carboplatin (AUC5) in the 27th week of gestation. Additional radiotherapy was applied to the involved thoracic spine. Due to positive epidermal growth factor receptor mutation, therapy with gefitinib 250 mg/day was started 2 days after a Caesarean section (preceded by treatment for fetal lung maturation). A healthy girl was delivered in the 30th week of pregnancy. Staging with computed tomography (CT) after delivery revealed an unstable fracture of Th2 with compression of the spinal cord. Neurosurgery was performed, consisting of a ventral corporectomy of Th1-2 followed by an anterior and posterior osteosynthesis for stabilization. The patient was discharged without neurological deficits within 1 week. Subsequent treatment with gefitinib improved the performance status of the patient, and CT scans of the chest and an MRI of the brain showed the size of

  2. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  3. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    PubMed

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  4. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  5. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    PubMed Central

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.; Bokobza, Sivan M.; Weber, Anika M.; Leszczynska, Katarzyna B.; Hammond, Ester M.; Ryan, Anderson J.

    2016-01-01

    Purpose Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O2) or hypoxic (1% O2) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O2). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions Our data suggest that hypoxia potentiates the radiation-sensitizing effects of olaparib by contextual

  6. Pemetrexed (Alimta) in small cell lung cancer.

    PubMed

    Socinski, Mark A

    2005-04-01

    Small cell lung cancer (SCLC) comprises approximately 13% of all lung cancers. In limited stage (LS)-SCLC, combined-modality therapy represents the standard of care. Therapy should be approached curatively in fit patients with a good performance status because 5-year survival rates approach 26% in aggressively treated patients. In contrast, cure is not possible in extensive stage (ES)-SCLC with median 2-year survival rates with current therapy remaining at less than 10%. Pemetrexed (Alimta; Eli Lilly and Co, Indianapolis, IN) is a novel, multi-targeted antifolate that inhibits several folate-dependent enzymes involved in purine and pyrimidine synthesis, and is active as a single-agent or in combination with a platinum in both non-small cell lung cancer and malignant pleural mesothelioma. Pemetrexed/platinum combinations appear active in ES-SCLC based on objective response rates observed in a randomized phase II trial. However, no survival data is yet available from this trial. The toxicity profile of both cisplatin and carboplatin in combination with pemetrexed was extremely favorable, as was the ability to deliver full doses of each of the component drugs. Given the limited options available for patients in the relapsed setting, the activity of single-agent pemetrexed is interesting. Also, preliminary data indicates that full doses of carboplatin/pemetrexed can be administered with thoracic radiation therapy, supporting a future clinical trial initiative in LS-SCLC. PMID:15818532

  7. Lung Cancer Ablation: What Is the Evidence?

    PubMed Central

    de Baere, Thierry; Farouil, Geoffroy; Deschamps, Frederic

    2013-01-01

    Percutaneous ablation of small non-small cell lung cancer (NSCLC) has been demonstrated to be both feasible and safe in nonsurgical candidates. Radiofrequency ablation (RFA), the most commonly used technique for ablation, has a reported rate of complete ablation of ~90%, with best results obtained in tumors <2 to 3 cm in diameter. The best reported 1-, 3-, and 5-year overall survival rates after RFA of NSCLC are 97.7%, 72.9%, and 55.7%, respectively. It is noteworthy that in most studies, cancer-specific survival is greater than overall survival due to severe comorbidities in patients treated with RFA for NSCLC. Aside from tumor size and tumor stage, these comorbidities are predictive of survival. Other ablation techniques such as microwave and irreversible electroporation may in the future prove to overcome some of the limitations of RFA, namely for large tumors or tumors close to large vessels. Stereotactic body radiation therapy has also been demonstrated to be highly efficacious in treating small lung tumors and will need to be compared with percutaneous ablation. This article reviews the current evidence regarding RFA for lung cancer. PMID:24436531

  8. Lung Cancer Awareness Week

    ERIC Educational Resources Information Center

    Glennon, Catherine; Laczko, Lori

    2003-01-01

    Smoking is the most preventable cause of death in our society. Tobacco use is responsible for nearly one in five deaths in the United States and the cause of premature death of approximately 2 million individuals in developed countries. Smoking accounts for at least 30% of all cancer deaths and is a major cause of heart disease, cerebrovascular…

  9. Cryotherapy in Treating Patients With Lung Cancer That Has Spread to the Other Lung or Parts of the Body

    ClinicalTrials.gov

    2012-03-16

    Advanced Malignant Mesothelioma; Extensive Stage Small Cell Lung Cancer; Lung Metastases; Recurrent Malignant Mesothelioma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  10. [Cannabis smoking and lung cancer].

    PubMed

    Underner, M; Urban, T; Perriot, J; de Chazeron, I; Meurice, J-C

    2014-06-01

    Cannabis is the most commonly smoked illicit substance in the world. It can be smoked alone in plant form (marijuana) but it is mainly smoked mixed with tobacco. The combined smoking of cannabis and tobacco is a common-place phenomenon in our society. However, its use is responsible for severe pulmonary consequences. The specific impact of smoking cannabis is difficult to assess precisely and to distinguish from the effect of tobacco. Marijuana smoke contains polycyclic aromatic hydrocarbons and carcinogens at higher concentration than tobacco smoke. Cellular, tissue, animal and human studies, and also epidemiological studies, show that marijuana smoke is a risk factor for lung cancer. Cannabis exposure doubles the risk of developing lung cancer. This should encourage clinicians to identify cannabis use and to offer patients support in quitting. PMID:25012035

  11. Bronchoplastic procedures for lung cancer.

    PubMed

    Naruke, T; Yoneyama, T; Ogata, T; Suemasu, K

    1977-06-01

    Twenty patients with lung cancer have undergone bronchoplastic procedures September, 1965, to June, 1976 in our hospital. Bronchoplastic procedures are considered to be indicated for early cases of hilar lung cancer rather than for somewhat advanced cases. Endoscopic examination and roentgenograms of the bronchial arteries are needed to delineate resectional lines of bronchus, the former for deciding the mucosal extent and the latter the intrabronchial extent of the tumor. The bronchoplastic procedures we adopted were free from the risks and dangers generally accompanying the operation, and there were no postoperative deaths. For the prevention of postoperative complications, careful attention to suture technique is needed, and postoperative bronchoscopic suction of intrabronchial secretions is absolutely necessary. These procedures assure good quality of life postoperatively and improvement in the survival rate by preserving pulmonary function, enhancing curability, and increasing the operative indications. These advantages warrant high evaluation of the operation. PMID:870767

  12. Prognostic Impact of Radiation Therapy to the Primary Tumor in Patients With Non-small Cell Lung Cancer and Oligometastasis at Diagnosis

    SciTech Connect

    Lopez Guerra, Jose Luis; Zhuang, Yan; Hong, David S.; Heymach, John V.; Swisher, Stephen G.; Lin, Steven H.; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-09-01

    Purpose: We investigated prognostic factors associated with survival in patients with non-small cell lung cancer (NSCLC) and oligometastatic disease at diagnosis, particularly the influence of local treatment to the primary site on prognosis. Methods and Materials: From January 2000 through June 2011, 78 consecutive patients with oligometastatic NSCLC (<5 metastases) at diagnosis underwent definitive chemoradiation therapy ({>=}45 Gy) to the primary site. Forty-four of these patients also received definitive local treatment for the oligometastases. Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Results: Univariate Cox proportional hazard analysis revealed better overall survival (OS) for those patients who received at least 63 Gy of radiation to the primary site (P=.002), received definitive local treatment for oligometastasis (P=.041), had a Karnofsky performance status (KPS) score >80 (P=.007), had a gross tumor volume {<=}124 cm{sup 3} (P=.002), had adenocarcinoma histology (P=.002), or had no history of respiratory disease (P=.016). On multivariate analysis, radiation dose, performance status, and tumor volume retained significance (P=.004, P=.006, and P<.001, respectively). The radiation dose also maintained significance when patients with and without brain metastases were analyzed separately. Conclusions: Tumor volume, KPS, and receipt of at least 63 Gy to the primary tumor are associated with improved OS in patients with oligometastatic NSCLC at diagnosis. Our results suggest that a subset of such patients may benefit from definitive local therapy.

  13. Direct estimates of low-level radiation risks of lung cancer at two NRC-compliant nuclear installations: why are the new risk estimates 20 to 200 times the old official estimates?

    PubMed Central

    Bross, I. D.; Driscoll, D. L.

    1981-01-01

    An official report on the health hazards to nuclear submarine workers at the Portsmouth Naval Shipyard (PNS), who were exposed to low-level ionizing radiation, was based on a casual inspection of the data and not on statistical analyses of the dosage-response relationships. When these analyses are done, serious hazards from lung cancer and other causes of death are shown. As a result of the recent studies on nuclear workers, the new risk estimates have been found to be much higher than the official estimates currently used in setting NRC permissible levels. The official BEIR estimates are about one lung cancer death per year per million persons per rem[s]. The PNS data show 189 lung cancer deaths per year per million persons per rem. PMID:7336762

  14. Unmasking the lung cancer epigenome.

    PubMed

    Belinsky, Steven A

    2015-01-01

    The reprogramming of the epigenome through silencing of genes and microRNAs by cytosine DNA methylation and chromatin remodeling is critical for the initiation and progression of lung cancer through affecting all major cell regulatory pathways. Importantly, the fact that epigenetic reprogramming is reversible by pharmacological agents has opened new avenues for clinical intervention. This review focuses on the tremendous progress made in elucidating genes and microRNAs that are epigenetically silenced in lung cancer and highlights how loss of function impacts cell phenotype and major signaling pathways. The article describes the utility of (a) an in vitro model using hTERT/Cdk4 immortalized human bronchial epithelial cell lines to identify genes and microRNAs silenced during premalignancy and (b) an in vivo orthotopic nude rat lung cancer model to evaluate response to epigenetic therapy. New insights regarding the advantage of aerosol delivery of demethylating agents and the concept of priming tumors for subsequent therapy are presented and discussed. PMID:25668024

  15. Attitudes and Stereotypes in Lung Cancer versus Breast Cancer

    PubMed Central

    Sriram, N.

    2015-01-01

    Societal perceptions may factor into the high rates of nontreatment in patients with lung cancer. To determine whether bias exists toward lung cancer, a study using the Implicit Association Test method of inferring subconscious attitudes and stereotypes from participant reaction times to visual cues was initiated. Participants were primarily recruited from an online survey panel based on US census data. Explicit attitudes regarding lung and breast cancer were derived from participants’ ratings (n = 1778) regarding what they thought patients experienced in terms of guilt, shame, and hope (descriptive statements) and from participants’ opinions regarding whether patients ought to experience such feelings (normative statements). Participants’ responses to descriptive and normative statements about lung cancer were compared with responses to statements about breast cancer. Analyses of responses revealed that the participants were more likely to agree with negative descriptive and normative statements about lung cancer than breast cancer (P<0.001). Furthermore, participants had significantly stronger implicit negative associations with lung cancer compared with breast cancer; mean response times in the lung cancer/negative conditions were significantly shorter than in the lung cancer/positive conditions (P<0.001). Patients, caregivers, healthcare providers, and members of the general public had comparable levels of negative implicit attitudes toward lung cancer. These results show that lung cancer was stigmatized by patients, caregivers, healthcare professionals, and the general public. Further research is needed to investigate whether implicit and explicit attitudes and stereotypes affect patient care. PMID:26698307

  16. Attitudes and Stereotypes in Lung Cancer versus Breast Cancer.

    PubMed

    Sriram, N; Mills, Jennifer; Lang, Edward; Dickson, Holli K; Hamann, Heidi A; Nosek, Brian A; Schiller, Joan H

    2015-01-01

    Societal perceptions may factor into the high rates of nontreatment in patients with lung cancer. To determine whether bias exists toward lung cancer, a study using the Implicit Association Test method of inferring subconscious attitudes and stereotypes from participant reaction times to visual cues was initiated. Participants were primarily recruited from an online survey panel based on US census data. Explicit attitudes regarding lung and breast cancer were derived from participants' ratings (n = 1778) regarding what they thought patients experienced in terms of guilt, shame, and hope (descriptive statements) and from participants' opinions regarding whether patients ought to experience such feelings (normative statements). Participants' responses to descriptive and normative statements about lung cancer were compared with responses to statements about breast cancer. Analyses of responses revealed that the participants were more likely to agree with negative descriptive and normative statements about lung cancer than breast cancer (P<0.001). Furthermore, participants had significantly stronger implicit negative associations with lung cancer compared with breast cancer; mean response times in the lung cancer/negative conditions were significantly shorter than in the lung cancer/positive conditions (P<0.001). Patients, caregivers, healthcare providers, and members of the general public had comparable levels of negative implicit attitudes toward lung cancer. These results show that lung cancer was stigmatized by patients, caregivers, healthcare professionals, and the general public. Further research is needed to investigate whether implicit and explicit attitudes and stereotypes affect patient care. PMID:26698307

  17. [Innovation in Surgery for Advanced Lung Cancer].

    PubMed

    Nakano, Tomoyuki; Yasunori, Sohara; Endo, Shunsuke

    2016-07-01

    Thoracoscopic surgery can be one of less invasive surgical interventions for early stage lung cancer. Locally advanced lung cancer, however, cannot avoid aggressive procedures including pneumonectomy and/or extended combined resection of chest wall, aorta, esophagus, etc. for complete resection. Surgical approach even for advanced lung cancer can be less invasive by benefit from new anti-cancer treatment, innovated manipulations of bronchoplasty and angioplasty, and bench surgery( lung autotransplantation technique). We herein reviewed the strategy to minimize invasive interventions for locally advanced lung cancer, introducing 2 successful cases with advanced lung cancer. The 1st patient is a 62-year old man with centrally advanced lung cancer invading to mediastinum. Right upper sleeve lobectomy with one-stoma carinoplasty following induction chemoradiation therapy was successful. The operation time was 241 minutes. The performance status is good with no recurrence for 60 months after surgery. The 2nd is a 79-year old man with advanced lung cancer invading to the distal aortic arch. Left upper segmentectomy following thoracic endovascular aortic repair with stentgraft was successful with no extracorporeal circulation. The operation time was 170 minutes. The performance status is good with no recurrence for 30 months after surgery. The invasiveness of surgical interventions for local advanced lung cancer can be minimized by innovated device and new anti-cancer drugs. PMID:27440037

  18. SU-E-J-244: Development and Validation of a Knowledge Based Planning Model for External Beam Radiation Therapy of Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Liu, Z; Kennedy, A; Larsen, E; Hayes, C; Grow, A; Bahamondes, S.; Zheng, Y; Wu, X; Choi, M; Pai, S; Li, J; Cranford, K

    2015-06-15

    Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Box plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning.

  19. Proton Stereotactic Body Radiation Therapy for Clinically Challenging Cases of Centrally and Superiorly Located Stage I Non-Small-Cell Lung Cancer

    SciTech Connect

    Register, Steven P.; Zhang Xiaodong; Mohan, Radhe; Chang, Joe Y.

    2011-07-15

    Purpose: To minimize toxicity while maintaining tumor coverage with stereotactic body radiation therapy (SBRT) for centrally or superiorly located stage I non-small-cell lung cancer (NSCLC), we investigated passive-scattering proton therapy (PSPT) and intensity-modulated proton therapy (IMPT). Methods and Materials: Fifteen patients with centrally or superiorly located (within 2 cm of critical structures) stage I NSCLC were treated clinically with three-dimensional photon SBRT (50 Gy in 4 fractions). The photon SBRT plan was compared with the PSPT and IMPT plans. The maximum tolerated dose (MTD) was defined as the dose that exceeded the dose--volume constraints in the critical structures. Results: Only 6 photon plans satisfied the >95% planning target volume (PTV) coverage and MTD constraints, compared to 12 PSPT plans (p = 0.009) and 14 IMPT plans (p = 0.001). Compared with the photon SBRT plans, the PSPT and IMPT plans significantly reduced the mean total lung dose from 5.4 Gy to 3.5 Gy (p < 0.001) and 2.8 Gy (p < 0.001) and reduced the total lung volume receiving 5 Gy, 10 Gy, and 20 Gy (p < 0.001). When the PTV was within 2 cm of the critical structures, the PSPT and IMPT plans significantly reduced the mean maximal dose to the aorta, brachial plexus, heart, pulmonary vessels, and spinal cord. Conclusions: For centrally or superiorly located stage I NSCLC, proton therapy, particularly IMPT, delivered ablative doses to the target volume and significantly reduced doses to the surrounding normal tissues compared with photon SBRT.

  20. Lung Cancer and Interstitial Lung Diseases: A Systematic Review

    PubMed Central

    Archontogeorgis, Kostas; Steiropoulos, Paschalis; Tzouvelekis, Argyris; Nena, Evangelia; Bouros, Demosthenes

    2012-01-01

    Interstitial lung diseases (ILDs) represent a heterogeneous group of more than two hundred diseases of either known or unknown etiology with different pathogenesis and prognosis. Lung cancer, which is the major cause of cancer death in the developed countries, is mainly attributed to cigarette smoking and exposure to inhaled carcinogens. Different studies suggest a link between ILDs and lung cancer, through different pathogenetic mechanisms, such as inflammation, coagulation, dysregulated apoptosis, focal hypoxia, activation, and accumulation of myofibroblasts as well as extracellular matrix accumulation. This paper reviews current evidence on the association between lung cancer and interstitial lung diseases such as idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis, dermatomyositis/polymyositis, rheumatoid arthritis, systemic lupus erythematosus, and pneumoconiosis. PMID:22900168

  1. Year-in-Review of Lung Cancer

    PubMed Central

    2012-01-01

    In the last several years, we have made slow but steady progress in understanding molecular biology of lung cancer. This review is focused on advances in understanding the biology of lung cancer that have led to proof of concept studies on new therapeutic approaches. The three selected topics include genetics, epigenetics and non-coding RNA. This new information represents progress in the integration of molecular mechanisms that to identify more effective ways to target lung cancer. PMID:23166546

  2. Curbing the burden of lung cancer.

    PubMed

    Urman, Alexandra; Hosgood, H Dean

    2016-06-01

    Lung cancer contributes substantially to the global burden of disease and healthcare costs. New screening modalities using low-dose computerized tomography are promising tools for early detection leading to curative surgery. However, the screening and follow-up diagnostic procedures of these techniques may be costly. Focusing on prevention is an important factor to reduce the burden of screening, treatment, and lung cancer deaths. The International Agency for Research on Cancer has identified several lung carcinogens, which we believe can be considered actionable when developing prevention strategies. To curb the societal burden of lung cancer, healthcare resources need to be focused on early detection and screening and on mitigating exposure(s) of a person to known lung carcinogens, such as active tobacco smoking, household air pollution (HAP), and outdoor air pollution. Evidence has also suggested that these known lung carcinogens may be associated with genetic predispositions, supporting the hypothesis that lung cancers attributed to differing exposures may have developed from unique underlying genetic mechanisms attributed to the exposure of interest. For instance, smokingattributed lung cancer involves novel genetic markers of risk compared with HAP-attributed lung cancer. Therefore, genetic risk markers may be used in risk stratification to identify subpopulations that are at a higher risk for developing lung cancer attributed to a given exposure. Such targeted prevention strategies suggest that precision prevention strategies may be possible in the future; however, much work is needed to determine whether these strategies will be viable. PMID:27178304

  3. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    SciTech Connect

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.; Mukhopadhyay, Nitai; Weiss, Elisabeth

    2014-01-01

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectors and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.

  4. Quantification of incidental mediastinal and hilar irradiation delivered during definitive stereotactic body radiation therapy for peripheral non-small cell lung cancer

    SciTech Connect

    Martin, Kate L.; Gomez, Jorge; Nazareth, Daryl P.; Warren, Graham W.; Singh, Anurag K.

    2012-07-01

    To determine the amount of incidental radiation dose received by the mediastinal and hilar nodes for patients with non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). Fifty consecutive patients with NSCLC, treated using an SBRT technique, were identified. Of these patients, 38 had a prescription dose of 60 Gy in 20-Gy fractions and were eligible for analysis. For each patient, ipsilateral upper (level 2) and lower (level 4) paratracheal, and hilar (level 10) nodal regions were contoured on the planning computed tomography (CT) images. Using the clinical treatment plan, dose and volume calculations were performed retrospectively for each nodal region. SBRT to upper lobe tumors resulted in an average total ipsilateral mean dose of between 5.2 and 7.8 Gy for the most proximal paratracheal nodal stations (2R and 4R for right upper lobe lesions, 2L and 4L for left upper lobe lesions). SBRT to lower lobe tumors resulted in an average total ipsilateral mean dose of between 15.6 and 21.5 Gy for the most proximal hilar nodal stations (10R for right lower lobe lesions, 10 l for left lower lobe lesions). Doses to more distal nodes were substantially lower than 5 Gy. The often substantial incidental irradiation, delivered during SBRT for peripheral NSCLC of the lower lobes to the most proximal hilar lymph nodes may be therapeutic for low-volume, subclinical nodal disease. Treatment of peripheral upper lobe lung tumors delivers less incidental irradiation to the paratracheal lymph nodes with lower likelihood of therapeutic benefit.

  5. Chemotherapy for lung cancers: here to stay.

    PubMed

    Kris, Mark G; Hellmann, Matthew D; Chaft, Jamie E

    2014-01-01

    Four decades of clinical research document the effectiveness of chemotherapy in patients with lung cancers. Chemotherapeutic agents can improve lung cancer symptoms, lengthen life in most patients with lung cancers, and enhance curability in individuals with locoregional disease when combined with surgery or irradiation. Chemotherapy's effectiveness is enhanced in patients with EGFR-mutant and ALK-positive lung cancers and can "rescue" individuals whose oncogene-driven cancers have become resistant to targeted agents. As immunotherapies become part of the therapeutic armamentarium for lung cancers, chemotherapeutic drugs have the potential to modulate the immune system to enhance the effectiveness of immune check point inhibitors. Even in this era of personalized medicine and targeted therapies, chemotherapeutic agents remain essential components in cancer care. PMID:24857127

  6. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2013-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.

  7. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  8. TNM classification for lung cancer.

    PubMed

    Watanabe, Yoh

    2003-12-01

    The international tumor-node-metastasis (TNM) staging system is the "international language" in cancer diagnosis and treatment. Six revisions of the TNM staging system for lung cancer have been repeated over the past 35 years after the beginning of UICC-TNM classification in 1968. The 1997 revision for lung cancer has undergone an extensive correction for many deficiencies of the old staging system. As a result, the new staging system appears to be a great improvement over previous editions. There are, however, still some controversies and proposals for revising, even when the new staging system is applied in daily diagnoses and treatment for lung cancer. In the present paper, these problems are presented and discussed. Main subjects for discussions are as follows: (1). Since the 2nd revision, T1 and T2 lesions were divided at the border of a 3 cm tumor size. Is 3 cm diameter an appropriate cut-off point for dividing T1 and T2 lesions? (2). Is it valid to subdivide T1 and T2 lesions into each A and B? (3). Is it appropriate to down-stage all of T3N0M0 to stage IIB, because there exists heterogeneity of T3? (4). Definitions of T4 lesion. (5). Controversies in three kinds of lymph node maps. Especially, where there is a boundary between N1 and N2 station in each map? (6) How to classify separate tumor nodules (STN) in the same lobe, and in the non-primary lobe. (7) Controversy exists concerning the validity of present stage grouping, because there are no significant difference of survivals between IB and IIA, IIA and IIB in most reports and also between T3N0M0 and T3N1M0 in some reports. PMID:15003094

  9. Pretreatment prognostic factors in patients with early-stage (I/II) non-small-cell lung cancer treated with hyperfractionated radiation therapy alone

    SciTech Connect

    Jeremic, Branislav . E-mail: b.jeremic@iaea.org; Milicic, Biljana; Dagovic, Aleksandar; Acimovic, Ljubisa; Milisavljevic, Slobodan

    2006-07-15

    Purpose: To investigate influence of various pretreatment prognostic factors in patients with early stage (I/II) non-small-cell lung cancer (NSCLC) treated with hyperfractionated radiation therapy alone. Patients and Methods: One hundred and sixteen patients were treated with tumor doses of 69.6 Gy, 1.2-Gy, twice-daily fractionation. There were 49 patients with Stage I and 67 patients with Stage II. Eighty patients had Karnofsky performance status (KPS) 90-100 and 95 patients had <5% weight loss. Peripheral tumors were observed in 57 patients. Squamous histology was observed in 70 patients and the majority of patients had concomitant disease (n = 72). Results: The median survival time for all patients was 29 months; 5-year survival was 29%. The median time to local progression and the distant metastasis were not achieved, whereas 5-year local progression-free and distant metastasis-free survivals were 50% and 72%, respectively. Multivariate analysis identified KPS, weight loss, location, histology, and the reason for not undergoing surgery as prognostic factors for survival. KPS, location, and histology influenced local progression-free survival, whereas only KPS and weight loss influenced distant metastasis-free survival. Conclusions: This retrospective analysis identified KPS and weight loss as the most important prognostic factors of outcome in patients with early-stage NSCLC treated with hyperfractionation radiation therapy.

  10. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients. PMID:26483336

  11. Proton beam therapy for locally advanced lung cancer: A review

    PubMed Central

    Schild, Steven E; Rule, William G; Ashman, Jonathan B; Vora, Sujay A; Keole, Sameer; Anand, Aman; Liu, Wei; Bues, Martin

    2014-01-01

    Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy (PBT) as a component of a combined modality program for locally advanced lung cancers. It was specifically written for the non-radiation oncologist who desires greater understanding of this newer treatment modality. This review describes and compares photon (X-ray) radiotherapy (XRT) to PBT. The physical differences of these beams are described and the clinical literature is reviewed. Protons can be used to create treatment plans delivering significantly lower doses of radiation to the adjacent organs at risk (lungs, esophagus, and bone marrow) than photons. Clinically, PBT combined with chemotherapy has resulted in low rates of toxicity compared to XRT. Early results suggest a possible improvement in survival. The clinical results of proton therapy in lung cancer patients reveal relatively low rates of toxicity and possible survival benefits. One randomized study is being performed and another is planned to clarify the clinical differences in patient outcome for PBT compared to XRT. Along with the development of better systemic therapy, newer forms of radiotherapy such as PBT should positively impact the care of lung cancer patients. This review provides the reader with the current status of this new technology in treating locally advanced lung cancer. PMID:25302161

  12. Lung Cancer in Never Smokers

    PubMed Central

    Yang, Ping

    2012-01-01

    Lung cancer in never smokers (LCINS) has lately been recognized as a unique disease based on rapidly gained knowledge from genomic changes to treatment responses. The focus of this article is on current knowledge and challenges with regard to LCINS expanded from recent reviews highlighting five areas: (1) distribution of LCINS by temporal trends, geographic regions, and populations; (2) three well-recognized environmental risk factors; (3) other plausible environmental risk factors; (4) prior chronic lung diseases and infectious diseases as risk factors; and (5) lifestyles as risk or protective factors. This article will also bring attention to recently published literature in two pioneering areas: (1) histological characteristics, clinical features with emerging new effective therapies, and social and psychological stigma; and (2) searching for susceptibility genes using integrated genomic approaches. PMID:21500120

  13. Beliefs and attitudes about lung cancer screening among smokers.

    PubMed

    Jonnalagadda, Sirisha; Bergamo, Cara; Lin, Jenny J; Lurslurchachai, Linda; Diefenbach, Michael; Smith, Cardinale; Nelson, Judith E; Wisnivesky, Juan P

    2012-09-01

    The National Lung Screening Trial (NLST) recently reported that annual computed tomography (CT) screening is associated with decreased lung cancer mortality in high-risk smokers. Beliefs about lung cancer and screening, particularly across race and ethnicity, and their influence on CT screening utilization are largely unexamined. Our study recruited asymptomatic, high-risk smokers, 55-74 years of age from primary care clinics in an academic urban hospital. Guided by the self-regulation theory, we evaluated cognitive and affective beliefs about lung cancer. Intention to screen for lung cancer with a CT scan was assessed by self-report. We used univariate and logistic regression analyses to compare beliefs about screening and intention to screen among minority (Blacks and Hispanics) and non-minority participants. Overall, we enrolled 108 participants, of which 40% were Black and 34% were Hispanic; the mean age was 62.3 years, and median pack-years of smoking was 26. We found that intention to screen was similar among minorities and non-minorities (p=0.19); however, Hispanics were less likely to report intention to screen if they had to pay for the test (p=0.02). Fatalistic beliefs, fear of radiation exposure, and anxiety related to CT scans were significantly associated with decreased intention to screen (p<0.05). Several differences were observed in minority versus non-minority participants' beliefs toward lung cancer and screening. In conclusion, we found that concerns about cost, which were particularly prominent among Hispanics, as well as fatalism and radiation exposure fears may constitute barriers to lung cancer screening. Lung cancer screening programs should address these factors to ensure broad participation, particularly among minorities. PMID:22681870

  14. Vaccine therapy in non-small-cell lung cancer.

    PubMed

    Albright, Carol; Garst, Jennifer

    2007-07-01

    Lung cancer is the leading cause of death from cancer worldwide. First-line therapy is based on stage at diagnosis and can include chemotherapy, radiation, and surgery. Despite advances, the prognosis for advanced-stage lung cancer is very poor. Vaccines with the capability to activate the host immune system may have a role in second-line therapy. Advances in the understanding of cellular and molecular immunology are forming the basis for improving vaccine therapy. Most trials to date have demonstrated safety but inconsistent efficacy. Further research is needed to enhance this potential. PMID:17588347

  15. Enhanced Quitline Intervention in Smoking Cessation for Patients With Non-Metastatic Lung Cancer

    ClinicalTrials.gov

    2015-09-28

    Limited Stage Small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Tobacco Use Disorder

  16. Environmental radiation and the lung

    PubMed Central

    Hamrick, Philip E.; Walsh, Phillip J.

    1974-01-01

    Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334

  17. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  18. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  19. What You Need to Know about Lung Cancer

    MedlinePlus

    ... Publications Reports What You Need To Know About™ Lung Cancer This booklet is about lung cancer. Learning about medical care for your cancer ... ePub This booklet covers: The anatomy of the lungs and basics about lung cancer Treatment for lung ...

  20. MET inhibition in lung cancer

    PubMed Central

    Giaj Levra, Matteo; Novello, Silvia

    2013-01-01

    Targeted agents have completely changed cancer treatment strategy, leading it from a “one size fits all” approach to a customized therapy. In this scenario Met, a heterodimere receptor tyrosine kinase deeply involved into embryogenesis and organogenesis, has been introduced many years ago as a potential target for biological agents, becoming “druggable” only in this last period of time. Met can be altered through receptor overexpression, genomic amplification, mutations or alternative splicing, autocrine or paracrine secretion of hepatic growth factor (HGF): these dysregulations stimulate tumorigenesis (in terms of cell-cell detachment, proliferation, invasion, angiogenesis and survival) and metastatization. Met is overexpressed in lung cancer and Met gene amplification can drive the dependency of cell survival and proliferation upon the Met signaling. Both Met overexpression and amplification seem to correlate with poor prognosis. Met amplification is also described to be linked to EGFR acquired resistance. Several Met inhibitors have been tested both in preclinical and human trials, demonstrating activity in lung cancer treatment. This paper aims to summarize data on Met biological function, on its interaction with cell signaling and other pathways and to present data on those Met inhibitors currently under evaluation. PMID:25806202

  1. Perceptions of lung cancer and potential impacts on funding and patient care: a qualitative study.

    PubMed

    Tran, Kim; Delicaet, Kendra; Tang, Theresa; Ashley, Leslie Beard; Morra, Dante; Abrams, Howard

    2015-03-01

    The objective of this study was to explore health-care professionals', health administrators', and not-for-profit cancer organization representatives' perceptions of lung cancer-related stigma and nihilism and the perceived impacts on funding and patient care. This is a qualitative descriptive study using semi-structured interviews, which was conducted in Ontario, Canada. Seventy-four individuals from medical oncology, radiation oncology, thoracic surgery, respirology, pathology, radiology, primary care, palliative care, nursing, pharmacy, social work, genetics, health administration, and not-for-profit cancer organizations participated in this study. Participants described lung cancer-related stigma and nihilism and its negative impact on patients' psychological health, lung cancer funding, and patient care. The feeling of guilt and shame experienced by lung cancer patients as a result of the stigma associated with the disease was described. In terms of lung cancer funding, stigma was described as a reason lung cancer receives significantly less research funding compared to other cancers. In terms of patient care, lung cancer-related nihilism was credited with negatively impacting physician referral patterns with the belief that lung cancer patients were less likely to receive referrals for medical treatment. Health-care professionals, health administrators, and not-for-profit cancer organization representatives described lung cancer-related stigma and nihilism with far-reaching consequences. Further work is needed to increase education and awareness about lung cancer to reduce the stigma and nihilism associated with the disease. PMID:24882441

  2. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study

    SciTech Connect

    Kong, F.-M. . E-mail: Fengkong@med.umich.edu; Haken, Randall K. ten; Schipper, Matthew J.; Sullivan, Molly A.; Chen, Ming; Lopez, Carlos; Kalemkerian, Gregory P.; Hayman, James A.

    2005-10-01

    Purpose: To determine whether high-dose radiation leads to improved outcomes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included 106 patients with newly diagnosed or recurrent Stages I-III NSCLC, treated with 63-103 Gy in 2.1-Gy fractions, using three-dimensional conformal radiation therapy (3D-CRT) per a dose escalation trial. Targets included the primary tumor and any lymph nodes {>=}1 cm, without intentionally including negative nodal regions. Nineteen percent of patients (20/106) received neoadjuvant chemotherapy. Patient, tumor, and treatment factors were evaluated for association with outcomes. Estimated median follow-up was 8.5 years. Results: Median survival was 19 months, and 5-year overall survival (OS) was 13%. Multivariate analysis revealed weight loss (p = 0.011) and radiation dose (p = 0.0006) were significant predictors for OS. The 5-year OS was 4%, 22%, and 28% for patients receiving 63-69, 74-84, and 92-103 Gy, respectively. Although presence of nodal disease was negatively associated with locoregional control under univariate analysis, radiation dose was the only significant predictor when multiple variables were included (p = 0.015). The 5-year control rate was 12%, 35%, and 49% for 63-69, 74-84, and 92-103 Gy, respectively. Conclusions: Higher dose radiation is associated with improved outcomes in patients with NSCLC treated in the range of 63-103 Gy.

  3. Chemoprevention studies within lung cancer screening programmes.

    PubMed

    Veronesi, G; Guerrieri-Gonzaga, A; Infante, M; Bonanni, B

    2015-01-01

    While aggressive tobacco control and help to stop smoking are essential weapons in the fight against lung cancer, screening with low-dose computed tomography (LDCT) in high-risk populations and chemoprevention may also contribute to reducing lung cancer deaths. Persons undergoing LDCT screening are an ideal population to be tested for agents potentially able to prevent the development of lung cancer by the regression of precancerous lesions, which are routinely monitored as part of the screening process. Peripheral subsolid nodules appear as particularly suitable targets, since many are adenocarcinoma precursors. A study on inhaled budesonide (a potential chemopreventive drug) for 1 year found that the mean size of non-solid lung nodules was significantly reduced over 5 years of follow-up, compared to inhaled placebo, in a population of high-risk individuals with indeterminate lung nodules not requiring immediate specific investigation for lung cancer and detected as part of a lung cancer screening program with LDCT. A new randomised placebo-controlled phase-II trial to test the ability of aspirin to induce the regression of non-solid and partially solid nodules detected by LDCT screening has been started. The effect of aspirin on a miRNA signature able to predict the presence of both cancer and precancerous lesions in high-risk asymptomatic individuals is also being monitored in the trial. This signature was previously shown to predict the presence of both lung cancer and non-solid lung nodules in asymptomatic individuals. PMID:26635901

  4. Lung cancer screening: history, current perspectives, and future directions

    PubMed Central

    Sharma, Divakar; Newman, Thomas G.

    2015-01-01

    Lung cancer has remained the leading cause of death worldwide among all cancers. The dismal 5-year survival rate of 16% is in part due to the lack of symptoms during early stages and lack of an effective screening test until recently. Chest X-ray and sputum cytology were studied extensively as potential screening tests for lung cancer and were conclusively proven to be of no value. Subsequently, a number of studies compared computed tomography (CT) with the chest X-ray. These studies did identify lung cancer in earlier stages. However, they were not designed to prove a reduction in mortality. Later trials have focused on low-dose CT (LDCT) as a screening tool. The largest US trial – the National Lung Screening Trial (NLST) – enrolled approximately 54,000 patients and revealed a 20% reduction in mortality. While a role for LDCT in lung cancer screening has been established, the issues of high false positive rates, radiation risk, and cost effectiveness still need to be addressed. The guidelines of the international organizations that now include LDCT in lung cancer screening are reviewed. Other methods that may improve earlier detection such as positron emission tomography, autofluorescence bronchoscopy, and molecular biomarkers are also discussed. PMID:26528348

  5. [Developing surgical options for lung cancer].

    PubMed

    Sihvo, Eero

    2016-01-01

    The selection of correct treatment for lung cancer is multidisciplinary collaboration and requires careful assessment of the extent of the tumor and the condition of the patient. In localized non-small cell lung cancer, mere surgery or surgery in combination with adjuvant therapies are the best options for curing the disease. The trend in modern surgery is mini-invasiveness and preservation of lung tissue. Accordingly, any unit conducting lung cancer operations should have access to all modern techniques in order to provide each patient with optimal, patient-tailored surgical therapy. PMID:27132298

  6. Classification and Pathology of Lung Cancer.

    PubMed

    Zheng, Min

    2016-07-01

    Advancement in the understanding of lung tumor biology enables continued refinement of lung cancer classification, reflected in the recently introduced 2015 World Health Organization classification of lung cancer. In small biopsy or cytology specimens, special emphasis is placed on separating adenocarcinomas from the other lung cancers to effectively select tumors for targeted molecular testing. In resection specimens, adenocarcinomas are further classified based on architectural pattern to delineate tissue types of prognostic significance. Neuroendocrine tumors are divided into typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma based on a combination of features, especially tumor cell proliferation rate. PMID:27261908

  7. The impact of the Cancer Genome Atlas on lung cancer.

    PubMed

    Chang, Jeremy T-H; Lee, Yee Ming; Huang, R Stephanie

    2015-12-01

    The Cancer Genome Atlas (TCGA) has profiled more than 10,000 samples derived from 33 types of cancer to date, with the goal of improving our understanding of the molecular basis of cancer and advancing our ability to diagnose, treat, and prevent cancer. This review focuses on lung cancer as it is the leading cause of cancer-related mortality worldwide in both men and women. Particularly, non-small cell lung cancers (including lung adenocarcinoma and lung squamous cell carcinoma) were evaluated. Our goal was to demonstrate the impact of TCGA on lung cancer research under 4 themes: diagnostic markers, disease progression markers, novel therapeutic targets, and novel tools. Examples are given related to DNA mutation, copy number variation, messenger RNA, and microRNA expression along with methylation profiling. PMID:26318634

  8. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib

    SciTech Connect

    Gan, Gregory N.; Weickhardt, Andrew J.; Scheier, Benjamin; Doebele, Robert C.; Gaspar, Laurie E.; Kavanagh, Brian D.; Camidge, D. Ross

    2014-03-15

    Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progression meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival.

  9. Phase I Study of Celecoxib with Concurrent Irinotecan, Cisplatin, and Radiation Therapy for Patients with Unresectable Locally Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Komaki, Ritsuko; Wei, Xiong; Allen, Pamela K.; Liao, Zhongxing; Milas, Luka; Cox, James D.; O’Reilly, Michael S.; Chang, Joe Y.; McAleer, Mary Frances; Jeter, Melenda; Blumenschein, George R.; Kies, Merrill S.

    2011-01-01

    Purpose: Preclinical findings suggest that adding targeted therapies to combination radiation-chemotherapy can enhance treatment efficacy; however, this approach may enhance normal tissue toxicity. We investigated the maximum tolerated dose, dose-limiting toxicities, and response rate when the selective cyclooxygenase-2 inhibitor celecoxib is added to concurrent irinotecan, cisplatin, and radiation therapy for patients with inoperable stage II–III non-small cell lung cancer (NSCLC). Methods and Materials: Eighteen patients were analyzed in a phase I clinical dose-escalation trial. Celecoxib was given daily beginning 5 days before radiation followed by maintenance doses for 12 weeks. Toxicity was graded with the Common Terminology Criteria for Adverse Events V3.0 and response with the World Health Organization system. Primary endpoints were maximum tolerated dose of celecoxib and treatment toxicity; secondary endpoints were response and survival rates. Results: The maximum tolerated dose of celecoxib was not reached, in part owing to discontinuation of the drug supply. At doses of 200 or 400 mg/day, no patients experienced any dose-limiting toxicity (acute grade ≥4 esophagitis or pneumonitis, neutropenic fever or thrombocytopenia requiring transfusion, or acute grade ≥3 diarrhea). Grade 3 toxicities were leukopenia (five patients), fatigue (3), pneumonitis (2), dyspnea (1), pain (1), and esophageal stricture (1). Interestingly, pulmonary fibrosis (a late toxicity) was no more severe in the higher-dose (400-mg) group and may have been less common than in the lower-dose group. The clinical response rate was 100% (8 complete, 10 partial). Two-year rates were: overall survival 65%; local-regional control 69%; distant metastasis-free survival 71%; and disease-free survival 64%. Conclusion: Although preliminary, our results suggest that adding celecoxib to concurrent chemoradiation for inoperable NSCLC is safe and can improve outcome without increasing normal

  10. Phase I Trial of Radiation With Concurrent and Consolidation Pemetrexed and Cisplatin in Patients With Unresectable Stage IIIA/B Non-Small-Cell Lung Cancer

    SciTech Connect

    Brade, Anthony; Bezjak, Andrea; MacRae, Robert; Laurie, Scott; Sun, Alex; Cho, John; Leighl, Natasha; Pearson, Shannon; Southwood, Bernadette; Wang, Lisa; McGill, Shauna; Iscoe, Neill; Shepherd, Frances A.

    2011-04-01

    Purpose: To evaluate the feasibility and safety of concurrent pemetrexed/cisplatin/thoracic radiotherapy followed by consolidation pemetrexed/cisplatin for unresectable Stage IIIA/B non-small-cell lung cancer (NSCLC). Methods and Materials: Eligible patients with <5% weight loss and good performance status received two cycles of pemetrexed (300, 400, or 500 mg/m{sup 2} on Days 1 and 22 for Dose Levels 1, 2, and 3/4, respectively) and cisplatin (25 mg/m{sup 2} Days 1-3 for Dose Levels 1-3; 20 mg/m{sup 2} Days 1-5 for Dose Level 4) concurrent with thoracic radiation (61-66 Gy in 31-35 fractions). Consolidation consisted of two cycles of pemetrexed/cisplatin (500 mg/m{sup 2}, 75 mg/m{sup 2}) 21 days apart, after concurrent therapy. Results: Between January 2006 and October 2007, 16 patients entered the study. Median follow-up was 17.2 months. No dose-limiting toxicities were observed. Median radiation dose was 64 Gy (range, 45-66 Gy). Rates of significant Grade 3/4 hematologic toxicity were 38% and 7%, respectively. One patient experienced Grade 3 acute esophagitis, and 2 experienced late (Grade 3) esophageal stricture, successfully managed with dilation. One patient experienced Grade 3 pneumonitis. The overall response rate was 88%. One-year overall survival was 81%. Conclusions: Full systemic dose pemetrexed seems to be safe with full-dose cisplatin and thoracic radiation in Stage IIIA/B NSCLC. Pemetrexed is the first third-generation cytotoxic agent tolerable at full dose in this setting. A Phase II study evaluating Dose Level 4 is ongoing.

  11. SU-D-18A-01: Tumor Motion Tracking with a Regional Deformable Registration Model for Four Dimensional Radiation Treatment of Lung Cancer

    SciTech Connect

    Chao, M; Lo, Y; Yuan, Y; Sheu, R; Rosenzweig, K

    2014-06-01

    Purpose: To develop a tumor motion model from four-dimensional computed tomography (4DCT) of thoracic patients and demonstrate its impact on 4D radiation therapy simulation. Methods: A regional deformable image registration algorithm was introduced to extract tumor motion out of patient's breathing cycle. The gross target volume (GTV) was manually delineated on a selected phase of 4DCT and a subregion with 10mm margin supplemented to the GTV was created on the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA). Together with 4DCT the structures were exported into an inhouse research platform. A free form B-Spline deformable registration was carried out to map the subregion to other respiratory phases. The displacement vector fields were employed to propagate GTV contours with which the center of mass (CoM) of the GTV was computed for each breathing phase of 4DCT. The resultant GTV motion and its volumetric shape are utilized to facilitate 4D treatment planning. Five lung cancer patients undergoing stereotactic body radiation therapy were enrolled and their 4DCT sets were included in the study. Results: Application of the algorithm to five thoracic patients indicates that clinically satisfactory outcomes were achievable with a spatial accuracy better than 2mm for GTV contour propagation between adjacent phases, and 3mm between opposite phases. The GTV CoM was found to be in the range of 2.0mm through 2.5cm, depending upon the tumor location. Compared to the traditional whole image based registration, the computation of the regional model was found to be an order of magnitude more efficient. Conclusion: A regional deformable registration model was implemented to extract tumor motion. It will have widespread application in 4D radiation treatment planning in the future to maximally utilize the available spatial-tempo information.

  12. High Radiation Dose May Reduce the Negative Effect of Large Gross Tumor Volume in Patients With Medically Inoperable Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Zhao Lujun; West, Brady T.; Hayman, James A.; Lyons, Susan; Cease, Kemp; Kong, F.-M. . E-mail: Fengkong@med.umich.edu

    2007-05-01

    Purpose: To determine whether the effect of radiation dose varies with gross tumor volume (GTV) in patients with stage I/II non-small cell lung cancer (NSCLC). Methods and Materials: Included in the study were 114 consecutive patients with medically inoperable stage I/II NSCLC treated with three-dimensional conformal radiotherapy between 1992 and 2004. The median biologic equivalent dose (BED) was 79.2 Gy (range, 58.2-124.5 Gy). The median GTV was 51.8 cm{sup 3} (range, 2.1-727.8 cm{sup 3}). The primary endpoint was overall survival (OS). Kaplan-Meier estimation and Cox regression models were used for survival analyses. Results: Multivariate analysis showed that there was a significant interaction between radiation dose and GTV (p < 0.001). In patients with BED {<=}79.2 Gy (n = 68), the OS medians for patients with GTV >51.8 cm{sup 3} and {<=}51.8 cm{sup 3} were 18.2 and 23.9 months, respectively (p 0.015). If BED was >79.2 Gy (n = 46), no significant difference was found between GTV groups (p = 0.681). For patients with GTV >51.8 cm{sup 3} (n = 45), the OS medians in those with BED >79.2 Gy and {<=}79.2 Gy were 30.4 and 18.2 months, respectively (p < 0.001). If GTV was {<=}51.8 cm{sup 3} (n = 45), the difference was no longer significant (p = 0.577). Conclusion: High-dose radiation is more important for patients with larger tumors and may be effective in reducing the adverse outcome associated with large GTV. Further prospective studies are needed to confirm this finding.

  13. Lung Cancer - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Arabic) سرطان الرئة - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) Lung Cancer Karcinom pluća - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) Lung Cancer 肺癌 - 简体中文 (Chinese - ...

  14. Lung Cancer - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Lung Cancer URL of this page: https://medlineplus.gov/languages/lungcancer.html Other topics ... V W XYZ List of All Topics All Lung Cancer - Multiple Languages ... To use the sharing features on this page, please enable JavaScript. Arabic (العربية) Bosnian (Bosanski) Chinese - ...

  15. Recent advances in lung cancer biology

    SciTech Connect

    Lechner, J.

    1995-12-31

    This paper provides an overview of carcinogenesis, especially as related to lung cancers. Various growth factors and their mutated forms as oncogenes are discussed with respect to gene location and their role in the oncogenic process. Finally the data is related to lung cancer induction in uranium miners and exposure to radon.

  16. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  17. Long-term survival of a patient with lung cancer metastasis to the spine following surgical treatment combined with radiation and epithelial growth factor receptor inhibitor therapy: A case report

    PubMed Central

    XU, SONGFENG; YU, XIUCHUN; XU, MING

    2015-01-01

    The prognosis of patients with lung cancer metastasis to the spine is poor, and the choice of surgery is questionable based on the aggressiveness of the disease. The present study describes a case of a 56-year-old male with metastatic spinal cord compression. The patient underwent surgery for posterior decompression and internal fixation, in addition to receiving postoperative radiation and epidermal growth factor receptor (EGFR) inhibitor medication. After 24 months, positron emission tomography-computed tomography scan showed a reduction in the left upper lobe mass in the short axis and inactivation of the neoplasm in the left upper lobe and T9 vertebra. Based on these promising results, it is suggested that orthopedic oncologists consider the combination of radiation and EGFR inhibitor therapy with surgery for the treatment of lung cancer metastasis to the spine. PMID:25452785

  18. Accelerated repopulation as a cause of radiation treatment failure in non-small cell lung cancer: review of current data and future clinical strategies.

    PubMed

    Yom, Sue S

    2015-04-01

    Despite convincing evidence that the principles of accelerated repopulation would open up additional therapeutic opportunities in the treatment of advanced-stage non-small cell lung cancer, this strategy has been generally underexplored. The implementation of accelerated radiotherapy schedules has been hampered by logistical barriers, concerns about acute toxicity, and the prioritization of integrating concurrent chemotherapy into the standard treatment platform. At present, it is unclear to what extent accelerated fractionation will influence future treatment paradigms in non-small cell lung cancer, although technical advances in radiotherapy, allowing higher dose delivery with reduced toxicity, could permit the development of more convenient and tolerable forms of accelerated schedules. PMID:25771413

  19. Survival Outcome After Stereotactic Body Radiation Therapy and Surgery for Stage I Non-Small Cell Lung Cancer: A Meta-Analysis

    SciTech Connect

    Zheng, Xiangpeng; Schipper, Matthew; Kidwell, Kelley; Lin, Jules; Reddy, Rishindra; Ren, Yanping; Chang, Andrew; Lv, Fanzhen; Orringer, Mark; Spring Kong, Feng-Ming

    2014-11-01

    Purpose: This study compared treatment outcomes of stereotactic body radiation therapy (SBRT) with those of surgery in stage I non-small cell lung cancer (NSCLC). Methods and Materials: Eligible studies of SBRT and surgery were retrieved through extensive searches of the PubMed, Medline, Embase, and Cochrane library databases from 2000 to 2012. Original English publications of stage I NSCLC with adequate sample sizes and adequate SBRT doses were included. A multivariate random effects model was used to perform a meta-analysis to compare survival between treatments while adjusting for differences in patient characteristics. Results: Forty SBRT studies (4850 patients) and 23 surgery studies (7071 patients) published in the same period were eligible. The median age and follow-up duration were 74 years and 28.0 months for SBRT patients and 66 years and 37 months for surgery patients, respectively. The mean unadjusted overall survival rates at 1, 3, and 5 years with SBRT were 83.4%, 56.6%, and 41.2% compared to 92.5%, 77.9%, and 66.1% with lobectomy and 93.2%, 80.7%, and 71.7% with limited lung resections. In SBRT studies, overall survival improved with increasing proportion of operable patients. After we adjusted for proportion of operable patients and age, SBRT and surgery had similar estimated overall and disease-free survival. Conclusions: Patients treated with SBRT differ substantially from patients treated with surgery in age and operability. After adjustment for these differences, OS and DFS do not differ significantly between SBRT and surgery in patients with operable stage I NSCLC. A randomized prospective trial is warranted to compare the efficacy of SBRT and surgery.

  20. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    SciTech Connect

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-06-15

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  1. [Idiopathic pulmonary fibrosis and lung cancer].

    PubMed

    Yoshimura, Akinobu; Kudoh, Syoji

    2003-02-01

    It is widely known that patients with idiopathic pulmonary fibrosis (IPF) are frequently associated with lung cancer. Although a complication with lung cancer is an important prognostic factor for IPF, standard treatments for lung cancer cannot be given because of IPF. Especially, the administration of many anticancer agents is limited by a complication with IPF, which is recognized as a risk factor for the development of fatal lung injury in cancer chemotherapy. Epidemiological studies reveal that cigarette smoking and occupational and environmental exposure to toxic substances are common risk factors for both IPF and lung cancer. It has been assumed that metaplasia in fibrous lesions is pathologically a precancerous lesion, but it is necessary to prove several genetic abnormalities in the process of carcinogenesis in order to clarify that. Currently, several genetic abnormalities in IPF, including in p53, K-ras, FHIT and transforming growth factor (TGF)-beta 1 type II receptor, have been reported. PMID:12610869

  2. Asbestos, Lung Cancers, and Mesotheliomas

    PubMed Central

    Heintz, Nicholas H.; Janssen-Heininger, Yvonne M. W.; Mossman, Brooke T.

    2010-01-01

    Fifteen years have passed since we published findings in the AJRCMB demonstrating that induction of early response fos/jun proto-oncogenes in rodent tracheal and mesothelial cells correlates with fibrous geometry and pathogenicity of asbestos. Our study was the first to suggest that the aberrant induction of signaling responses by crocidolite asbestos and erionite, a fibrous zeolite mineral associated with the development of malignant mesotheliomas (MMs) in areas of Turkey, led to altered gene expression. New data questioned the widely held belief at that time that the carcinogenic effects of asbestos in the development of lung cancer and MM were due to genotoxic or mutagenic effects. Later studies by our group revealed that proto-oncogene expression and several of the signaling pathways activated by asbestos were redox dependent, explaining why antioxidants and antioxidant enzymes were elevated in lung and pleura after exposure to asbestos and how they alleviated many of the phenotypic and functional effects of asbestos in vitro or after inhalation. Since these original studies, our efforts have expanded to understand the interface between asbestos-induced redox-dependent signal transduction cascades, the relationship between these pathways and cell fate, and the role of asbestos and cell interactions in development of asbestos-associated diseases. Of considerable significance is the fact that the signal transduction pathways activated by asbestos are also important in survival and chemoresistance of MMs and lung cancers. An understanding of the pathogenic features of asbestos fibers and dysregulation of signaling pathways allows strategies for the prevention and therapy of asbestos-related diseases. PMID:20068227

  3. Study of Ponatinib in Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers

    ClinicalTrials.gov

    2016-06-07

    Adenocarcinoma of the Lung; Extensive Stage Small Cell Lung Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  4. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  5. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  6. Effective Rat Lung Tumor Model for Stereotactic Body Radiation Therapy.

    PubMed

    Zhang, Zhang; Wodzak, Michelle; Belzile, Olivier; Zhou, Heling; Sishc, Brock; Yan, Hao; Stojadinovic, Strahinja; Mason, Ralph P; Brekken, Rolf A; Chopra, Rajiv; Story, Michael D; Timmerman, Robert; Saha, Debabrata

    2016-06-01

    Stereotactic body radiation therapy (SBRT) has found an important role in the treatment of patients with non-small cell lung cancer, demonstrating improvements in dose distribution and even tumor cure rates, particularly for early-stage disease. Despite its emerging clinical efficacy, SBRT has primarily evolved due to advances in medical imaging and more accurate dose delivery, leaving a void in knowledge of the fundamental biological mechanisms underlying its activity. Thus, there is a critical need for the development of orthotropic animal models to further probe the biology associated with high-dose-per-fraction treatment typical of SBRT. We report here on an improved surgically based methodology for generating solitary intrapulmonary nodule tumors, which can be treated with simulated SBRT using the X-RAD 225Cx small animal irradiator and Small Animal RadioTherapy (SmART) Plan treatment system. Over 90% of rats developed solitary tumors in the right lung. Furthermore, the tumor response to radiation was monitored noninvasively via bioluminescence imaging (BLI), and complete ablation of tumor growth was achieved with 36 Gy (3 fractions of 12 Gy each). We report a reproducible, orthotopic, clinically relevant lung tumor model, which better mimics patient treatment regimens. This system can be utilized to further explore the underlying biological mechanisms relevant to SBRT and high-dose-per-fraction radiation exposure and to provide a useful model to explore the efficacy of radiation modifiers in the treatment of non-small cell lung cancer. PMID:27223828

  7. A clinically relevant canine lung cancer model

    SciTech Connect

    Benfield, J.R.; Shors, E.C.; Hammond, W.G.; Paladugu, R.R.; Cohen, A.H.; Jensen, T.; Fu, P.C.; Pak, H.Y.; Teplitz, R.L.

    1981-12-01

    Research on early human lung cancer is difficult; we have sought a canine correlate. Regimens included endobronchial submucosal injections and topical focal applications of benzo(a)pyrene, nitrosomethylurea, dimethylbenzanthracene, and methylcholanthrene, singly or in combinations. Sustained-release discs were placed into lung parenchyma or sutured into major bronchi. Tracheal segments were isolated as cervical pedicle grafts. Gross and histological evolution was reproducible. Columnar and basal hyperplasia and squamous metaplasia were early changes. Atypia occurred within 6 weeks and was found in all dogs within 16 to 18 weeks. Invasive cancers occurred within 8 to 65 months. No tracheal graft developed cancer. Of 15 dogs with parenchymal sustained-release implants, 1 to date has developed cancer in 8 months. Four endobronchial regimens have produced 16 cancers in 56 lungs at risk for 18 to 65 months. No cancers developed in 23 lungs at risk from eight other regimens. Of 10 dogs at risk for unilateral endobronchial cancer, 5 have had cancer. Of 23 dogs with both lungs at risk, 9 developed cancer. We have shown focal carcinogenesis with well-defined pathogenesis and an extended preneoplastic period at predictable sites in a lung cancer model.

  8. Using Generalized Equivalent Uniform Dose Atlases to Combine and Analyze Prospective Dosimetric and Radiation Pneumonitis Data From 2 Non-Small Cell Lung Cancer Dose Escalation Protocols

    SciTech Connect

    Liu Fan; Yorke, Ellen D.; Belderbos, Jose S.A.; Borst, Gerben R.; Rosenzweig, Kenneth E.; Lebesque, Joos V.; Jackson, Andrew

    2013-01-01

    Purpose: To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Methods and Materials: Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD was calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate {>=}20% were plotted. Results: The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. Conclusions: The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power.

  9. Scientific Advances in Lung Cancer 2015.

    PubMed

    Tsao, Anne S; Scagliotti, Giorgio V; Bunn, Paul A; Carbone, David P; Warren, Graham W; Bai, Chunxue; de Koning, Harry J; Yousaf-Khan, A Uraujh; McWilliams, Annette; Tsao, Ming Sound; Adusumilli, Prasad S; Rami-Porta, Ramón; Asamura, Hisao; Van Schil, Paul E; Darling, Gail E; Ramalingam, Suresh S; Gomez, Daniel R; Rosenzweig, Kenneth E; Zimmermann, Stefan; Peters, Solange; Ignatius Ou, Sai-Hong; Reungwetwattana, Thanyanan; Jänne, Pasi A; Mok, Tony S; Wakelee, Heather A; Pirker, Robert; Mazières, Julien; Brahmer, Julie R; Zhou, Yang; Herbst, Roy S; Papadimitrakopoulou, Vassiliki A; Redman, Mary W; Wynes, Murry W; Gandara, David R; Kelly, Ronan J; Hirsch, Fred R; Pass, Harvey I

    2016-05-01

    Lung cancer continues to be a major global health problem; the disease is diagnosed in more than 1.6 million new patients each year. However, significant progress is underway in both the prevention and treatment of lung cancer. Lung cancer therapy has now emerged as a "role model" for precision cancer medicine, with several important therapeutic breakthroughs occurring during 2015. These advances have occurred primarily in the immunotherapy field and in treatments directed against tumors harboring specific oncogenic drivers. Our knowledge about molecular mechanisms for oncogene-driven tumors and about resistance to targeted therapies has increased quickly over the past year. As a result, several regulatory approvals of new agents that significantly improve survival and quality of life for patients with lung cancer who have advanced disease have occurred. The International Association for the Study of Lung Cancer has gathered experts in different areas of lung cancer research and management to summarize the most significant scientific advancements related to prevention and therapy of lung cancer during the past year. PMID:27013409

  10. Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer Tumors Greater Than 5 cm: Safety and Efficacy

    SciTech Connect

    Woody, Neil M. Stephans, Kevin L.; Marwaha, Gaurav; Djemil, Toufik; Videtic, Gregory M.M.

    2015-06-01

    Purpose: The purpose of this study was to determine outcomes of patients with node-negative medically inoperable non-small cell lung cancer (NSCLC) whose primary tumors exceeded 5 cm and were treated with stereotactic body radiation therapy (SBRT). Methods and Materials: We surveyed our institutional prospective lung SBRT registry to identify treated patients with tumors >5 cm. Treatment outcomes for local control (LC), locoregional control (LRC), disease-free survival (DFS), and overall survival (OS) were assessed by Kaplan-Meier estimates. Toxicities were graded according to Common Terminology Criteria for Adverse Events version 4. Mean pretreatment pulmonary function test values were compared to mean posttreatment values. Results: From December 2003 to July 2014, 40 patients met study criteria. Median follow-up was 10.8 months (range: 0.4-70.3 months). Median age was 76 years (range: 56-90 years), median body mass index was 24.3 (range: 17.7-37.2), median Karnofsky performance score was 80 (range: 60-90), and median Charlson comorbidity index score was 2 (range: 0-5). Median forced expiratory volume in 1 second (FEV1) was 1.41 L (range: 0.47-3.67 L), and median diffusion capacity (DLCO) was 47% of predicted (range: 29%-80%). All patients were staged by fluorodeoxyglucose-positron emission tomography/computed tomography staging, and 47.5% underwent mediastinal staging by endobronchial ultrasonography. Median tumor size was 5.6 cm (range: 5.1-10 cm), median SBRT dose was 50 Gy (range: 30-60 Gy) in 5 fractions (range: 3-10 fractions). Eighteen-month LC, LRC, DFS, and OS rates were 91.2%, 64.4%, 34.6%, and 59.7%, respectively. Distant failure was the predominant pattern of failure (32.5%). Three patients (7.5%) experienced grade 3 or higher toxicity. Mean posttreatment FEV1 was not significantly reduced (P=.51), but a statistically significant absolute 6.5% (P=.03) reduction in DLCO was observed. Conclusions: Lung SBRT for medically inoperable node

  11. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    SciTech Connect

    Komaki, Ritsuko; Paulus, Rebecca; Ettinger, David S.; Videtic, Gregory M.M.; Bradley, Jeffrey D.; Glisson, Bonnie S.; Sause, William T.; Curran, Walter J.; Choy, Hak

    2012-07-15

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m{sup 2} IV) was given on day 1 and etoposide (120 mg/m{sup 2} IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538

  12. A Comparison of the Biological Effects of 125I Seeds Continuous Low-Dose-Rate Radiation and 60Co High-Dose-Rate Gamma Radiation on Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chen, Zhijin; Mao, Aiwu; Teng, Gaojun; Liu, Fenju

    2015-01-01

    Objectives To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells. Materials and Methods A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay. Results After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment. Conclusions 125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies. PMID:26266801

  13. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    PubMed Central

    Berman, Abigail T.; St. James, Sara; Rengan, Ramesh

    2015-01-01

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning. PMID:26147335

  14. Erlotinib plus concurrent whole-brain radiation therapy for non-small cell lung cancers patients with multiple brain metastases

    PubMed Central

    Ulahannan, Danny

    2016-01-01

    Sequencing of the epidermal growth factor receptor (EGFR) gene to identify mutations in lung adenocarcinomas is routine in clinical practice. The use of tyrosine kinase inhibitors (TKIs) has transformed the management of patients with brain metastases harboring EGFR mutations, with improved response rates (RR) and survival. We evaluate the role of concurrent TKI therapy and radiotherapy in this group of patients, considering this data in the context of emerging concepts in this advancing field. PMID:27186518

  15. Spectrum of early lung cancer presentation in low-dose screening CT: a pictorial review.

    PubMed

    Rampinelli, Cristiano; Calloni, Sonia Francesca; Minotti, Marta; Bellomi, Massimo

    2016-06-01

    The typical presentation of early stage lung cancers on low-dose CT screening are non-calcified pulmonary nodules. However, there is a wide spectrum of unusual focal abnormalities that can be early presentations of lung cancer. These abnormalities include, for example, cancers associated with 'cystic airspaces' or scar-like cancers. The detection of lung cancer with low-dose CT can be affected by the absence of intravenous contrast medium. As a consequence, endobronchial and central lesions can be difficult to recognize, raising the potential for missed cancers. Focal lesions arising within pre-existing lung disease, such as lung fibrosis or apical scars, can also be early lung cancer manifestations and deserve particular consideration as recognition of these lesions may be hindered by the underlying disease. Furthermore, the unpredictable growth rate of lung cancer, which ranges from indolent to aggressive cancers, necessitates attention to the wide spectrum of progression in lung cancer appearance on serial low-dose CT scans. In this pictorial review we discuss the spectrum of early lung cancer presentation in low-dose CT screening, highlighting typical as well as unusual radiological features and the varied growth rates of early lung cancer. Teaching Points • There is a wide spectrum of early presentations of lung cancer on LDCT. • Low radiation dose and the absence of contrast medium injection can affect lung cancer detection. • Lung cancer growth shows various behaviours, ranging from indolent to aggressive cancers. • Familiarity with LDCT technique can improve CT screening effectiveness and avoid missed diagnosis. PMID:27188380

  16. Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence on Dose Calculation Algorithm

    SciTech Connect

    Latifi, Kujtim; Oliver, Jasmine; Baker, Ryan; Dilling, Thomas J.; Stevens, Craig W.; Kim, Jongphil; Yue, Binglin; DeMarco, MaryLou; Zhang, Geoffrey G.; Moros, Eduardo G.; Feygelman, Vladimir

    2014-04-01

    Purpose: Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Methods and Materials: Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treated on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Results: Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99{sub GITV} = 7.4 Gy, ΔD99{sub PTV} = 10.4 Gy, ΔV90{sub GITV} = 13.7%, ΔV90{sub PTV} = 37.6%, ΔD95{sub PTV} = 9.8 Gy, and ΔD{sub ISO} = 3.4 Gy. GITV = gross internal tumor volume. Conclusions: Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible alternative

  17. Dose-Volume Analysis of Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients Treated With Concurrent Cisplatinum and Etoposide With or Without Consolidation Docetaxel

    SciTech Connect

    Barriger, R. Bryan; Fakiris, Achilles J.; Hanna, Nasser; Yu Menggang; Mantravadi, Prasad; McGarry, Ronald C.

    2010-12-01

    Purpose: To examine the rates and risk factors for radiation pneumonitis (RP) in non-small-cell lung cancer (NSCLC) patients treated with chemoradiotherapy. Methods and Materials: We reviewed dosimetry records from Stage III NSCLC patients treated on a prospective randomized trial. Patients received concurrent cisplatinum/etoposide with radiation therapy to 59.4Gy. A total of 243 patients were enrolled; 167 did not experience progression and were randomized to observation (OB) or consolidation docetaxel (CD). Toxicity was coded based on the presence of Grade 0 to 1 vs. Grade 2 to 5 RP using the Common Toxicity Criteria and Adverse Events (CTCAE) v3.0. Results: Median age and follow-up were 63 years and 16 months, respectively. Overall, Grade 0 to 1 and Grade 2 to 5 RP were reported in 226 patients and 17 patients (7%) respectively. Median mean lung dose (MLD), V5, V20, and V30 for evaluable patients were 18 Gy, 52%, 35%, and 29%. MLD in Grade 0 to 1 and Grade 2 to 5 patients was 1,748 c Gy and 2,013 cGy in respectively (p = 0.12). Grade 2 to 5 RP developed in 2.2% and 19% of patients with MLD < 18 Gy and MLD > 18 Gy, respectively (p = 0.015). Mean V20 was 33.7% and 37.7% for Grade 0 to 1 and Grade 2 to 5 groups, respectively (p = 0.29). Grade 2 to 5 RP developed in 4.8% and 17% of patients with V20 < 35% and V20 > 35%, respectively. The OB and CD groups had similar MLD and V20, and the RP rates were 3.6% and 14.6%, respectively (p = 0.015). Patients who developed Grade 0 to 1 and Grade 2 to 5 RP had similar mean V5, V10, V15, V20, V25, V30, age, smoking history, and tumor characteristics. Conclusions: The overall rate of Grade 2 to 5 RP was 7% in patients treated with chemoradiotherapy. In this analysis, predictive factors for RP were MLD > 18 Gy and treatment with CD.

  18. Early diagnosis of lung cancer.

    PubMed

    Yasufuku, Kazuhiro

    2010-03-01

    Early detection and surgical resection is essential for the treatment of lung cancer. Although the introduction of low-dose spiral computed tomography (CT) is considered to be one of the most promising clinical research developments, CT screening is used for detecting small peripheral lesions. Tumors arising in the central airways require other techniques for early detection. Centrally arising squamous cell carcinoma of the airway, especially in heavy smokers, is thought to develop through multiple stages from squamous metaplasia to dysplasia, followed by carcinoma in situ (CIS), progressing to invasive cancer. It would be ideal to be able to detect and treat preinvasive bronchial lesions defined as dysplasia and CIS before progressing to invasive cancer. Great efforts have been made to develop new mucosal imaging techniques. Bronchoscopic imaging techniques capable of detecting preinvasive lesions and currently available in clinical practice include autofluorescence bronchoscopy (AFB), high magnification ronchovideoscope, and narrow band imaging (NBI). For a more precise evaluation of newly detected preinvasive lesions, endobronchial ultrasound (EBUS) and optical coherence tomography (OCT) can be used. PMID:20172431

  19. Sequencing study on familial lung squamous cancer

    PubMed Central

    LI, SHAOMIN; WANG, LINA; MA, ZHENCHUAN; MA, YUEFENG; ZHAO, JIANGMAN; PENG, BO; QIAO, ZHE

    2015-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. The majority of lung cancers are sporadic, and familial cases are extremely rare. Previous studies have mainly focused on sporadic lung cancer and identified a large quantity of driver genes. However, familial lung cancers are rarer and studied less. The present study recruited a Chinese family in which multiple members had developed lung squamous carcinoma. To find the causative mutations, whole exome sequencing was conducted using a peripheral blood sample of one lung squamous carcinoma patient, and certain variants were validated in more samples. Whole exome sequencing analysis obtained ~2.0 Gb of data (an average of 60x depth for each targeted base), and further validation experiments identified two functional variants in two cancer-related genes (c.1218delA:p.E406fs in PDE4DIP and C1342A:p.L448I in CLTCL1). This study therefore provides useful sources for the further study of hereditary lung cancer. PMID:26622902

  20. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    SciTech Connect

    Xia, Bing; Hong, Ling-Zhi; Cai, Xu-Wei; Zhu, Zheng-Fei; Liu, Qi; Zhao, Kuai-Le; Fan, Min; Mao, Jing-Fang; Yang, Huan-Jun; Wu, Kai-Liang; Fu, Xiao-Long

    2015-03-01

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.

  1. Metallothioneins in the lung cancer.

    PubMed

    Werynska, Bozena; Pula, Bartosz; Kobierzycki, Christopher; Dziegiel, Piotr; Podhorska-Okolow, Marzenna

    2015-01-01

    Metallothioneins (MTs) are low weight proteins involved in several key cellular processes such as metal ions homeostasis, detoxification and scavenging of free radicals. Four groups of MTs are distinguished: MT-1, MT-2, MT-3 and MT-4. Regardless of the type, MTs are characterized by high content of cysteine, responsible for their biological properties such as binding of relevant zinc and copper ions, as well as toxic ions such as lead and cadmium. MTs were additionally shown to protect cells against oxidative stress damage and participate in differentiation, proliferation and/or apoptosis of normal and cancer cells. Many studies of different neoplasms showed association of elevated MTs levels with occurrence of chemo- and radiotherapy resistance and poor patients' outcome. In this review, we summarize and discuss the potential mechanism of action of metallotioneins in lung physiology and pathology. PMID:25815626

  2. Lung cancer during pregnancy: A narrative review.

    PubMed

    Mitrou, Sotirios; Petrakis, Dimitrios; Fotopoulos, George; Zarkavelis, George; Pavlidis, Nicholas

    2016-07-01

    Lung cancer, the leading cause of cancer deaths in males for decades, has recently become one of commonest causes for women too. As women delay the start of their family, the co-existence of cancer and pregnancy is increasingly observed. Nevertheless, lung cancer during pregnancy remains a rather uncommon condition with less than 70 cases published in recent years. Non-small cell lung carcinoma is the commonest type accounting for about 85% of all cases. Overall survival rates are low. Chemotherapy and/or targeted treatment have been used with poor outcomes. The disease has been also found to affect the products of conception with no short- or long-term consequences for the neonate. This article is referring to a narrative review of lung cancers diagnosed in pregnant women around the world. PMID:27408759

  3. Lung Cancer:Symptoms, Diagnosis, Treatments & Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Lung Cancer Lung Cancer: Symptoms, Diagnosis, Treatments & Research Past Issues / Winter 2013 ... lung cancer are given intravenously or by mouth. Lung Cancer Research The large-scale National Lung Screening Trial, ...

  4. Cryptogenic fibrosing alveolitis and lung cancer.

    PubMed

    Turner-Warwick, M; Lebowitz, M; Burrows, B; Johnson, A

    1980-07-01

    Lung cancer was found in 20 (9.8%) of 205 patients with cryptogenic fibrosing alveolitis (CFA) or 12.9% of the 155 patients in this series followed to death. An excess relative risk of lung cancer of 14.1 was found in patients with CFA compared to the general population of comparable age and sex, allowing for the lengths of follow-up of the CFA patients. The relative risk for male smokers was (observed/expected) 15+1.06 = 14.2, and for female smokers (O/E) 2/0.3 = 6.7. Only one male and one female non-smoker had lung cancer. These data suggest that there is an excess risk of lung cancer not wholly accounted for by age, sex, or smoking habit. The distribution of histological types was not obviously different from that found in lung cancer without pulmonary fibrosis. Large opacities suggestive of lung cancer were present at the time of first hospital attendance for symptoms relating to CFA in four of the 20 patients. Finger clubbing was present in 19 (95%) compared with 116/185 (63%) of those so far not developing cancer. There were no other clinical differences at presentation. In particular, cancer was not found especially in those with longer survival from the onset of symptoms of CFA or with a greater initial radiographic change. PMID:7434310

  5. Immune checkpoint blockade in lung cancer.

    PubMed

    Somasundaram, Aswin; Socinski, Mark A; Villaruz, Liza C

    2016-08-01

    Immunotherapy has revolutionized the therapeutic landscape of advanced lung cancer. The adaptive immune system has developed a sophisticated method of tumor growth control, but T-cell activation is regulated by various checkpoints. Blockade of the immune checkpoints with therapies targeting the PD-1 pathway, such as nivolumab and pembrolizumab, has been validated as a therapeutic approach in non-small cell lung cancer. Newer therapies and novel combinations are also being evaluated, and the use of biomarkers in conjunction with these drugs is an area of active investigation. This review summarizes the current evidence for the efficacy and safety of the above approaches in the treatment of lung cancer. PMID:27585231

  6. The Canadian Lung Cancer Conference 2016

    PubMed Central

    Melosky, B.; Ho, C.

    2016-01-01

    Each February, the Canadian Lung Cancer Conference brings together lung cancer researchers, clinicians, and care professionals who are united in their commitment to improve the care of patients with lung cancer. This year’s meeting, held 11–12 February, featured a resident education session, a welcome dinner, networking sessions, lectures, breakout sessions, debates, and a satellite symposium. Key themes from this year’s meeting included innovations across the care spectrum and results of recent clinical trials with targeted agents, immuno-oncology agents, and novel drug combinations.

  7. A Phase I/II Radiation Dose Escalation Study With Concurrent Chemotherapy for Patients With Inoperable Stages I to III Non-Small-Cell Lung Cancer: Phase I Results of RTOG 0117

    SciTech Connect

    Bradley, Jeffrey D.; Moughan, Jennifer; Graham, Mary V.; Byhardt, Roger; Govindan, Ramaswamy; Fowler, Jack; Purdy, James A.; Michalski, Jeff M.; Gore, Elizabeth; Choy, Hak

    2010-06-01

    Purpose: In preparation for a Phase III comparison of high-dose versus standard-dose radiation therapy, this Phase I/II study was initiated to establish the maximum tolerated dose of radiation therapy in the setting of concurrent chemotherapy, using three-dimensional conformal radiation therapy for non-small-cell lung cancer. Methods and Materials: Eligibility included patients with histologically proven, unresectable Stages I to III non-small-cell lung cancer. Concurrent chemotherapy consisted of paclitaxel, 50 mg/m{sup 2}, and carboplatin, AUC of 2, given weekly. The radiation dose was to be sequentially intensified by increasing the daily fraction size, starting from 75.25 Gy/35 fractions. Results: The Phase I portion of this study accrued 17 patients from 10 institutions and was closed in January 2004. After the initial 8 patients were accrued to cohort 1, the trial closed temporarily on September 26, 2002, due to reported toxicity. Two acute treatment-related dose-limiting toxicities (DLTs) were reported at the time: a case of grade 5 and grade 3 radiation pneumonitis. The protocol, therefore, was revised to de-escalate the radiation therapy dose (74 Gy/37 fractions). Patients in cohort 1 continued to develop toxicity, with 6/8 (75%) patients eventually developing grade >=3 events. Cohort 2 accrued 9 patients. There was one DLT, a grade 3 esophagitis, in cohort 2 in the first 5 patients (1/5 patients) and no DLTs for the next 2 patients (0/2 patients). Conclusions: The maximum tolerated dose was determined to be 74 Gy/37 fractions (2.0 Gy per fraction) using three-dimensional conformal radiation therapy with concurrent paclitaxel and carboplatin therapy. This dose level in the Phase II portion has been well tolerated, with low rates of acute and late lung toxicities.

  8. Toxicity of definitive and post-operative radiation following ipilimumab in non-small cell lung cancer.

    PubMed

    Boyer, Matthew J; Gu, Lin; Wang, Xiaofei; Kelsey, Chris R; Yoo, David S; Onaitis, Mark W; Dunphy, Frank R; Crawford, Jeffrey; Ready, Neal E; Salama, Joseph K

    2016-08-01

    To determine the feasibility and toxicity of radiation therapy, delivered either as definitive treatment or following surgery, following neo-adjuvant immune checkpoint inhibition for locally advanced NSCLC sixteen patients who received neo-adjuvant chemotherapy including ipilimumab as part of a phase II study were identified. Patients were analyzed by intent of radiation and toxicity graded based on CTCAE 4.0. There were seven patients identified who received definitive radiation and nine who received post-operative radiation. There was no grade 3 or greater toxicity in the definitive treatment group although one patient stopped treatment early due to back pain secondary to progression outside of the treatment field. In the post-operative treatment group, one patient required a one week break due to grade 2 odynophagia and no grade 3 or greater toxicity was observed. In this study of radiation as definitive or post-operative treatment following neo-adjuvant chemotherapy including ipilimumab for locally advanced NSCLC was feasible and well tolerated with limited toxicity. PMID:27393510

  9. Lung and Upper Aerodigestive Cancer | Division of Cancer Prevention

    Cancer.gov

    This group conducts and supports research on the prevention and early detection of lung and head and neck cancers, as well as new approac | Conducts and supports research on the prevention and early detection of lung and head and neck cancers.

  10. Optimizing the Detection of Circulating Markers to Aid in Early Lung Cancer Detection

    PubMed Central

    Murlidhar, Vasudha; Ramnath, Nithya; Nagrath, Sunitha; Reddy, Rishindra M.

    2016-01-01

    Improving early detection of lung cancer is critical to improving lung cancer survival. Studies have shown that computerized tomography (CT) screening can reduce mortality from lung cancer, but this involves risks of radiation exposure and can identify non-cancer lung nodules that lead to unnecessary interventions for some. There is a critical need to develop alternative, less invasive methods to identify patients who have early-stage lung cancer. The detection of circulating tumor cells (CTCs) are a promising area of research, but current technology is limited by a low yield of CTCs. Alternate studies are investigating circulating nucleic acids and proteins as possible tumor markers. It is critical to develop innovative methods for early lung cancer detection that may include CTCs or other markers that are low-risk and low-cost, yet specific and sensitive, to facilitate improved survival by diagnosing the disease when it is surgically curable. PMID:27367729

  11. Optimizing the Detection of Circulating Markers to Aid in Early Lung Cancer Detection.

    PubMed

    Murlidhar, Vasudha; Ramnath, Nithya; Nagrath, Sunitha; Reddy, Rishindra M

    2016-01-01

    Improving early detection of lung cancer is critical to improving lung cancer survival. Studies have shown that computerized tomography (CT) screening can reduce mortality from lung cancer, but this involves risks of radiation exposure and can identify non-cancer lung nodules that lead to unnecessary interventions for some. There is a critical need to develop alternative, less invasive methods to identify patients who have early-stage lung cancer. The detection of circulating tumor cells (CTCs) are a promising area of research, but current technology is limited by a low yield of CTCs. Alternate studies are investigating circulating nucleic acids and proteins as possible tumor markers. It is critical to develop innovative methods for early lung cancer detection that may include CTCs or other markers that are low-risk and low-cost, yet specific and sensitive, to facilitate improved survival by diagnosing the disease when it is surgically curable. PMID:27367729

  12. Management of Lung Cancer in the Elderly.

    PubMed

    Rao, Archana; Sharma, Namita; Gajra, Ajeet

    2016-01-01

    Lung cancer is the leading cause of cancer-associated mortality in the USA. The median age at diagnosis of lung cancer is 70 years, and thus, about one-half of patients with lung cancer fall into the elderly subgroup. There is dearth of high level of evidence regarding the management of lung cancer in the elderly in the three broad stages of the disease including early-stage, locally advanced, and metastatic disease. A major reason for the lack of evidence is the underrepresentation of elderly in prospective randomized clinical trials. Due to the typical decline in physical and physiologic function associated with aging, most elderly do not meet the stringent eligibility criteria set forth in age-unselected clinical trials. In addition to performance status, ideally, comorbidity, cognitive, and psychological function, polypharmacy, social support, and patient preferences should be taken into account before applying prevailing treatment paradigms often derived in younger, healthier patients to the care of the elderly patient with lung cancer. The purpose of this chapter was to review the existing evidence of management of early-stage, locally advanced disease, and metastatic lung cancer in the elderly. PMID:27535398

  13. The Impact of Tumor Size on Outcomes After Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Allibhai, Zishan; Taremi, Mojgan; Bezjak, Andrea; Brade, Anthony; Hope, Andrew J.; Sun, Alexander; Cho, B.C. John

    2013-12-01

    Purpose: Stereotactic body radiation therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC) offers excellent control rates. Most published series deal mainly with small (usually <4 cm), peripheral, solitary tumors. Larger tumors are associated with poorer outcomes (ie, lower control rates, higher toxicity) when treated with conventional RT. It is unclear whether SBRT is sufficiently potent to control these larger tumors. We therefore evaluated and examined the influence of tumor size on treatment outcomes after SBRT. Methods and Materials: Between October 2004 and October 2010, 185 medically inoperable patients with early (T1-T2N0M0) NSCLC were treated on a prospective research ethics board-approved single-institution protocol. Prescription doses were risk-adapted based on tumor size and location. Follow-up included prospective assessment of toxicity (as per Common Terminology Criteria for Adverse Events, version 3.0) and serial computed tomography scans. Patterns of failure, toxicity, and survival outcomes were calculated using Kaplan-Meier method, and the significance of tumor size (diameter, volume) with respect to patient, treatment, and tumor factors was tested. Results: Median follow-up was 15.2 months. Tumor size was not associated with local failure but was associated with regional failure (P=.011) and distant failure (P=.021). Poorer overall survival (P=.001), disease-free survival (P=.001), and cause-specific survival (P=.005) were also significantly associated with tumor size (with tumor volume more significant than diameter). Gross tumor volume and planning target volume were significantly associated with grade 2 or worse radiation pneumonitis. However, overall rates of grade ≥3 pneumonitis were low and not significantly affected by tumor or target size. Conclusions: Currently employed stereotactic body radiation therapy dose regimens can provide safe effective local therapy even for larger solitary NSCLC tumors (up to 5.7 cm

  14. Adaptive/Nonadaptive Proton Radiation Planning and Outcomes in a Phase II Trial for Locally Advanced Non-small Cell Lung Cancer

    SciTech Connect

    Koay, Eugene J.; Lege, David; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2012-12-01

    Purpose: To analyze dosimetric variables and outcomes after adaptive replanning of radiation therapy during concurrent high-dose protons and chemotherapy for locally advanced non-small cell lung cancer (NSCLC). Methods and Materials: Nine of 44 patients with stage III NSCLC in a prospective phase II trial of concurrent paclitaxel/carboplatin with proton radiation [74 Gy(RBE) in 37 fractions] had modifications to their original treatment plans after re-evaluation revealed changes that would compromise coverage of the target volume or violate dose constraints; plans for the other 35 patients were not changed. We compared patients with adaptive plans with those with nonadaptive plans in terms of dosimetry and outcomes. Results: At a median follow-up of 21.2 months (median overall survival, 29.6 months), no differences were found in local, regional, or distant failure or overall survival between groups. Adaptive planning was used more often for large tumors that shrank to a greater extent (median, 107.1 cm{sup 3} adaptive and 86.4 cm{sup 3} nonadaptive; median changes in volume, 25.3% adaptive and 1.2% nonadaptive; P<.01). The median number of fractions delivered using adaptive planning was 13 (range, 4-22). Adaptive planning generally improved sparing of the esophagus (median absolute decrease in V{sub 70}, 1.8%; range, 0%-22.9%) and spinal cord (median absolute change in maximum dose, 3.7 Gy; range, 0-13.8 Gy). Without adaptive replanning, target coverage would have been compromised in 2 cases (57% and 82% coverage without adaptation vs 100% for both with adaptation); neither patient experienced local failure. Radiation-related grade 3 toxicity rates were similar between groups. Conclusions: Adaptive planning can reduce normal tissue doses and prevent target misses, particularly for patients with large tumors that shrink substantially during therapy. Adaptive plans seem to have acceptable toxicity and achieve similar local, regional, and distant control and overall

  15. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  16. Potential of Adaptive Radiotherapy to Escalate the Radiation Dose in Combined Radiochemotherapy for Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Guckenberger, Matthias; Wilbert, Juergen; Richter, Anne; Baier, Kurt; Flentje, Michael

    2011-03-01

    Purpose: To evaluate the potential of adaptive radiotherapy (ART) for advanced-stage non-small cell lung cancer (NSCLC) in terms of lung sparing and dose escalation. Methods and Materials: In 13 patients with locally advanced NSCLC, weekly CT images were acquired during radio- (n = 1) or radiochemotherapy (n = 12) for simulation of ART. Three-dimensional (3D) conformal treatment plans were generated: conventionally fractionated doses of 66 Gy were prescribed to the planning target volume without elective lymph node irradiation (Plan{sub 3}D). Using a surface-based algorithm of deformable image registration, accumulated doses were calculated in the CT images acquired during the treatment course (Plan{sub 4}D). Field sizes were adapted to tumor shrinkage once in week 3 or 5 and twice in weeks 3 and 5. Results: A continuous tumor regression of 1.2% per day resulted in a residual gross tumor volume (GTV) of 49% {+-} 15% after six weeks of treatment. No systematic differences between Plan{sub 3}D and Plan{sub 4}D were observed regarding doses to the GTV, lung, and spinal cord. Plan adaptation to tumor shrinkage resulted in significantly decreased lung doses without compromising GTV coverage: single-plan adaptation in Week 3 or 5 and twice-plan adaptation in Weeks 3 and 5 reduced the mean lung dose by 5.0% {+-} 4.4%, 5.6% {+-} 2.9% and 7.9% {+-} 4.8%, respectively. This lung sparing with twice ART allowed an iso-mean lung dose escalation of the GTV dose from 66.8 Gy {+-} 0.8 Gy to 73.6 Gy {+-} 3.8 Gy. Conclusions: Adaptation of radiotherapy to continuous tumor shrinkage during the treatment course reduced doses to the lung, allowed significant dose escalation and has the potential of increased local control.

  17. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... Laser surgery Cancer cells are killed by laser beams.  Electrodessication The cancer is dried with an electric ... a chemical reaction that kills nearby cells. EXTERNAL BEAM RADIATION THERAPY External beam radiation therapy may be ...

  18. Lung cancer in the Indian subcontinent.

    PubMed

    Noronha, Vanita; Pinninti, Rakesh; Patil, Vijay M; Joshi, Amit; Prabhash, Kumar

    2016-01-01

    Smoking tobacco, both cigarettes and beedis, is the principal risk factor for causation of lung cancer in Indian men; however, among Indian women, the association with smoking is not strong, suggesting that there could be other risk factors besides smoking. Despite numerous advances in recent years in terms of diagnostic methods, molecular changes, and therapeutic interventions, the outcomes of the lung cancer patients remain poor; hence, a better understanding of the risk factors may impact the preventive measures to be implemented at the community level. There is a lack of comprehensive data on lung cancer in India. In this review, we attempt to collate the available data on lung cancer from India. PMID:27606290

  19. Lung cancer in the Indian subcontinent

    PubMed Central

    Noronha, Vanita; Pinninti, Rakesh; Patil, Vijay M.; Joshi, Amit; Prabhash, Kumar

    2016-01-01

    Smoking tobacco, both cigarettes and beedis, is the principal risk factor for causation of lung cancer in Indian men; however, among Indian women, the association with smoking is not strong, suggesting that there could be other risk factors besides smoking. Despite numerous advances in recent years in terms of diagnostic methods, molecular changes, and therapeutic interventions, the outcomes of the lung cancer patients remain poor; hence, a better understanding of the risk factors may impact the preventive measures to be implemented at the community level. There is a lack of comprehensive data on lung cancer in India. In this review, we attempt to collate the available data on lung cancer from India. PMID:27606290

  20. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    SciTech Connect

    Ming, X; Zhang, Y; Feng, Y; Zhou, L; Deng, J

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  1. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    SciTech Connect

    Videtic, Gregory M.M.; Reddy, Chandana A.; Chao, Samuel T.; Rice, Thomas W.; Adelstein, David J.; Barnett, Gene H.; Mekhail, Tarek M.; Vogelbaum, Michael A.; Suh, John H.

    2009-11-15

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  2. Predicting Overall Survival After Stereotactic Ablative Radiation Therapy in Early-Stage Lung Cancer: Development and External Validation of the Amsterdam Prognostic Model

    SciTech Connect

    Louie, Alexander V.; Haasbeek, Cornelis J.A.; Mokhles, Sahar; Rodrigues, George B.; Stephans, Kevin L.; Lagerwaard, Frank J.; Palma, David A.; Videtic, Gregory M.M.; Warner, Andrew; Takkenberg, Johanna J.M.; Reddy, Chandana A.; Maat, Alex P.W.M.; Woody, Neil M.; Slotman, Ben J.; Senan, Suresh

    2015-09-01

    Purpose: A prognostic model for 5-year overall survival (OS), consisting of recursive partitioning analysis (RPA) and a nomogram, was developed for patients with early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic ablative radiation therapy (SABR). Methods and Materials: A primary dataset of 703 ES-NSCLC SABR patients was randomly divided into a training (67%) and an internal validation (33%) dataset. In the former group, 21 unique parameters consisting of patient, treatment, and tumor factors were entered into an RPA model to predict OS. Univariate and multivariate models were constructed for RPA-selected factors to evaluate their relationship with OS. A nomogram for OS was constructed based on factors significant in multivariate modeling and validated with calibration plots. Both the RPA and the nomogram were externally validated in independent surgical (n=193) and SABR (n=543) datasets. Results: RPA identified 2 distinct risk classes based on tumor diameter, age, World Health Organization performance status (PS) and Charlson comorbidity index. This RPA had moderate discrimination in SABR datasets (c-index range: 0.52-0.60) but was of limited value in the surgical validation cohort. The nomogram predicting OS included smoking history in addition to RPA-identified factors. In contrast to RPA, validation of the nomogram performed well in internal validation (r{sup 2}=0.97) and external SABR (r{sup 2}=0.79) and surgical cohorts (r{sup 2}=0.91). Conclusions: The Amsterdam prognostic model is the first externally validated prognostication tool for OS in ES-NSCLC treated with SABR available to individualize patient decision making. The nomogram retained strong performance across surgical and SABR external validation datasets. RPA performance was poor in surgical patients, suggesting that 2 different distinct patient populations are being treated with these 2 effective modalities.

  3. Concurrent Hyperfractionated Radiation Therapy and Chemotherapy in Locally Advanced (Stage III) Non-Small-Cell Lung Cancer: Single Institution Experience With 600 Patients

    SciTech Connect

    Jeremic, Branislav; Milicic, Biljana; Milisavljevic, Slobodan

    2012-03-01

    Purpose: Our institutional experience with the use of hyperfractionated radiation therapy (RT) alone or concurrently with chemotherapy (RT-CHT) in Stage III non-small-cell lung cancer was reviewed. Methods and Materials: Three phase III and two phase II studies included a total of 600 patients. Hyperfractionated RT alone was given to 127 patients, and hyperfractionated RT-CHT was given to 473 patients. RT doses were 64.8 Gy and 69.6 Gy (using 1.2 Gy twice daily) and 67.6 Gy (using 1.3 Gy twice daily). CHT consisted of concurrent administration of carboplatin and etoposide to 409 patients and concurrent administration of carboplatin and paclitaxel to 64 patients. Results: The median survival times were 19 months, 21 months, and 12 months for all, RT-CHT, and RT-only patients, respectively. The survival difference between the RT-CHT and RT group was significant (p < 0.0001). Four-year rates of local progression-free survival (LPFS) and distant metastasis-free survival (DMFS) were 29% and 35%, respectively, for the entire group. The RT-CHT group had significantly better LPFS rates than the RT group (31% for the RT-CHT group vs. 16% for the RT group; p = 0.0015) but not DMFS rates (36% for the RT-CHT group vs. 36% for the RT group, p = 0.0571). Acute high-grade esophagitis, pneumonitis, and hematological toxicities were seen most frequently and in 11%, 9%, and 12% of patients, respectively. Late high-grade esophageal and bronchopulmonary toxicity were each seen in 6% of patients. Conclusions: Compared to the majority of existing phase II and III studies, this study reconfirmed the excellent results achieved with concurrent RT-CHT, including low toxicity. Concurrent RT-CHT results in survival benefit primarily by increasing LPFS, not DMFS.

  4. Surgery for small cell lung cancer.

    PubMed

    de Hoyos, Alberto; DeCamp, Malcolm M

    2014-11-01

    Small-cell lung cancer (SCLC) comprises approximately 14% of all lung cancer cases. Most patients present with locally advanced or metastatic disease and are therefore treated nonoperatively with chemotherapy, radiotherapy, or both. A small subset of patients with SCLC present with early-stage disease and will benefit from surgical resection plus chemotherapy. The rationale for radiotherapy in these patients remains controversial. PMID:25441133

  5. Advances in bronchoscopy for lung cancer

    PubMed Central

    Dhillon, Samjot Singh; Dexter, Elisabeth U.

    2012-01-01

    Bronchoscopic techniques have seen significant advances in the last decade. The development and refinement of different types of endobronchial ultrasound and navigation systems have led to improved diagnostic yield and lung cancer staging capabilities. The complication rate of these minimally invasive procedures is extremely low as compared to traditional transthoracic needle biopsy and surgical sampling. These advances augment the safe array of methods utilized in the work up and management algorithms of lung cancer. PMID:23346012

  6. [Lung cancer: psychological and psychiatric aspects].

    PubMed

    Domingues, Vera; Albuquerque, Emília

    2008-01-01

    According to the literature, lung cancer patients experience greater emotional distress than other cancer patients, with scores as high as 61,6%. Poor prognosis, guilt and stigma associated with a history of smoking, may be related with this morbidity. Several studies mention the prevalence of depression to be between 16 and 22%. As distress affects the family as well, mostly those members involved in the patient care, they should not be forgotten and must be involved in the treatment plan. The authors conclude that lung cancer patients' distress is highly prevalent and interferes with quality of live and, possibly, prognosis. Therefore, psychosocial care should be integrated early in cancer treatment. PMID:18363022

  7. Immunotherapy for lung cancer: advances and prospects.

    PubMed

    Yang, Li; Wang, Liping; Zhang, Yi

    2016-01-01

    Lung cancer is the most commonly diagnosed cancer as well as the leading cause of cancer-related deaths worldwide. To date, surgery is the first choice treatment, but most clinically diagnosed cases are inoperable. While chemotherapy and/or radiotherapy are the next considered options for such cases, these treatment modalities have adverse effects and are sometimes lethal to patients. Thus, new effective strategies with minimal side effects are urgently needed. Cancer immunotherapy provides either active or passive immunity to target tumors. Multiple immunotherapy agents have been proposed and tested for potential therapeutic benefit against lung cancer, and some pose fewer side effects as compared to conventional chemotherapy and radiotherapy. In this article, we discuss studies focusing on interactions between lung cancer and the immune system, and we place an emphasis on outcome evidence in order to create a knowledge base well-grounded in clinical reality. Overall, this review highlights the need for new lung cancer treatment options, with much ground to be paved for future advances in the field. We believe that immunotherapy agents alone or with other forms of treatment can be recognized as next modality of lung cancer treatment. PMID:27168951

  8. Immunotherapy for lung cancer: advances and prospects

    PubMed Central

    Yang, Li; Wang, Liping; Zhang, Yi

    2016-01-01

    Lung cancer is the most commonly diagnosed cancer as well as the leading cause of cancer-related deaths worldwide. To date, surgery is the first choice treatment, but most clinically diagnosed cases are inoperable. While chemotherapy and/or radiotherapy are the next considered options for such cases, these treatment modalities have adverse effects and are sometimes lethal to patients. Thus, new effective strategies with minimal side effects are urgently needed. Cancer immunotherapy provides either active or passive immunity to target tumors. Multiple immunotherapy agents have been proposed and tested for potential therapeutic benefit against lung cancer, and some pose fewer side effects as compared to conventional chemotherapy and radiotherapy. In this article, we discuss studies focusing on interactions between lung cancer and the immune system, and we place an emphasis on outcome evidence in order to create a knowledge base well-grounded in clinical reality. Overall, this review highlights the need for new lung cancer treatment options, with much ground to be paved for future advances in the field. We believe that immunotherapy agents alone or with other forms of treatment can be recognized as next modality of lung cancer treatment. PMID:27168951

  9. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography

    PubMed Central

    Saltybaeva, Natalia; Martini, Katharina; Frauenfelder, Thomas; Alkadhi, Hatem

    2016-01-01

    Purpose Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients’ lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. Materials and Methods This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. Results As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100’000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Conclusion Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation. PMID:27203720

  10. Lung Cancer Screening with Low Dose CT

    PubMed Central

    Caroline, Chiles

    2014-01-01

    SUMMARY The announcement of the results of the NLST, showing a 20% reduction in lung-cancer specific mortality with LDCT screening in a high risk population, marked a turning point in lung cancer screening. This was the first time that a randomized controlled trial had shown a mortality reduction with an imaging modality aimed at early detection of lung cancer. Current guidelines endorse LDCT screening for smokers and former smokers ages 55 to 74, with at least a 30 pack year smoking history. Adherence to published algorithms for nodule follow-up is strongly encouraged. Future directions for screening research include risk stratification for selection of the screening population, and improvements in the diagnostic follow-up for indeterminate pulmonary nodules. As with screening for other malignancies, screening for lung cancer with LDCT has revealed that there are indolent lung cancers which may not be fatal. More research is necessary if we are to maximize the risk-benefit ratio in lung cancer screening. PMID:24267709

  11. Current Controversies in Lung Cancer Staging.

    PubMed

    Carter, Brett W; Godoy, Myrna C B; Wu, Carol C; Erasmus, Jeremy J; Truong, Mylene T

    2016-07-01

    Lung cancer remains the leading cause of cancer-related mortality in the United States, and accurate staging of disease plays an important role in the formulation of treatment strategies and optimization of patient outcomes. The International Association for the Study of Lung Cancer has recently proposed changes to the upcoming eighth edition of the tumor, node, and metastasis (TNM-8) staging system used for lung cancer. This revised classification is based on significant differences in patient survival identified on analysis of a new large international database of lung cancer cases. Key changes include: further modifications to the T descriptors based on 1 cm increments in tumor size; grouping of tumors resulting in partial or complete lung atelectasis/pneumonitis; grouping of tumors involving a main bronchus with respect to distance from the carina; reassignment of diaphragmatic invasion; elimination of mediastinal pleural invasion as a descriptor; and further subdivision of metastatic disease into distinct descriptors based on the number of extrathoracic metastases and involved organs. Because of these changes, several new stage groups have been developed, and others have shifted. Although TNM-8 represents continued improvement upon modifications previously made to the staging system, reflecting an evolving understanding of tumor behavior and patient management, several limitations and unaddressed issues persist. Understanding the proposed revisions to TNM-8 and awareness of key limitations and potential controversial issues still unaddressed will allow radiologists to accurately stage patients with lung cancer and optimize treatment decisions. PMID:27306388

  12. Lung cancer screening overdiagnosis: reports of overdiagnosis in screening for lung cancer are grossly exaggerated.

    PubMed

    Mortani Barbosa, Eduardo J

    2015-08-01

    The National Lung Cancer Screening Trial (NLST) demonstrated a mortality reduction benefit associated with low-dose computed tomography (LDCT) screening for lung cancer. There has been considerable debate regarding the benefits and harms of LDCT lung cancer screening, including the challenges related to its practical implementation. One of the controversies regards overdiagnosis, which conceptually denotes diagnosing a cancer that, either because of its indolent, low-aggressiveness biologic behavior or because of limited life expectancy, is unlikely to result in significant morbidity during the patient's remainder lifetime. In theory, diagnosing and treating these cancers offer no measurable benefit while incurring costs and risks. Therefore, if a screening test detects a substantial number of overdiagnosed cancers, it is less likely to be effective. It has been argued that LDCT screening for lung cancer results in an unacceptably high rate of overdiagnosis. This article aims to defend the opposite stance. Overdiagnosis does exist and to a certain extent is inherent to any cancer-screening test. Nonetheless, the concept is less dualistic and more nuanced than it has been suggested. Furthermore, the average estimates of overdiagnosis in LDCT lung cancer screening based on the totality of published data are likely much lower than the highest published estimates, if a careful definition of a positive screening test reflecting our current understanding of lung cancer biology is utilized. This article presents evidence on why reports of overdiagnosis in lung cancer screening have been exaggerated. PMID:25772581

  13. Role of STAT3 in lung cancer

    PubMed Central

    Dutta, Pranabananda; Sabri, Nafiseh; Li, Jinghong; Li, Willis X

    2014-01-01

    Lung cancer remains a challenging disease. It is responsible for the high cancer mortality rates in the US and worldwide. Elucidation of the molecular mechanisms operative in lung cancer is an important first step in developing effective therapies. Accumulating evidence over the last 2 decades suggests a critical role for Signal Transducer and Activator of Transcription 3 (STAT3) as a point of convergence for various signaling pathways that are dysregulated in the disease. In this review, we discuss possible molecular mechanisms involving STAT3 in lung tumorigenesis based on recent literature. We consider possible roles of STAT3 in cancer cell proliferation and survival, in the tumor immune environment, and in epigenetic regulation and interaction of STAT3 with other transcription factors. We also discuss the potential role of STAT3 in tumor suppression, which complicates strategies of targeting STAT3 in cancer therapy. PMID:26413424

  14. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    SciTech Connect

    Matsuyama, Tomohiko; Kogo, Kasei; Oya, Natsuo

    2013-03-15

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy{sub 10}. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients.

  15. Increased Biological Effective Dose of Radiation Correlates with Prolonged Survival of Patients with Limited-Stage Small Cell Lung Cancer: A Systematic Review

    PubMed Central

    Xu, Xiao; Wang, Bing; Wu, Kan; Deng, Qinghua; Xia, Bing; Ma, Shenglin

    2016-01-01

    Objective Thoracic radiotherapy (TRT) is a critical component of the treatment of limited-stage small cell lung cancer (LS-SCLC). However, the optimal radiation dose/fractionation remains elusive. This study reviewed current evidence and explored the dose-response relationship in patients with LS-SCLC who were treated with radiochemotherapy. Materials and Methods A quantitative analysis was performed through a systematic search of PubMed, Web of Science, and the Cochrane Library. The correlations between the biological effective dose (BED) and median overall survival (mOS), median progression-free survival (mPFS), 1-, 3-, and 5-year overall survival (OS) as well as local relapse (LR) were evaluated. Results In all, 2389 patients in 19 trials were included in this study. Among these 19 trials, seven were conducted in Europe, eight were conducted in Asia and four were conducted in the United States. The 19 trials that were included consisted of 29 arms with 24 concurrent and 5 sequential TRT arms. For all included studies, the results showed that a higher BED prolonged the mOS (R2 = 0.198, p<0.001) and the mPFS (R2 = 0.045, p<0.001). The results also showed that increased BED improved the 1-, 3-, and 5-year OS. A 10-Gy increment added a 6.3%, a 5.1% and a 3.7% benefit for the 1-, 3-, and 5-year OS, respectively. Additionally, BED was negatively correlated with LR (R2 = 0.09, p<0.001). A subgroup analysis of concurrent TRT showed that a high BED prolonged the mOS (p<0.001) and the mPFS (p<0.001), improved the 1-, 3-, and 5-year OS (p<0.001) and decreased the rate of LR (p<0.001). Conclusion This study showed that an increased BED was associated with improved OS, PFS and decreased LR in patients with LS-SCLC who were treated with combined chemoradiotherapy, which indicates that the strategy of radiation dose escalation over a limited time frame is worth exploring in a prospective clinical trial. PMID:27227819

  16. Mineral particles, mineral fibers, and lung cancer

    SciTech Connect

    Churg, A.; Wiggs, B.

    1985-08-01

    The total fibrous and nonfibrous mineral content of the lung has been analyzed in a series of 14 men with lung cancer but no history of occupational dust exposure, and in a series of 14 control men matched for age, smoking history, and general occupational class. The lung cancer patients had an average of 525 +/- 369 X 10(6) exogenous mineral particles and 17.4 +/- 19.6 X 10(6) exogenous mineral fibers/g dry lung, while the controls had averages of 261 +/- 175 mineral particles and 4.7 +/- 3.2 X 10(6) mineral fibers/g dry lung. These differences are statistically significant for both particles and fibers. Kaolinite, talc, mica, feldspars, and crystalline silica comprised the majority of particles of both groups. Approximately 90% of the particles were smaller than 2 micron in diameter and approximately 60% smaller than 1 micron. In both groups, patients who had smoked more than 35 pack years had greater numbers of particles than patients who had smoked less than 35 pack years. It is concluded that, in this study, lungs from patients with lung cancer had statistically greater numbers of mineral particles and fibers than lungs from controls, and that smoking influences total long-term retention of particles from all sources.

  17. Is Intermediate Radiation Dose Escalation With Concurrent Chemotherapy for Stage III Non–Small-Cell Lung Cancer Beneficial? A Multi-Institutional Propensity Score Matched Analysis

    SciTech Connect

    Rodrigues, George; Oberije, Cary; Senan, Suresh; Tsujino, Kayoko; Wiersma, Terry; Moreno-Jimenez, Marta; Kim, Tae Hyun; Marks, Lawrence B.; Rengan, Ramesh; De Petris, Luigi; Ramella, Sara; DeRuyck, Kim; De Dios, Núria Rodriguez; Warner, Andrew; Bradley, Jeffrey D.; Palma, David A.

    2015-01-01

    Purpose: The clinical benefits and risks of dose escalation (DE) for stage III non–small-cell lung cancer (NSCLC) remain uncertain despite the results from Radiation Therapy Oncology Group (RTOG) protocol 0617. There is significant heterogeneity of practice, with many clinicians prescribing intermediate dose levels between the 0617 study arms of 60 and 74 Gy. This study investigated whether this strategy is associated with any survival benefits/risks by analyzing a large multi-institutional database. Methods and Materials: An individual patient database of stage III NSCLC patients treated with radical intent concurrent chemoradiation therapy was created (13 institutions, n=1274 patients). Patients were divided into 2 groups based on tumor Biological Effective Dose at 10 Gy (BED 10): those receiving standard dose (SD; n=552), consisting of 72Gy ≤ BED 10 ≤ 76.8 Gy (eg 60-64 Gy/30-32 fractions [fr]), and those receiving intermediate dose (ID; n=497), consisting of 76.8Gy < BED 10 < 100.8 Gy (eg >64 Gy/32 fr and <74 Gy/37 fr), with lower-dose patients (n=225) excluded from consideration. Patients were then matched using propensity scores, leading to 2 matched groups of 196 patients. Outcomes were compared using various statistics including interquartile range (IQR), Kaplan-Meier curves, and adjusted Cox regression analysis. Results: Matched groups were found to be balanced except for N stage (more N3 disease in SD), median treatment year (SD in 2003; ID in 2007), platinum and taxane chemotherapy (SD in 28%; ID in 39%), and median follow-up (SD were 89 months; ID were 40 months). Median dose fractionation was 60 Gy/30 fr in SD (BED 10 IQR: 72.0-75.5 Gy) and 66 Gy/33 fr (BED 10 IQR: 78.6-79.2 Gy) in ID. Survival curves for SD and ID matched cohorts were statistically similar (P=.27); however, a nonstatistically significant trend toward better survival for ID was observed after 15 months (median survival SD: 19.3 months; ID: 21.0

  18. Poster — Thur Eve — 62: A Retrospective Assessment of the Prevalence and Dosimetric Effect of Lateral Electron Disequilibrium in a Population of Lung Cancer Patients Treated by Stereotactic Body Radiation Therapy

    SciTech Connect

    Disher, Brandon; Wade, Laura; Hajdok, George; Gaede, Stewart; Battista, Jerry J.; Palma, David

    2014-08-15

    Stereotactic Body Radiation Therapy (SBRT) is a treatment option for early stage non-small cell lung cancer (NSCLC). SBRT uses tightly conformed megavoltage (MV) x-ray beams to ablate the tumour. However, small MV x-ray fields may produce lateral electron disequilibrium (LED) within lung tissue, which can reduce the dose to tumour. The goal of this work is to estimate the prevalence of LED in NSCLC patients treated with SBRT, and determine dose effects for patients prone or averse to LED. Thirty NSCLC patients were randomly selected for analysis. 4-dimensional CT lung images were segmented into the right and left upper and lower lobes (RUL, RLL, LUL, LLL), and the right middle lobe. Dose calculations were performed using volume-modulated arc therapy in the Pinnacle{sup 3} TPS. Most tumours were located in the upper lobes (RUL 53%, LUL 27%) where density was significantly lower (RUL −808±46 HU vs. RLL −743±71 HU; LUL −808 ±56 HU vs. LLL −746±70 HU; p<0.001). In general, the prevalence of LED increased with higher beam energy. Using 6MV photons, patients with a RUL tumour experienced moderate (81 %), and mild (19%) levels of LED. At 18MV, LED became more prominent with severe (50%) and moderate (50%) LED exhibited. Dosimetrically, for patients prone to LED, poorer target coverage (i.e. increased R100 by 20%) and improved lung sparing (i.e. reduced V20 by −46%) was observed. The common location of lung cancers in the upper lobes, coupled with lower lung density, results in the potential occurrence of LED, which may underdose the tumour.

  19. ESR/ERS white paper on lung cancer screening.

    PubMed

    Kauczor, Hans-Ulrich; Bonomo, Lorenzo; Gaga, Mina; Nackaerts, Kristiaan; Peled, Nir; Prokop, Mathias; Remy-Jardin, Martine; von Stackelberg, Oyunbileg; Sculier, Jean-Paul

    2015-07-01

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and quality assurance plan. The establishment of a central registry, including biobank and image bank, and preferably on a European level, is strongly encouraged. PMID:25929956

  20. ESR/ERS white paper on lung cancer screening

    PubMed Central

    Bonomo, Lorenzo; Gaga, Mina; Nackaerts, Kristiaan; Peled, Nir; Prokop, Mathias; Remy-Jardin, Martine; von Stackelberg, Oyunbileg; Sculier, Jean-Paul

    2015-01-01

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and quality assurance plan. The establishment of a central registry, including biobank and image bank, and preferably on a European level, is strongly encouraged. PMID:25929956

  1. PET/CT imaging in lung cancer: indications and findings*

    PubMed Central

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  2. Association Between Pulmonary Uptake of Fluorodeoxyglucose Detected by Positron Emission Tomography Scanning After Radiation Therapy for Non-Small-Cell Lung Cancer and Radiation Pneumonitis

    SciTech Connect

    Mac Manus, Michael P.; Ding Zhe; Hogg, Annette; Herschtal, Alan; Binns, David; Ball, David L.; Hicks, Rodney J.

    2011-08-01

    Purpose: To study the relationship between fluorodeoxyglucose (FDG) uptake in pulmonary tissue after radical radiation therapy (RT) and the presence and severity of radiation pneumonitis. Methods and Materials: In 88 consecutive patients, {sup 18}F-FDG-positron emission tomography was performed at a median of 70 days after completion of RT. Patients received 60 Gy in 30 fractions, and all but 15 had concurrent platinum-based chemotherapy. RT-induced pulmonary inflammatory changes occurring within the radiation treatment volume were scored, using a visual (0 to 3) radiotoxicity grading scale, by an observer blinded to the presence or absence of clinical radiation pneumonitis. Radiation pneumonitis was retrospectively graded using the Radiation Therapy Oncology Group (RTOG) scale by an observer blinded to the PET radiotoxicity score. Results: There was a significant association between the worst RTOG pneumonitis grade occurring at any time after RT and the positron emission tomograph (PET) radiotoxicity grade (one-sided p = 0.033). The worst RTOG pneumonitis grade occurring after the PET scan was also associated with the PET radiotoxicity grade (one-sided p = 0.035). For every one-level increase in the PET toxicity scale, the risk of a higher RTOG radiation pneumonitis score increased by approximately 40%. The PET radiotoxicity score showed no significant correlation with the duration of radiation pneumonitis. Conclusions: The intensity of FDG uptake in pulmonary tissue after RT determined using a simple visual scoring system showed significant correlation with the presence and severity of radiation pneumonitis. {sup 18}F-FDG-PET may be useful in the prediction, diagnosis and therapeutic monitoring of radiation pneumonitis.

  3. Paraneoplastic syndromes associated with lung cancer

    PubMed Central

    Kanaji, Nobuhiro; Watanabe, Naoki; Kita, Nobuyuki; Bandoh, Shuji; Tadokoro, Akira; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    Paraneoplastic syndromes are signs or symptoms that occur as a result of organ or tissue damage at locations remote from the site of the primary tumor or metastases. Paraneoplastic syndromes associated with lung cancer can impair various organ functions and include neurologic, endocrine, dermatologic, rheumatologic, hematologic, and ophthalmological syndromes, as well as glomerulopathy and coagulopathy (Trousseau’s syndrome). The histological type of lung cancer is generally dependent on the associated syndrome, the two most common of which are humoral hypercalcemia of malignancy in squamous cell carcinoma and the syndrome of inappropriate antidiuretic hormone secretion in small cell lung cancer. The symptoms often precede the diagnosis of the associated lung cancer, especially when the symptoms are neurologic or dermatologic. The proposed mechanisms of paraneoplastic processes include the aberrant release of humoral mediators, such as hormones and hormone-like peptides, cytokines, and antibodies. Treating the underlying cancer is generally the most effective therapy for paraneoplastic syndromes, and treatment soon after symptom onset appears to offer the best potential for symptom improvement. In this article, we review the diagnosis, potential mechanisms, and treatments of a wide variety of paraneoplastic syndromes associated with lung cancer. PMID:25114839

  4. International Association for the Study of Lung Cancer - 15th World Conference on Lung Cancer (October 27-31, 2013 - Sydney, Australia).

    PubMed

    Walker, K

    2013-12-01

    The 15th World Conference on Lung Cancer, organized by the International Association for the Study of Lung Cancer (IASLC), launched the association's celebration of its 40th year promoting research into lung cancer. This year's congress saw highlights from groundbreaking research in several areas, including surgery, radiation oncology, chemo-therapy, immunotherapy, imaging and screening, prevention and epidemiology, and supportive care, with a record number of delegates in attendance. This report focuses on highlights from a poster, oral and mini oral sessions covering from several tracks. PMID:24524099

  5. Transbronchial Dissemination of Squamous Cell Lung Cancer

    PubMed Central

    Tadokoro, Akira; Kanaji, Nobuhiro; Ishii, Tomoya; Watanabe, Naoki; Inoue, Takuya; Kadowaki, Norimitsu; Bandoh, Shuji

    2015-01-01

    We report a case of squamous cell lung cancer with transbronchial dissemination in a 73-year-old man. Bronchoscopic examination revealed multiple bronchial mucosal nodules that existed independently of one another. We reviewed 16 previous cases of endobronchial metastasis in lung cancer. All patients were men. Among the reports that described the smoking history, most patients were smokers (6/7), and the most frequent histological type of cancer was squamous cell carcinoma (11/17). Although hematogenous and lymphogenous routes have been reported as metastatic mechanisms, no previous cases involving transbronchial dissemination have been described. Transbronchial dissemination may be an alternative pathway of endobronchial metastasis. PMID:26672760

  6. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To...

  7. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To...

  8. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To...

  9. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.64...