Sample records for radiative heat flux

  1. Heat flux splitter for near-field thermal radiation

    E-print Network

    Ben-Abdallah, Philippe; Frechette, Luc; Biehs, Svend-Age

    2015-01-01

    We demonstrate the possibility to efficiently split the near-field heat flux exchanged between graphene nano-disks by tuning their doping. This result paves the way for the developement of an active control of propagation directions for heat fluxes exchanged in near-field throughout integrated nanostructures networks.

  2. An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1996-01-01

    A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.

  3. Transient response of circular foil heat-flux gauges to radiative fluxes

    Microsoft Academic Search

    N. R. Keltner; M. W. Wildin

    1975-01-01

    An approximate analytical model of the transient response of a circular foil heat-flux gauge to a step change in incident radiant heat flux is described. This model demonstrates that the sensitivity and the transient response of the gauge are significantly affected by heat flow from the foil to the center lead wire. Results obtained for the transient response to a

  4. The temperature distribution within a sphere placed in a directed uniform heat flux and allowed to radiatively cool

    NASA Technical Reports Server (NTRS)

    Duffy, D.

    1985-01-01

    The temperature field within a sphere is found when the sphere is heated by a directed heat flux and cooled by blackbody radiation. For small heat fluxes, the analytic solution is obtained by transform methods. For large heat fluxes, the solution is computed numerically.

  5. Radiative forcing of the Venus mesosphere. I - Solar fluxes and heating rates

    Microsoft Academic Search

    D. Crisp

    1986-01-01

    Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. A radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in

  6. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  7. Heat flux microsensor measurements

    NASA Astrophysics Data System (ADS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-12-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  8. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  9. Convective heat transfer in a disk-receiver of a solar concentrated radiative flux measuring system

    SciTech Connect

    Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

    1995-12-31

    A parametric study to simulate the thermal performance under various conditions of a disk-type receiver of a concentrated radiative flux measuring system, is presented. The system is currently under construction at the Solar Energy Research Laboratory of the National University of Mexico. One of the proposed heat exchangers to be used in the receiver consists of two parallel, circular disks with an aspect ratio (diameter-to-separation) of 10. An incompressible viscous fluid (a thermal oil) enters at a center hole of one disk, moves radially between both plates, and is heated by means of concentrated solar energy impinging at the outer most plate. Temperature distributions, as a function of space coordinates, are presented for various flow conditions and radiation flux distributions. Plots of the average and maximum fluid temperatures as a function of mass flow rates for different solar concentrations, are also presented. These results, together with other alternatives, are being used for designing purposes of the receiver.

  10. Sensitivity of shortwave radiative flux density, forcing, and heating rates to the aerosol vertical profile

    SciTech Connect

    Guan, Hong; Schmid, Beat; Bucholtz, Anthony; Bergstrom, Robert

    2010-03-31

    The effect of the aerosol vertical distribution on the solar radiation profiles, for idealized and measured profiles of optical properties (extinction and single-scattering albedo (SSA)) during the May 2003 Atmospheric Radiation Measurement (ARM) Aerosol Intensive Observation Period (AIOP), has been investigated using the Rapid Radiative Transfer Model Shortwave (RRTM_SW) code. Calculated profiles of down-welling and up-welling solar fluxes during the AIOP have been compared with the data measured by up- and down-looking solar broadband radiometers aboard a profiling research aircraft. The measured profiles of aerosol extinction, SSA, and water vapor obtained from the same aircraft that carried the radiometers served as the inputs for the model calculations. It is noteworthy that for this study, the uplooking radiometers were mounted on a stabilized platform that kept the radiometers parallel with respect to the earth’s horizontal plane. The results indicate that the shape of the aerosol extinction profiles has very little impact on direct radiative forcings at the top of atmosphere and surface in a cloud-free sky. However, as long as the aerosol is not purely scattering, the shape of the extinction profiles is important for forcing profiles. Identical extinction profiles with different absorption profiles drastically influence the forcing and heating rate profiles. Using aircraft data from 19 AIOP profiles over the Southern Great Plains (SGP), we are able to achieve broadband down-welling solar flux closure within 0.8% (bias difference) or 1.8% (rms difference), well within the expected measurement uncertainty of 1 to 3%. The poorer agreement in up-welling flux (bias -3.7%, rms 10%) is attributed to the use of inaccurate surface albedo data. The sensitivity tests reveal the important role accurate, vertically resolved aerosol extinction data plays in tightening flux closure. This study also suggests that in the presence of a strongly absorbing substance, aircraft flux measurements from a stabilized platform have the potential to determine heating rate profiles. These measurement-based heating rate profiles provide useful data for heating rate closure studies and indirect estimates of single scattering albedo assumed in radiative transfer calculations.

  11. The effect of cumulus cloud field anisotropy on solar radiative fluxes and atmospheric heating rates

    NASA Astrophysics Data System (ADS)

    Hinkelman, Laura M.

    The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles was studied. Causes of anisotropy were investigated using a large-eddy simulation (LES) model. Cloud formation under a variety of environmental conditions was simulated and the degree of anisotropy in the output fields was calculated. Wind shear was found to be the single greatest factor in the development of both vertically tilted and horizontally stretched cloud structures. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of the LES cloud scenes. Progressively greater degrees of tilt and stretching were imposed on each of these scenes, so that an ensemble of scenes were produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. For nearly all solar geometries, domain-averaged fluxes and atmospheric heating rate profiles calculated using the Independent Pixel Approximation differed substantially from the corresponding three-dimensional Monte Carlo results.

  12. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  13. Detection of Thermal Radiation, Sensing of Heat Flux, and Recovery of Waste Heat by the Transverse Thermoelectric Effect

    NASA Astrophysics Data System (ADS)

    Kanno, Tsutomu; Takahashi, Kouhei; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2014-06-01

    The transverse thermoelectric effect is unique in that an output voltage can be extracted in the direction perpendicular to the input temperature gradient. This paper describes how this transverse feature can be exploited to realize simple and promising configurations of thermoelectric devices. For detection of thermal radiation, two-dimensional imaging has been demonstrated by a fabricated sensor array of tilt-oriented Ca x CoO2 epitaxial thin film. We have also developed a serpentine heat flux sensor made of multilayered Bi/Cu, and Bi0.5Sb1.5Te3/Ni tubular thermoelectric devices for power generation. The fabrication processes and test results are presented.

  14. A comparison of small and larger mesoscale latent heat and radiative fluxes: December 6 case study

    NASA Technical Reports Server (NTRS)

    Gultepe, I.; Starr, David; Heymsfield, A. J.

    1993-01-01

    Because of the small amounts of water vapor, the potential for rapid changes, and the very cold temperatures in the upper troposphere, moisture measuring instruments face several problems related to calibration and response. Calculations of eddy moisture fluxes are, therefore, subject to significant uncertainty. The purpose of this study is to examine the importance of latent heat (moisture) fluxes due to small and larger mesoscale circulations in comparison to radiative fluxes within cirrus. Scale separation is made at about 1 km because of significant changes in the structures within cirrus. Only observations at warmer than -40 C are used in this study. The EG&G hygrometer that is used for measuring dewpoint temperature (Td) is believed to be fairly accurate down to -40 C. On the other hand, Lyman-Alpha (L-alpha) hygrometer measurements of moisture may include large drift errors. In order to compensate for these drift errors, the L-alpha hygrometer is often calibrated against the EG&G hygrometer. However, large errors ensue for Td measurements at temperatures less than -40 C. The cryogenic hygrometer frost point measurements may be used to calibrate L-alpha measurements at temperatures less than -40 C. In this study, however, measurements obtained by EG&G hygrometer and L-alpha measurements are used for the flux calculations.

  15. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  16. Latent heat in soil heat flux measurements

    Microsoft Academic Search

    J. L. Heitman; R. Horton; T. J. Sauer; T. S. Ren; X. Xiao

    2010-01-01

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, there remains uncertainty about what comprises soil heat flux and how surface and subsurface heat fluxes

  17. Acoustic and magnetic wave heating in stars . I. Theoretical chromospheric models and emerging radiative fluxes

    Microsoft Academic Search

    D. Fawzy; W. Rammacher; P. Ulmschneider; Z. E. Musielak; K. Stepien

    2002-01-01

    We describe a method to construct theoretical, time-dependent, two-component and wave heated chromosphere models for late-type dwarfs. The models depend only on four basic stellar parameters: effective temperature, gravity, metallicity and filling factor, which determines the coverage of these stars by surface magnetic fields. They consist of non-magnetic regions heated by acoustic waves and vertically oriented magnetic flux tubes heated

  18. Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat-flux in magnetogasdynamics

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2014-05-01

    The propagation of a spherical (or cylindrical) shock wave in a non-ideal gas with heat conduction and radiation heat-flux, in the presence of a spacially decreasing azimuthal magnetic field, driven out by a moving piston is investigated. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient ?R are assumed to vary with temperature and density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Similarity solutions are obtained for the flow-field behind the shock and the effects of variation of the heat transfer parameters, the parameter of the non-idealness of the gas, both, decreases the compressibility of the gas and hence there is a decrease in the shock strength. Further, it is investigated that with an increase in the parameters of radiative and conductive heat transfer the tendency of formation of maxima in the distributions of heat flux, density and isothermal speed of sound decreases. The pressure and density vanish at the inner surface (piston) and hence a vacuum is form at the center of symmetry. The shock waves in conducting non-ideal gas with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, chemical detonation, rupture of a pressurized vessels, in the analysis of data from exploding wire experiments, and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles, etc. The findings of the present works provided a clear picture of whether and how the non-idealness parameter, conductive and radiative heat transfer parameters and the magnetic field affect the flow behind the shock front.

  19. Scrape-off layer modeling of radiative divertor and high heat flux experiments on DIII-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-12-01

    We use a new multispecies 1D fluid code, NEWT-ID, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix Ti with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80% of the SOL power input are obtained in 1D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2D geometries.

  20. Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-03-01

    We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.

  1. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO[sub 3] or LiNbO[sub 3] as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm[sup 2] 10 kW/cm[sup 2] and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  2. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO{sub 3} or LiNbO{sub 3} as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm{sup 2} 10 kW/cm{sup 2} and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  3. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  4. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  5. Radiative Flux Analysis

    SciTech Connect

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  6. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  7. Spatialization of instantaneous and daily average net radiation and soil heat flux in the territory of Itaparica, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Lopes, Helio L.; Silva, Bernardo B.; Teixeira, Antônio H. C.; Accioly, Luciano J. O.

    2012-09-01

    This work has as aim to quantify the energy changes between atmosphere and surface by modeling both net radiation and soil heat flux related to land use and cover. The methodology took into account modeling and mapping of physical and biophysical parameters using MODIS images and SEBAL algorithm in an area of native vegetation and irrigated crops. The results showed that there are variations in the values of the estimated parameters for different land cover types and mainly in caatinga cover. The dense caatinga presents mean values of soil heat flux (Go) of 124.9 Wm-2 while sparse caatinga with incidence of erosion, present average value of 132.6 Wm-2. For irrigated plots cultivated with banana, coconut, and papaya the mean Go values were 103.8, 98.6, 113.9 Wm-2, respectively. With regard to the instantaneous net radiation (Rn), dense caatinga presented mean value of 626.1 Wm-2, while sparse caatinga a mean value of 575.2 Wm-2. Irrigated areas cultivated with banana, coconut, and papaya presented Rn of 658.1, 647.4 and 617.9 W m-2 respectively. Applying daily mean net radiation (RnDAve) it was found that dense caatinga had a mean value of 417.1 W m-2, while sparse caatinga had a mean value of 379.9 W m-2. For the irrigated crops of banana, coconut and papaya the RnDAve values were 430.9, 431.3 and 411.6 W m-2, respectively. Sinusoidal model can be applied to determine the maximum and RnDAve considering the diverse classes of LULC; however, there is a need to compare the results with field data for validation of this model.

  8. Photovoltaic Roof Heat Flux

    NASA Astrophysics Data System (ADS)

    Samady, Mezhgan Frishta

    Solar panels were mounted with different designs onto 1:800 scale building models while temperature and radiation were measured. While there have been other studies aimed at finding the optimal angles for solar panels [9], in this study both the angle and the mounting method were tested. The three PV mounting designs that were considered to provide the most insulation to a building's rooftop were flush, offset (control), and angled. The solar panel offset height became a key component for rooftop insulation as well as the performance of the actual solar panel. Experimental results were given to verify the thermal behavior of the heat loads from the different designs of the photovoltaic panel. From the results, the angled PV design needed 16Z more heat extraction than the offset and flush PV design needed 60% more heat extracted than the offset. In addition to the heat transfer analysis, thermal models were performed to incorporate main atmospheric conditions which were based on the effects of PV mounting structure.

  9. Radiation heat transfer in anisotropically scattering media

    Microsoft Academic Search

    H. Lee

    1985-01-01

    Radiation heat transfer in anisotropically scattering media is considered. Scaling laws are formulated to predict the radiant heat flux in anisotropically scattering, one-dimensional planar media. The accuracy in scaling the radiative heat flux in isothermal, homogeneous media is shown to be excellent. The radiant scaling laws are applied to combined mode heat transfer problems which require the solution of the

  10. Heat fluxes in Drake Passage

    NASA Astrophysics Data System (ADS)

    Ferrari, Ramiro; Prvost, Christine; Sennéchael, Nathalie; Sekma, Hela; Park, Young-Hyang; Lee, Jae Hak

    2013-04-01

    Determining the processes responsible for the Southern Ocean heat balance is fundamental to our understanding of the weather and climate systems. Therefore, in the last decades, various studies aimed at analyzing the major mechanisms of the oceanic poleward heat flux in this region. Previous works stipulated that the cross-stream heat flux due to the mesoscale transient eddies was responsible for the total meridional heat transport across the Antarctic Circumpolar Current (ACC). Several numerical modelling and current meters data studies have recently challenged this idea. These showed that the heat flux due to the mean flow in the southern part of the Antarctic Circumpolar Current could be larger than the eddy heat flux contribution by two orders of magnitude [Sekma et al., 2012]. Eddy heat flux and heat flux by the mean flow distributions of were examined in Drake Passage. The in situ velocity and temperature time series used to estimate the poleward heat flux in Drake Passage were obtained at five mooring sites across the Yaghan Basin (from January 2006 to March 2009), and at four mooring sites across Ona Basin (from February 2006 to April 2008). In the northern part of Antarctic Circumpolar Current (Yaghan Basin), the computed eddy heat flux was significant only in the northern branch of the Subantarctic Front (˜90 kW m-2). The poleward eddy heat flux on the southern flank of the ACC (Ona Basin) was significant across the Polar Front and Southern Antarctic Circumpolar Current Front (˜10 kW m-2). However, eddy activity on the southern flank of the ACC is too weak to transport sufficient heat poleward to accomplish the Southern Ocean heat balance required task. The mean velocity vectors were observed to rotate with depth indicating consistent downwelling except at mooring located in the center of Ona Basin. A rotation of the mean velocity vector with depth is associated with a cold or warm advection in the entire water column. The estimated poleward heat flux by the mean flow (varying from 989 kW m-2 to 101 kW m-2 depending the mooring sites) was larger than the eddy heat flux by as much as one order of magnitude. The vertical structure of the mean flux in several topographically constricted passages is seen as the major responsible of the Southern Ocean heat balance.

  11. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  12. Understanding Electron Heat Flux Dropouts

    NASA Astrophysics Data System (ADS)

    Pagel, A. C.; Crooker, N.; Larson, D. E.

    2003-12-01

    Electron heat flux dropouts occur relatively frequently in the solar wind. While they are a necessary signature of flux that is disconnected from the Sun, and knowledge of just how much flux is disconnected is vital for discriminating between models of how the Sun reverses its magnetic field, it is now becoming increasingly clear that most dropouts are caused by some other mechanism. We report on progress in understanding that mechanism. Two factors contribute to electron heat flux in the solar wind: total flux integrated over pitch angle, and pitch angle isotropy. The latter correlates well with plasma beta, but the former does not, implying that heat flux and isotropy are to some degree independent and that pitch angle scattering in high-beta plasma may contribute to isotropy. However, drops in total integrated flux do seem to correlate with the pitch angle isotropy but at scale sizes larger than those of beta variations.. We use Wind data to perform correlations between total flux, isotropy and beta to determine at which scales they are best correlated. If total flux and beta are independent, we would expect their respective correlations with isotropy to occur at different scales. The scale at which each correlation maximises provides valuable information on the processes involved in heat flux dropouts and on the interdependence between total flux, isotropy and plasma beta.

  13. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  14. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  15. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  16. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study

    NASA Astrophysics Data System (ADS)

    PéRé, J. C.; Mallet, M.; Pont, V.; Bessagnet, B.

    2011-12-01

    In this work, an off-line coupling between the chemistry-transport model CHIMERE (associated with an aerosol optical module) and the meteorological model Weather Research and Forecasting (WRF) is used to study (1) the direct radiative forcing of pollution aerosols during the heat wave of summer 2003 over western Europe and (2) the possible feedbacks of this direct radiative forcing on the surface-atmosphere system. Simulations performed for the period 7-15 August 2003 reveal a significant decrease of daily mean solar radiation reaching the surface (?FBOA = -(10-30) W/m2) because of back scattering at the top of the atmosphere (?FTOA = -(1-12) W/m2) and also absorption of solar radiation by polluted particles (?Fatm = + (5-23) W/m2). During daytime, the aerosol surface dimming induces a mean reduction of both sensible (16 W/m2) and latent (21 W/m2) heat fluxes emitted by the terrestrial surface, resulting in a radiative cooling of the air near the surface (up to 2.9 K/d at noon). Simultaneously, the absorption of solar energy by aerosols causes an atmospheric radiative heating within the planetary boundary layer reaching 1.20 K/d at noon. As a consequence, the direct radiative effect of aerosols is shown to reduce both the planetary boundary layer height (up to 30%) and the horizontal wind speed (up to 6%); that may have contributed to favor the particulate pollution during the heat wave of summer 2003.

  17. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  18. Latent Heat Flux

    NSDL National Science Digital Library

    climvis.org

    This animation is available in an animated GIF or Flash formats and shows monthly variations in energy in the form of latent heat. This animation shows the energy absorbed due to evaporation. Interesting patterns to observe are higher values over the Gulf Stream and lower values in upwelling areas, like off the coasts of Labrador and Peru. In the Flash format, the animation can easily be rewound or paused to stress important points.

  19. Latent and sensible heat flux estimated from ERS-1 data

    NASA Technical Reports Server (NTRS)

    Iacobellis, S. F.; Gautier, C.

    1993-01-01

    Two issues regarding surface latent and sensible heat flux are addressed: its value in low wind speed conditions over the tropical oceans,and its determination solely from satellite observations. The investigation is performed with an oceanic mixed layer model operated in an 'inverse' mode. The 'normal' model is forced with the surface heat and radiative fluxes and produces the SST evolution, whereas the 'inverse' model produces the latent sensible heat flux given the SST and surface radiative flux as input. The results indicate that at low wind speeds there exists a minimum latent sensible heat flux of about 80 to 100 W/sq m. Sensitivity studies show that the latent sensible heat flux is very sensitive to random errors in the forcing SST time series. The implications of this strong sensitivity in regards to the use of satellite measurements to supply the forcing SST are discussed.

  20. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  1. Effects of dynamic heat fluxes on model climate sensitivity Meridional sensible and latent heat fluxes

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.; Wang, W.-C.; Stone, P. H.

    1985-01-01

    The high- and low-latitude radiative-dynamic (HLRD) climatic model of Wang et al. (1984) was used to study the effect of meridional heat (MH) fluxes on climate changes caused by increases of CO2 abundance and solar constant variations. However, the empirical MH parameterization of the HLRD model was replaced by physically based parameterization, which gives separate meridional sensible and latent heat fluxes and provides a complete representation of the dependence of the flux on the mean temperature field. Both parameterization methods yielded about the same changes in global mean surface temperature and ice line, and both produced only small changes in meridional temperature gradient, although the latter were even smaller with the physically based parameterizations. At any latitude, the hemispheric mean surface temperature, rather than MH fluxes, dominates the surface temperature changes.

  2. Observational study of relationships between incoming radiation, open water fraction, and ocean-to-ice heat flux in the Transpolar Drift: 2002-2010

    NASA Astrophysics Data System (ADS)

    Stanton, Timothy P.; Shaw, William J.; Hutchings, Jennifer K.

    2012-07-01

    Ocean/ice interface heat fluxes (F0) are calculated from upper ocean measurements obtained from autonomous systems repeatedly deployed in the Arctic Ocean Transpolar Drift between 2002 and 2010. Average F0 values over the nine summer heating season realizations varied between 4.6 and 10.5 W m-2 with an average summer value of 7.6 W m-2. Between 2002 and 2010, summer-averagedF0passed through a clear minimum, with most inter-annual variability inF0 dominated by differences in ocean heat content, rather than by differences in surface forcing. We test if Transpolar Drift F0 is supported primarily by local, radiative energy flux entering the upper ocean through areas of open water (Frw). Frwis estimated by combining re-analysis solar radiation products with satellite-borne passive microwave ice concentration products and observed divergence of drifting buoys. Inter-annual variability of summer-averaged surface insolation is relatively small (0.04 normalized standard deviation, NSTD), so differences in open water fraction (0.30 NSTD) are the most likely sources of the observedF0variability. Ensemble-averaged over the 2002-2010 summers, the satellite and buoy-divergenceFrw, are equal to 8.1, and 8.0 W m-2, respectively. Therefore, over the course of the summer season, sufficient energy enters the upper ocean through open water to wholly support the observed F0. Reasonable agreement between the two open water fraction estimates further indicates that mechanical processes, rather than lateral melting, are controlling the amount of radiation entering the upper ocean, implying that ocean ice-albedo feedbacks were not strong in the Transpolar Drift in the last decade.

  3. A comparison of ground-based and satellite-derived radiative heat flux at Mt Etna: the 12 August lava fountain case study

    NASA Astrophysics Data System (ADS)

    Ganci, Gaetana; Calvari, Sonia; James, Mike; Del Negro, Ciro

    2013-04-01

    The recent eruptive activity at Mt Etna has been characterized by quiet frequent, intermittent episodes of lava fountains associated with small lava flow output, occurring especially at the SE Crater. During 2011, 18 paroxysmal lava fountains were produced by a new cone, named "Sturiale Cone", on the east flank of the SE Crater. Given the high hazard posed by this activity, and the need of improving detection, description and knowledge of these events, remote monitoring through fixed cameras and satellites has becoming crucial, especially using thermal sensors. We here focus on the 12 August 2011 episode, the strongest of the lava fountains occurred in 2011, and also the best monitored, given the clear sky, absence of clouds, and possibility to collect also images from a close-up view. We disposed of a total of 8 fixed cameras working around the volcano, three of them offering a thermal view of the episode. Moreover, as satellite observations, we could use the complete data set from the SEVIRI sensor, which has a temporal resolution of 15 minutes. To compare the field- and satellite-derived radiative heat flux curves, thermal images were registered by taking into account a DEM, the GPS camera position, the relative camera rotations and first order lens distortion parameters. Moreover, it was performed a pixel by pixel correction from path length and atmospheric effects. Finally, a temperature threshold was fixed to identify the active lava area and the amount of heat lost by radiation from all the pixels covered by lava was computed. SEVIRI data were analyzed by the HOTSAT thermal monitoring system. Through automatic hot-spot detection algorithm based on dynamic thresholds, we are able to provide an estimate of the radiant heat flux for each thermally anomalous pixel and possibly convert it into time averaged discharge rate. Preliminary results showed a good agreement on timing, shape and amplitude of the radiative heat flux time series between thermal camera and SEVIRI data. Moreover, we could identify different phases of the eruptive activity: the initial Strombolian explosive activity, the lava fountain episode, the lava flow emission and its final cooling. Eventually, from the cooling curve the total lava volume was estimated, finding that 2.8 million of cubic meters of lava were erupted with a mean output rate of about 200 cubic meters per second.

  4. The impacts of cloud snow radiative effects on Pacific Ocean surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Lee, W.-L.; Lee, Tong; Fetzer, Eric; Yu, Jia-Yuh; Kubar, Terence L.; Boening, Carmen

    2015-03-01

    An accurate representation of the climatology of the coupled ocean-atmosphere system in global climate models has strong implications for the reliability of projected climate change inferred by these models. Our previous efforts have identified substantial biases of ocean surface wind stress that are fairly common in two generations of the Coupled Model Intercomparison Project (CMIP) models, relative to QuikSCAT climatology. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors (i.e., cloud snow) in all CMIP3 and most CMIP5 models, which has not been investigated previously. We examine the impacts of cloud snow on the radiation and atmospheric circulation, air-sea fluxes, and explore the implications to common biases in CMIP models using the National Center for Atmospheric Research coupled Community Earth System Model (CESM) to perform sensitivity experiments with and without cloud snow radiative effects. This study focuses on the impacts of cloud snow in CESM on ocean surface wind stress and air-sea heat fluxes, as well as their relationship with sea surface temperature (SST) and subsurface ocean temperatures in the Pacific sector. It is found that inclusion of the cloud snow parameterization in CESM reduces the surface wind stress and upper ocean temperature (including SST) biases in the tropical and midlatitude Pacific. The differences in the upper ocean temperature with and without the cloud snow parameterization are consistent with the effect of different strength of vertical mixing due to ocean surface wind stress differences but cannot be explained by the differences in net air-sea heat fluxes.

  5. The Impacts of Cloud Snow Radiative Effects on Pacific Oceans Surface Heat Fluxes, Surface Wind Stress, and Ocean Temperatures in Coupled GCM Simulations

    NASA Astrophysics Data System (ADS)

    Li, J. L. F.; Lee, W. L.; Lee, T.; Fetzer, E. J.; Yu, J. Y.

    2014-12-01

    An accurate representation of the climatology of the coupled ocean-atmosphere system in global climate models (GCMs) has strong implications to the reliability of projected climate change inferred by these models. Our previous efforts have identified substantial biases of ocean surface wind stress that are fairly common in two generations of the CMIP models, relative to QuikSCAT climatology. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors (i.e., cloud snow) in all CMIP3 and most CMIP5 models, which has not been investigated. We examine the impacts of cloud snow on the radiation and atmospheric circulation, air-sea fluxes, and explore the implications to common biases in CMIP models using the National Center for Atmospheric Research (NCAR)-coupled Community Earth System Model (CESM) to perform sensitivity experiments with and without cloud snow radiation effects. This study focuses on the impacts of cloud snow in CESM on ocean surface wind stress and air-sea heat fluxes, as well as their relationship with sea surface temperatures (SSTs) and ocean potential temperatures in the Pacific sector. It is found that inclusion of the cloud snow parameterization in CESM reduces the surface wind stress and ocean temperatures including SSTs biases in the tropical and mid-latitude Pacific. These differences in SSTs and wind stress with and without the cloud snow parameterization can be partly attributed to the wind stress differences and the related influence on vertical mixing in the ocean, but cannot be explained by the differences in net air-sea heat fluxes.

  6. Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.; Fujisaka, Takeyuki; Ito, Keita O.; Meng, Xiangning; Sui, Hong-Tao

    2015-01-01

    Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux.

  7. High flux heat transfer in a target environment

    E-print Network

    McDonald, Kirk

    · Radiation Cooling · Forced Convection · Nucleate Boiling · Critical Heat Flux · Other ideas · Summary #12 tuned to generate a repetitive cycle that moves steam out into the sub cooled bulk flow. ·Typically;Radiation cooling High temperatures require refractory metals and also good vacuum quality to avoid target

  8. Modeling ground heat flux in land surface parameterization schemes

    NASA Astrophysics Data System (ADS)

    Liang, Xu; Wood, Eric F.; Lettenmaier, Dennis P.

    1999-04-01

    A new ground heat flux parameterization for land surface schemes, such as those used in climate and numerical weather prediction models, is described. Compared with other approaches that lump the canopy layer and ground surface, or empirically based approaches that consider the effect of radiation attenuation through the canopy layer, the new parameterization has several advantages. First, the reduction of radiation available for conducting soil surface exchange under vegetated areas is represented in a manner that assures that heat is conserved in the long term. Second, problems in representing properly the phase of the ground heat flux are alleviated. Finally, the approach is relatively simple and is computationally efficient, requiring only two soil thermal layers. Comparison of the method with analytical solutions for special cases shows that the new method approximates the analytical solution very well for different conditions, and that the new method is superior to the force-restore and the Crank-Nicholson method. Model-derived ground heat heat fluxes for the French HAPEX-MOBILHY (Hydrology-Atmosphere Pilot Experiment - Modelisation de Bilan Hydrique) site and the Brazilian ABRACOS (Anglo-Brazilian Amazonian Climate Observation Study) cleared ranch land site are shown to be in close agreement with observations. Sensitivity analyses show that if the attenuation of radiation under vegetation and soil heat storage are ignored, the daytime peak and nighttime minima of ground heat flux, latent and sensible heat fluxes, and surface temperature can be significantly in error. In particular, neglecting the radiation attenuation through the canopy layer can result in significant overestimation (underestimation) of daytime (nighttime) ground heat flux, while neglecting soil heat storage can result in significant phase errors.

  9. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  10. On the corrections of ERA40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO

    Microsoft Academic Search

    D. Pettenuzzo; W. G. Large; N. Pinardi

    2010-01-01

    This is a study of heat fluxes and heat budget of the Mediterranean Sea using the European Centre for Medium-Range Weather Forecasts (ECMWF) 45 year reanalysis data set ERA-40. The simple use of the ERA-40 surface flux components fails to close the budget and, in particular, the shortwave radiation flux is found to be underestimated with respect to observed data

  11. Using the Synergy Between GERB/SEVIRI and Micrometeorological Data to Study the Relationship Between Surface Net Radiation and Soil Heat Flux at Local and Regional Scales

    NASA Astrophysics Data System (ADS)

    Ferreira, A. G.; Velázquez Blázquez, A.; Soria, E.; Lopez-Baeza, E.

    2009-04-01

    The surface energy exchange between the land surface and the atmosphere can be described by the energy balance equation Rn - H - LE - G = 0, where Rn represents net radiation, H the sensible heat flux, LE, the latent heat flux and G the soil heat flux. In this work the relationship between Rn and G is studied over vineyard crops, a relative sparse vegetation cover crop where, according to the literature, it is expected that G consumes a significant proportion of Rn. In order to study this relationship at local and regional scales, micrometeorological observations and METEOSAT Second Generation (MSG) satellite data have been used. MSG through the GERB (Geostationary Earth Radiation Budget) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensors can provide estimates of net radiation and required land surface temperature (LST) information with a frequency of 15 min intervals. The necessary micrometeorological parameters, to compare with satellite data, were collected during the full vine growing season of 2007 (May to September) in a field experiment carried out at the Valencia Anchor Station (VAS) site area. The VAS is a robust reference meteorological station which is successfully used preferentially for validation of low spatial resolution satellite data and products. It is located on the natural region of the Utiel-Requena Plateau, at about 80 km west from the city of Valencia, Spain, and represents a reasonable homogeneous area of about 50 km x 50 km dedicated primarily to growing vines. The methodology utilized to study the relationship between Rn and G at local and regional scales, was that proposed by Santanello and Friedel (2002), where surface temperature can be obtained from SEVIRI that provides estimates of LST with unprecedented frequency of 15 min intervals with a spatial resolution of 3.1 km, thus totally covering its diurnal course. The preliminary results show that: 1- the correlation between the ground measurements and SEVIRI LST is significantly good, presenting a Pearson correlation coefficient r of 0.96, with a squared correlation coefficient R2 of 0.93 and root mean square error, RMSE of 3.51 °C, and standard deviation, std, of 3.52. This makes apparent the good representativity of the VAS temperature measurements at SEVIRI scale and 2- the comparison between simulated GERB Rn at the surface and the measured one over the VAS field campaigns, at the spatial resolution of 1 km, and over a vineyard mobile micrometeorological station, shows good agreement for both periods and stations, winter of 2004 at the VAS, and summer of 2006 over vineyards, presenting RMSEs of 17 Wm-2 and 42 Wm-2, respectively, as well as high Pearson correlations and low standard deviations indicating that the methodology applied is able to reproduce net radiation at surface level. Besides this and from this preliminary study, we may conclude that it is possible to anticipate the significance of using the synergy between GERB/SEVIRI and ground measurements in order to derive Rn, and consequently G over local and regional areas. Further studies will include the calculation of Rn, and therefore G at GERB pixel spatial resolution.

  12. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  13. Graphite-Fiber Heat Radiators

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne M.

    1995-01-01

    Heat radiators of proposed type feature thermally conductive fibers protruding from metallic surfaces to provide increased heat-dissipation surface areas. Free of leaks and more reliable than radiators incorporating heat pipes. Also lightweight and relatively inexpensive. Radial graphite fibers carry heat away from spherical shell and radiate heat into space. Radiators prove useful on Earth in special industrial and scientific applications involving dissipation of heat in vacuum or in relatively still air.

  14. Heat fluxes across the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Ferrari, Ramiro; Provost, Christine; Hyang Park, Young; Sennéchael, Nathalie; Garric, Gilles; Bourdallé-Badie, Romain

    2014-05-01

    Determining the processes responsible for the Southern Ocean heat balance is fundamental to our understanding of the weather and climate systems. Therefore, in the last decades, various studies aimed at analyzing the major mechanisms of the oceanic poleward heat flux in this region. Previous works stipulated that the cross-stream heat flux due to the mesoscale transient eddies was responsible for the total meridional heat transport across the Antarctic Circumpolar Current (ACC). Several numerical modelling and current meters data studies have recently challenged this idea. These showed that the heat flux due to the mean flow in the southern part of the Antarctic Circumpolar Current could be larger than the eddy heat flux contribution by two orders of magnitude. Eddy heat flux and heat flux by the mean flow distributions of were examined in Drake Passage using in situ measurements collected during the DRAKE 2006-9 project (from January 2006 to March 2009), available observations from the historical DRAKE 79 experiment and high resolution model outputs (ORCA 12, MERCATOR). The Drake Passage estimations provided a limited view of heat transport in the Southern Ocean. The small spatial scales shown by the model derived heat flux by the mean flow indicate that circumpolar extrapolations from a single point observation are perilous. The importance of the heat flux due by the mean flow should be further investigated using other in situ observations and numerical model outputs. Similar situation has been observed, with important implication for heat flux due to the mean flow, in other topographically constricted regions with strong flow across prominent submarine ridges (choke points). We have estimated the heat flux due to the mean flow revisiting other ACC mooring sites where in situ time series are available, e.g. south of Australia (Tasmania) (Phillips and Rintoul, 2000), southeast of New Zealand (Campbell Plateau) (Bryden and Heath, 1985). Heat fluxes due to the mean flow at those choke points were compared to model outputs and provided new circumpolar estimates indicating that the choke points are a potential overwhelming contribution for the heat flux needed to balance heat lost to the atmosphere in the Southern Ocean.

  15. Heat flux viscosity in collisional magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  16. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  17. Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment

    SciTech Connect

    Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. (Los Alamos National Lab., NM (United States)); Doran, C.; Hubbe, J.; Shaw, W. (Pacific Northwest Lab., Richland, WA (United States)); Coulter, R.; Martin, T. (Argonne National Lab., IL (United States)); Kunkel, K. (Illinois State Water Survey, Champaign, IL (United States))

    1991-01-01

    Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

  18. Radiation flux tables for ICRCCM using the GLA GCM radiation codes

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1986-01-01

    Tabulated values of longwave and shortwave radiation fluxes and also cooling and heating rates in the atmosphere for standard atmospheric profiles are presented. The radiation codes used in the Goddard general circulation model were employed for the computations. These results were obtained for an international intercomparison projected called Intercomparison of Radiation Codes in Climate Models (ICRCCM).

  19. Flow boiling critical heat flux on small heated regions

    Microsoft Academic Search

    Terrence W. Simon; Pey-Shey Wu

    1993-01-01

    Often, in optical and electronic equipment, heating is concentrated in very small regions, and, because of materials constraints, cooled walls must be as thin as possible. Also, for efficiency, many high-flux cooling designs involve forced-convection boiling heat transfer. Though efficient, a design with boiling heat transfer can be difficult for it must properly account for the complexities of the boiling

  20. Latent and sensible heat fluxes overestimated and net heat flux underestimated in Lake Victoria

    E-print Network

    Verburg, Piet

    2014-01-01

    Cozar et al. (2012) used remotely-sensed data to link phytoplankton growth to the net heat flux in both the northern and southern parts of Lake Victoria. However, the latent and sensible heat fluxes were overestimated by ~26% by assuming a constant air density of 1.3 kg m-3. As a result, the net heat flux was underestimated, bringing into question conclusions regarding the convective circulation.

  1. Wave-Coherent Air Sea Heat Flux

    Microsoft Academic Search

    Fabrice Veron; W. Kendall Melville; Luc Lenain

    2008-01-01

    Air-sea fluxes of heat and momentum play a crucial role in weather, climate, and the coupled general circulation of the oceans and atmosphere. Much progress has been made to quantify momentum transfer from the atmosphere to the ocean for a wide range of wind and wave conditions. Yet, despite the fact that global heat budgets are now at the forefront

  2. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping

    NASA Astrophysics Data System (ADS)

    Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.

    2015-04-01

    The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ˜25 compared to that of a Al layer/alumina interfacial epoxy (of ˜39) contributes to a smaller deviation of the heat flux bending angle.

  3. Numerical Analysis of a Radiant Heat Flux Calibration System

    NASA Technical Reports Server (NTRS)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  4. Decadal Changes in Surface Radiative Fluxes

    Microsoft Academic Search

    M. Wild

    2009-01-01

    Recent evidence suggests that radiative fluxes incident at the Earth surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected with the increasing greenhouse effect, but also in the solar range. Observations suggest that surface solar radiation, after

  5. Heat fluxes in the Drake Passage

    NASA Astrophysics Data System (ADS)

    Ferrari, Ramiro; Provost, Christine; Hyang Park, Young; Sennéchael, Nathalie; Sekma, Hela; Garric, Gilles

    2014-05-01

    In contrast to a long-standing belief, observations in the Antarctic Circumpolar Current (ACC) show that mean velocity vectors rotate with depth, thus suggesting a possible importance of the time-mean flow for the local poleward heat transport [Sekma et al., 2012]. The respective contributions of the eddy and mean flows to the heat flux across the ACC in the Drake Passage are investigated using in situ measurements collected during the DRAKE 2006-9 project (from January 2006 to March 2009) and available observations from the historical DRAKE 79 experiment. DRAKE 2006-9 current meter records, obtained from a current meter array deployed on the eastern side of the Shackleton Fracture Zone (SFZ), revealed a vertical consistency of the velocity and temperature variations. However, the rotation of the mean velocity vector with depth indicated consistent downwelling through the entire water column practically all along the mooring line. In situ temperature and velocity time series from the DRAKE 2006-9 project were combined with the year-long historical DRAKE 79 experiment data set in order to analyse the eddy and mean flow contributions to the meridional heat flux across in the Drake Passage. Estimated cross-stream heat fluxes caused by the rotation of the mean flow with depth were found to be at least an order of magnitude larger than eddy heat ?uxes. Equatorward heat fluxes caused by the mean flow found downstream the SFZ were in agreement with the general downwelling observed along the DRAKE 2006-9 project mooring array. Upstream the SFZ, however, the distribution of equatorward and poleward fluxes was puzzling. This distribution was analyzed using model outputs. Heat flux due to the mean ?ow estimated from the high resolution model outputs were similar to those obtained from in situ data and exhibited small spatial scales. The rough topography in Drake Passage likely promotes associated small spatial scales of vertical velocities and heat fluxes. The model-estimated heat flux due to the mean flow across the Southern ACC Front in Drake Passage (covering about 3% of the circumpolar longitudes between 48° W and 64° W) is on the order of 10% of the heat lost to the atmosphere south of 60° S.

  6. Bidirectional electron heat flux events in space

    SciTech Connect

    Bame, S.J.; Gosling, J.T.

    1986-01-01

    In this paper we discuss a number of space plasma phenomena which have been illuminated by a powerful diagnostic tool provided by tracing heat flux carried by the solar wind. Measurements of this flow of heat energy from the sun and other hot plasma regions have been employed to increase our understanding of the solar wind interaction with solar system objects. Similarly, anomalies in the heat flux have helped to explain unusual plasma entities which are sometimes found in the interplanetary solar wind. The heat flux is principally carried by the solar wind electrons, since they are much more mobile than the ions. The electrons conduct heat outward from the hot solar corona and in a sense they constitute test particles that trace out the various plasma structures found in the solar wind and in the vicinities of bodies immersed in the interplanetary plasma flow. In the following sections we begin by discussing the electron heat flux which flows outward from the solar corona. This flux is ordinarily found flowing in one direction, i.e., it is unidirectional. Sometimes it is observed counterstreaming, i.e., it is bidirectional. In later sections we discuss how detection of bidirectional heat fluxes has contributed to a more complete understanding of the Earth's bow shock, the bow wave at Comet Giacobini-Zinner, interplanetary plasma structures injected into the solar wind by solar activity processes, and finally polar rain electrons that are found precipitating over the Earth's poles but are believed to originate in the hot solar corona. 37 refs., 16 figs.

  7. Heat-Flux Gage thermophosphor system

    SciTech Connect

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  8. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  9. Flow boiling critical heat flux on small heated regions

    NASA Astrophysics Data System (ADS)

    Simon, Terrence W.; Wu, Pey-Shey

    1993-11-01

    Often, in optical and electronic equipment, heating is concentrated in very small regions, and, because of materials constraints, cooled walls must be as thin as possible. Also, for efficiency, many high-flux cooling designs involve forced-convection boiling heat transfer. Though efficient, a design with boiling heat transfer can be difficult for it must properly account for the complexities of the boiling flux-temperature relationship. Of concern is locating the point of incipience to boiling and the point of maximum nucleate boiling heat flux, Critical Heat Flux (CHF), and describing the complex behaviors in the vicinities of these points. Characteristics of boiling near these points are discussed in terms of boundary layer behavior. Changes in either the heater size or the wall thickness affects the boiling curve, particularly the CHF behavior. Results from experiments which were conducted on small, heated regions are discussed in light of their application to the design of high-power optical and electronic devices. The effects of flow velocity, subcooling, pressure, heating length, dissolved gas content, and flow streamline curvature are addressed.

  10. Poleward heat flux by an ocean gyre

    NASA Astrophysics Data System (ADS)

    Bye, J. A. T.; Veronis, George

    1980-01-01

    A calculation to determine the poleward heat flux by an oceanic subtropical gyre is described. The circulation is given by Stommel's (1948) barotropic wind-driven model, and the temperature field is treated as a passive tracer. Air-sea heat exchange is parameterized as linearly proportional to the difference between air and sea temperatures. The problem so formulated reduces to the solution of the advection-diffusion (heat) equation for the temperature. The results show how ocean circulation, with a narrow western boundary layer, transports significantly more heat than does a symmetric circulation. A more intense circulation transports more heat but the increase levels off beyond a certain point. A wide ocean basin transports more of its heat by conduction than does a narrow basin. Approximate analytical solutions for both weak and strong circulations yield results that agree semiquantitatively with the numerical results.

  11. Critical heat flux of subcooled flow boiling with water for high heat flux application

    Microsoft Academic Search

    Fujio Inasaka; Hideki Nariai

    1993-01-01

    Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW\\/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors,

  12. Tropical Cloud Properties and Radiative Heating Profiles

    SciTech Connect

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  13. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  14. EU Development of High Heat Flux Components

    Microsoft Academic Search

    J. Linke; P. Lorenzetto; P. Majerus; M. Merola; D. Pitzer; M. Roedig

    2005-01-01

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under

  15. Diamond for high heat flux applications

    Microsoft Academic Search

    Clifford J. Robinson; Thomas M. Hartnett; Richard P. Miller; Charles B. Willingham; John E. Graebner; Donald T. Morelli

    1993-01-01

    In polycrystalline CVD diamond of useful macroscopic dimensions, which may be considered for high heat flux applications, thermal conductivity parameters are largely determined by grain size resulting from growth morphology, defects and impurities in the material. Thermal conductivity has been measured in a number of state-of-the-art diamond samples, by the steady state technique, over the temperature range 6 to 400

  16. Heat Flux Estimation in Geothermal Areas Based on the Heat Balance of the Ground Surface

    Microsoft Academic Search

    Mitsuru Sekioka; Kozo Yuhara

    1974-01-01

    The present authors have developed a rapid method for estimation of the difference between geothermal fluxes of two adjacent places, from surface temperatures and some meteorological parameters, based on a heat budget equation for simple vegetation-free ground surfaces. As this method requires simultaneous measurements of the surface temperatures at two Places, an infrared radiation thermometer is the most suitable apparatus

  17. The heat flux density in a non-homogeneous bare loessial soil

    Microsoft Academic Search

    Marcel Fuchs; Amos Hadas

    1972-01-01

    This work describes the relationship between the diurnal patterns of the radiant energy exchange in the atmospheric surface layer and the soil heat flux density of a bare irrigated soil in an arid environment. The measurements show that the soil heat flux density is a large fraction of the net radiation. The soil moisture content has little effect on this

  18. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey

    Microsoft Academic Search

    W. G. M Bastiaanssen

    2000-01-01

    Surface Energy Balance Algorithm for Land (SEBAL) is a relatively new parameterization of surface heat fluxes based on spectral satellite measurements. SEBAL requires spatially distributed, visible, near-infrared and thermal infrared data, which can be taken from Landsat Thematic Mapper. The SEBAL parameterization is an iterative and feedback-based numerical procedure that deduces the radiation, heat and evaporation fluxes. The sensible and

  19. Heat flux boundary anomalies and thermal winds

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes

    2013-04-01

    Several studies have shown strong effects of outer boundary heat flux patterns on the dynamo mechanism in planets. For example, the hemispherical field of the ancient Martian dynamo can be explained by a large scale sinusoidal anomaly of the core mantle boundary heat flux triggered by large scale mantle convection or giant impacts. The magnetic fields show typically the desired effect - though dynamo action is locally stronger where the underneath heat flux is higher. However, it remains an open question if these effects still apply for more realistic planetary parameters, such as vigor of the convection (Rayleigh number) or the rotation rate (Ekman). The sinusoidal variation of the CMB heat flux along the colatitude with larger heat flux in the southern and smaller in the northern hemisphere as used for Mars can lead to a concentration of magnetic field in the south. The shape of such a hemispherical dynamo matches the crustal magnetization pattern at the surface and seems therefore an admissible mode for the ancient Martian dynamo. As the consequence of the emerging latitudinal temperature gradients convection and induction are dominated by thermal winds. These zonal flows were found to be equatorial antisymmetric, axisymmetric, ageostrophic, of strong amplitude and have therefore a severe effect on core convection and especially the induction process. We measure the underlying thermal anomalies as a function of Rayleigh and Ekman number and show that they are responsible for the thermal winds. Our results suggest that temperature anomalies decrease clearly with the supercriticality of the convection due to faster stirring and mixing, but show no additional dependence on the Ekman number. Interestingly, the decline of the latitudinal temperature anomaly follows a recently suggested scaling law for the thickness of thermal boundary layers. Even though the convective supercriticality of planetary cores is rather large and therefore only a minor effect of thermal boundary disturbances is expected, we suggest thermal winds can still significantly contribute to the total kinetic energy in real planetary core.

  20. Radiative and convective heat transfer coefficients of the human body in natural convection

    Microsoft Academic Search

    Yoshihito Kurazumi; Tadahiro Tsuchikawa; Jin Ishii; Kenta Fukagawa; Yoshiaki Yamato; Naoki Matsubara

    2008-01-01

    The purpose of this study was to investigate the convective and radiative heat transfer coefficients of the human body, while focusing on the convective heat transfer area of the human body. Thermal sensors directly measuring the total heat flux and radiative heat flux were employed. The mannequin was placed in seven postures as follows: standing (exposed to the atmosphere, floor

  1. Observations and modeling of heat fluxes on tidal flats

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, Jim T.

    2014-01-01

    A cross-shore model of tidal flat heat and mass fluxes is developed to understand the heat exchange between the sediment bed and the water column. A convective heat-transfer coefficient is used to model sediment-water heat fluxes which are as great as 20% of the incoming solar shortwave radiation. The model results match well with observations and are used to assess processes across tidal to seasonal time scales. During the summer, tidal flat sediments store incoming shortwave radiation during exposure and act effectively as a net source of heat to the water column. This pattern changes in the winter, when the flats cool during exposure and act effectively as a net sink of heat. Additionally, during the summer water temperatures at the edge of the flooding front are elevated 5°C above the surface sediment temperatures. Model results replicate this process only when water column light extinction coefficients are high, consistent with visual observations of high turbidity (and thus high light absorption) at the leading edge of the flooding front.

  2. Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions

    Microsoft Academic Search

    Xiaofeng Guo; Hongsheng Zhang; Xuhui Cai; Ling Kang; Tong Zhu; Monique Y. Leclerc

    2009-01-01

    Applied previously to momentum and heat fluxes, the present study extends the flux-variance method to latent heat and CO2 fluxes in unstable conditions. Scalar similarity is also examined among temperature (?), water vapour (q), and CO2 (c). Temperature is adopted as the reference scalar, leading to two feasible strategies to estimate latent heat and CO2 fluxes: the first one relies

  3. Development of a small radiation flux monitor

    SciTech Connect

    Leysen, W. [SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, BE-2400, Mol (Belgium)

    2011-07-01

    This paper describes the development of a miniaturized radiation flux monitor by means of Cherenkov light. The idea is to use the intensity of Cherenkov light as a measurement for the radiation flux. An initial test is performed with an extrinsic dielectric object which is coupled with an optical fibre. These test show that the Cherenkov radiation in the fibre itself was too high compared with the captured extrinsic light. Further test to use intrinsic Cherenkov fibre optic sensors are planned in the near future and the envisaged measurement set up is explained. (authors)

  4. High-heat-flux sensor calibration using calorimetry

    NASA Astrophysics Data System (ADS)

    Ballestrín, J.; Estrada, C. A.; Rodríguez-Alonso, M.; Pérez-Rábago, C.; Langley, L. W.; Barnes, A.

    2004-08-01

    This paper demonstrates a calorimetric procedure for calibrating high-heat-flux sensors. The results are in agreement with calibrations obtained using black-body radiation. However, the proposed method has the potential of being more accurate than traditional approaches. This new procedure calibrates sensors to measure correctly under conditions of concentrated solar radiation. At present, the thermal balance calibration technique in the laboratory is limited to solar irradiances of approximately 100 kW m-2. The next step is to demonstrate this methodology to higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at Plataforma Solar de Almería.

  5. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  6. Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer

    NASA Astrophysics Data System (ADS)

    Sirevaag, A.; de La Rosa, S.; Fer, I.; Nicolaus, M.; Tjernström, M.; McPhee, M. G.

    2011-05-01

    A comprehensive measurement program was conducted during 16 days of a 3 week long ice pack drift, from 15 August to 1 September 2008 in the central Amundsen Basin, Arctic Ocean. The data, sampled as part of the Arctic Summer Cloud Ocean Study (ASCOS), included upper ocean stratification, mixing and heat transfer as well as transmittance solar radiation through the ice. The observations give insight into the evolution of the upper layers of the Arctic Ocean in the transition period from melting to freezing. The ocean mixed layer was found to be heated from above and, for summer conditions, the net heat flux through the ice accounted for 22 % of the observed change in mixed layer heat content. Heat was mixed downward within the mixed layer and a small, downward heat flux across the base of the mixed layer accounted for the accumulated heat in the upper cold halocline during the melting season. On average, the ocean mixed layer was cooled by an ocean heat flux at the ice/ocean interface (1.2 W m-2) and heated by solar radiation through the ice (-2.6 W m-2). An abrupt change in surface conditions halfway into the drift due to freezing and snowfall showed distinct signatures in the data set and allowed for inferences and comparisons to be made for cases of contrasting forcing conditions. Transmittance of solar radiation was reduced by 59 % in the latter period. From hydrographic observations obtained earlier in the melting season, in the same region, we infer a total fresh water equivalent of 3.3 m accumulated in the upper ocean, which together with the observed saltier winter mixed layer indicates a transition towards a more seasonal ice cover in the Arctic.

  7. Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer

    NASA Astrophysics Data System (ADS)

    Sirevaag, A.; de La Rosa, S.; Fer, I.; Nicolaus, M.; Tjernström, M.; McPhee, M. G.

    2011-02-01

    A comprehensive measurement program was conducted during 16 days of a 3 week long ice pack drift, from 15 August to 1 September 2008 in the Central Amundsen Basin, Arctic Ocean. The data, sampled as part of the Arctic Summer Cloud Ocean Study (ASCOS), included upper ocean stratification, mixing and heat transfer as well as transmittance of solar radiation through the ice. The observations give insight into the evolution of the upper layers of the Arctic Ocean in the transition period from melting to freezing. The ocean mixed layer was found to be heated from above and, for summer conditions, the net heat flux through the ice accounted for 22% of the observed change in mixed layer heat content. Heat was mixed downward within the mixed layer and a small, downward heat flux across the pycnocline accounted for the accumulated heat in the upper cold halocline during the melting season. On average, the ocean mixed layer was cooled by an ocean heat flux at the ice/ocean interface (1.2 W m-2) and heated by solar radiation through the ice (-2.6 W m-2). An abrupt change in surface conditions halfway into the drift due to freezing and snowfall showed distinct signatures in the data set and allowed for inferences and comparisons to be made for cases of contrasting forcing conditions. Transmittance of solar radiation was reduced by 59% in the latter period. From hydrographic observations obtained earlier in the melting season, in the same region, we infer a total fresh water equivalent of 3.3 m accumulated in the upper ocean, which together with the observed saltier winter mixed layer indicates a transition towards a more seasonal ice cover in the Arctic.

  8. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  9. Heat flux in a granular gas

    NASA Astrophysics Data System (ADS)

    Brey, J. J.; Ruiz-Montero, M. J.

    2012-11-01

    A peculiarity of the hydrodynamic Navier-Stokes equations for a granular gas is the modification of the Fourier law, with the presence of an additional contribution to the heat flux that is proportional to the density gradient. Consequently, the constitutive relation involves, in the case of a one-component granular gas, two transport coefficients: the usual (thermal) heat conductivity and a diffusive heat conductivity. A very simple physical interpretation of this effect, in terms of the mean free path and the mean free time is provided. It leads to the modified Fourier law with an expression for the diffusive Fourier coefficient that differs in a factor of the order of unity from the expression obtained by means of the inelastic Boltzmann equation. Also, some aspects of the Chapman-Enskog computation of the new transport coefficients as well as of the comparison between simulation results and theory are discussed.

  10. Radiative flux measurements in the stratosphere

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1990-01-01

    The objective is to determine how the stratospheric tropospheric exchange of water vapor is affected by the interaction of solar (visible) and planetary (infrared) radiation with tropical cumulonimbus anvils. This research involves field measurements from the ER-2 aircraft as well as radiative transfer modelling to determine heating and cooling rates and profiles that directly affect the exchange between the troposphere and the stratosphere.

  11. ACCURACY OF SOIL HEAT FLUX MEASUREMENTS MADE WITH FLUX PLATES OF CONTRASTING PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flux plate measurements of soil heat flux (G) may include significant errors unless the plates are carefully installed and known errors accounted for. The objective of this research was to quantify potential errors in G when using soil heat flux plates of contrasting designs. Five flux plates with...

  12. The Photosheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.

    2014-12-01

    Some models of coronal heating suppose that convective motions at thephotosphere shuffle the footpoints of coronal magnetic fields andthereby inject sufficient magnetic energy upward to account forobserved coronal and chromospheric energy losses in active regions.Using high-resolution observations of plage magnetic fields made withthe Solar Optical Telescope aboard the Hinode satellite, weinvestigate this idea by estimating the upward transport of magneticenergy --- the vertical Poynting flux, S_z --- across the photospherein a plage region. To do so, we combine: (i) estimates ofphotospheric horizontal velocities, v_h, determined by localcorrelation tracking applied to a sequence of line-of-sight magneticfield maps from the Narrowband Filter Imager, with (ii) a vectormagnetic field measurement from the SpectroPolarimeter. Plage fieldsare ideal observational targets for estimating energy injection byconvection, because they are: (i) strong enough to be measured withrelatively small uncertainties; (ii) not so strong that convection isheavily suppressed (as within umbrae); and (iii) unipolar, so S_z inplage is not influenced by mixed-polarity processes (e.g., fluxemergence) unrelated to heating in stable, active-region fields. Inthis plage region, we found that the average S_z varied in space, butwas positive (upward) and sufficient to explain coronal heating, withvalues near (5 +/- 1) x 107 erg / cm2 / s. We find the energy inputper unit magnetic flux to be on the order of 105 erg / s / Mx. Acomparison of intensity in a Ca II image co-registered with one plagemagnetogram shows stronger spatial correlations with both total fieldstrength and unsigned vertical field, |B_z|, than either S_z orhorizontal flux density, B_h. The observed Ca II brightnessenhancement, however, probably contains a strong contribution from anear-photosphere hot-wall effect, which is unrelated to heating in thesolar atmosphere.

  13. ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min

    SciTech Connect

    Cook, David

    1993-07-04

    The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  14. ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min

    DOE Data Explorer

    Cook, David

    The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  15. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  16. Re-Evaluation of the Earth's Surface Energy Balance Using a New Method of Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Huang, S. Y.; Deng, Y.; Wang, J.

    2014-12-01

    The recently proposed and tested model of surface heat fluxes, based on the theory of maximum entropy production (MEP), was used for re-evaluating the global mean annual energy balance over the Earth's surface. Compared to the commonly used bulk transfer models, the MEP model predicted heat fluxes are constrained by surface radiation fluxes satisfying energy balance and independent of temperature/moisture gradient, wind speed and roughness lengths. The MEP model holds for the entire range of soil moisture from dryness to saturation over land surfaces. It provides the first global maps of water heat fluxes at ocean surfaces as well as at snow/ice covered polar regions. The MEP model is less sensitive to the uncertainties of model input (surface radiation fluxes, temperature and/or humidity) parameters and free of location specific tuning (empirical) parameters. Ten years of earth surface radiation fluxes, surface temperature data products from Clouds and the Earth's Radiant Energy System supplemented (when needed) by the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce global annual surface energy budgets. The MEP modeled global annual sensible heat fluxes are in close agreement with both previous studies and ocean content climatology (OHC) data from Woods Hole Oceanographic Institution, while those of latent heat fluxes are significantly lower than previous estimates. The net surface-atmosphere heat exchange according to the MEP model is consistent with the OHC data.

  17. Heat pipe radiators for space

    Microsoft Academic Search

    J. P. Sellers

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of

  18. Radiative heating in contrail cirrus

    Microsoft Academic Search

    Ulrich Schumann; Bernhard Mayer; Ulrich Hamann; Kaspar Graf

    2010-01-01

    In the course of analysis and modeling of aviation induced contrail cirrus, we found that observed time scales of contrail cirrus and thin cirrus in general requires particle losses by radiative heating besides other loss processes. For thin cirrus near the tropopause, radiative warming dominates over cooling in most cases, in particular in the lower part of cirrus layers. Both

  19. Surface heat flux variability of a large lake: Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2014-12-01

    The heat budget of a lake is a fundamental component of physical limnology, and is strongly dependent on the surface heat flux. However, the surface energy exchange depends on several factors, making it difficult to estimate. In this study we employed several bulk formulas to estimate Lake Geneva's surface heat flux. Combination of different surface heat flux terms leads to a surface heat exchange model which requires various data. Different data sources were used in the heat flux estimates. Meteorological data were taken from an operational numerical weather prediction model, namely COSMO-2 (run by the Swiss meteorological service), while satellite imagery was used for the lake surface water temperature (LSWT). In order to find the best combination of the bulk formulas and to calibrate the model, the temporal evolution of the heat budget was estimated using long-term time series of vertical temperature profiles. Vertical temperature profiles at two points (one in the Lake Geneva's large basin and one in its small basin) were used. A sensitivity analysis was performed to find the key parameters, and more significantly the optimal combination of different heat flux terms. Finally, the spatio-temporal surface heat flux variation was calculated according to the proposed model. In addition, the relationship between variability of the surface heat flux and meteorological forcing was assessed. The different models, which are of differing complexity, gave reasonably consistent results, with differences attributed to simplifications inherent in them. The modeling results revealed that the LSWT and wind forcing are dominant factors underlying Lake Geneva surface heat flux spatial variation, while its temporal variability is mainly due to the global radiation and air temperature changes. In conclusion, the bulk heat balance approach is a useful tool to estimate various heat flux terms as well as their monthly or seasonally contributions. But, in large lakes where the LSWT is highly variable, the variable surface heat flux would be unavoidable.

  20. Divertor heat flux reduction by D{sub 2} injection in DIII-D

    SciTech Connect

    Petrie, T.W.; Groebner, R.J.; Leonard, A.W.; Lippmann, S.I.; Mahdavi, A.M.; West, W.P. [General Atomics, San Diego, CA (United States); Buchenauer, D.; Campbell, R.B. [Sandia National Labs., Livermore, CA (United States); Hill, D.N.; Allen, S.L.; Futch, A.H.; Resink, M.E. [Lawrence Livermore National Lab., CA (United States); Klepper, C.C. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    D{sub 2} gas injected into ELMing H-mode discharges in DIII-D reduced total integrated heat flux to the divertor by {approximately}2{times} and peak heat flux by {approximately}5{times}, with only modest degradation to plasma stored energy. Steady gas injection without particle pumping results in eventual degradation in stored energy. The initial reduction in peak heat flux at the divertor tiles may be primarily due to the increase in radiated power from the X-point/divertor region. The eventual formation of a high density region near the X-point appears to play a role in momentum (and energy) transfer from the flux surfaces near the outboard strike point to flux surfaces farther out into the scrapeoff. This may also contribute to further reduction in peak heat flux.

  1. Divertor heat flux reduction by D sub 2 injection in DIII-D

    SciTech Connect

    Petrie, T.W.; Groebner, R.J.; Leonard, A.W.; Lippmann, S.I.; Mahdavi, A.M.; West, W.P. (General Atomics, San Diego, CA (United States)); Buchenauer, D.; Campbell, R.B. (Sandia National Labs., Livermore, CA (United States)); Hill, D.N.; Allen, S.L.; Futch, A.H.; Resink, M.E. (Lawrence Livermore National Lab., CA (United States)); Klepper, C.C. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    D{sub 2} gas injected into ELMing H-mode discharges in DIII-D reduced total integrated heat flux to the divertor by {approximately}2{times} and peak heat flux by {approximately}5{times}, with only modest degradation to plasma stored energy. Steady gas injection without particle pumping results in eventual degradation in stored energy. The initial reduction in peak heat flux at the divertor tiles may be primarily due to the increase in radiated power from the X-point/divertor region. The eventual formation of a high density region near the X-point appears to play a role in momentum (and energy) transfer from the flux surfaces near the outboard strike point to flux surfaces farther out into the scrapeoff. This may also contribute to further reduction in peak heat flux.

  2. Laboratory experiments of heat and moisture fluxes through supraglacial debris

    NASA Astrophysics Data System (ADS)

    Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna

    2014-05-01

    Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.

  3. Radiative heating in contrail cirrus

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Mayer, Bernhard; Hamann, Ulrich; Graf, Kaspar

    2010-05-01

    In the course of analysis and modeling of aviation induced contrail cirrus, we found that observed time scales of contrail cirrus and thin cirrus in general requires particle losses by radiative heating besides other loss processes. For thin cirrus near the tropopause, radiative warming dominates over cooling in most cases, in particular in the lower part of cirrus layers. Both terrestrial and solar radiances contribute to warming, but the terrestrial part is often the larger one. The radiation is absorbed mainly by the ice particles while a smaller fraction is absorbed by water vapor and other gases inside the cirrus. The heating directly absorbed in the ice particles causes a temperature difference between the ice particles and ambient air. Because of the small heat capacity of the ice particles and because of the small particle scales, local equilibrium between radiative heating and conductive cooling is reached quickly. In agreement with Gierens (1994) and others, this causes a temperature surplus of order 0.1 K for ice particles larger than about 100 micro meters. For smaller particles, the temperature increases about linearly with the particle radius. The contribution is important for very low ice particle concentrations (below 0.1/cm**3) and solar optical depth larger 0.1. After heat exchange with the ambient air, and by additional absorption of radiation in the gas phase, the radiation also causes a bulk warming of the cirrus, again of order 0.1 K. The contribution is important for high ice particle concentrations (> 1 /cm**3) and for rather modest optical depth values (0.01 to 0.1). Quasi equilibrium is reached in proportion to the inverse heating rate, which may take hours. In case of heating the increased ice particle temperature causes reduced water vapor saturation at the ice surface and hence sublimation. Hence, both effects may contribute to a loss of ice particles in cirrus, in particular, when relative humidity inside the cirrus is close to ice saturation. In addition, the radiative heating may cause convective turbulence because of warm air masses rising and cold air masses sinking. Finally, the whole cirrus may rise slowly rise by the diabatic heating. In order to simulate these effects in contrail cirrus we developed an effective model (within our contrail cirrus prediction model, CoCiP) which computes the radiative heating rate in both the longwave and shortwave spectral ranges. The model parameterizes the impact of radiative heating on turbulent mixing and sublimation of ice particles in a thin cirrus layer. The heating rate is modeled as a function of cirrus properties (optical depth, temperature, humidity, effective particle radius, and particle habit), solar radiation, solar zenith angle, and the radiances at the top of the atmosphere (solar direct radiation, reflected solar radiation, and outgoing longwave radiation). The model parameters were determined by least square fits of the model results to the results of forward calculations with the libRadtran system using the DISORT 2.0 solver with 16 streams for about 32000 cases with different atmospheres, surface properties and cloud parameters. The model has been applied for various test cases in comparison to cirrus cover derived from SEVIRI-IR data from Meteosat (MSG) observations. The comparison shows that radiative heating may enhance vertical mixing and reduce the life time of contrail cirrus (and thin cirrus in general) by factors of order two.

  4. Temperature and heat flux dependence/independence for heat equations with

    E-print Network

    Ceragioli, Francesca

    Temperature and heat flux dependence/independence for heat equations with memory S. Avdonin results on the relations between temperature and flux for heat equations with memory. The key ob the study of controllability of the pair heat-flux in an appropriate functional space. This paper fits

  5. Correlation to Predict the Maximum Heat Flux of a Vertical Closed-Loop Pulsating Heat Pipe

    Microsoft Academic Search

    Niti Kammuang-Lue; Phrut Sakulchangsatjatai; Pradit Terdtoon; D. Joseph Mook

    2009-01-01

    The objective of this study is to experimentally investigate the effect of various parameters on the maximum heat flux of a vertical closed-loop pulsating heat pipe (CLPHP) and the inside phenomena that cause maximum heat flux to occur. A correlation to predict the maximum heat flux using the obtained results was also established. Quantitative and qualitative experiments were conducted and

  6. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe vapor effusion in an upstream wetting front lifts the vapor-liquid interface off the surface, triggering CHF. Since the model is entirely based on physical observations, it has the potential to accurately predict CHF for other fluids and flow geometries which are beyond the conditions for which it was validated.

  7. Quantification of green roof carbon dioxide, heat, and water fluxes using the gradient flux technique

    NASA Astrophysics Data System (ADS)

    de Lanoy, J. T.; Orton, P. M.; McGillis, W. R.

    2008-12-01

    Green roofs address several important problems associated with urbanization, but there has been limited quantification of their benefits. On the small scales necessary on a rooftop, direct eddy covariance cannot be used to measure the carbon dioxide, sensible and latent heat, and water fluxes between the plant canopy and the atmosphere. Thus, the gradient flux technique was used to calculate these fluxes between a green roof and the atmosphere over 18 days in summer, 2008. Measurements of atmospheric CO2 and H2O concentration and meteorological variables were taken in the atmospheric surface boundary layer within 35 cm of the green roof plant canopy: CO2 and H2O concentrations were sampled with one sensor at five different heights for five minutes each over the course of thirty minute intervals to construct a vertical profile, as well as a being sampled continuously with another sensor at the median height to quantify time variability; temperature and relative humidity were sampled at the highest, lowest, and median heights; wind velocity was recorded at two heights to measure shear velocity, a parameter describing atmospheric mixing; canopy temperature and moisture, and solar radiation were also measured. Results show the plant canopy was a net sink of carbon dioxide during the day and a net source of carbon dioxide during the night, as expected. Average carbon dioxide flux was approximately 0.135 ? mol m-2 s-1 into the canopy over the experiment, or about 51.1 g C m-2 year-1 into the canopy if seasonality is neglected. Long-term studies coupling this method with detailed mass and heat budgets will allow more complete quantification of carbon dioxide, water and heat fluxes on green roofs. This will aid in improving quantification of both known benefits of green roofs, as well as more speculative benefits such as carbon sequestration.

  8. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  9. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  10. High heat flux engineering in solar energy applications

    SciTech Connect

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  11. High heat flux cooling by microbubble emission boiling.

    PubMed

    Suzuki, Koichi; Saitoh, Hiroshi; Matsumoto, Kazuaki

    2002-10-01

    In subcooled flow boiling of water in a horizontal rectangular channel, microbubble emission boiling occurred at higher subcooling of liquid in transition boiling, and the heat flux increased more than the critical heat flux. The maximum heat flux reached 10 MW/m(2) for a channel with 12 mm x 14mm cross-section at 40K liquid subcooling and 0.5 m/sec liquid velocity. For smaller rectangular channels with 14 mm x 5mm, 14mm x 3mm, and 14mm x 1mm cross-sections, the maximum heat flux was 7 MW/m(2)-more than 20 times the cooling limit of a present day CPU. Microbubble emission boiling is expected to realize high heat flux cooling for electronic devices. In convection boiling with subcooled water jet, the same boiling regime and heat flux were obtained for a downward heating surface and an upward heating surface. In subcooled flow boiling with strong convection, the hydrodynamic force is predominant for vapor-liquid exchange. Accordingly, microbubble emission boiling is expected for high heat flux cooling or high heat flux heat transfer in microgravity. PMID:12446336

  12. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest

    Microsoft Academic Search

    Shashi B. Verma; Dennis D. Baldocchi; Dean E. Anderson; Detlef R. Matt; Robert J. Clement

    1986-01-01

    Fluxes of CO2, latent heat and sensible heat were measured above a fully-leafed deciduous forest in eastern Tennessee with the eddy correlation technique. These are among the first reported observations over such a surface. The influences of solar radiation, vapor pressure deficit and the aerodynamic and canopy resistances on these mass and energy exchanges are examined. Following a concept introduced

  13. Correction to the ERA40 surface flux products consistent with the Mediterranean heat and water budgets

    Microsoft Academic Search

    D. Pettenuzzo; W. G. Large; N. Pinardi

    2009-01-01

    A new air-sea physics parametrization is developed along with a correction of the ECMWF Era-40 reanalysis in order to close the heat and fresh water budgets for the Mediterranean basin during the period that ranges from 1958 to 2001. The empirical bulk formulas for the evaluation of the radiative part of the total heat flux has been replaced by the

  14. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-print Network

    Paris-Sud XI, Université de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  15. Estimation of heat flux through the eastern Bering Strait

    Microsoft Academic Search

    Kohei Mizobata; Koji Shimada; Rebecca Woodgate; Sei-Ichi Saitoh; Jia Wang

    2010-01-01

    We estimated the northward heat flux through the eastern channel of the Bering Strait during the ice-free seasons between\\u000a 1999 and 2008. This is likely about half of the total heat flux through the strait. The net volume transport and heat flux\\u000a through the eastern channel of the strait were estimated from multiple linear regression models with in-situ\\/satellite remotely sensed

  16. Surface radiation fluxes in transient climate simulations

    Microsoft Academic Search

    J. R. Garratt; D. M. O'Brien; M. R. Dix; J. M. Murphy; G. L. Stephens; M. Wild

    1999-01-01

    Transient CO2 experiments from five coupled climate models, in which the CO2 concentration increases at rates of 0.6–1.1% per annum for periods of 75–200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and

  17. Infrared radiometric technique for rapid quantitative evaluation of heat flux distribution over large areas

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Siebes, Georg

    1989-01-01

    This paper describes a novel approach for rapid, quantitative measurement of spatially distributed heat flux incident on a plane. The technique utilizes the spatial temperature distribution on an opaque thin film at the location of interest, as measured by an imaging infrared radiometer. Knowledge of film radiative properties, plus quantitative estimates of convection cooling permit the steady state energy balance at any location on the film sheet to be solved for the incident heat flux. Absolute accuracies on the order of 10-15 percent have been obtained in tests performed in air. The method is particularly useful for evaluation of spatial heat flux uniformity from distributed heat sources over large areas. It has recently been used in several applications at the Jet Propulsion Laboratory, including flux uniformity measurements from large distributed quartz lamp arrays used during thermal vacuum testing of several spacecraft components, and flux mapping of a low power NdYg laser beam.

  18. RADIATION ENTROPY FLUX AND ENTROPY PRODUCTION OF THE EARTH SYSTEM

    E-print Network

    Click Here for Full Article RADIATION ENTROPY FLUX AND ENTROPY PRODUCTION OF THE EARTH SYSTEM Wei; published 14 May 2010. [1] The study of the Earth's radiation entropy flux at the top of the atmosphere. It is found that the Earth's net radiation entropy flux estimated from these vari- ous expressions can differ

  19. Wedge Heat-Flux Indicators for Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2003-01-01

    Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.

  20. Experimental Performance of a Micromachined Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    Stefanescu, S.; DeAnna, R. G.; Mehregany, M.

    1998-01-01

    Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response.

  1. Designing, testing, and analyzing coupled, flux transformer heat 

    E-print Network

    Renzi, Kimberly Irene

    1998-01-01

    The proposed research involves designing, testing, and ics. analyzing a coupled, flux transformer heat pipe system following the patent of Oktay and Peterson (1997). Experiments were conducted utilizing four copper heat pipes, lined with copper mesh...

  2. High heat flux dissipation using small diameter channels

    Microsoft Academic Search

    Morris Brian Bowers

    1994-01-01

    Increased heat dissipation rates from electronic chips creates the need for high heat flux cooling schemes with a special emphasis on practical considerations such as pressure drop and flow rate. Devices such as fusion reactor components and rocket nozzles have heat dissipation rates of 10,000 W cm$\\\\sp{-2}$ These heat fluxes are orders of magnitude greater than electronic devices, thus requiring

  3. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Ash, Robert L.

    1994-01-01

    A method is developed for predicting the radiant heat flux distribution produced by tungsten filament, tubular fused-quartz envelope heating systems with reflectors. The method is an application of Monte Carlo simulation, which takes the form of a random walk or ray tracing scheme. The method is applied to four systems of increasing complexity, including a single lamp without a reflector, a single lamp with a Hat reflector, a single lamp with a parabolic reflector, and up to six lamps in a six-lamp contoured-reflector heating unit. The application of the Monte Carlo method to the simulation of the thermal radiation generated by these systems is discussed. The procedures for numerical implementation are also presented. Experiments were conducted to study these quartz heating systems and to acquire measurements of the corresponding empirical heat flux distributions for correlation with analysis. The experiments were conducted such that several complicating factors could be isolated and studied sequentially. Comparisons of the experimental results with analysis are presented and discussed. Good agreement between the experimental and simulated results was obtained in all cases. This study shows that this method can be used to analyze very complicated quartz heating systems and can account for factors such as spectral properties, specular reflection from curved surfaces, source enhancement due to reflectors and/or adjacent sources, and interaction with a participating medium in a straightforward manner.

  4. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  5. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  6. MEASURING SOIL WATER FLUX BY THE HEAT PULSE RATIO METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately measuring water fluxes in the vadose zone is a formidable challenge. Heat pulse methods for measuring water flux may allow researchers to overcome this challenge in some settings. The heat pulse ratio method is a relatively simple approach that has been shown to be effective in saturated ...

  7. Thin Film Heat Flux Sensor of Improved Design

    NASA Technical Reports Server (NTRS)

    Fralick, Gus; Wrbanek, John; Blaha, Charles

    2002-01-01

    A new design for a thin film heat flux sensor is presented. It is easier to fabricate than previous designs, for a given heat flux has an order of magnitude larger signal, and is more easily scalable than previous designs. Transient and steady state data are also presented.

  8. Heat flux estimates and armor design for CPRF/ZTH

    SciTech Connect

    Downing, J.N.; Werley, K.A.; Gamble, M.T.

    1987-01-01

    A model for the scrape-off layer (SOL) in Reversed-Field Pinches (RFPs) was developed to evaluate the wall heat flux distribution in CPRF/ZTH. Design options for high heat flux areas have been evaluated. A finite element model was used to determine the front-surface temperature and the thermally-induced stresses in the graphite. 2 refs., 10 figs.

  9. Eddy heat fluxes at Drake Passage due to mesoscale motions 

    E-print Network

    Rojas Recabal, Ricardo Luis

    1982-01-01

    average, meridional eddy heat flux for the instrument located at 2524 m average depth on mooring NS7. 124 125 126 127 128 129 , INTRODUCTION , 1. Background In this study new measurements are used to estimate heat fluxes across the Antarctic... during DRAKE 79 wi 11 prove to be crucial to the interpretation of the heat flux measurements presented in this study. b. Peaf flux; previous relapsed work Ever since the oceans were understood to play an important role in the earth's thermal balance...

  10. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  11. Geometrical effects on axial & azimuthal variations of heat flux to coolant in asymmetrically heated channels

    E-print Network

    Wang, Chunyun, 1968-

    1998-01-01

    This report summarizes analyses of the effects of heat conduction in a copper block on the heat flux to a coolant flowing axially in the block. Heat is assumed to be added through one side of the block corresponding to ...

  12. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  13. Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent Solar-like Convection

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.

    2015-05-01

    We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011; Solar Phys. 287, 239, 2013), now taking into account the influence of radiative heating on 1022 Mx flux tubes, corresponding to flux tubes of large active regions. Our simulations show that flux tubes of ? 60 kG that are subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward because of the increased buoyancy of the flux tube earlier in its evolution, which results from including radiative diffusion. Flux tubes of magnetic field strengths ranging from 15 kG to 100 kG have rise times of ? 0.2 years and exhibit a Joy's Law tilt-angle trend. Our results suggest that radiative heating is an effective mechanism by which flux tubes can escape from the stably stratified overshoot region. Moreover, flux tubes do not necessarily need to be anchored in the overshoot region to produce emergence properties similar to those of active regions on the Sun.

  14. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    SciTech Connect

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  15. ERRORS IN SOIL HEAT FLUX MEASUREMENT: EFFECTS OF FLUX PLATE DESIGN AND VARYING SOIL THERMAL PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux plate method is the most commonly employed method for measuring soil heat flux (G) in surface energy balance studies. Nonetheless, significant errors in G measured with flux plates can occur unless proper installation techniques are used and necessary corrections made. The objective of th...

  16. Asymmetry of interoceanic fresh-water and heat fluxes

    PubMed Central

    Stommel, Henry

    1980-01-01

    According to recent hydrological and meteorological studies, the meridional flux of fresh water and heat is remarkably different from ocean to ocean. These fluxes have been found to be consistent with the temperature and salinity distribution in the northern hemisphere. However, an attempt to map these fluxes on the temperature-salinity plane of a southern latitude leads to such large amplitudes of water-mass volume flux that it seems that there may be something wrong about them. PMID:16592814

  17. Heat flux determination for nucleate boiling in subsurface tunnel structures

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Poniewski, Mieczyslaw E.; Koziol, Monika

    2012-08-01

    The paper focuses on theoretical analysis of boiling heat transfer on surfaces with tunnel structures formed by fins with microfins and covered with perforated foil. The investigations were conducted for water, ethanol and R-123. The theoretical heat flux, based on modified Chien and Webb model, when compared to the experiments, showed satisfying agreement in low and medium ranges for water and ethanol, and in all heat flux ranges for R-123.

  18. Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-04-01

    Recent scientific studies based on large-scale climate model have highlighted the importance of the heat release from the southern side of the Himalayas for the development of South Asian Summer Monsoon. However, studies related to land surface heat fluxes are nonexistent on the southern side. In this study, we test the feasibility of deriving land surface heat fluxes on the central Himalayan region using Topographically Enhanced Surface Energy Balance System (TESEBS), which is forced by MODIS land surface products and Global Land Data Assimilation System (GLDAS) meteorological data. The model results were validated using the first eddy covariance measurement system established in the southern side of the central Himalayas. The derived land surface heat fluxes were close to the field measurements with mean bias of 15.97, -19.89, 8.79, and -20.39 W m-2 for net radiation flux, ground heat flux, sensible heat flux, and latent heat flux respectively. Land surface heat fluxes show strong contrast in pre monsoon, summer monsoon, post monsoon, and winter seasons and different land surface states among the different physiographic regions. In the central Himalayas, the latent heat flux is the dominant consumer of available energy for all physiographic regions except for the High Himalaya where the sensible heat flux is high.

  19. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  20. A genetic algorithm model for high heat flux flow boiling

    Microsoft Academic Search

    Pasquale M. Sforza

    1997-01-01

    A new genetic algorithm model is introduced in a recently developed turbulent-boundary-layer scheme for the calculation of heat transfer in high heat flux subcooled boiling flows. Such flows, often desired for cooling of rocket nozzles and nuclear components, are characterized by high fluid velocities and extremely small bubbles that exist in a thin layer adjacent to the heated wall. The

  1. Interannual variability in Mediterranean heat and buoyancy fluxes

    SciTech Connect

    Garrett, C.; Outerbridge, R. (Univ. of Victoria, British Columbia (Canada)); Thompson, K. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1993-05-01

    The flux of heat through the Strait of Gibraltar is known well enough that the Mediterranean Sea may be used as a climate test basin. After adjusting reported winds for changes in observing practice, the COADS for 1946 to 1988 was used together with standard heat flux formulas to estimate the long-term mean heat flux into the sea, giving 36 W m[sup [minus]2] more than is compatible with the Gibraltar exchange, As the estimated latent heat flux is consistent with the freshwater budget, it is suggested that standard formulas overestimate insolation in the Mediterranean. If a constant adjustment factor is used for the insolation, or for the latent heat loss, interannual variability of [+-]15 Wm[sup [minus]2] is found in the total heat flux. Changes in the latent heat flux dominate, with contributions from both the humidity of the air and the saturation humidity at the temperature of the sea surface. The buoyancy flux from the sea is also examined and shows that the contributions from precipitation and runoff are important for the long-term mean, but insignificant for seasonal and interannual variability. 30 refs., 11 figs.

  2. Soil heat flux determined from diel water content and temperature variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil heat flux for a measurement interval is commonly determined using heat flux plates buried at some depth below the surface. The heat flux values are adjusted to represent the soil surface heat flux by determining the heat stored in the layer between the plate and surface. Heat storage is calcula...

  3. Partitioning of Latent Heat Flux between Transpiration and Direct Evaporation

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ramamurthy, P.; Baeck, M. L.; Bou-Zeid, E.; Scanlon, T. M.; Smith, J. A.

    2013-12-01

    The characterization of land surface fluxes is critical to enhancing our understanding of the water cycle and regional climate. The partitioning of available energy into sensible and latent heat fluxes (H and LE), as well as the partitioning of latent heat flux into vegetation transpiration (Et) and bare soil evaporation (Ed), are key elements of biosphere-atmosphere interactions. In this study empirical analyses and numerical modeling studies are carried out for a suburban grass site in Princeton NJ, focusing on a two year period from 2011 - 2013. Measurements from an Eddy-Covariance station play a central role in both empirical analyses and modeling studies. Two methods are used to partition latent heat flux into direct evaporation and transpiration components: flux similarity partitioning and partitioning based on the Penman-Monteith formulation in the Noah Land Surface Model (LSM). The former takes 10Hz water vapor and CO2 flux measurements as input, assuming that the water vapor (q) / CO2 (c)flux pair from stomatal processes (transpiration and photosynthesis) is perfectly negatively correlated. Any deviation of the correlation from -1 is contaminated by the perfect positive correlation of the q c flux pair from non-stomatal processes (soil evaporation and respiration). Thus LE can be partitioned into Et and Ed by analyzing the q c correlation. The latter method is based on a commonly used physics-based model which takes fundamental forcing time series as input, using Penman-Monteith equation. We characterize the seasonal and diurnal partitioning of latent heat flux based on flux similarity analyses and compare these results to partitioning based on Noah LSM simulations. We use wavelet decomposition to examine scale-dependent properties of latent heat flux partitioning and present sensitivity analyses of Noah LSM flux partitioning to model parameters. We also present results from a water vapor isotope analyzer that was developed with the goal of providing an empirical measurement of the Et and Ed flux components.

  4. Effect of the radiative background flux in convection

    E-print Network

    A. Brandenburg; K. L. Chan; A. Nordlund; R. F. Stein

    2005-08-18

    Numerical simulations of turbulent stratified convection are used to study models with approximately the same convective flux, but different radiative fluxes. As the radiative flux is decreased, for constant convective flux: the entropy jump at the top of the convection zone becomes steeper, the temperature fluctuations increase and the velocity fluctuations decrease in magnitude, and the distance that low entropy fluid from the surface can penetrate increases. Velocity and temperature fluctuations follow mixing length scaling laws.

  5. Experimental feasibility study of a thermoelectric heat flux gage

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.; Lopez, I.

    1983-01-01

    An experiment was conducted to determine the feasibility of using a commercially available thermoelectric device as a heat flux gage at near ambient conditions. In certain research applications, the thermoelectric heat flux gage can provide a relatively simple means to model a warm fluid cold wall convection environment. The experiment showed that heat flux through the gage could be correlated within 2.5 percent with a simple algebraic equation which considered the thermoelectric current through the device and the hot and cold side temperatures.

  6. Sensible heat flux from sparse vegetation estimated using Nusselt numbers

    NASA Astrophysics Data System (ADS)

    Jacobs, A. F. G.; Verhoef, A.; de Bruin, H. A. R.

    1996-05-01

    In semi-arid regions, the contribution of fluxes from the bare soil to the total fluxes of heat, water vapour and momentum is considerable. A simple technique is presented to estimate the sensible heat from the soil by using Nusselt numbers. This technique has been tested with measurements collected during the EFEDA-2 experiments in Spain under mixed convective and forced convective conditions. The results obtained with the Nusselt number technique agree well with the sensible heat flux measured by the eddy-correlation technique.

  7. A double film heat flux gauge and its application

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Epstein, A. H.

    1985-10-01

    A double film heat flux gauge is investigated theoretically and developed to measure heat flux on turbine blades or rotor stationary tip casing in turbine test facilities of short duration. The analysis shows that the heat flux is a function of the temperature histories on both sides of the gauge. It is also a function of two combined parameters which consist of thermal properties and size of the gauge. A method for calibration of the gauge is given. The design criteria and applied techniques of the gauge are described in detail.

  8. Critical heat flux of subcooled flow boiling in swirl tubes relevant to high-heat-flux components

    Microsoft Academic Search

    Fujio Inasaka; Hideki Nariai

    1996-01-01

    It is necessary to accurately determine the critical heat flux (CHF) of cooling systems used in fusion reactors. Currently, sufficiently accurate CHF correlations for one-sided heating have not been established. A design method for subcooled boiling cooling systems using swirl tubes is described. From a review of existing work under uniform heating conditions, the correlations of Gunther and Nariai-Inasaka are

  9. A Heat Flux Instrument for Measuring Venus Surface Heat Flow

    NASA Astrophysics Data System (ADS)

    Pauken, M.; Smrekar, S.

    2015-04-01

    An instrument has been developed to measure the surface heat flow on Venus. Heat flow measurement would provide a better understanding of the evolutionary development of Venus. The instrument uses a semiconductor thermopile to measure heat flow.

  10. Assessment of high-heat-flux thermal management schemes

    Microsoft Academic Search

    Issam Mudawar

    2001-01-01

    This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of

  11. Determination of pool boiling Critical Heat Flux enhancement in nanofluids

    E-print Network

    Truong, Bao H. (Bao Hoai)

    2007-01-01

    Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

  12. Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs

    Microsoft Academic Search

    Caren Michels; Roberto Lamberts; Saulo Güths

    2008-01-01

    In Brazilian towns and cities the greatest thermal gain occurs through the roof of single-storey buildings. In this regard, the use of thermal radiation barriers has the function of minimizing the heat flux through the roof. Even though the use of this type of thermal insulation has increased in recent years; there are still no technical standards which address the

  13. Radiation heat transfer in combustion systems

    Microsoft Academic Search

    R. Viskanta; M. P. Menguc

    1987-01-01

    An adequate treatment of thermal radiation heat transfer is essential to a mathematical model of the combustion process or to a design of a combustion system. This paper reviews the fundamentals of radiation heat transfer and some recent progress in its modeling in combustion systems. Topics covered include radiative properties of combustion products and their modeling and methods of solving

  14. Coupled air-sea interaction patterns and surface heat-flux feedback in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Esnaola, G.; SáEnz, J.; Zorita, E.; Lazure, P.; Ganzedo, U.; FontáN, A.; Ibarra-Berastegi, G.; Ezcurra, A.

    2012-06-01

    The coupled variability of the Sea Surface Temperature (SST) and atmosphere-ocean surface heat fluxes over the Bay of Biscay (Eastern North Atlantic) has been analyzed. Daily surface heat fluxes from different meteorological reanalyses are combined with a high resolution reconstructed satellite SST data set by means of Lagged Maximum Covariance Analysis (MCA). Lagged MCA is applied at different spatial scales. Its results are interpreted within the framework of Hasselmann's stochastic climate model. The surface heat-flux feedback on SST is confirmed to be generally negative. No clear relation is found between the first MCA expansion series and the leading Sea Level Pressure (SLP) patterns. However, a clear relation is found between the second expansion series and the leading SLP Principal Component (PC) when the atmosphere leads the ocean. Spatial patterns of anomalies of the SST and of the SST tendency are found to be related by a 4 day lag. The same reconstructed satellite SST and reanalysis heat fluxes are combined to estimate the feedbacks related to the surface heat fluxes. The traditional procedure used to compute the surface heat-flux feedbacks from monthly data is adapted for daily data. High resolution maps of the heat-flux feedback are derived for the annual and seasonal cases for the Bay of Biscay. Feedbacks related to turbulent (latent and sensible heat) fluxes are shown to dominate over the radiative ones. Special attention is paid to small-scale features present in both Lagged Covariance patterns and surface heat-flux feedback estimates.

  15. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  16. Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux

    E-print Network

    Phillips, Bren Andrew

    2011-01-01

    The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...

  17. Systematic investigation of the effects of hydrophilic porosity on boiling heat transfer and critical heat flux

    E-print Network

    Tetreault-Friend, Melanie

    2014-01-01

    Predicting the conditions of critical heat flux (CHF) is of considerable importance for safety and economic reasons in heat transfer units, such as in nuclear power plants. It is greatly advantageous to increase this thermal ...

  18. Critical analysis of empirical ground heat flux equations on a cereal field using micrometeorological data

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; La Loggia, Goffredo; Maltese, Antonino

    2009-09-01

    The rate at which the net radiation is transferred to the soil as ground heat flux varies with surface characteristics. Surface energy balance algorithms use empirical relationships taking into account the effects of the canopy cover to insulate the soil through vegetation indexes, the soil capacity to absorb incoming net radiation via the albedo, and the surface temperature promoting the energy transfer. However empirical relationships are often dependent on local conditions, such as the soil humidity and vegetation type. Ground heat flux assumes a minimum value in case of full canopy cover and a maximum value for dry bare soil. Aim of the present research is the critical analysis of some ground heat flux equations on a homogeneous field of cereal using measured data acquired between February and May 2008. The study period covers almost a full phenological cycle, including phases characterised by a significant change in both reflected radiation and vegetation cover. The dataset begins with the emergence phase, in November, within which shoots emerge from the ground and finishes with the flowering phase, in May, when tiny white stems begin to come-out; moreover the dataset includes a bare soil period (from September up to November). The daily evapotranspiration is calculated in energy balance models under the hypotheses of negligible daily ground heat flux and constant daily evaporative fraction. Actually micrometeorological data show that daily average ground heat flux is not null but characterised by an increasing or decreasing transient. As a consequence, it is particular important to assess the effects of neglecting the daily ground heat flux on daily evapotranspiration estimation.

  19. Intercomparison of Latent Heat Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Chou, Ming-Dah

    2003-01-01

    Turbulent fluxes of momentum, moisture, and heat at the air-sea interface are essential for climate studies. Version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2) has been derived from the Special Sensor Microwave/Imager (SSM/I) radiance measurements. This dataset, covering the period July 1987-December 2000 over global oceans, has a spatial resolution of 1 deg x 1 deg lat-long and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory. The GSSTF2 bulk flux model, and retrieved daily wind stress, latent heat flux, wind speed, and surface air humidity validate well with ship observations of ten field experiments over the tropical and midlatitude oceans during 1991-99. The global distributions of 1988-2000 annual- and seasonal-mean turbulent fluxes show reasonable patterns related to the atmospheric general circulation and seasonal variations. Latent heat fluxes and related input parameters over global oceans during 1992-93 have been compared among GSSTF1 (version 1), GSSTF2, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP/NCAR reanalysis, and one based on COADS (Comprehensive Ocean-Atmosphere Data Set). Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, surface wind, and SST are quite realistic compared to the other four flux datasets examined. However, significant differences are found among these five flux datasets. The GSSTF2, available at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/hydrology/hd_gsstf2.O.html, is useful for climate studies.

  20. Meridional heat flux of the North Atlantic Ocean

    SciTech Connect

    Wunsch, C.

    1980-09-01

    Using self-consistent geostrophic general circulation estimates for the North Atlantic Ocean as determined by an inverse method, I calculate the geostrophic and total meridional heat flux. The result is to a large extent dictated by the assumption of a fixed volume flux through the Florida Straits. There is no fundamental discrepancy between oceanic heat fluxes deduced from atmospheric residuals and those estimated directly in the ocean, including the estimates made here, simply because the error bars on all calculations are very large.

  1. Design of a Calibration System for Heat Flux Meters

    NASA Astrophysics Data System (ADS)

    Arpino, F.; Dell'Isola, M.; Ficco, G.; Iacomini, L.; Fernicola, V.

    2011-12-01

    Accurate heat flux measurements are needed to gain a better knowledge of the thermal performance of buildings and to evaluate the heat exchange among various parts of a building envelope. Heat flux meters (HFMs) are commonly used both in laboratory applications and in situ for measuring one-dimensional heat fluxes and, thus, estimating the thermal transmittance of material samples and existing buildings components. Building applications often requires heat flux measurements below 100 W · m-2. However, a standard reference system generating such a low heat flux is available only in a few national metrology institutes (NMIs). In this work, a numerical study aimed at designing an HFM calibration apparatus operating in the heat flux range from 5 W·m-2 to 100 W · m-2 is presented. Predictions about the metrological performance of such a calibration system were estimated by numerical modeling exploiting a commercial FEM code (COMSOL®). On the basis of the modeling results, an engineered design of such an apparatus was developed and discussed in detail. The system was designed for two different purposes: (i) for measuring the thermal conductivity of insulators and (ii) for calibrating an HFM with an absolute method (i.e., by measuring the applied power from the heater and its active cross section) or by a relative method (i.e., by measuring the temperature drop across a reference material of known thickness and thermal conductivity). The numerical investigations show that in order to minimize the uncertainty of the generated heat flux, a fine temperature control on the thermal guard is needed. The predicted standard uncertainty is within 2% at 10W·m-2 and within 0.5% at 100 W · m-2.

  2. Quantification of green roof carbon dioxide, heat, and water fluxes using the gradient flux technique

    Microsoft Academic Search

    J. T. de Lanoy; P. M. Orton; W. R. McGillis

    2008-01-01

    Green roofs address several important problems associated with urbanization, but there has been limited quantification of their benefits. On the small scales necessary on a rooftop, direct eddy covariance cannot be used to measure the carbon dioxide, sensible and latent heat, and water fluxes between the plant canopy and the atmosphere. Thus, the gradient flux technique was used to calculate

  3. Critical heat flux around strongly-heated nanoparticles Samy Merabia1

    E-print Network

    Boyer, Edmond

    Critical heat flux around strongly-heated nanoparticles Samy Merabia1 , Pawel Keblinski2 , Laurent from a heated nanoparticle into surrounding fluid, using molecular dy- namics simulations. We show that the fluid next to the nanoparticle can be heated well above its boiling point without a phase change. Under

  4. Performance of thermal barrier coatings in high heat flux environments

    Microsoft Academic Search

    ROBERT A. MILLER; CHRISTOPHER C. BERNDT

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 \\

  5. Air-Sea heat fluxes over the Iceland Sea

    NASA Astrophysics Data System (ADS)

    Petersen, Gudrun Nina; Harden, Ben E.; Renfrew, Ian A.

    2015-04-01

    On a monthly mean scale the Iceland Sea has been shown to be a region of local heat flux minimum while there are also indications that there may be dense water formation in the region. To investigate if the atmospheric conditions over the Iceland Sea can results in significant high heat flux events on shorter time scales data from a meteorological buoy, that was deployed in the area for about two years, is analysed. The observations are compared to ERA-Interim data, which is shown to generally perform very well for this central Iceland Sea location. Synoptic-scale weather patterns during different heat flux events are then examined. The high flux events with winds from the north are often found to be short lived and in between there are long period of low fluxes. Thus the high flux events are disguised in annual and monthly means. However, it still remains to be seen whether the heat fluxes in the region are large enough to drive the ocean convection needed to produce dense water.

  6. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  7. A diagnostic for quantifying heat flux from a thermite spray

    SciTech Connect

    E. P. Nixon; M. L. Pantoya; D. J. Prentice; E. D. Steffler; M. A. Daniels; S. P. D'Arche

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.

  8. Turbine blade and vane heat flux sensor development, phase 1

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-01-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  9. Turbine blade and vane heat flux sensor development, phase 1

    NASA Astrophysics Data System (ADS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-08-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  10. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  11. Simulation for heat flux mitigation by gas puffing in KSTAR

    NASA Astrophysics Data System (ADS)

    Shim, Seung Bo; Kotov, Vladislav; Hong, Suk-Ho; Detlev, Reiter; Kim, Jin Yong; Na, Yong Su; Lee, Hae June

    2013-10-01

    Control of heat flux is very important to achieve high performance long pulse operation in tokamaks. There are so many efforts to reduce the heat flux like change of divertor structure, snowflake divertor, and RMP, etc. Detachment by gas puffing is used for long time to reduce the heat flux. In this paper edge plasma scenarios of KSTAR are analyzed numerically by well-known B2-Eirene code package(SOLPS4.3). High performance discharges with heating power ~ 8 MW and core flux ~ 1021 s-1 is used. Gas puffed on the outer mid-plane(OMP), both divertors is likely to stay attached. So, gas puffed on the outer target, one is near the private flux region(PFR) and the other is near the scrape-off-layer(SOL). When gas puffed near the SOL is still attached, and it is worse than gas puff from OMP because it is too close to cryo-pump. The case near the PFR shows high recycling region easily compared with OMP case. When one forth gas puffed on the PFR, results are similar with OMP case. But it is still not good for detachment operation. Detachment operation window is too small for the gas puffing on the PFR. Control of heat flux is very important to achieve high performance long pulse operation in tokamaks. There are so many efforts to reduce the heat flux like change of divertor structure, snowflake divertor, and RMP, etc. Detachment by gas puffing is used for long time to reduce the heat flux. In this paper edge plasma scenarios of KSTAR are analyzed numerically by well-known B2-Eirene code package(SOLPS4.3). High performance discharges with heating power ~ 8 MW and core flux ~ 1021 s-1 is used. Gas puffed on the outer mid-plane(OMP), both divertors is likely to stay attached. So, gas puffed on the outer target, one is near the private flux region(PFR) and the other is near the scrape-off-layer(SOL). When gas puffed near the SOL is still attached, and it is worse than gas puff from OMP because it is too close to cryo-pump. The case near the PFR shows high recycling region easily compared with OMP case. When one forth gas puffed on the PFR, results are similar with OMP case. But it is still not good for detachment operation. Detachment operation window is too small for the gas puffing on the PFR. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No. 2012-0000579).

  12. Thermal analysis of heat-pipe radiators with a rectangular groove wick structure. Master's thesis

    SciTech Connect

    Yang, C.H.

    1990-06-01

    Performance of a grooved heat pipe radiator has been analyzed to determine its operating characteristics. A heat transfer analysis for the heat pipe is coupled with the analysis of the fin in this study. The effects of heat pipe operating temperature on heat flux and fin efficiency are investigated. Finite difference expressions are used for the grid system of the heat pipe wall and the fin. The heat transfer coefficient of the heat pipe radiator was determined as a function of the operating temperature level. Realistic numerical results were achieved and it was shown that the required heat flux and the temperature difference between the evaporator and condensor both increase with operating temperature. Also, the heat transfer coefficient increased with operating temperature up to a certain point, then began to level-off near a temperature of approximately 400 K. In addition, the overall efficiency of the heat pipe-fin arrangement decreased as the operating temperature level increased.

  13. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect

    Robert J. Goldston

    2009-08-20

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  14. Development and Analysis of a Global, Terrestrial Sensible Heat Flux Dataset

    NASA Astrophysics Data System (ADS)

    Siemann, A.; Coccia, G.; Chaney, N.; Wood, E. F.

    2014-12-01

    Energy exchange between the atmosphere and the Earth's surface is manifested through sensible and latent heat turbulent fluxes, with their mean states and variability central features of regional climate. Estimating these fluxes using global data sets and understanding their variability is still unresolved but is a central focus of WCRP's Global Energy and Water Exchange (GEWEX) Data Assessment Panel (GDAP) through the LandFlux activities. In recent years, LandFlux has made progress developing terrestrial latent heat data sets, but the progress developing a consistent, multi-decadal sensible heat product has been limited by challenges such as the poorly measured surface temperature gradient and the parameterization of the aerodynamic resistance. While wind and surface roughness control the turbulent transfer of heat, stable boundary layer conditions offer additional challenges. GDAP strives for satellite and input consistency across the data sets. For the sensible heat data product, this manifests itself primarily in the land surface temperature (LST) (being consistent with the High Resolution Infrared Radiation Sounder (HIRS) observations). Due to its sparse coverage (swath and cloud-contamination), a HIRS-consistent, hourly, global, 0.5 degree resolution LST dataset for clear and cloudy conditions (1979 to 2009) is developed through merging of the NCEP Climate Forecast System Reanalysis (CFSR) estimates with HIRS retrievals, which are validated against the Baseline Surface Radiation Network (BSRN)-based LST. The surface air temperature is estimated by adding the temperature gradient from CFSR to the HIRS-consistent LST data product, and validated against ~10,000 surface stations. The aerodynamic resistance is based on optimized values at 70 global FluxNet towers and extended globally through an objective analysis with land cover and climate covariates. These products are used to form a global terrestrial, hourly, 0.5 degree spatial resolution sensible heat dataset. The spatial, seasonal, and inter-annual variability of the dataset is presented. The sensible heat flux is combined with the LandFlux latent heat estimates and the surface radiation budget ver. 3 (SRB-3) to assess the space-time variability in the combined surface fluxes (e.g. Bowen ratio) as well as budget closure.

  15. An improved empirical method for large spatial scale surface soil heat flux estimations

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Wu, Bingfang; Lu, Shanlong; Yan, Nana; Liu, Guoshui; Liu, Shufu; Xing, Qiang

    2014-03-01

    In this paper, a novel method to simulate soil heat flux for large spatial scale is proposed. This method is constructed with the ratio of soil heat flux and net radiation (G0/Rn) and surface characteristic parameters, such as ratio vegetation indices, surface temperature, surface shortwave infrared reflectance, soil moisture content, solar zenith angle. Field calibration is carried out using measured data in 2009 from Yingke, Huazhaizi, Arou, and Dayakou stations located in Heihe River Basin, Northwest of China. The estimated soil heat flux is compared with field observation data from Yingke and Arou stations in 2008. The overall deviation basis and correlation coefficient between the soil heat flux estimation and measured data are 13.4% and 0.804 in the Yingke station and 12.5% and 0.893 in the Arou station respectively, and also the correlation coefficient are 0.905 in the Maliantan station and 0.817 in the Binggou station respectively. Results indicated that the proposed method performed well in Heihe River Basin. This new method could be an optimal choice to estimate surface soil heat flux for large spatial scale in the future.

  16. Critical Heat Flux of Butanol Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Shotaro; Shoji, Masahiro

    It is known that the addition of small amount of alcohol such as butanol to water enhances the CHF. Such aqueous solution is actively applied to heat transfer devices such as heat pipes and microchannel cooling systems, however, the fundamental characters of boiling have not been fully understood. In the present research, the experiment of boiling heat transfer is performed on a heated wire by employing butanol aqueous solution as a typical test solution and by changing concentration 1-butanol and subcooling in a wide range. Bubbling aspects were observed using high-speed video camera. It is found from the experiment that CHF is 2 to 3 times higher than that of pure water and generating bubbles are tiny even at the saturated condition. The dependence of CHF on subcooling is found to be curious showing that CHF decreases first, takes a minimum, and then increases with increasing subcooling. These results suggest that the butanol aqueous solution is a promising liquid for the application of boiling to a small-scaled cooling device.

  17. Variability of the latent heat flux in the Amazon over ten years of use and occupation

    NASA Astrophysics Data System (ADS)

    Furlan, D. N.; Ballester, M. V.; Andrade, R. G.; Victoria, R. L.

    2012-12-01

    An alternative to determine the latent heat flux, which is the amount of energy available for evapotranspiration, is the use of data obtained by remote sensing. Among the models that use these data, the Surface Energy Balance Algorithm for Land - SEBAL (Bastiaanssen et al., 1998) has been increasing and has become widely used because it determines the evapotranspiration from the bullet full of radiation and energy on the surface land, using remote sensing data and a few additional data collected by surface weather station, as wind speed and temperature. This study aimed to evaluate the spatial variability of the latent heat flux according to the change of use and land cover. Thus, the algorithm was used to determine the SEBAL latent heat flux rate defined as the latent heat transferred from the surface due to the evaporation process or obtained by simple evaporation difference between the radiation balance, the heat flow in the soil and latent heat flux: (?ET=RN-G-H). Where the value of the latent heat instantaneous flow, ie., its value at the time of satellite passage. To determine the latent heat flux were used Landsat 5 TM orbit and point 231/068 the following dates: 06/08/1999, 11/08/2001, 13/07/2005 and 09/08/2009.The study area is located in the central region of the Rondonia state in the Brazilian Amazon. This region has undergone an accelerated process of land use and soil in the last 30 years, which caused significant replacement of forest areas for other classes land use practices, mainly as grazing and agriculture.The results show that the area where the latent heat flux was greater decreased over ten years in analysis due to reduction of forest areas (Figure 1).These results show the latent heat flux in Rondônia in a very dry period, which is in July and August. Due to the long drought period, the topsoil dries faster and areas that are covered by pastures and agriculture have lower evapotranspiration values due to the root system are smaller and do not pick up water at greater depths. The forest areas have a different response to the dry season, they are able to draw water at greater depths, so the evaporation is constant throughout the year.The replacement of forest areas for grazing and agriculture can affect the hydrological regime in this region, especially in drought. Figure 1: Latent heat flow in the central region of Rondônia.

  18. A Local Heat Flux Measurement Technique for Inclined Heat Exchanger Tubes

    Microsoft Academic Search

    T. Wu; K. Vierow

    2006-01-01

    This article presents the design, fabrication, and calibration of thermocouple pairs for local heat flux measurement. The intended application of the thermocouple pairs is on the tubes of phase-change heat exchangers experiencing heat fluxes on the order of 10 W\\/m. Particular advantages of this technique are that it is accurate even for thin-wall tubes, there are no restrictions on the

  19. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island.

    PubMed

    Menberg, Kathrin; Blum, Philipp; Schaffitel, Axel; Bayer, Peter

    2013-09-01

    Anthropogenic alterations in urban areas influence the thermal environment causing elevated atmospheric and subsurface temperatures. The subsurface urban heat island effect is observed in several cities. Often shallow urban aquifers exist with thermal anomalies that spread laterally and vertically, resulting in the long-term accumulation of heat. In this study, we develop an analytical heat flux model to investigate possible drivers such as increased ground surface temperatures (GSTs) at artificial surfaces and heat losses from basements of buildings, sewage systems, subsurface district heating networks, and reinjection of thermal wastewater. By modeling the anthropogenic heat flux into the subsurface of the city of Karlsruhe, Germany, in 1977 and 2011, we evaluate long-term trends in the heat flux processes. It revealed that elevated GST and heat loss from basements are dominant factors in the heat anomalies. The average total urban heat flux into the shallow aquifer in Karlsruhe was found to be ?759 ± 89 mW/m(2) in 1977 and 828 ± 143 mW/m(2) in 2011, which represents an annual energy gain of around 1.0 × 10(15) J. However, the amount of thermal energy originating from the individual heat flux processes has changed significantly over the past three decades. PMID:23895264

  20. Radiative heat transfer between dielectric bodies

    E-print Network

    Svend-Age Biehs

    2011-03-16

    The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

  1. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  2. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  3. Flow-excursion-induced dryout at low-heat-flux

    SciTech Connect

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    Flow-excursion-induced dryout at low-heat-flux natural-convection boiling, typical of liquid-metal fast-breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow-regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high-heat-flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 17 figures.

  4. High frequency response heat flux gauge for metal blading

    NASA Astrophysics Data System (ADS)

    Epstein, A. H.; Guenette, G. R.; Norton, R. J. G.; Yuzhang, C.

    1985-09-01

    Double-sided, high frequency response heat flux gauge technology developed specifically for use on metal turbine blading in short duration turbine test facilities is described in detail. The gauges consist of a metal film (1500A) resistance thermometer sputtered on both sides of a thin (25 micron) polyamide sheet. This sheet, containing 25 gauges, is then adhesively bonded (and completely covers) the airfoil surface. The temperature difference across the polyamide is a direct measure of the heat flux at low frequencies, while a quasi-1D analysis is used to infer the high frequency heat flux from the upper surface temperature history. The design criteria, construction and application techniques, and calibration procedures are discussed in detail. Sample measurements in a high pressure turbine are presented.

  5. Variations in geothermal heat flux at Grímsvötn, Iceland

    NASA Astrophysics Data System (ADS)

    Iona Reynolds, Hannah; Tumi Gudmundsson, Magnús

    2014-05-01

    Thermal signals from sub-surface magmatic sources are difficult to quantify, as the measurement of fluxes from the ground to the atmosphere is subject to large uncertainties. Ice cauldrons are depressions which form on the surface of glaciers due to basal melting as a result of geothermal flux from the bedrock beneath, often generated by volcanic sources. The monitoring of ice cauldrons provides a unique opportunity to quantify heat flux to a much improved accuracy, as the melting ice acts as a calorimeter. Time series data of ice surface elevation at cauldrons above Grímsvötn volcano are presented over a 14 year period, with estimates of the melt volume and surface heat flux required for this melting to have occurred. Three volcanic eruptions took place at Grímsvötn during the study period, the effects of which are visible in ice surface elevation data. However, separate thermal anomalies are observed in areas unaffected by erupted products. A peak in surface heat flux is observed following the 1998 eruption, several kilometres east of the vent, with a maximum rise of ~200 W·m-2. The anomalous signal lasts for approximately three years. Possible explanations include the intrusion of a dyke beneath this area during the eruption, or increased permeability from greater dilatational strain due to regional stress, both of which would significantly increase heat flux. We investigate possible scenarios which could produce such a thermal anomaly, using finite element modelling. The effects of cooling magmatic intrusions and changes to the parameter space for country rock conductivity and permeability are considered, in relation to heat flux and the timescales and spatial extent of associated surface anomalies. Our results advance the understanding and interpretation of thermal signals observed at ice-covered volcanoes.

  6. Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.

    2004-01-01

    Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean heating and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative heating and air/sea hear and moisture transfer, are warranted. This paper examines the current radiation and surface flux of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation fluxes from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation fluxes produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the flux parameterizations. The results suggest that the differences between the models are attributed more to the surface flux parameterizations than the radiation schemes.

  7. Study on the Effects of Heat Flux Levels on Heat Release Rate of Wood

    Microsoft Academic Search

    Jingwei Ji; Liz-Hong Yang; Xiaojun Chen; Weicheng Fan

    2003-01-01

    The average heat release rate (AHRR) of some kinds of wood were measured using cone calorimeter under different heat flux intensities in this paper. The different heat release characteristics of these wood samples were analyzed theoretically. The temperature field of samples at the ignition time was also calculated. The complex structure, the chemical composition of wood (interior factors) and the

  8. Anatomy of a Radiation Belt Flux Dropout

    NASA Astrophysics Data System (ADS)

    Fennell, J. F.; Friedel, R. H.; Green, J. C.; Guild, T. B.; Mazur, J. E.

    2011-12-01

    During the period 30 June to 4 July 2011 an extended flux dropout of energetic electrons was observed by multiple GOES, HEO and GPS satellites. The GOES >2 MeV electron flux dropped by more than two orders of magnitude to background levels and remained at the reduced levels for about four days. The HEO observations indicate the >6.5, >3 MeV, >1.5 MeV, >0.23 flux reductions were observed down to L~4.8, 4.9, 5.1 and 5.6 respectively. The >320 keV proton fluxes were also observe to drop out down to L~ 5.5. At the time of the flux dropout the interplanetary conditions were relatively steady with low solar wind speed and ion density of ~10/cc. However Bz was <0 and Dst turned negative on 1 July at 02 UT reaching -49 nT by 08 UT. The recovery and duration of the flux dropouts were energy dependent with the hundreds of keV electron fluxes recovering within a day near geosynchronous while the >MeV electrons and >320 keV protons recovered slowly. Only the <500 keV electrons reached flux levels exceeding or approaching their pre dropout levels at HEO and then only in the L=4.5-5.2 range. These < 0.5 MeV flux enhancements were temporary, lasting about a day. The HEO observations show that the recovery of the relativistic electron fluxes proceeded slowly from low to higher L. The >8.5 MeV electrons and >320 keV proton fluxes observed by the HEO satellites had still not recovered to L~6.5 after 6-7 days. We will fold all the available data together from GOES, multiple HEO and GPS satellites plus low altitude observations to provide a comprehensive view of this dropout event.

  9. Fiber-optic sensor system for heat-flux measurement

    NASA Astrophysics Data System (ADS)

    Shen, Yonghang; He, Jinglei; Zhao, Weizhong; Sun, Tong; Grattan, Kenneth T. V.; Pritchard, William D. N.

    2004-04-01

    Two different types of fiber-optic sensors were used in an experiment to measure the heat flux in a simulated refractory lining material. The results obtained with a sensor based on fluorescence lifetime detection and a sensor based on the peak wavelength shift of a fiber Bragg grating are presented and compared. Analysis of the results of the measurements taken indicates that these fiber-optic sensor systems are capable of performing multipoint temperature, and thus the heat flux, measurements. An approach is also presented for the measurement of the temperature dependence of the conductivity coefficient of the materials concerned, using the sensor systems detailed.

  10. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    SciTech Connect

    D. Mastrovito; R. Maingi; H.W. Kugel; A.L. Roquemore

    2003-03-25

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.

  11. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  12. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  13. EFFECT OF CONTAMINANTS ON CRITICAL HEAT FLUX AT LOW PRESSURES

    Microsoft Academic Search

    JOHN B. KITTO JR

    1980-01-01

    Critical heat flux (CHF) tests were performed to evaluate the effect of dissolved, nonreactive contaminants on low-pressure industrial boilers. These tests were conducted on a 2.38-inch (60.5 mm) I.D. vertical smooth bore tube with nonuniform circumferential heating at pressures between 100 and 500 psia (0.69 and 3.45 MPa). Tests were performed under two water chemistry conditions: clean (less than 1.6

  14. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  15. Heat flux in the presence of sea surface swell

    NASA Astrophysics Data System (ADS)

    Rutgersson, Anna; Sahlee, Erik; Nilsson, Erik; Fujiwara, Yasushi

    2015-04-01

    In the scientific community is an ongoing process of developing Earth System models to better describe the climate system, presently also wave models are introduced in atmosphere-ocean coupled models. It is, however, not fully understood how to introduce full effects of waves on the atmosphere and ocean. It is well-known that surface gravity waves modulate the air-sea momentum transport and turbulence features in the atmosphere. Less is known about flux of heat and scalars. Measurement have, however, shown that there are surface wave-coherent components also of heat flux. Surface waves can be separated into growing sea and swell waves with very different impact on air-sea interaction processes. An idealized Large-Eddy Simulation (LES) code with a moving lower wavy surface (Sullivan et al., 2008) is used to study the organization of potential temperature fluctuations and sensible heat fluxes. It shows how flux redistribute near surface waves due to swell wave-induced vertical wind. Correlation of vertical wind fluctuations and temperature fluctuations at the frequency of the wave show an impact of swell waves on heat flux. However, not as significant as for momentum transport. LES results are also linked to a detailed analysis of measurements taken at the marine micro-meteorological field station Östergarnsholm in the Baltic Sea in northern Europe as well as on the FLIP platform outside Hawaii. Results from field measurements, that include more processes and complexities not present in the idealized numerical simulations, are emphasized in the discussion of the obtained results. This study shows that more realistic coupling of atmosphere-ocean models must include air-sea interaction associated with surface gravity waves because a part of the near-surface fluxes of sensible heat and momentum can be found at frequencies of the dominant wave components of the wave-field. Continued development of Atmosphere-Wave-Ocean coupled model systems is therefore necessary for Earth-System-Models.

  16. Estimation of net radiation flux distribution on the southern slopes of the central Himalayas using MODIS data

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-03-01

    Recent studies have highlighted the importance of the southern slopes of the Himalayas as a possible heating source driving the South Asian Summer Monsoon (SASM). The central Himalayas are characterized by a complex topography; consequently the measurements regarding land surface heat fluxes are scarce. In this study we tested the feasibility of deriving the regional net radiation flux, an essential component of the surface energy balance, from MODIS data. Three MODIS data scenes were used to derive net radiation flux, taking into account the effect of topography and a detailed extinction process within the atmosphere. This is the first time the regional net radiation flux distribution for the southern slopes of the central Himalayas has been derived from satellite data. The net shortwave radiation flux, net longwave radiation flux and net radiation flux from MODIS data agree well with field observations with mean relative errors of 6.19%, 7.72% and 6.60% respectively. We can therefore conclude that the aforementioned net radiation flux can reasonably be obtained using this method.

  17. Radiation measuring system using transistor flux sensors

    NASA Astrophysics Data System (ADS)

    Josephson, V.; Greenberg, E. L.

    1986-02-01

    An ionizing radiation intensity dosimeter apparatus and method is based on carrier recombination saturation times for irradiated PN junction semiconductor devices following termination of a radiation pulse. Normally-on quiescent condition, moderate radiation doses at relatively high dose rates, and a read-out arrangement employing gated burst counting are included.

  18. Heat flux measurements for use in physiological and clothing research

    NASA Astrophysics Data System (ADS)

    Niedermann, R.; Psikuta, A.; Rossi, R. M.

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  19. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater temperature combined with a high ground surface temperature (GST) and a high groundwater level promote elevated fluxes. Overall, 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of thermal energy are annually transported into the shallow groundwater of Karlsruhe and Cologne due to AHFS. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. Furthermore, extracting this energy could also keep groundwater temperatures from rising any further.

  20. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  1. A microscale thermophoretic turbine driven by external diffusive heat flux

    NASA Astrophysics Data System (ADS)

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2014-10-01

    We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling.We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03990d

  2. On the Nature of Critical Heat Flux in Microchannels

    E-print Network

    Kandlikar, Satish

    consideration in the design of most flow boiling systems. Before the use of micro- channels under saturated flow boiling conditions becomes widely accepted in cooling of high-heat-flux devices, such as electronics concern with boiling and evaporating flows. The second is conjugate effects, circumferential and axial

  3. Modern Perspectives on Measuring and Interpreting Seafloor Heat Flux

    NASA Astrophysics Data System (ADS)

    Harris, Robert N.; Fisher, Andrew; Ruppel, Carolyn; Martinez, Fernando

    2008-01-01

    The Future of Marine Heat Flow: Defining Scientific Goals and Experimental Needs for the 21st Century; Salt Lake City, Utah, 6-7 September 2007; There has been a resurgence of interest in marine heat flow in the past 10-15 years, coinciding with fundamental achievements in understanding the Earth's thermal state and quantifying the dynamics and impacts of material and energy fluxes within and between the lithosphere and hydrosphere. At the same time, technical capabilities have dwindled to the point that no U.S. academic institution currently operates a seagoing heat flow capacity.

  4. Annual MeanSurface HeatFluxes in theArabian GuifandtheNetHeat Transport Through theStraitof Hormuz

    Microsoft Academic Search

    F. Ahmad; S. A. R. Sultan

    An attempt is made to assess the climatological air-sea fluxes in the Arabian (Persian) GuIf using meteorological observations. The annual mean values of upward heat transfer due to solar radiation, sensible heat, latent heat and infrared radiationfluxes are —212, —1, 168 and 66W m2, respectively. Based on the surface inflow and subsuiface outflow through the Strait of Hormuz, the annual

  5. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The superimposed thin-film pattern of all six layers is presented. The large pads are for connection with pins used to bring the signal out the back of the ceramic. heat flux measurement, the surface temperature is measured with a platinum resistance layer (RTS). &The resistance of this layer increases with increasing temperature. Therefore, these gages simultaneously measure the surface temperature and heat flux. The demonstrated applications include rocket nozzles, SCRAM jet engines, gas turbine engines, boiling heat transfer, flame experiments, basic fluid heat transfer, hypersonic flight, and shock tube testing. *The laboratory involves using one of these sensors in a small combustion flame. -The sensor is made on a 2.5 cm diameter piece of aluminum nitride ceramic.

  6. Calculation of heat flux in a macrotidal flat using FVCOM

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wan; Cho, Yang-Ki

    2011-03-01

    To understand the effect of a tidal flat on the seawater temperature near a macrotidal flat, the heat flux was calculated using the unstructured grid, finite-volume coastal ocean model (FVCOM). For this study, a code for calculating the sediment temperature was added to include the heat exchange between seawater and the seabed. Seawater provides heat to the seabed at the intertidal zone (tidal flat) during the morning flood tide and gains heat from the seabed during the afternoon flood tide. The seawater heated by the atmosphere and seabed at the intertidal zone supplies heat to the sublittoral zone during spring, summer, and winter, but vice versa in autumn. The maximum heat supplied from the intertidal zone to the sublittoral zone was 13.85 × 106 GJ in May 2004, and the maximum heat gain from the sublittoral zone was 25.02 × 106 GJ in November 2003. The seawater at the intertidal zone gained 0.57 × 106 GJ (4.50 W m-2) and 14.06 × 106 GJ (112.03 W m-2) of heat from the seabed and atmosphere, respectively, in May 2004 and lost 0.61 × 106 GJ (4.86 W m-2) and 25.06 × 106 GJ (201.15 W m-2) of heat to the seabed and atmosphere, respectively, in November 2003.

  7. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes,

    E-print Network

    Yu, Lisan

    Xiangze Jin Robert A. Weller Woods Hole Oceanographic Institution OAFlux Project Technical Report (OA-2008-2006) developed by the Objectively Analyzed air-sea Heat Fluxes (OAFlux) project at the Woods Hole Oceanographic observables, such as wind speed, sea-air humidity and temperature gradients, etc (Liu et al., 1979

  8. Experimental investigation of heat transfer and burnout in condition of nonuniform megawatt heat fluxes

    SciTech Connect

    Komendantov, A.S.; Kuzma-Kichta, Y.A.; Vasil'eva, L.T.; Ovodkov, A.A. (Moscow Power Engineering Inst., Moscow (SU))

    1991-01-01

    In this paper burnout is investigated in tubes under nonuniform heating on the perimeter. Data on heat transfer and critical heat flux (q{sub chf}) in the case of water were obtained for ranges of mass velocity {rho}w = 200--3000 kg/m{sup 2} s, pressure p = 1--1 MPa, and inlet water temperature T = 25--98{degrees}C. The test section was a horizontal copper tube of 21 mm outer diameter, 8 mm inner diameter with a technically smooth surface and heat transfer-intensifying twisted tape and porous sintered coating. The test section was heated by bombardment with electrons. It is established that a redistribution of heat fluxes and an increase of wall temperature fluctuations occur at burnout. The range of regime parameters to prevent burnout of a heat transfer surface is determined.

  9. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow

    NASA Technical Reports Server (NTRS)

    Stein, Carol A.; Stein, Seth

    1994-01-01

    A significant discrepancy exists between the heat flow measured at the seafloor and the higher values predicted by thermal models of the cooling lithosphere. This discrepancy is generally interpreted as indicating that the upper oceanic crust is cooled significantly by hydrothermal circulation. The magnitude of this heat flow discrepancy is the primary datum used to estimate the volume of hydrothermal flow, and the variation in the discrepancy with lithospheric age is the primary constraint on how the hydrothermal flux is divided between near-ridge and off-ridge environments. The resulting estimates are important for investigation of both the thermal structure of the lithosphere and the chemistry of the oceans. We reevaluate the magnitude and age variation of the discrepancy using a global heat flow data set substantially larger than in earlier studies, and the GDHI (Global Depth and Heat Flow) model that better predicts the heat flow. We estimate that of the predicted global oceanic heat flux of 32 x 10(exp 12) W, 34% (11 x 10(exp 12) W) occurs by hydrothermal flow. Approximately 30% of the hydrothermal heat flux occurs in crust younger than 1 Ma, so the majority of this flux is off-ridge. These hydrothermal heat flux estimates are upper bounds, because heat flow measurements require sediment at the site and so are made preferentially at topographic lows, where heat flow may be depressed. Because the water temperature for the near-ridge flow exceeds that for the off-ridge flow, the near-ridge water flow will be even a smaller fraction of the total water flow. As a result, in estimating fluxes from geochemical data, use of the high water temperatures appropriate for the ridge axis may significantly overestimate the heat flux for an assumed water flux or underestimate the water flux for an assumed heat flux. Our data also permit improved estimates of the 'sealing' age, defined as the age where the observed heat flow approximately equals that predicted, suggesting that hydrothermal heat transfer has largely ceased. Although earlier studies suggested major differences in sealing ages for different ocean basins, we find that the sealing ages for the Atlantic, Pacific, and Indian oceans are similar and consistent with the sealing age for the entire data set, 65 +/- 10 Ma. The previous inference of a young (approximately 20 Ma) sealing age for the Pacific appears to have biased downward several previous estimates of the global hydrothermal flux. The heat flow data also provide indirect evidence for the mechanism by which the hydrothermal heat flux becomes small, which has often been ascribed to isolation of the igneous crust from seawater due to the hydraulic conductivity of the intervening sediment. We find, however, that even the least sedimented sites show the systematic increase of the ratio of observed to predicted heat flow with age, although the more sedimented sites have a younger sealing age. Moreover, the heat flow discrepancy persists at heavily sedimented sites until approximately 50 Ma. It thus appears that approximately 100-200 m of sediment is neither necessary nor sufficient to stop hydrothermal heat transfer. We therefore conclude that the age of the crust is the primary control on the fraction of heat transported by hydrothermal flow and that sediment thickness has a lesser effect. This inference is consistent with models in which hydrothermal flow decreases with age due to reduced crustal porosity and hence permeability.

  10. Heating of coronal plasma by anomalous current dissipation. [induced by solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Golub, L.; Coppi, B.; Vaiana, G. S.

    1978-01-01

    It is shown that there exist heating mechanisms which connect the observed radiative properties of the inner corona in a simple way to the underlying solar magnetic field. The mechanisms considered involve the generation and consequent dissipation of coronal currents. It is argued that the spatially and temporally inhomogeneous nature of the erupting solar magnetic field is an essential element of coronal heating. Unlike heating theories conceived in the context of the 'homogeneous' corona, this class of current heating models incorporates the observed stochastic coronal structuring at the onset, and does not view it as a complication of an otherwise straightforward model. Attention is given to the generation of coronal currents, the flux-tube emergence, the gradual growth and decay of active regions, the energetics of current dissipation, current sheath geometry and heat transport, and anomalous current dissipation.

  11. Radiative Heat Transfer between Neighboring Particles

    E-print Network

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  12. Closing the Energy Budget: Advances in assessing heat fluxes into shallow lakes and ponds (Invited)

    NASA Astrophysics Data System (ADS)

    Tyler, S. W.; Hausner, M. B.; Suarez, F. I.; Selker, J. S.

    2009-12-01

    While soil heat flux is traditionally directly measured in any land surface energy study, measuring heat flux into and out of lakes and ponds is complicated by water column mixing processes, differing radiation adsorption coefficients, turbidity variation and heat flux through the sediment-water interface. High resolution thermal profile, to assess heat storage changes in aquatic systems is both time consuming and challenging using traditional thermister or thermocouple strings or casts. Recent advances in Raman spectra distributed temperature sensing (DTS) offer the opportunity to measure, at high spatial and temporal resolution, the thermal storage changes occurring in lakes and ponds. Measurements of thermal storage using DTS are presented from two distinct environments; a strongly density stratified solar pond and a deep cavern system (Devils Hole in Death Valley National Park), demonstrating the effectiveness of high resolution temperature measurements. In the solar pond environment, closure of the energy budget using direct measurements of evaporation and net radiation was greatly improved by incorporating transient thermal measurements, and the development of a cooling boundary layer easily shown. At Devils Hole, variations in shading of the water surface produced small but measureable horizontal gradients in water column temperature for short periods of the day, which impact both pool evaporation and the metabolism and behavior of aquatic organisms

  13. Physical mechanisms of heat, momentum and turbulence fluxes

    NASA Technical Reports Server (NTRS)

    Theon, John S.

    1987-01-01

    In a qualitative way, the physical mechanisms which generate fluxes of heat, momentum, and turbulence in the atmosphere are discussed. This material is presented to acquaint people with the Earth science aspects of turbulence as important processes in the atmosphere. To attempt to describe turbulent fluxes of heat, momentum, and moisture in precise mathematical detail becomes an intractable problem. It is burdened by an eighth order set of equations involving more variables than equations. It is a closure problem which requires complicated assumptions that are not necessarily always satisfied, variable boundary conditions, and sparse observational data. Therefore, we must approach the problem in a simplified manner to obtain any kind of solution involving the variables of shear, stress, and heat, moisture, and momentum fluxes. There are other problems, of course, in which the inclusion of the planetary boundary layer is extremely important. Air pollution studies, air-sea exchanges, mesoscale models, and so on, must account for the planetary layer in very specific terms. Some of the physical mechanisms that are involved in generating fluxes are described.

  14. Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval

    PubMed Central

    Zhang, Renhua; Tian, Jing; Su, Hongbo; Sun, Xiaomin; Chen, Shaohui; Xia, Jun

    2008-01-01

    In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2?50 w/m2, which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled ?Eveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.

  15. Heat pipe radiators for space. Annual report

    Microsoft Academic Search

    1976-01-01

    Analysis of the data for heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description

  16. A Method for Monitoring the Heat Flux from an Urban District with a Single Infrared Remote Sensor

    NASA Astrophysics Data System (ADS)

    Hénon, Aurélien; Mestayer, Patrice G.

    2014-07-01

    The proposed methodology relies on the modelling capabilities of the thermo-radiative model Suc(olene) to simulate the heat and radiation energy exchanges between an actual urban district and the atmosphere. It is based on the comparison of the simulated upward infrared and sensible heat flux diurnal cycles that may be measured by elevated sensors above the three-dimensional scene, as a function of sensor position: the heat flux is a function of an equivalent surface temperature given by the infrared sensor and an equivalent heat transfer coefficient deduced from Suc(olene) simulations with the actual geometry. The method is tested against measurements obtained in the city centre of Toulouse, France during an experimental campaign in 2004-2005. To improve the computation of the heat exchanges between air and building surfaces a new algorithm is first implemented, based on an empirical model of the wind distribution within street canyons. This improvement is assessed by a direct comparison of the simulated brightness surface temperatures of the Toulouse city centre to measurements obtained with an airborne infrared sensor. The optimization of the infrared remote sensor position is finally analyzed as a function of its height above the mean roof level: it allows evaluation of the heat flux from an urban district when the three different classes of surfaces (roofs, walls, grounds) have similar contributions to the infrared flux towards the sensor, and to the heat flux into the atmosphere.

  17. The maximum sustainable heat flux in stably stratified channel flows

    NASA Astrophysics Data System (ADS)

    Donda, Judith; Van Hooijdonk, Ivo; Moene, Arnold; Van Heijst, GertJan; Clercx, Herman; van de Wiel, Bas

    2015-04-01

    In analogy to the nocturnal atmospheric boundary layer a flux-driven, cooled channel flow is studied using Direct Numerical Simulations. Here, in particular, the mechanism behind the collapse of turbulence at large cooling rates is analysed. In agreement with earlier studies, the flow laminarizes at strong cooling rates. The mechanism for the cessation of turbulence is understood from a Maximum Sustainable Heat Flux (MSHF) theory, which is here tested against numerical simulations. In stratified flow the maximum heat flux that can be transported downward by turbulence at the onset of cooling is limited to a maximum, which, in turn, is determined by the initial momentum of the flow. If the heat extraction at the surface exceeds this maximum, near-surface stability will rapidly increase, which further hampers efficient vertical heat transport. This positive feedback eventually causes turbulence to be fully suppressed by the intensive density stratification. It is shown that the collapse in the DNS-simulations is successfully predicted by the MSHF-theory. Apart from formal analysis, also a simplified methodology is presented, which is more useful in practice for prediction of regime-transitions in field observations.

  18. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    NASA Astrophysics Data System (ADS)

    Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.

    2002-08-01

    Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.

  19. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. (Los Alamos National Lab., NM (United States)); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. (Oak Ridge National Lab., TN (United States)); Turley, W.D. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  20. Composite material heat pipe radiator

    Microsoft Academic Search

    Nelson J. Gernert; David B. Sarraf; Richard J. Guenther

    1996-01-01

    Organic matrix composite material is recognized for its significant strength to weight ratio when compared to metal and consequently was investigated for reducing the mass of heat pipes for future space missions. The particular heat pipe that was constructed and tested was made from an organic matrix composite material applied to a linear of titanium tubing spun to foil thickness

  1. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1981-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiation heating of probes entering the hydrogen helium atmospere of the major planets was investigated. At the present time, there is disagreement as to whether the radiative flux increases or decreases relative to its equilibrium value when finite rate ionization is considered. Leibowitz and Kuo content that the finite rate ionization in the hydrogen gas just behind the shock wave reduces the radiative flux to the probe, whereas Tiwari and Szema predict that it increases the radiative flux. The radiation modeling used in the calculations of both pairs of these investigators was reviewed. It is concluded that finite rate ionization in the inviscid region of the shock layer should reduce the cold wall radiative heating below the values predicted by equilibrium chemistry assumptions.

  2. Responses of sensible heat flux to soil water variation over a forest in a subalpine mountain valley

    NASA Astrophysics Data System (ADS)

    Yan, Chunhua; Chai, Minwei; Zhang, Qingtao; Xiang, Jiao; Wang, Yongqiang; Qiu, Guo Yu

    2015-04-01

    Sensible heat flux is a vital component of Evapotranspiration (ET) and a critical process in the energy budget of the earth-atmosphere system. In our early study, it's found that soil water variation may be a critical factor for sensible heat flux over the forest in a subalpine mountain valley. The components of surface energy fluxes were measured for 2 years using the eddy covariance technique in Jiuzhaigou Valley, a subalpine mountainous area of Southwest China. Meanwhile, transpiration was measured by sap flow sensors. Within the observation period, the magnitude and distribution of energy fluxes and the magnitude of transpiration were mainly controlled by leaf emergence and seasonal changes in net radiation and soil water content. Large increases in transpiration were observed after leaves emerged around May, while evapotranspiration started to increase from February, which increased from nearly zero during winter to more than 5 mm d-1 in summer. Large increases in soil water content were observed despite increases in evapotranspiration during early spring. In spite of the large increases in net radiation, obvious decreases in sensible heat flux were observed with the variation of soil water content over the same period. Therefore, the most influential effect on the variability of sensible heat flux was the soil water content. These general characteristics can help us have a better understanding of the energy budget and water consumption of forest and their responses to net radiation and soil water content.

  3. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    Microsoft Academic Search

    D. L. Youchison; M. G. Izenson; C. B. Baxi; J. H. Rosenfeld

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping

  4. Basic study on heat rejection system using high heat flux micro channel evaporator

    Microsoft Academic Search

    Ryoji Imai; Takashiro Tsukamoto

    2007-01-01

    Thermal management system which can reject very high amount of heat by small thermal devices will be required for future space\\u000a systems. Our purpose is to develop miniaturized heat rejection system that can reject more than 100 W\\/cm2. In the evaporator, thin liquid film vaporization which can dissipate very high heat flux, was utilized. The liquid film\\u000a is stabilized in

  5. Homogeneous Boiling Explosion during High Heat Flux Pulse Heating of Water

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Monde, Masanori; Mitsutake, Yuichi

    A model based on one-dimensional heat conduction and classical homogeneous nucleation has been applied to study the boiling explosion phenomena during high heat flux pulse heating of water. In this model, a characteristic liquid cluster at the liquid boundary is taken into consideration and the boiling explosion condition is defined by considering the energy balance in that cluster. The model describes that the boiling explosion corresponds to a particular stage of liquid heating at which the energy consumption in the cluster due to bubble nucleation and growth exceeds the energy deposition to the cluster by external heating. By applying this model, the occurrence of the boiling explosion condition in water at atmospheric pressure has been determined for a wide range of boundary heat fluxes (15-1000 MW/m2) at various liquid initial temperatures (293 K-373 K). The effects of the boundary heat flux and the liquid initial temperature on various boiling explosion characteristics such as the liquid temperature and the time of the boiling explosion, heat flux across the liquid vapor interface, number of bubbles generated per unit area at the boiling explosion etc. are determined and discussed in context with other relevant information. The boiling explosion time as obtained in the present model is found to be in good agreement with that reported by other researchers for identical liquid heating conditions. With the consideration of a characteristic time period of 1 millisecond for the occurrence of the boiling explosion, the present study corresponds to a limiting boundary heat flux of about 15 MW/m2 for water at atmospheric pressure.

  6. Composite material heat pipe radiator

    NASA Astrophysics Data System (ADS)

    Gernert, Nelson J.; Sarraf, David B.; Guenther, Richard J.; Hurlbert/, Kathryn Miller

    1996-03-01

    Organic matrix composite material is recognized for its significant strength to weight ratio when compared to metal and consequently was investigated for reducing the mass of heat pipes for future space missions. The particular heat pipe that was constructed and tested was made from an organic matrix composite material applied to a linear of titanium tubing spun to foil thickness (0.076 mm). The thin liner transitioned to heavier-walled ends which allowed the tubing to be sealed using conventional welding. More specifically, the heat pipe was 1.14 m long, 24 mm in diameter and had a mass of 0.165 kg. Water was the working fluid. The heat pipe was tested in a Thermacore thermal vacuum chamber under hot and cold wall operating conditions. The heat load dissipated ranged from 10 to 60 watts. Heat pipe operating temperatures varied from 278 K to 403 K. After testing, the heat pipe was delivered to NASA JSC where future thermal vacuum chamber tests are planned.

  7. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux

    PubMed Central

    Wu, Wei; Liu, Yangang

    2010-01-01

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a ‘darker’ atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere. PMID:20368255

  8. Collapsing plane symmetric source with heat flux and conformal flatness

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ahmad, Zahid; Shah, Hassan

    2015-06-01

    This paper deals with the study of collapsing plane symmetric source in the presence of heat flux. For this purpose, we have calculated the Einstein field equations as well as Weyl tensor components. The conditions for the conformal flatness have been determined. The interior source has been matched smoothly with the exterior geometry in single null coordinate. It has been found the pressure is balanced with the out going heat flux and the continuity of the masses in two regions has been noted. A simple new model of collapse has been proposed which satisfies flatness condition, also we have discussed the physical properties of the model. For our model, we have calculated the temperature profile by using the approximation scheme.

  9. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A. (Schenectady, NY)

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  10. A microscale thermophoretic turbine driven by external diffusive heat flux.

    PubMed

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2014-11-21

    We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. PMID:25268245

  11. Collapsing Plane Symmetric Source with Heat Flux and Conformal Flatness

    E-print Network

    G. Abbas; Zahid Ahmad; Hassan Shah

    2015-04-24

    This paper deals with the study of collapsing plane symmetric source in the presence of heat flux. For this purpose, we have calculated the Einstein field equations as well as Weyl tensor components. The conditions for the conformal flatness have been determined. The interior source has been matched smoothly with the exterior geometry in single null coordinate. It has been found the pressure is balanced with the out going heat flux and the continuity of the masses in two regions has been noted. A simple new model of collapse has been proposed which satisfies flatness condition, also we have discussed the physical properties of the model. For our model, we have calculated the temperature profile by using the approximation scheme.

  12. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  13. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  15. Deduction of the sensible heat flux from SODAR data

    Microsoft Academic Search

    Naixian Pan; Chengcai Li

    2008-01-01

    A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and\\u000a ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they\\u000a have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data\\u000a are

  16. Wind-driven latent heat flux and the intraseasonal oscillation

    Microsoft Academic Search

    Nilesh M. Araligidad; Eric D. Maloney

    2008-01-01

    The importance of tropical west Pacific wind-driven latent heat flux anomalies for supporting boreal winter intraseasonal precipitation variability is analyzed during 1998–2005 using satellite and in-situ observations. Intraseasonal (30–100 day) wind speed anomalies from QuikSCAT are significantly correlated with TRMM precipitation anomalies, with instantaneous correlations peaking near 0.7 in the regions of strongest west Pacific intraseasonal precipitation variance. Positive intraseasonal

  17. Cosmic matter flux may turn Hawking radiation off

    NASA Astrophysics Data System (ADS)

    Firouzjaee, Javad T.; Ellis, George F. R.

    2015-02-01

    An astrophysical (cosmological) black hole forming in a cosmological context will be subject to a flux of infalling matter and radiation, which will cause the outer apparent horizon (a marginal trapping surface) to be spacelike spacelike (Ellis et al., arXiv:1407.3577). As a consequence the radiation emitted close to the apparent horizon no longer arrives at infinity with a diverging redshift. Standard calculations of the emission of Hawking radiation then indicate that no blackbody radiation is emitted to infinity by the black hole in these circumstances, hence there will also then be no black hole evaporation process due to emission of such radiation as long as the matter flux is significant. The essential adiabatic condition (eikonal approximation) for black hole radiation gives a strong limit to the black holes that can emit Hawking radiation. We give the mass range for the black holes that can radiate, according to their cosmological redshift, for the special case of the cosmic blackbody radiation (CBR) influx (which exists everywhere in the universe). At a very late stage of black hole formation when the CBR influx decays away, the black hole horizon becomes first a slowly evolving horizon and then an isolated horizon; at that stage, black hole radiation will start. This study suggests that the primordial black hole evaporation scenario should be revised to take these considerations into account.

  18. Cosmic Matter Flux May Turn Hawking Radiation Off

    E-print Network

    Javad T. Firouzjaee; George F. R. Ellis

    2014-12-06

    An astrophysical (cosmological) black hole forming in a cosmological context will be subject to a flux of infalling matter and radiation, which will cause the outer apparent horizon (a marginal trapping surface) to be spacelike \\cite{ellisetal14}. As a consequence the radiation emitted close to the apparent horizon no longer arrives at infinity with a diverging redshift. Standard calculations of the emission of Hawking radiation then indicate that no blackbody radiation is emitted to infinity by the black hole in these circumstances, hence there will also then be no black hole evaporation process due to emission of such radiation as long as the matter flux is significant. The essential adiabatic condition (eikonal approximation) for black hole radiation gives a strong limit to the black holes that can emit Hawking radiation. We give the mass range for the black holes that can radiate, according to their cosmological redshift, for the special case of the cosmic blackbody radiation (CBR) influx (which exists everywhere in the universe). At a very late stage of black hole formation when the CBR influx decays away, the black hole horizon becomes first a slowly evolving horizon and then an isolated horizon; at that stage, black hole radiation will start. This study suggests that the primordial black hole evaporation scenario should be revised to take these considerations into account.

  19. Countergradient heat flux observations during the evening transition period

    NASA Astrophysics Data System (ADS)

    Blay-Carreras, E.; Pardyjak, E. R.; Pino, D.; Alexander, D. C.; Lohou, F.; Lothon, M.

    2014-09-01

    Gradient-based turbulence models generally assume that the buoyancy flux ceases to introduce heat into the surface layer of the atmospheric boundary layer in temporal consonance with the gradient of the local virtual potential temperature. Here, we hypothesize that during the evening transition a delay exists between the instant when the buoyancy flux goes to zero and the time when the local gradient of the virtual potential temperature indicates a sign change. This phenomenon is studied using a range of data collected over several intensive observational periods (IOPs) during the Boundary Layer Late Afternoon and Sunset Turbulence field campaign conducted in Lannemezan, France. The focus is mainly on the lower part of the surface layer using a tower instrumented with high-speed temperature and velocity sensors. The results from this work confirm and quantify a flux-gradient delay. Specifically, the observed values of the delay are ~ 30-80 min. The existence of the delay and its duration can be explained by considering the convective timescale and the competition of forces associated with the classical Rayleigh-Bénard problem. This combined theory predicts that the last eddy formed while the sensible heat flux changes sign during the evening transition should produce a delay. It appears that this last eddy is decelerated through the action of turbulent momentum and thermal diffusivities, and that the delay is related to the convective turnover timescale. Observations indicate that as horizontal shear becomes more important, the delay time apparently increases to values greater than the convective turnover timescale.

  20. Determining vegetation indices from solar and photosynthetically active radiation fluxes

    Microsoft Academic Search

    T. B. Wilson; T. P. Meyers

    2007-01-01

    The objective of this study was to quantify the seasonal variability of vegetation spectral indices to deduce leaf area index (LAI) for use in soil–vegetation–atmosphere exchange models using near-real-time and archived flux tower radiation data. The 30-min data from 11 flux tower locations in 5 vegetation types (desert grassland, temperate grasslands, crops, deciduous forests, and pine forest) were collected across

  1. Novel Surface Thermocouple Probes for Divertor Heat Flux Measurement

    NASA Astrophysics Data System (ADS)

    Gangadhara, S.; Labombard, B.; Lipschultz, B.; Pierce, N.

    1996-11-01

    An array of novel surface thermocouple probes have been installed and tested in the outer divertor of Alcator C-Mod. These sensors can, in principle, record divertor surface temperatures with fast time response (? >= 10 ? sec), allowing a direct estimate of the plasma heat flux to be inferred. The design is an adaptation of a commercially available device(``The Self-Renewing Thermocouple,'' Nanmac Corp., Framingham, MA), employing a coaxial-like geometry with a single tungsten-rhenium ribbon wire embedded inside a 6.35 mm diameter molybdenum rod. Various prototypes were tested, including probes with flush and 5^circ angles with respect to the divertor surface, and probes with and without protective surface coatings. Typical surface temperature rises are ~ 300-700 ^circC, corresponding to signals of ~ 3-9 mV. RC filters with 10 ms time constants are used to reduce noise introduced by the plasma environment. The surface temperature corresponding to typical RMS noise levels is ~ 25 ^circC. Using a one-dimensional, semi-infinite slab model, parallel heat fluxes in the range of 50-500 MW/m^2 are estimated. A comparison with heat flux estimates from Langmuir probes located adjacent to the thermocouple array will be presented. Supported by U.S. DOE Contract No. DE-AC02-78ET51013

  2. An overview of results from the GEWEX radiation flux assessment

    NASA Astrophysics Data System (ADS)

    Raschke, E.; Stackhouse, P.; Kinne, S.; Contributors from Europe; the USA

    2013-05-01

    Multi-annual radiative flux averages of the International Cloud Climatology Project (ISCCP), of the GEWEX - Surface Radiation Budget Project (SRB) and of the Clouds and Earth Radiative Energy System (CERES) are compared and analyzed to characterize the Earth's radiative budget, assess differences and identify possible causes. These satellite based data-sets are also compared to results of a median model, which represents 20 climate models, that participated in the 4th IPCC assessment. Consistent distribution patterns and seasonal variations among the satellite data-sets demonstrate their scientific value, which would further increase if the datasets would be reanalyzed with more accurate and consistent ancillary data.

  3. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  4. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  5. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  6. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux

    E-print Network

    Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux David Pollard a sheet to geothermal heat flux is investigated, using a coupled climate­ice sheet model with various prescribed values and patterns of geothermal heat flux. The sudden growth of major ice across the Eocene

  7. INTERANNUAL CHANGES IN THE BERING STRAIT FLUXES OF VOLUME, HEAT AND FRESHWATER BETWEEN 1991 AND 2004

    E-print Network

    INTERANNUAL CHANGES IN THE BERING STRAIT FLUXES OF VOLUME, HEAT AND FRESHWATER BETWEEN 1991 of Bering Strait volume, freshwater and heat fluxes, which affect Arctic systems including sea-ice. Fluxes strong warming and freshening between 2002 and 2004. The increased Bering Strait heat input between 2001

  8. Radiation heat transfer control by a porous layer and gas injection

    Microsoft Academic Search

    Shigenao Maruyama

    1992-01-01

    The possibility of radiation heat transfer control by a combined model of an active thermal insulation system and a radiative converter was investigated. A semitransparent porous layer was placed between a high-temperature region and a low-temperature region, and gas was injected through the layer in the positive and negative mass flux. By changing mass flux of air between -0.1 and

  9. Reynolds stress and heat flux in spherical shell convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.

    2011-07-01

    Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance. Movies and Appendix A are available in electronic form at http://www.aanda.org

  10. Water vapour and sensible heat fluxes over forest: a multi-year study

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.; Pilegaard, K.; Jensen, N. O.

    2003-04-01

    The interannual variability in water vapour and sensible heat fluxes over beech forest in Denmark is analysed. A time-series from seven years (half hourly values) are investigated in regard to extremes and the interannual variability at daily and monthly time-scales. The fluxes are measured by the eddy correlation technique from a tall mast in the center of the forest. The experimental site is part of the CARBO-EUROFLUX network and observations include precipitation, soil water, CO2, temperature, humidity, solar radiation and plant parameters. In the current study focus is on the water balance. A comparison between the water balance components, CO2 and environmental parameters is undertaken. The results are part of EO-FLUX-BUDGET project (http://www.geogr.ku.dk/projects/eoflux/) aiming for spatial and temporal predictions of the water vapour, sensible heat and CO2 balance over the island Zealand (7.200 km2) in Denmark based on satellite Earth Observation data at high resolution. The validation part is based on the in-situ heat and water vapour flux observations presented here.

  11. Extreme surface turbulent heat fluxes during bora events

    NASA Astrophysics Data System (ADS)

    Gavrikov, Alexander; Gulev, Sergey; Turk, Daniela

    2015-04-01

    Bora events, associated with the strong seaward wind blowing from the coastal mountains, frequently occur in the Mediterranean and Black Seas and result in off-shore natural hazards such as icing of the off-shore infrastructures, stormy conditions and associated impact on marine structures and carriers. Furthermore, bora events are associated with extreme sea-air temperature and humidity gradients and locally strong winds which result in extreme surface turbulent fluxes of heat and evaporation. We present diagnostics of several bora events in the Adriatic and Black Seas which resulted in extremely strong turbulent sea-air exchanges. Diagnostics were performed using very high resolution simulations with non-hydrostatic WRF-ARW-3.5 model whose set-up included for 3 domains (2 outer and 1 inner) with the sub-grids corresponding to 27, 9 and 1 km respectively going from the external outer to the inner domain. For all three domains model had 36 vertical levels in vertical and realizes a set of physical parameterizations whose choice has been justified by sensitivity experiments. Validation of the numerical experiments was based upon in-situ data from buoys, coastal and island meteorological stations. Simulations of bora events captured extreme air-sea fluxes amounting to more than 2000 W/m2 for the latent heat flux and corresponding to very high percentiles of probability distribution of surface fluxes. These events are insufficiently resolved (or not captured at all) by even relatively high resolution modern era reanlayses, and, thus, can hardly be diagnosed without using mesoscale resolutions. Using Modified Fisher-Tippett (MFT) distribution of surface turbulent fluxes, we estimated the fractional contribution of bora events in long-term integral air-sea fluxes for Mediterranean and Black Seas. Further we discuss the role of bora events in forming climatological air-sea exchanges over the semi-enclosed seas and in the heat contents of surface layer as well as importance of bora events in forming high sea-air CO2 fluxes.

  12. Skyglow effects in UV and visible spectra: radiative fluxes.

    PubMed

    Kocifaj, Miroslav; Solano Lamphar, H A

    2013-09-30

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment. PMID:23792881

  13. Skyglow effects in UV and visible spectra: Radiative fluxes

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  14. Measurements of x-ray spectral flux and intensity distribution of APS/CHESS undulator radiation

    SciTech Connect

    Ilinski, P.; Yun, W.; Lai, B.; Gluskin, E.; Cai, Z.

    1994-09-01

    Absolute radiation flux and polarization measurements of the APS undulators may have to be made under high thermal loading conditions. A method that may circumvent the high-heat-load problem was tested during a recent APS/CHESS undulator run. The technique makes use of a Si(Li) energy-dispersive detector to measure 5--35 keV x-rays scattered from a well-defined He gas volume at controlled pressure.

  15. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Gan, K. F.; Ahn, J.-W.; Park, J.-W.; Maingi, R.; McLean, A. G.; Gray, T. K.; Gong, X.; Zhang, X. D.

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as ? and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of ? led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

  16. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment.

    PubMed

    Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as ? and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of ? led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated. PMID:23464209

  17. Calculation of heating values for the high flux isotope reactor

    SciTech Connect

    Peterson, J.; Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States)

    2012-07-01

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

  18. Heat Radiators for Electromagnetic Pumps

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  19. The effect of heat fluxes on ammonia emission from swine waste lagoon based on neural network analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...

  20. Radiative heating rates near the stratospheric fountain

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Danielsen, E. F.

    1984-01-01

    Radiative heating rates are computed for various sets of conditions thought to be appropriate to the stratospheric fountain region: with and without a layer of cirrus cloud between 100 and 150 mbar; with standard ozone and with decreased ozone in the lower stratosphere, again with and without the cirrus cloud; and with different temperatures in the tropopause region. The presence of the cloud decreases the radiative cooling below the cloud in the upper troposphere and increases the cooling above it in the lower stratosphere. The cloud is heated at the base and cooled at the top and thus radiatively destabilized; overall it gains energy by radiation. Decreasing ozone above the cloud also tends to cool the lower stratosphere. The net effect is a tendency for vertical convergence and horizontal divergence in the cloud region. High resolution profiles of temperature, ozone, and cloudiness within the fountain region are required in order to assess the final balance of the various processes.

  1. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. [Pacific Northwest Lab., Richland, WA (United States); Barnes, F.J. [Los Alamos National Lab., NM (United States); Coulter, R.L. [Argonne National Lab., IL (United States); Crawford, T.L. [National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States). Air Resources Lab. Atmospheric Turbulence and Diffusion Div.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  2. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. (Pacific Northwest Lab., Richland, WA (United States)); Barnes, F.J. (Los Alamos National Lab., NM (United States)); Coulter, R.L. (Argonne National Lab., IL (United States)); Crawford, T.L. (National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States). Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  3. Advanced Neutron Source design: Burnout heat flux correlation development

    SciTech Connect

    Gambill, W.R.; Mochizuki, T.

    1988-01-01

    In the Advanced Neutron Source Reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11-12 and 21-22 MW/m/sup 2/, respectively. Design changes under consideration may lower these values to about 9 and 17 MW/m/sup 2/. In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ration will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 years. We have compared seven burnout correlations and modifications thereof with several sets of experimental data, of which the most relevant to the ANS core are presently those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson's correlation. 7 refs., 1 tab.

  4. Radiation Heating Analysis for Superconducting Undulator

    NASA Astrophysics Data System (ADS)

    Boon, Laura; Harkay, Katherine; Ivanyushenkov, Yury; Shiroyanagi, Yuko

    2014-03-01

    In January 2013 the Advanced Photon Source commissioned a Superconducting Undulator (SCU). The superconducting magnet is thermally isolated from the beam vacuum chamber, which absorbs the beam-induced heating. The cryo-coolers cooling the vacuum chamber can handle 40 W of heating. Throughout the SCU design process calculations were made to determine the radiation heating from an on-axis and off-axis electron beam. Simulation results show that when the electron beam is vertically off-axis radiation heating increases from the on-axis heating of less than 1 W. During user operation beam-position-limiting detectors (BPLD) are used to limit beam motion and keep the radiation heating below 25 W. During machine studies when the BPLD is not armed other measures must be taken to protect the SCU. Presented in this talk will be the comparison between analytical calculations and measured temperature rise on the installed SCU. The measured temperatures have been converted to a power using a finite element model.

  5. SURFACE FLUXES AND CURRENTS FOR VARIOUS SHIELDED RADIATION SOURCES

    Microsoft Academic Search

    E. R. Cohen; F. B. Estabrook

    1957-01-01

    The flux and current of radiation at the surface of shielded sources are ; calculated as a function of source radius and shield thickness. Curves are ; presented for source radius (or half-thickness) from 0 to 20 mean-freepaths and ; for shield thickness from 0 to 20 mean-free-paths for plane, cylindrical, and ; slab geometries. The curves are particularly useful

  6. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Microsoft Academic Search

    Jean-Marie Le Corre

    2007-01-01

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types

  7. FLOW REGIMES AND MECHANISTIC PREDICTIONS OF CRITICAL HEAT FLUX UNDER SUBCOOLED FLOW BOILING CONDITIONS

    Microsoft Academic Search

    Jean-Marie Le Corre

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. However, the commonly used empirical approach to CHF prediction has limited use to assess the CHF performance of new fuel design geometries and features at the development stage

  8. Modeling of a heat sink and high heat flux vapor chamber

    NASA Astrophysics Data System (ADS)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media conductivity and (2) internal heat transfer coefficient. Volume averaging theory (VAT) is used to rigorously cast the point wise conservation of energy, momentum and mass equations into a form that represents the thermal and hydraulic properties of the micro channel (porous media) morphology. Using the resulting VAT based field equations, optimization of a micro channel heated from one side is used to determine the optimum micro channel morphology. A small square of 1 cm2 is chosen as an example and the thermal resistance, 0C/W, and pressure drop are shown as a function of Reynolds number. The high heat flux removal on small surfaces at moderately small temperatures is achieved by bi-porous evaporator The device was analyzed with the possibility of heat flux magnitudes exceeding 1kW/cm2 by using advantages of a dual pore structure of a bi-porous wick. The heat transfer model of a thin bi-porous wick is developed and it incorporates thermo-physical properties of a bi-porous media. It is shown that physics of heat removal is characterized in three stages; conduction, big pore drying out and small pore drying out. The operating conditions of the wick have to be in a safe margin away from the total dry out. A complete dry out of the wick inevitably leads to the burn out, therefore more concern has been added to modeling of big pore dry out, since this will be a desired operational. The construction of the boiling/evaporation curves was successfully constructed by the model showing that the physic of heat removal on two different length scales is governed by thermo-physical properties for the appropriate scale. The model shows good prediction for various combinations of big and small pores size in the bi-porous wicks tested.

  9. Temperature Dependent Behavior of Near Field Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Joachim, Robert

    2014-03-01

    We have designed and implemented an apparatus capable of measuring near field radiative heat transfer (NFRT) from room temperature down to cryogenic temperatures in vacuum. Utilizing a bimaterial cantilever with a 20 ?m glass sphere attached to the end in the pendulum geometry as a thermal detector and an optical fiber interferometer as a displacement detector we were able to measure the heat flux between a substrate and the glass sphere. The apparatus was sensitive enough to measure displacements of 1 nm and heat fluxes of 50 pW. NFRT was observed at temperatures ranging from 300K to 100K and at displacements down to 100nm. These measurements were performed for various combinations of Si, SiO2 and sapphire. The thermodynamic formulation of Lifshitz's theory for attraction between dielectrics predicts that NFRT will scale as T2 while far field radiative transfer will scale as T4 and that the crossover between these two regimes will occur at a distance given by (1/2 ?)(? c/kbT). Our data confirms these predictions. Supported by Air Force grant AFOSR FA9550-12-1-0065.

  10. Particle and heat flux measurements in PDX edge plasmas

    SciTech Connect

    Budny, R.; Manos, D.

    1983-12-01

    This paper describes the use of novel combined Langmuir-calorimeter probes to measure edge plasma conditions near the midplane in PDX. The probes consisted of up to five Langmuir probes and up to two calorimeters. Single and double probe characteristics yield n/sub e/ and T/sub e/ which are compared with that derived from a triple probe analysis. The calorimeters measure heat flux in the electron and ion drift directions. This paper presents time-resolved radial profiles of n/sub e/, T/sub e/, V/sub F/ (floating potential), and P (heat flux) during high power neutral beam-heated, single-null discharges and circular scoop limiter discharges. The temporal dependence of these quantities displays the previous observed behavior with respect to gross discharge characteristics; however, an additional dependence on confinement mode has been observed. During the H-mode of energy confinement, a transient depression of n/sub e/, T/sub e/, and P occurs in the scrape-off plasma.

  11. Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes

    Microsoft Academic Search

    Ki-Jung Park; Dongsoo Jung; Sang Eun Shim

    2009-01-01

    In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60°C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001%, 0.001%, 0.01%, and 0.05%. For the dispersion of CNTs,

  12. Critical heat flux for subcooled flow boiling in micro-channel heat sinks

    Microsoft Academic Search

    Jaeseon Lee; Issam Mudawar

    2009-01-01

    Critical heat flux (CHF) was measured and examined with high-speed video for subcooled flow boiling in micro-channel heat sinks using HFE 7100 as working fluid. High subcooling was achieved by pre-cooling the working fluid using a secondary low-temperature refrigeration system. The high subcooling greatly reduced both bubble departure diameter and void fraction, and precluded flow pattern transitions beyond the bubbly

  13. A correction method for heated length effect in critical heat flux prediction

    Microsoft Academic Search

    Yong Ho Lee; Won-Pil Baek; Soon Heung Chang

    2000-01-01

    A new correction method is developed for the effect of the length-to-diameter (L\\/D) ratio on critical heat flux (CHF) by applying artificial neural networks and conventional regression techniques to the KAIST CHF data base for water flow in uniformly-heated, vertical round tubes. It consists of two parts: (a) a threshold L\\/D over which the length effect becomes negligible; and (b)

  14. Critical heat flux multiplier of subcooled flow boiling for non-uniform heating conditions in a swirl tube

    Microsoft Academic Search

    Fujio Inasaka; Hideki Nariai

    1995-01-01

    In this paper, two factors were proposed to examine the relation between the critical heat flux (CHF) enhancement in swirl tubes and the intensity of non-uniformity under non-uniform heating conditions. One is a CHF multiplier ? defined as a ratio of the peak heat flux at the CHF (qc,H) under non-uniform heating conditions to the CHF under uniform heating conditions.

  15. THERMAL DESIGN METHODOLOGY FOR HIGH-HEAT-FLUX SINGLE-PHASE AND TWO-PHASE MICRO-CHANNEL HEAT SINKS

    E-print Network

    Qu, Weilin

    boiling heat flux. A comprehensive model based on bubble departure and superheat criteria is developed-channel, heat sink, boiling, phase change, high heat flux, boiling incipience, pressure drop NOMENCLATURE Aa Point half-way from nucleation site to bubble tip f Friction factor Fd Drag force, N Fs Surface tension

  16. Radiation belt electron precipitation fluxes associated with lightning

    NASA Astrophysics Data System (ADS)

    Clilverd, M. A.; Rodger, C. J.; Nunn, D.

    2004-12-01

    In this study we consider the dependence of precipitation fluxes arising from whistler-induced radiation belt losses on the strength of the associated lightning's return stroke current. As a result of this work, it will be possible to use lightning activity data sets to estimate globally induced precipitation flux rates and thus determine the lightning-induced effect on the radiation belts more accurately. Four study days were selected, during which a high proportion of the lightning activity occurring near the east coast of North America produced observable Trimpi effects on VLF transmitter signals propagating in the region of the Antarctic Peninsula (˜L = 2-2.5). The lack of lightning in Antarctica gives this location a unique advantage for this study. The functional dependence of the relative scattered field amplitude with the return stroke peak current of the lightning discharge suggests that during these events diffusion conditions are occurring near the precipitating radiation belt particles loss cone due to strong whistler wave fields, probably caused by ducted signals. The range of observed Trimpi scatter amplitude of -10 to -35 dB was produced by precipitation bursts with energy fluxes estimated to range over 6.5-0.4 × 10-3 ergs cm-2 s-1. The largest fluxes were found to be driven by lightning currents of about 250 kA, while the smallest detectable fluxes relate to lightning currents of 70 kA. Although 3 of the 4 study days showed a high degree of consistency between the levels of lightning return stroke peak current required to produce any given perturbation scatter amplitude value, conditions were significantly different on 23 April 1994. On this day, observed Trimpi signatures were 6-7 dB greater for any given lightning intensity than on the other study days. These events are consistent with a significantly harder radiation belt precipitation spectra, probably caused by geomagnetic storm-time acceleration processes of radiation belt electrons.

  17. Radiation heating in selected NERVA engine components

    NASA Technical Reports Server (NTRS)

    Courtney, J. C.; Hertelendy, N. A.; Lindsey, B. A.

    1972-01-01

    The role of heating from nuclear radiation in design of the NERVA engine is treated. Some components are subjected to very high gamma heating rates in excess of 0.5 Btu/cubic inch/sec in steel in the primary nozzle or 0.25 Btu/cubic inch/sec in aluminum in the pressure vessel. These components must be cooled by a fraction of the liquid hydrogen propellant before it is passed through the core, heated, and expanded out the nozzle as a gas. Other components that are subjected to lower heating rates such as the thrust structure and the disk shield are designed so that they would not require liquid hydrogen cooling. Typical gamma and neutron heating rates, resulting temperatures, and their design consequences are discussed. Calculational techniques used in the nuclear and thermal analyses of the NERVA engine are briefly treated.

  18. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  19. Surface heat fluxes influence on medicane trajectories and intensification

    NASA Astrophysics Data System (ADS)

    Tous, M.; Romero, R.; Ramis, C.

    2013-04-01

    A few tropical-like cyclones have developed over the Mediterranean Sea during the last decades according to the inventory of images provided by Meteosat satellite. These extreme small-scale warm-core storms, also called “medicanes”, operate on the thermodynamical disequilibrium between the sea and the atmosphere, and sometimes attain hurricane intensity and threaten the islands and coastal regions. Despite their small size, mesoscale model runs at moderate horizontal resolutions (7.5 km) made with MM5 are able to simulate the formation of a subsynoptic cyclone and the general trajectory of the disturbance, and for most of the cases a warm-core axi-symmetrical structure becomes evident in the simulations. The timing and precise details of the storm trajectories are shown to be more problematic when compared against the satellite images available for the events. It is hypothesized that the small size of the systems and the crucial role of moist microphysics, deep convection and boundary layer parameterizations are the main factors behind these errors. On the other hand, a sensitivity analysis examining the role of the sea surface heat fluxes is conducted: latent and sensible heat fluxes from the Mediterranean are switched off at the beginning of the simulations to explore the effects of these factors on the medicane trajectories and deepening rate. Results show different roles of the surface heat fluxes on medicane properties (intensification and track) depending on their magnitude and spatial distribution over the Mediterranean Sea. In this way, three distinct patterns have been identified using a database of twelve events.

  20. Heat flux and entropy produced by thermal fluctuations.

    PubMed

    Ciliberto, S; Imparato, A; Naert, A; Tanase, M

    2013-05-01

    We report an experimental and theoretical analysis of the energy exchanged between two conductors kept at different temperature and coupled by the electric thermal noise. Experimentally we determine, as functions of the temperature difference, the heat flux, the out-of-equilibrium variance, and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constraints on the energy exchanged between coupled nanosystems held at different temperatures. PMID:23683183

  1. Heat Flux and Entropy Produced by Thermal Fluctuations

    NASA Astrophysics Data System (ADS)

    Ciliberto, S.; Imparato, A.; Naert, A.; Tanase, M.

    2013-05-01

    We report an experimental and theoretical analysis of the energy exchanged between two conductors kept at different temperature and coupled by the electric thermal noise. Experimentally we determine, as functions of the temperature difference, the heat flux, the out-of-equilibrium variance, and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constraints on the energy exchanged between coupled nanosystems held at different temperatures.

  2. Numerical analysis of melting with constant heat flux heating in a thermal energy storage system

    Microsoft Academic Search

    Zhongliang Liu; Chongfang Ma

    2002-01-01

    Melting in a finite slab with a second kind boundary condition is studied numerically in order to simulate the charging process of a thermal energy storage system. A dimensionless model is given, from which it is concluded that the main factors that influence the melting process are the dimensionless heating flux, the modified Stefan number, the relative thermal diffusivity and

  3. A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal analysis

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Snyder, R. L.

    2010-02-01

    SummaryAn experiment to study the performance of the hourly sensible ( H) and latent heat ( LE) estimates over grass using surface renewal, SR, analysis was carried out at the University of California West Side Field Station near Five Points (San Joaquin Valley, CA). Hourly eddy covariance, EC, and SR sensible heat fluxes were averaged from their respective half-hourly fluxes. They were used to estimate hourly latent heat flux, LE, by calculating the residual of the energy balance equation, i.e., LE EC = R n - G - H EC and LE SR = R n - G - H SR, where R n is the net radiation; G is the soil heat flux; H is the buoyant sensible heat flux and the H subscripts denote measurements values from the EC and SR methods. Regardless of the weather conditions and time of day, H SR was comparable to H EC; especially from sunrise until the afternoon formation of a capping inversion due to regional advection of sensible heat flux. The main source of energy contributing to LE was ( R n - G). When ( R n - G) was positive, on average, H contributed to 9% of ( R n - G) when data were collected under unstable conditions, but it accounted for 21% under stable conditions . In general, correlation between measured LE using a weighing lysimeter, LE Lys, and LE SR was R2 = 0.97 which was substantially higher than between LE Lys and ( R n - G), R2 = 0.93. In principle, the observed performance can be extrapolated to all irrigated, short, and dense-canopy vegetation that is mostly decoupled from the environment. Because for these surfaces the zero-plane displacement and the aerodynamic surface roughness length can be estimated as a portion (about 0.7 and 0.12, respectively) of the canopy height, using a two dimensional sonic anemometer capable to record high-frequency sonic temperature provides all the input to determine H SR which in conjunction with ( R n - G) is required to estimate LE.

  4. ESTIMATION OF BARE-SOIL EVAPORATION USING A CALORIMETRIC APPROACH WITH HEAT FLUX MEASURED AT MULTIPLE DEPTHS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An assumption in calorimetric methods for soil heat flux is that sensible heat terms can be balanced (i.e., if the heat flux is known at one depth, the heat flux at another depth may be determined by monitoring the change in heat storage). Latent heat from water evaporation is assigned to the energy...

  5. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux

    NASA Astrophysics Data System (ADS)

    Khan, W. A.; Khan, Z. H.; Haq, R. U.

    2015-04-01

    The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.

  6. Thermal performance of multilayer insulation. I - Derivation of a prediction-based heat-flux equation

    NASA Astrophysics Data System (ADS)

    Amano, Toshiyuki

    1993-07-01

    A prediction-based equation for heat flux through a multilayer insulator was derived from comparison of experimental results between room temperature and liquid nitrogen temperature. The employed multilayer insulator was a laminated material with a polyester net inserted between aluminized Mylar films. The prediction equation consists of one thermal radiation and two thermal conduction terms. The first conduction term is that of ordinary thermal contact conductance. The second conduction term depends on the self-compression of the multilayer insulation. The predicted values resulting from the obtained equation coincided fairly well with measured values.

  7. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    NASA Astrophysics Data System (ADS)

    Abbasi, F. M.; Shehzad, S. A.; Hayat, T.; Alsaedi, A.; Obid, Mustafa A.

    2015-03-01

    This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  8. Near-field radiative heat transfer in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Jing, Li; Yan-Hui, Feng; Xin-Xin, Zhang; Cong-Liang, Huang; Ge, Wang

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2˜4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).

  9. On the Remote Sensing of Heat Fluxes and Surface Energy Balance

    NASA Astrophysics Data System (ADS)

    Hilker, T.; Hall, F. G.

    2012-12-01

    Surface energy balance is a major determinant of land surface temperature and the Earth's climate. To date, there is no approach that can produce effective, physically consistent, global and multi-decadal energy-water flux data over land. Net radiation (Rn) can be quantified regionally using satellite retrievals of surface reflectance and thermal emittance with errors < 10%. However, retrievals of latent heat flux (?E), has not yet been possible. In theory, ?E could be derived as a residual of Rn, ground heat (G) and sensible heat (H) fluxes (Rn -H -G), but large uncertainties in remote sensing of both H and G perforce produces accuracies of ?E significantly lower than those of the other energy balance components. Where vegetation is the dominant surface cover, ?E is almost entirely driven by transpiration of intercellular water through leaf stomata during the photosynthetic uptake of carbon. As a result, satellite retrievals of photosynthesis (GPP) could be used to quantify transpiration rates through stomatal conductance. Here, we introduce a new method to infer ?E from passive optical measurements of vegetation leaf reflectance related to the photosynthetic rate. We validate the algorithm using five structurally and physiologically very diverse eddy flux sites in western and central Canada. Results show that transpiration and H were accurately predicted from optical data and highly significant relationships were found between the energy budget obtained from eddy flux measurements and remote sensing (0.64?r2?0.85). We conclude that a new spaceborne sensor design could significantly improve our current estimates of energy and carbon budgets over land.

  10. Hetrick, W.A., P.M. Rich, F.J. Barnes, and S.B. Weiss. 1993. GIS-based solar radiation flux models. American Society for Photogrammetry and Remote Sensing Technical Papers. Vol 3, GIS. Photogrammetry, and Modeling. pp 132-143. GIS-BASED SOLAR RADIATION FLUX MODELS

    Microsoft Academic Search

    W. A. Hetrick; Paul M. Rich; Fairley J. Barnes; Stuart B. Weiss

    Solar radiation flux governs such critical ecological processes as heat and gas exchange, primary productivity, and rates of nutrient cycling. We have developed a GIS- based (ARC\\/INFO) solar radiation flux model (SOLARFLUX) based on surface orientation, seasonal and daily shifts in solar angle, shadows caused by topographic features, and variation in atmospheric conditions. Insolation for any spatial location is calculated

  11. Radiative Heating Methodology for the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    The radiative heating environment for the Huygens probe near peak heating conditions for Titan entry is investigated in this paper. The task of calculating the radiation-coupled flowfield, accounting for non-Boltzmann and non-optically thin radiation, is simplified to a rapid yet accurate calculation. This is achieved by using the viscous-shock layer (VSL) technique for the stagnation-line flowfield calculation and a modified smeared rotational band (SRB) model for the radiation calculation. These two methods provide a computationally efficient alternative to a Navier-Stokes flowfield and line-by-line radiation calculation. The results of the VSL technique are shown to provide an excellent comparison with the Navier-Stokes results of previous studies. It is shown that a conventional SRB approach is inadequate for the partially optically-thick conditions present in the Huygens shock-layer around the peak heating trajectory points. A simple modification is proposed to the SRB model that improves its accuracy in these partially optically-thick conditions. This modified approach, labeled herein as SRBC, is compared throughout this study with a detailed line-by-line (LBL) calculation and is shown to compare within 5% in all cases. The SRBC method requires many orders-of-magnitude less computational time than the LBL method, which makes it ideal for coupling to the flowfield. The application of a collisional-radiative (CR) model for determining the population of the CN electronic states, which govern the radiation for Huygens entry, is discussed and applied. The non-local absorption term in the CR model is formulated in terms of an escape factor, which is then curve-fit with temperature. Although the curve-fit is an approximation, it is shown to compare well with the exact escape factor calculation, which requires a computationally intensive iteration procedure.

  12. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  13. Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation

    Microsoft Academic Search

    Ahmed Hamza H Ali; Yutaka Hanaoka

    2002-01-01

    Experimental study of the effects of the operating parameters on laminar flow forced-convection heat transfer for air flowing in a channel having a V-corrugated upper plate heated by radiation heat flux while the other walls are thermally insulated has been carried out. The parameters studied and their ranges were as follows: flow Reynolds number (Re) ranging from 750 to 2050,

  14. In Situ Monitoring of Soil Thermal Properties and Heat Flux during Freezing and Thawing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When soil freezes or thaws, latent heat fluxes occur and conventional methods for monitoring soil heat flux are inaccurate, often wildly so. This prevents the forcing of surface energy balance closure that is used in Bowen ratio flux measurements and the assessment of closure that is used as a check...

  15. Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean

    E-print Network

    Pickart, Robert S.

    Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean G. W. K. Moore circulations. This is particularly true in the sub-polar North Atlantic Ocean, where these fluxes drive water-sea turbulent heat fluxes over the sub-polar North Atlantic Ocean. As has been previously recognized

  16. a Parameterization of Mesoscale Heat Fluxes for General Circulation Models

    NASA Astrophysics Data System (ADS)

    Lynn, Barry Hugh

    This study addresses the parameterization of mesoscale heat fluxes generated by landscape discontinuities. The realistic representation of the planetary boundary layer (PBL) is one of the most important aspects of climate modelling (e.g., Shukla and Mintz, 1982; Avissar, 1992). Former research in the field of planetary boundary layer modelling is explored. It is suggested that current representations of boundary layer processes in large-scale models (e.g., General Circulation Models (GCMs)) are unrealistic when there are land discontinuities 10-200 km wide. These land discontinuities generate mesoscale circulations which can be as strong as sea-breezes. Given the relevance of climate change to human welfare and the environment, current efforts should be directed towards improvement in boundary layer modelling. A set of equations by Avissar and Chen (1993) is reviewed. They suggested a set of equations for GCMs which includes the impact of both turbulent and mesoscale processes on the mean variables. They derived prognostic equations for the mesoscale fluxes, which present a closure problem. Thus, they emphasized a need to develop a parameterization of these fluxes. A mesoscale atmospheric model was used to evaluate the impact of subgrid-scale landscape discontinuities on the vertical profiles of resolved temperature, moisture, and moist static energy in the planetary boundary layer of GCMs. Profiles of the mean variables were produced with a three-dimensional (3D) version of the model by averaging horizontally the various atmospheric variables over a domain about the size of a single grid element in a GCM. They were compared to corresponding vertical profiles produced with a one-dimensional (1D) version of the model, which simulates the PBL, as in a GCM, over a single horizontal grid element. The differences between the horizontally -averaged atmospheric variables produced with the 3D simulations and the 1D simulations emphasize the impact of subgrid -scale landscape discontinuities on GCM resolved variables. Landscape discontinuities, characterized by horizontal contrasts of surface wetness and size of land patches, were simulated under various background-wind conditions. Differences of air temperature, specific humidity, and moist static energy as large as 4 K, 6 g kg^{-1 }, and 10 kJ kg^{-1} were obtained, respectively, in some cases. These differences were not affected significantly by moderate winds, but were sensitive to the spatial distribution of surface wetness. Similarity theory was then used to develop a parameterization of mesoscale heat fluxes induced by landscape discontinuities in GCMs. For this purpose, Buckingham Pi Theory, a systematic method for performing dimensional analysis, was used to derive a set of dimensionless groups, which describes the large-scale atmospheric background conditions, the spatial variability of surface sensible heat flux, and the characteristic structure of the landscape. These dimensionless groups were used to calculate the coefficients of a fourth-order Chebyshev polynomial, which represents the vertical profiles of dimensionless mesoscale heat fluxes obtained for a broad range of large-scale atmospheric conditions and different landscapes. The numerous three-dimensional numerical experiments performed to evaluate the proposed parameterization suggests that it is quite robust.

  17. Relations for local radiative heat transfer between rectangular boundaries of an absorbing-emitting medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1993-01-01

    An analytical solution was obtained by Siegel (1991, 1992) for local boundary heat fluxes by a radiating medium at uniform temperature in a 2D rectangular region. It is shown here that, after local fluxes from the medium to the walls have been evaluated, it is very easy to compute local fluxes arriving from the adjacent and opposite walls. This extends the previous analysis and provides convenient relations to include radiation from a black boundary, each side of the rectangle being at a different uniform temperature. The final expressions are helpful in performing spectral calculations that must be made for many spectral bands.

  18. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-print Network

    Edwards, Bronwyn K

    2009-01-01

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  19. Cloud Properties and Associated Radiative Heating Rates in the Tropical Western Pacific

    SciTech Connect

    Mather, Jim H.; McFarlane, Sally A.; Miller, Mark; Johnson, Karen L.

    2007-03-01

    Radiative heating of the atmosphere affects cloud evolution and atmospheric dynamics. The most direct means available for determining radiative heating profiles is to measure profiles of thermodynamic and cloud properties (temperature, humidity, liquid and ice water content) and use these profiles to calculate radiative fluxes. Obtaining accurate, high resolution profiles of these properties requires active remote sensing instruments. Instruments capable of making these measurements and the techniques for interpreting these measurements for meteorological applications have only recently become available. The Atmospheric Radiation Measurement (ARM) program operates instruments including millimeter wavelength radars and microwave radiometers to measure cloud property distributions at sites around the world including three in the tropical western Pacific region. We have analyzed several months of ARM observations from Manus and Nauru to calculate time series of vertical cloud property profiles and associated radiative fluxes and heating rates. To test the validity of these radiative profiles, we have conducted closure tests that compare calculated radiative fluxes at the surface and top of atmosphere to measurements from the ARM sites and from geostationary satellite. The cloud and radiation profiles exhibit distinct vertical structure with strong boundary layer and cirrus features at both sites. Manus, which was much more convectively active than Nauru during the study period, also exhibits a mid-level cloud feature near the melting level. The two sites exhibit very different diurnal cycles. This data set will be an important tool for describing radiative processes in the tropics and assessing the simulation of these processes in dynamical models.

  20. The Global Character of the Flux of Downward Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  1. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    Microsoft Academic Search

    Rongliang Zhou; Tiejun Zhang; Juan Catano; John T. Wen; Gregory J. Michna; Yoav Peles; Michael K. Jensen

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion

  2. AIAA 94-2478 The Method of Heat Flux Simulating in

    E-print Network

    Riabov, Vladimir V.

    temperature V, = free stream velocity Y E P = viscosity coefficient P- = free stream density = specific heat the heat flux and aerodynamic characteristics of hypersonic vehicles at natural flight conditions in a windAIAA 94-2478 The Method of Heat Flux Simulating in Hypersonic Aerothermodynamics V. V. Riabov

  3. The development of a new direct-heat-flux gauge for heat-transfer facilities

    NASA Astrophysics Data System (ADS)

    Piccini, E.; Guo, S. M.; Jones, T. V.

    2000-04-01

    A new type of direct-heat-flux gauge (DHFG) comprising an insulating layer mounted on a metal substrate has been developed. The gauge measures the heat flux across the insulating layer by measuring the top surface temperature employing a sputtered thin-film gauge (TFG) and the metal temperature using a thermocouple. The TFGs are platinum temperature sensors with physical thickness less than 0.1 µm. They are instrumented on the insulating layer. The thermal properties and the ratio of the thickness over the thermal conductivity of the insulating layer have been calibrated. A detailed method of analysis for calculating the surface heat flux from DHFG temperature traces is presented. The advantages of the DHFG include its high accuracy, its wide range of frequency response (from dc to 100 kHz) and, most significantly, that there is no requirement for knowledge of the structure of the metal substrate. Since the metal substrate is of high conductivity, few thermocouples are required to monitor the small spatial variation of the metal temperature, whereas multiple thin-film gauges may be employed. The DHFGs have been applied to a gas turbine nozzle guide vane and tested in the Oxford Cold Heat Transfer Tunnel successfully.

  4. Gamma heating measurements in a mixed radiation field

    SciTech Connect

    Chiu, H.K. (Illinois Univ., Urbana, IL (USA). Dept. of Nuclear Engineering); Bennett, E.F.; Micklich, B.J. (Argonne National Lab., IL (USA))

    1990-09-01

    Gamma hearing measurements have been made in a low-Z assembly irradiated with 14-MeV neutrons and (n,n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. The assembly is composed of 144 magnesium sleeves (5cm {times} 5cm {times} 60cm {times} 3 mm thick) filled with graphite to simulate a fusion blanket test module. Heating measurements were made in the mid-line of the assembly using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition (CBA) mode. The neutron induced atomic recoil signal was rejected by observing the signal rise-time differences inherent to radiations of different LET. The experiment was modelled using the one-dimensional radiation transport code ANISN/PC. The operating limits of this technique were identified by comparing measurements made at different positions in the assembly and then comparing these measurements to the calculated flux. 7 refs., 5 figs., 1 tab.

  5. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-print Network

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  6. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  7. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysics.

    NASA Astrophysics Data System (ADS)

    Iacobellis, Sam F.; McFarquhar, Greg M.; Mitchell, David L.; Somerville, Richard C. J.

    2003-09-01

    The sensitivity of modeled radiative fluxes to the specification of cloud microphysical parameterizations of effective radius and fallout are investigated using a single-column model and measurements from the Atmospheric Radiation Measurement (ARM) Program. The single-column model was run with data for the 3-month period of June-August 2000 at the ARM Southern Great Plains site forced with operational numerical weather prediction data. Several different packages of cloud microphysical parameterizations were used in the single-column model. The temporal evolution of modeled cloud amount as well as surface radiative fluxes from a control run compare well with ARM measurements.Mean ice particle fall speeds varied significantly with respect to the assumed ice particle habit. As particle fall speeds increased, the overall cloud fraction, cloud height, and grid-averaged ice water path decreased. The outgoing longwave radiation (OLR) differs by up to 4 W m2 over the range of fall speeds examined, while shortwave fluxes varied little as most of the changes in cloud properties occurred at times of minimal solar radiation.Model results indicate that surface and top-of-atmosphere radiative fluxes are sensitive to the scheme used to specify the ice particle effective radius. On the seasonal timescale this sensitivity is on the order of 4 W m2 and on the daily timescale can be as large as 32 W m2. A conclusive statement as to which microphysical scheme is performing best is not achievable until cloud microphysical measurements include an accurate representation of small ice particles. The modeled variance of the ice particle effective radius at any given height in the model is considerably smaller than that suggested by measurements. Model results indicate that this underestimation of the ice particle effective radius variance can alter the seasonal mean top-of-atmosphere radiative fluxes by up to 5 W m2 and the mean longwave cooling rate by up to 0.2° K day1 near the location of maximum cloud amount.These seemingly modest flux sensitivities may have important implications for numerical climate simulations. These numerical experiments and observational comparisons have provided valuable physical insight into ice cloud-radiation physics and also into the mechanisms through which contemporary cloud microphysical parameterizations interact with climate model radiation schemes. In particular, the results demonstrate the importance of the smaller ice particles and emphasize the critical role played by not only the average particle size and shape but also the width of the ice particle effective radius distribution about its mean. In fact, the results show that this variability in particle size can sometimes play a greater role in cloud-radiation interactions than the more obvious variations in cloud amount due to changes in ice particle fall speed.

  8. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  9. Homotopy analysis method for heat radiation equations

    Microsoft Academic Search

    S. Abbasbandy

    2007-01-01

    Here, the homotopy analysis method (HAM), one of the newest analytical methods which is powerful and easy-to-use, is applied to solve heat transfer problems with high nonlinearity order. Also, the results are compared with the perturbation and numerical Runge–Kutta methods and homotopy perturbation method (HPM). Here, homotopy analysis method is used to solve an unsteady nonlinear convective–radiative equation containing two

  10. An experimental investigation into the feasibility of a thermoelectric heat flux gage

    NASA Technical Reports Server (NTRS)

    Jones, J. C.; Vanfossen, G. J., Jr.

    1981-01-01

    An experiment was conducted to determine the feasibility of using a commerically available thermoelectric device as a heat flux gage. In certain research applications, the thermoelectric heat flux gage can provide a relatively simple means to model a warm fluid--cold wall. The experiment showed that heat flux through the gage could be correlated within two percent to the applied thermoelectric current through the device and the hot and cold side temperature with a simple algebraic equation.

  11. Effect of the stefan flux on coefficients of heat- and mass transfer (a binary system)

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.

    2012-07-01

    On the basis of analyzing equations of motion, mass transfer, and energy of two-component flux there were determined conditions under which the analogy between heat exchange and mass exchange on their separate and combined occurrence, taking account of the Stefan flux, is valid. It has been established that the difference in heat capacity of flow components has an influence on heat transport by the Stefan flux.

  12. Divertor heat flux reduction by D2 injection in DIII-D

    Microsoft Academic Search

    T. W. Petrie; D. Buchenauer; D. N. Hill; C. Klepper; S. Allen; R. Campbell; A. Futch; R. J. Groebner; A. Leonard; S. Lippmann; M. Ali Mahdavi; M. E. Resink

    1992-01-01

    D2 gas injected into ELMing H-mode discharges in DIII-D reduced the total integrated heat flux to the divertor ˜2× and the peak heat flux ˜5×, with only modest degradation to plasma stored energy. Steady gas injection without particle pumping results in eventual degradation in stored energy. The initial reduction in peak heat flux at the divertor tiles may be primarily

  13. Divertor heat flux mitigation in high-performance H-mode discharges in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Maingi, R. [Oak Ridge National Laboratory (ORNL); Gates, D.A. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Paul, S.F. [Princeton Plasma Physics Laboratory (PPPL); Raman, R. [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Bush, C.E. [Oak Ridge National Laboratory (ORNL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL)

    2009-01-01

    Experiments conducted in high-performance 1.0 and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly shaped spherical torus (ST) configuration. Improved plasma performance with high beta(t) = 15-25%, a high bootstrap current fraction f(BS) = 45-50%, longer plasma pulses and an H-mode regime with smaller ELMs has been achieved in the strongly shaped lower single null configuration with elongation kappa = 2.2-2.4 and triangularity delta = 0.7-0.8. Divertor peak heat fluxes were reduced from 6-12 to 0.5-2 MW m(-2) in ELMy H-mode discharges using the inherently high magnetic flux expansion f(m) = 15-25 and the partial detachment of the outer strike point at several D-2 injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z(eff) were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction in ion flux to the plate and a large neutral compression ratio. Spectroscopic measurements indicated the formation of a high-density, low-temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and C II, CIII emission rates were measured.

  14. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  15. Heat flux sensor research and development: The cool film calorimeter

    NASA Technical Reports Server (NTRS)

    Abtahi, A.; Dean, P.

    1990-01-01

    The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.

  16. Eddy heat fluxes at Drake Passage due to mesoscale motions

    E-print Network

    Rojas Recabal, Ricardo Luis

    1982-01-01

    . 91 x 10 C/db) gave values of -2. 3 kW m ~ for ML5 and 27. 6 kW m & for ML6. The mean gradient minus the standard error (-4. 75 x 10 /C/db) resulted in eddy heat fluxes of 0. 6 'kWm ~ for ML5 and -23. 1 kW m ~ for ML6. Thus, even if the errors... of data points, r = X level of confidence (expressed as a fraction between C-1) and t 975 (n-1) = 97. 5% percentile of the "Student's t" distribu- tion with n-1 degrees of freedom, 2 S? x is an estimator of the variance of x, given by 25 oz 2 Var (x...

  17. Assessing electron heat flux dropouts as signatures of magnetic field line disconnection from the Sun

    NASA Astrophysics Data System (ADS)

    Pagel, C.; Crooker, N. U.; Larson, D. E.

    2005-07-01

    Suprathermal electrons focused along magnetic field lines, called the strahl, carry heat flux away from the Sun. Various factors can cause heat flux dropouts (HFDs), including times when the strahl almost vanishes. HFDs are a necessary but insufficient condition for detecting magnetic flux disconnected from the Sun. To quantitatively assess the fraction of HFDs which might be due to disconnected fields, we use four years of suprathermal electron data from the Wind spacecraft to perform a comprehensive survey of heat flux dropouts with durations greater than an hour. Eliminating periods within interplanetary coronal mass ejections or containing counterstreaming electrons, we find that only ~10% of HFDs have signatures consistent with disconnected flux.

  18. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements

    E-print Network

    Burg, Brian R.

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions ...

  19. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  20. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V. (Tijeras, NM)

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  1. Investigation of the heat-island effect for heat-flux measurements in short-duration facilities

    SciTech Connect

    Dunn, M.G. [Ohio State Univ., Columbus, OH (United States). Gas Turbine Lab.; Kim, J. [Univ. of Denver, CO (United States). Dept. of Engineering; Rae, W.J. [State Univ. of New York, Buffalo, NY (United States). Dept. of Mechanical and Aerospace Engineering

    1997-10-01

    This paper presents the results of an experimental investigation designed to determine the possible influence of a surface-temperature discontinuity on the heat-flux history inferred from the temperature history of a miniature thin-film heat-flux gage (painted on an insulator) embedded in the surface of a metallic component. The resulting surface material discontinuity has the potential of causing a heat-island effect. Simultaneous measurements of the heat-flux history at selected locations along the midspan of a representative turbine airfoil (metal) were performed using continuous strip-type contoured inserts (without temperature discontinuity) and button-type inserts (with temperature discontinuity). Measurements are reported for two Reynolds number conditions. The experimental results suggest that for the experimental conditions of interest to gas turbine research in short-duration facilities, the influence of a potential heat-island on the measured heat flux is insignificant.

  2. Investigation of the heat-island effect for heat-flux measurements in short-duration facilities

    Microsoft Academic Search

    M. G. Dunn; J. Kim; W. J. Rae

    1997-01-01

    This paper presents the results of an experimental investigation designed to determine the possible influence of a surface-temperature discontinuity on the heat-flux history inferred from the temperature history of a miniature thin-film heat-flux gage (painted on an insulator) embedded in the surface of a metallic component. The resulting surface material discontinuity has the potential of causing a heat-island effect. Simultaneous

  3. Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire

    Microsoft Academic Search

    J. B. M. Pierce; J. B. Moss

    2007-01-01

    A detailed investigation is described of the interaction between fire development, smoke production and radiative exchange in a half-scale ASTM compartment in which the source is a heptane pool fire. Measurements of heat flux, fuel mass loss rate, ventilation flow rates, temperature and soot volume fraction are reported for the compartment for varying door widths. Data from the compartment are

  4. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    SciTech Connect

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-07-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  5. Estimation of TOA radiative fluxes from the GERB instrument data

    NASA Astrophysics Data System (ADS)

    Clerbaux, Nicolas; Bertrand, Cedric; Dewitte, Steven; Gonzalez, Luis; Ipe, Alessandro; Nicula, Bogdan

    2003-11-01

    The first Meteosat Second Generation (MSG) satellite was launched in August 2002. This EUMETSAT satellite carries 2 new instruments on the geostationary orbit: the Spinning Enhanced Visible and InfraRed Imager, SEVIRI, and the Geostationary Earth Radiation Budget, GERB. The unique feature of GERB in comparison with previous measurement missions of the Earth's radiation budget (e.g. ERBE, ScaRab and CERES experiments) is the high temporal sampling afforded by the geostationary orbit, albeit for a limited region of the globe. The GERB instrument provides accurate broadband measurements of the radiant energy originating in the reflection of the incoming solar energy by the Earth-atmosphere system and in the thermal emission within this system. The synergetic use of the SEVIRI data is needed to convert these directional measurements (radiances) into radiative fluxes at the top-of-atmosphere. Additionally, the SEVIRI data allows the enhancement of the spatial resolution of the GERB measurement. This paper describes the near real-time GERB processing system that has been set up at the Royal Meteorological Institute of Belgium (RMIB). This includes the unfiltering of the instrument data, the radiance-to-flux conversions and the enhancement of the instrument spatial resolution. An early validation of the instrument data by comparison with CERES data is presented. Finally, the different data formats, the way to access them and their expected accuracy are presented.

  6. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S [ORNL] [ORNL; Ohriner, Evan Keith [ORNL] [ORNL; Kiggans, Jim [ORNL] [ORNL; Harper, David C [ORNL] [ORNL; Snead, Lance Lewis [ORNL] [ORNL; Schaich, Charles Ross [ORNL] [ORNL

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  7. Radiative forcing of the Venus mesosphere. II - Thermal fluxes, cooling rates, and radiative equilibrium temperatures

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    1989-02-01

    A radiative heat-transfer model is presently used to ascertain the way in which radiative forcing contributes to the up to 20 K higher temperature of the Venus polar regions, by comparison with the tropics, in the 60-100 km mesospheric levels. Model global-mean radiative equilibrium temperatures for 55-100 km are compared with observations to show how each opacity source contributes to the thermal structure. The results obtained from latitude-dependent radiative equilibrium experiments indicate that meridional variations in radiative forcing obliterate observed mesospheric temperature gradients and yield polar temperatures up to 40 K cooler than the tropics.

  8. Energy Balance Comparison and Closure at a Moist Desert Playa: The Importance of Ground Heat Storage and Flux Estimation

    NASA Astrophysics Data System (ADS)

    Huntington, J. L.; Rajagopal, S.; Allen, R. G.; Mihevc, T. M.; Schumer, R.; Caldwell, T.; deBruin, H.

    2012-12-01

    Given increasing demands on finite water supplies in arid environments, the need for accurate estimates of sustainable groundwater resources is greater than ever. Many drainages in desert environments are considered hydrologically closed, where the entire groundwater recharge volume is consumed by evaporation and evapotranspiration along mountain front and valley floor areas. The amount of groundwater recharge that occurs in a given hydrographic basin is difficult to accurately estimate and is therefore commonly quantified by estimating the groundwater discharge using micrometeorological, and remote and in situ energy balance methods. Large playas are common features in desert environments, and the phreatic surface is often less than a few meters below land surface, creating nearly saturated conditions at the land surface through capillary rise. At first glance one might conclude that evaporation is high due to the nearly saturated surface, however, playa surfaces are commonly sealed by thin salt crusts, inhibiting evaporation. In this work we use eddy covariance, scintillometer, and four component radiometer measurements, and present a novel ground heat flux analysis using multiple ground heat flux plates and heat-pulse sensors to assess energy balance closure and uncertainties on estimated evaporation in Dixie Valley, Nevada. Results indicate that greater than 50 percent of daytime net radiation is partitioned into ground heat flux, and almost all of the available energy is portioned into sensible heat as determined from eddy covariance, and confirmed with scintillometer estimates. Utilizing heat pulse derived soil thermal properties and high density discrete soil temperature measurements allowed for estimation of soil heat storage and flux using a finite difference solution to the transient heat flow equation. This approach improved energy balance closure by 20 percent (achieving 90 percent closure) when compared to traditional calorimetric soil heat storage and flux estimates. We found that underestimation of energy balance closure occurs due to phase lags between 30 minute average available energy and turbulent fluxes, and is primarily due to inaccurate accounting of soil heat storage. Our work highlights the importance of accurate ground heat storage and flux estimation and provides insight into solving the surface energy imbalance problem in complex desert environments.

  9. THE HEAT EXCHANGE CHARACTERISTICS OF A CIRCULAR DUCT CONSIDERING AND NEGLECTING THE INFLUENCE OF HEAT RADIATION

    Microsoft Academic Search

    King-Leung Wong; Tsung-Lieh Hsien; Tzu-chian Huang; Shiue-Jie Yu; Shu-Lian Lin

    A heat radiation equation contains 4th exponential order of temperature which makes mathematics analysis very complicated, therefore, most heat transfer experts and scholars believe, based on their own experiences, that the heat radiation effect can be ignored due to small temperature difference between duct surfaces and surrounding to simplify analysis. Due to this reason, examples shown in most heat transfer,

  10. The relationship of wind stress to heat flux divergence of Texas-Louisiana shelf waters

    Microsoft Academic Search

    Paul C. Etter; William F. Ulm; John D. Cochrane

    1985-01-01

    Monthly, multi-annual mean heat budgets are calculated for waters overlying the Texas-Louisiana shelf. Heat storage rates are calculated on the basis of a volumetric temperature-salinity census; unpublished data from Bunker are consulted to determine surface heat exchanges. Monthly heat flux divergences, calculated as residuals in the heat budget equation, show divergence of heat during the months of June and July,

  11. Enhancement of subcooled flow boiling critical heat flux for water in tubes with internal twisted tapes under one-sided-heating conditions

    Microsoft Academic Search

    Fujio Inasak; Hideki Nariai

    1998-01-01

    The heat flux distributions, qw, at the inner cooled wall for the beam irradiated test data using swirl tubes were estimated by solving an unsteady heat conduction equation. The results were compared with the net vapor generation heat flux, qNVG. It was confirmed that the lowest heat flux at the cooled wall was lower than qNVG for all data and

  12. Design considerations for a thermophotovoltaic energy converter using heat pipe radiators

    SciTech Connect

    Ashcroft, J.; DePoy, D. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-06-01

    The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

  13. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    ERIC Educational Resources Information Center

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  14. High heat flux sensor for infrared thermography determination of heat transfer coefficient of liquid metal cooled target's wall

    NASA Astrophysics Data System (ADS)

    Patorski, Jacek A.; Gindrat, Malko

    2009-05-01

    The proton beam passing through the wall area of a liquid metal (LM) target container, called entrance window, is causing deposition of maximum high heat flux amount 140 W/cm2.Previous experimental thermo-hydraulics investigations for the MEGAPIE LM-target at the SINQ facility of Heat- Transfer-Coefficient (HTC) using InfraRed-Thermography (IRT) have been presented at Thermosense 2006 and 2007 [1], [2] and references therein. During these investigations the IRT active sensors with applied heat fluxes of the small and low range from 2.5 to 15.2 W/cm2 are used. The heating shell foil of the sensor has been connected to steel dish enclosing LM target container by using electrical insulation ceramic glue. A higher, then achieved 15 W/cm2, heat flux has lead to delaminating of the heater. Because of interest to determinate the HTC-chart under real heat flux conditions and investigate some positive effect of heat flux buoyancy on cooling, the idea for the High Heat Flux (HHF) IRT Sensors, using of the Low Pressure Plasma Spraying - Thin Film (LPPS-TF) technology of the Sulzer Metco Company has been created. The paper presents the idea of multilayer thermal sprayed construction of HHF-IRT-Sensor, few realizations and some results of the first pre-test performed at the PSI LBE Double Pump Loop using the new sensor and the 2DD IRT methodology presented in [1].

  15. Heat pipe technology development for high temperature space radiator applications

    Microsoft Academic Search

    M. A. Merrigan; M. G. Elder; E. S. Keddy; J. T. Sena

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance (kg\\/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180° has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of

  16. Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations

    SciTech Connect

    Scime, E.E.; Bame, S.J.; Feldman, W.C.; Gary, S.P.; Phillips, J.L. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Balogh, A. [Imperial College, London (United Kingdom)] [Imperial College, London (United Kingdom)

    1994-12-01

    In this study the authors use observations from the three-dimensional electron spectrometer and magnetometer aboard the Ulysses spacecraft to examine the solar wind electron heat flux from 1.2 to 5.4 AU in the ecliptic plane. Throughout Ulysses` transit to 5.4 AU, the electron heat flux decreases more rapidly ({approximately}R{sup {minus}3.0}) than simple collisionless expansion along the local magnetic field and is smaller than expected for a thermal gradient heat flux, q{sub {parallel}}e(r)={minus}k{sub {parallel}}{del}{sub {parallel}}T{sub e}(r). The radial gradients and magnitudes expected for a number of electron heat flux regulatory mechanisms are examined and compared to the observations. The best agreement is found for heat flux regulation by the whistler heat flux instability. The upper bound and radial scaling for the electron heat flux predicted for the whistler heat flux instability are consistent with observations.

  17. Upwelling and associated heat flux in the equatorial Atlantic inferred from helium isotope disequilibrium

    E-print Network

    Paris-Sud XI, Université de

    Upwelling and associated heat flux in the equatorial Atlantic inferred from helium isotope as the gas exchange and the upwelling term. In total, helium disequilibrium was observed on 54 stations and associated heat flux in the equatorial Atlantic inferred from helium isotope disequilibrium, J. Geophys. Res

  18. The whistler heat flux instability: Threshold conditions in the solar wind

    Microsoft Academic Search

    S. Peter Gary; Earl E. Scime; John L. Phillips; William C. Feldman

    1994-01-01

    Solar wind electrons are observed often to consist of two components: a core and a halo. The anisotropics and relative average speeds of these components correspond to a heat flux that has the potential to excite several different electromagetic instabilities; wave-particle scattering by the resulting enhanced fluctuations can limit this heat flux. This manuscript describes theoretical studies using the linear

  19. Critical Heat Flux During Flow Boiling in Microchannels: A Parametric Study

    Microsoft Academic Search

    Remi Revellin; John R. Thome

    2009-01-01

    The application of flow boiling in microchannels in copper cooling elements for very high heat flux dissipation from microprocessor chips is one of the promising technologies to replace air cooling and water cooling of these units, particularly in mainframes and servers. Recently, the authors have proposed a new theoretical model to predict the critical heat flux (CHF) in microchannels, and

  20. Experimental Study and Model on Critical Heat Flux of Refrigerant-123

    E-print Network

    Kandlikar, Satish

    potential in high heat flux cooling. Compared to a single-phase flow, flow boiling is advantageous because the effect of flow boiling stability on critical heat flux (CHF) with Refrigerant 123 (R-123) and water at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena

  1. FIELD TESTS OF THE SOIL HEAT FLUX PLATE METHOD AND SOME ALTERNATIVES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat flux plates are commonly used to measure soil heat flux, a component of the surface energy balance. The plate method is simple and precise, but several previous studies have demonstrated the potential for relatively large errors. Here we present the results of in situ tests of the plate method,...

  2. Interaction between a cracked hole and a line crack under uniform heat flux

    Microsoft Academic Search

    Pham Chi Vinh; Norio Hasebe; Xian-Feng Wang; Takahiro Saito

    2005-01-01

    This article deals with the interaction between a cracked hole and a line crack under uniform heat flux. Using the principle of superposition, the original problem is converted into three particular cracked hole problems: the first one is the problem of the hole with an edge crack under uniform heat flux, the second and third ones are the problems of

  3. Low heat flux and large variations of lithospheric thickness in the Canadian Shield

    Microsoft Academic Search

    F. Lévy; C. Jaupart; J.-C. Mareschal; G. Bienfait; A. Limare

    2010-01-01

    Ten new heat flux determinations have been made using measurements in 22 mining exploration boreholes located at latitudes higher than 51°N in the Canadian Shield. They provide data in poorly sampled regions near the core of the North American craton where one expects the lithosphere to be thickest. The new heat flux values are all smaller than 34 mW m-2

  4. Analysis of snowpack accumulation and the melting process of wet snow using a heat balance approach that emphasizes the role of underground heat flux

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshisuke; Takimoto, Hiroshi; Ogura, Akira; Yoshida, Masashi

    2015-03-01

    Snowpack accumulation and melting, including the role of the heat flux underground, were investigated by employing the bulk transfer method and setting roughness lengths of ZO = ZT = 0.005 m and ZT = 0.007 m. Heat balance data were recorded for a period of 4 years, from the fall of 2009 to the spring of 2013, at a forest experiment station in the Hokuriku region, which lies along the Japan Sea. The findings of the research are as follows: (1) The observed temporal changes in the snowpack depth were well reproduced by our model using observed and estimated densities. (2) The importance and roles of the heat balance components were clarified. The total heat input during the 4 years was 252.2 MJ/m2 on average; 41.4% was provided by net radiation (Rn), 37.8% by sensible heat flux (H), and 13.2% by underground heat flux (G). The total output was 120.7 MJ/m2, of which 56.2% was accounted for by Rn and 31.1% by latent heat flux (lE). (3) Of the total heat input, 45.2% was released as freezing energy from the surface side and 2.6% was released from the bottom. (4) In the very cold season (December-February), the total input energy was 115.8 MJ/m2 on average; 75.0% was supplied by the surface and the remaining 25.0% from underground. In an anomalous year, 40.8% of the energy was supplied from underground.

  5. Empirical models of the eddy heat flux and vertical shear on short time scales

    NASA Technical Reports Server (NTRS)

    Ghan, S. J.

    1984-01-01

    An intimate relation exists between the vertical shear and the horizontal eddy heat flux within the atmosphere. In the present investigation empirical means are employed to provide clues concerning the relationship between the shear and eddy heat flux. In particular, linear regression models are applied to individual and joint time series of the shear and eddy heat flux. These discrete models are used as a basis to infer continuous models. A description is provided of the observed relationship between the flux and the shear, taking into account means, standard deviations, and lag correction functions.

  6. Remote Measurement of Heat Flux from Power Plant Cooling Lakes

    SciTech Connect

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Bollinger, J.

    2013-01-01

    Laboratory experiments have demonstrated a correlation between the rate of heat loss q? from an experimental fluid to the air above and the standard deviation ? of the thermal variability in images of the fluid surface. These experimental results imply that q? can be derived directly from thermal imagery by computing ?. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q? and ? when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between ? and q? of 0.45 and 0.76, respectively. Values of q? computed from a function of ? and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q? (0.84 and 0.89). This research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

  7. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-print Network

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  8. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  9. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  10. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. (Los Alamos National Lab., NM (United States)); Silverstein, C.C. (CCS Associates, Bethel Park, PA (United States))

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  11. Equation of DNB Heat Flux for Upward Forced Flow of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Tatsumoto, H.; Shirai, Y.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.; Kinoshita, K.

    Knowledge of departure from nucleate boiling (DNB) heat flux is important for design of superconducting systems cooled by cryogenic liquids. We have already presented the equation of DNB heat flux that can describe the experimental data of liquid hydrogen. To see the applicability of the equation to other cryogenic liquids, similar heat transfer tests in forced flow of liquid nitrogen are performed for wide ranges of conditions in this work. It was confirmed that the DNB heat flux equation derived by the authors can express not only the data for liquid hydrogen but also those for liquid nitrogen.

  12. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Li, Long; Wang, Jing; Fan, Xuejun

    2012-07-01

    In this paper, an integrated water-cooled sensor has been developed to simultaneously measure the heat flux and temperature at the wall of a scramjet combustor. The upgrade sensor was designed based on the principle of Gardon heat-flux gauge with many improvements. The sensor was well calibrated by both conductive heating sources and blackbody cavity device. The effects of structural material and dimensions on the sensor's responses were examined. Both the experimental measurements and numerical simulation were conducted and showed that the new sensor has the maximum measure ability of heat flux of 400 W/cm2 and stagnation temperatures up to 1920 K along with satisfactory response time.

  13. Sensible and latent heat flux estimates in Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.; Weidner, George A.

    1993-01-01

    The assumption has been made that the net annual contribution of water by the processes of deposition and sublimation to the Antarctic Ice Sheet is zero. The U.S. Antarctic Program started installing reliable automatic weather stations on the Antarctic Continent in 1980. The initial units were equipped to measure wind speed, wind direction, air pressure, and air temperature. During the 1983-1984 field season in Antarctica, three units were installed that measured a vertical air temperature difference between the nominal heights of 0.5 m and 3.0 m and relative humidity at a nominal height of 3 m. The measurements of the vertical air temperature difference and the relative humidity are the minimum required to estimate the sensible and latent heat fluxes to the air, while not exceeding the available energy requirements for the weather stations. The estimates of the net annual sublimation and deposition on the Ross Ice Shelf amount to 20 to 80 percent of the annual accumulation. We conclude that the assumption that annual sublimation and deposition are zero is not valid under Antarctic conditions.

  14. Effects of broadened property fuels on radiant heat flux to gas turbine combustor liners

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1983-01-01

    The effects of fuel type, inlet air pressure, inlet air temperature, and fuel/air ratio on the combustor radiation were investigated. Combustor liner radiant heat flux measurements were made in the spectral region between 0.14 and 6.5 microns at three locations in a modified commercial aviation can combustor. Two fuels, Jet A and a heavier distillate research fuel called ERBS were used. The use of ERBS fuel as opposed to Jet A under similar operating conditions resulted in increased radiation to the combustor liner and hence increased backside liner temperature. This increased radiation resulted in liner temperature increases always less than 73 C. The increased radiation is shown by way of calculations to be the result of increased soot concentrations in the combustor. The increased liner temperatures indicated can substantially affect engine maintenance costs by reducing combustor liner life up to 1/3 because of the rapid decay in liner material properties when operated beyond their design conditions.

  15. Heat flux decay length during RF power operation in the Tore Supra tokamak

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Gunn, J. P.; Firdaouss, M.; Carpentier, S.; Chantant, M.; Colas, L.; Ekedahl, A.; Gardarein, J.-L.; Lipa, M.; Loarer, T.; Courtois, X.; Guilhem, D.; Saint-Laurent, F.

    2014-01-01

    The upgrade of its ion cyclotron resonance (ICRH) and lower hybrid current drive (LHCD) heating systems makes the Tore Supra (TS) tokamak particularly well suited to address the physics and technology of high-power and steady-state plasma-surface interactions. High radio frequency (RF) heating powers have been successfully applied up to 12.2 MW coupled to the plasma, in which about 7.85 MW flows through the scrape-off layer. Thermal calculation based on thermography measurements gives the heat flux density distribution on the TS toroidal limiter located at the bottom of the machine. The target heat flux densities are divided by the incidence angle of the field lines with the surface and mapped to the magnetic flux surface to evaluate the power flowing in the scrape-off layer (SOL). The power profile shows a narrow component near the last closed flux surface and a wide component in the rest of the SOL. The narrow component is attributed to significant cross-field heat flux density around the plasma contact point, about 0.8% of the parallel heat flux density in the SOL, when incident angles are nearly tangential to the surface. The wide component is used to derive the experimental heat flux decay length (?q) and parallel heat flux in the SOL. The power widths are measured for a series of 1 MA/3.8 T discharges involving a scan of RF injected power 3.5 ? Ptot ? 12.2 MW. Independently of the heating power, we measured ?q,OMP = 14.5 ± 1.5 mm at the outer mid-plane and parallel heat flux in the SOL in the range 130\\le Q_{\\parallel}^{LCFS}\\le 490\\,MW\\,m^{-2} . TS values obtained with L-mode limiter plasmas are broader than those derived from L-mode divertor plasmas, confirming earlier results obtained with an ohmically heated plasma leaning on the inboard wall of TS.

  16. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  17. High heat flux flow boiling in silicon multi-microchannels – Part II: Heat transfer characteristics of refrigerant R245fa

    Microsoft Academic Search

    Bruno Agostini; John Richard Thome; Matteo Fabbri; Bruno Michel; Daniele Calmi; Urs Kloter

    2008-01-01

    This article is the second in a three-part study. This second part focuses on flow boiling heat transfer of refrigerant R245fa in a silicon multi-microchannel heat sink and their comparison with the results presented in part I for refrigerant R236fa. This heat sink was the same as utilized in part I. The test conditions covered base heat fluxes from 3.6

  18. Heat pump augmented radiators for spacecraft thermal management

    SciTech Connect

    Merrigan, M.A.; Reid, R.S.

    1988-01-01

    Because future space missions will require heat rejection subsystems having megawatt capacity, the development of lightweight heat rejection techniques is desirable. Closed systems for waste heat rejection in space are radiative and their capacity is proportional to the fourth power of absolute temperature. Reductions in the surface area and therefore, in the mass of a space radiator are possible by increasing the heat rejection temperature above the temperature of the thermal source. One proposed method of increasing the heat rejection temperature uses a heat pump powered by a cyclic heat engine operating at a temperature above the waste heat source. This heat pumping technique reduces the required direct radiator surface area, but it introduces mass penalties associated with its power supply and its heat rejection system. The use of a heat pump augmented heat rejection system will generally be practical if it reduces the total radiator mass requirement over a suitable baseline design. The mass penalties of the heat pump augmented radiator over a baseline (a flat plate radiator) are considered in this analysis. 2 refs., 8 figs., 1 tab.

  19. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-print Network

    temperatures. For sintered copper powder with a 50 Pm particle diameter, a heat load of 8.5 W/mm2 was supportedA TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi ABSTRACT A two-phase heat spreader has been developed for cooling high heat flux sources in high

  20. Development of a high-heat-flux target for multimegawatt, multisecond neutral beams at ORNL

    Microsoft Academic Search

    S. K. Combs; S. L. Milora; C. E. Bush; C. A. Foster; H. H. Haselton; P. H. Hayes; M. M. Menon; J. A. Moeller; F. Sluss; C. C. Tsai

    1984-01-01

    A high-heat-flux target has been developed for intercepting multimegawatt, multisecond neutral beam power at the Oak Ridge National Laboratory (ORNL). Water-cooled copper swirl tubes are used for the heat transfer medium; these tubes exhibit an enhancement in burnout heat flux over conventional axial-flow tubes. The target consists of 126 swirl tubes (each 0.95 cm in outside diameter with 0.16-cm-thick walls

  1. Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixtures

    Microsoft Academic Search

    F. A. Bykovskii; E. F. Vedernikov

    2009-01-01

    Pioneering measurements of heat fluxes to the walls of flow-type combustors of different geometries were performed in regimes\\u000a of continuous spin detonation of fuel-air mixtures under unsteady heating. These heat fluxes are compared with those observed\\u000a in the regime of conventional turbulent combustion in the same combustor. Air is used as an oxidizer, and acetylene or hydrogen\\u000a is used as

  2. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-print Network

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  3. Experimental study on measurement and calculation of heat flux in supersonic combustor of scramjet

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Yao, Zhanli; Qin, Jiang; Bao, Wen

    2015-06-01

    An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combustor. Numerical simulations are done to evaluate the effectiveness of the proposed method, and experiments are made in the direct-connect hydrocarbon fueled scramjet combustor of Mach-6 flight for different equivalence ratios. The distribution of heat flux along the axial and circumferential directions can be obtained using the proposed method. The distribution of heat flux is uneven which is caused by the aerodynamic heating, combustion heat release and changes of section area, and the peak heat flux can be more than 2MW/m2 during the experiments. Heat flux increases with the increase in equivalence ratio for the same Mach number. And axial distribution of heat flux is uniform for different equivalence ratios. In addition, the combustion heat release area of the combustion chamber can therefore be concluded which is useful for guiding the structural design of the thermal protection system.

  4. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    SciTech Connect

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

  5. High heat flux flow boiling apparatus for the study of cooling effectiveness. Final report, October 1989September 1994

    Microsoft Academic Search

    Beitel

    1995-01-01

    Backside water cooling is used extensively to transfer heat from critical elements in high heat flux devices such as hypersonic test facilities and nuclear reactors. In such devices, efficient cooling is accomplished with high heat transfer coefficients resulting from the transition of the coolant from single phase convection to nucleate boiling at higher heat flux. Analytical modeling of the heat-transfer

  6. Calibration of high-heat-flux sensors in a solar furnace

    NASA Astrophysics Data System (ADS)

    Ballestrín, J.; Rodríguez-Alonso, M.; Rodríguez, J.; Cañadas, I.; Barbero, F. J.; Langley, L. W.; Barnes, A.

    2006-12-01

    The most common sensors used for the measurement of high solar irradiance are the Gardon gauges, which are usually calibrated using a black body at a certain temperature as the radiant source. This calibration procedure is assumed to produce a systematic error when solar irradiance measurements are taken using these sensors. This paper demonstrates a calorimetric method for calibrating these high-heat-flux gauges in a solar furnace. This procedure has enabled these sensors to be calibrated under concentrated solar radiation at higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at the Plataforma Solar de Almería. Working at higher irradiances has allowed the uncertainty in the calibration constant of these sensors to be reduced. This work experimentally confirms the predicted systematic errors committed when measuring high solar irradiances using Gardon sensors calibrated with a black body.

  7. Method of high heat flux removal by usage of liquid spray cooling

    NASA Astrophysics Data System (ADS)

    Smakulski, Przemys?aw

    2013-09-01

    High heat flux removal are important issue in many perspective applications such as computer chips, laser diode arrays, or boilers working on supercritical parameters. Electronic microchips constructed nowadays are model example of high heat flux removal, where the cooling system have to maintain the temperature below 358 K and take heat flux up to 300 W/cm2. One of the most efficient methods of microchips cooling turns out to be the spray cooling method. Review of installations has been accomplished for removal at high heat flux with liquid sprays. In the article are shown high flux removal characteristic and dependences, boiling critical parameters, as also the numerical method of spray cooling analysis.

  8. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27?mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2?MPa to 1.8?MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024?MW/m2 was estimated for a thickness of 8.5?mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8?MPa. PMID:24977219

  9. Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment

    Microsoft Academic Search

    G. M. Zharkova; V. N. Kovrizhina

    2010-01-01

    The principles of visualization and measurement of surface temperatures and heat fluxes by the method of liquid-crystal tomography in an aerophysical experiment are described. The properties of polymeric liquid-crystal, heat-sensitive coatings and application of them in subsonic and hypersonic facilities for investigating the structure of a near-wall flow and aerodynamic heating are considered.

  10. Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment

    NASA Astrophysics Data System (ADS)

    Zharkova, G. M.; Kovrizhina, V. N.

    2010-12-01

    The principles of visualization and measurement of surface temperatures and heat fluxes by the method of liquid-crystal tomography in an aerophysical experiment are described. The properties of polymeric liquid-crystal, heat-sensitive coatings and application of them in subsonic and hypersonic facilities for investigating the structure of a near-wall flow and aerodynamic heating are considered.

  11. Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux

    Microsoft Academic Search

    Bao Truong; Lin-wen Hu; Jacopo Buongiorno; Tom McKrell

    2010-01-01

    Nanofluids are colloidal dispersions of nanoparticles in homogenous base fluids. Previous studies have shown that nanofluids can increase pool boiling critical heat flux (CHF) by forming a porous deposition on the heated surface. However, questions remain whether nanoparticles can further enhance the CHF on a passively engineered heat transfer surface, such as a sandblasted metal plate. In this study, three

  12. Effects of ultrasonic vibration on subcooled pool boiling critical heat flux

    Microsoft Academic Search

    J. H. Jeong; Y. C. Kwon

    2006-01-01

    The effects of ultrasonic vibration on critical heat flux (CHF) have been experimentally investigated under natural convection condition. Flat bakelite plates coated with thin copper layer and distilled water are used as heated specimens and working fluid, respectively. Measurements of CHF on flat heated surface were made with and without ultrasonic vibration applied to working fluid. An inclination angle of

  13. The effects of pressure gradients on convective heat flux predictions in engine environments

    Microsoft Academic Search

    I.-Ping Chang; Iping

    1991-01-01

    Accurate convective heat transfer predictions inside engines is important to improvements in performance, reduction of harmful exhaust emissions, and structural and material design. Current heat transfer models used in engine simulations do not incorporate the effects of pressure gradients. In this study, wall functions that use local pressure gradients to correct the friction velocity, wall shear stress, and heat flux

  14. A Flux Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet.

    E-print Network

    Priest, Eric

    A Flux Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet. Eric R. Priest heating. The dissipation of energy along sharp boundaries we call, by analogy with geophysi- cal plate tectonics, the tectonics model of coronal heating. Similar to the case on Earth, the relative motions

  15. Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification

    SciTech Connect

    Sabau, Adrian S [ORNL

    2006-01-01

    All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.

  16. Heat fluxes across the Antarctic Circumpolar Current in Drake Passage: Mean flow and eddy contributions

    NASA Astrophysics Data System (ADS)

    Ferrari, Ramiro; Provost, Christine; Park, Young-Hyang; Sennéchael, Nathalie; Koenig, Zoé; Sekma, Hela; Garric, Gilles; Bourdallé-Badie, Romain

    2014-09-01

    In contrast to a long-standing belief, observations in the Antarctic Circumpolar Current (ACC) show that mean velocity vectors rotate with depth, thus suggesting a possible importance of the time-mean flow for the local poleward heat transport. The respective contributions of the eddy and mean flows to the heat flux across the ACC in Drake Passage (DP) are investigated using recently acquired and historical time series of velocity and temperature from a total of 24 current meter moorings and outputs of a high-resolution (1/12°) model with realistic topography. Only 11 out of the 24 depth-integrated eddy heat flux estimates are found to be significant, and they are poleward. Model depth-integrated eddy heat fluxes have similar signs and amplitudes as the in situ estimates at the mooring sites. They are mostly poleward or nonsignificant, with amplitude decreasing to the south. The cross-stream temperature fluxes caused by the mean flow at the moorings have a sign that varies with location and corresponds to the opposite of the vertical velocity estimates. The depth-integrated temperature fluxes due to the mean flow in the model exhibit small spatial scales and are of opposite sign to the bottom vertical velocities. This suggests that the rotation of the mean velocity vectors with depth is mainly due to bottom topography. The rough hilly topography in DP likely promotes the small-scale vertical velocities and temperature fluxes. Eddy heat fluxes and cross-stream temperature fluxes are integrated over mass-balanced regions defined by the model transport streamlines. The contribution of the mean flow to the ocean heat fluxes across the Southern ACC Front in DP (covering about 4% of the circumpolar longitudes) is about four times as large as the eddy heat flux contribution and the sum of the two represent on the order of 10% of the heat loss to the atmosphere south of 60°S.

  17. E × B shear pattern formation by radial propagation of heat flux waves

    SciTech Connect

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of) [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France)] [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)] [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  18. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  19. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem

    SciTech Connect

    Rognlien, T; Ryutov, D; Makowski, M; Soukhanovskii, V; Umansky, M; Cohen, R; HIll, D; Joseph, I

    2009-02-26

    Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m{sup 2}. The second is the transient peak heat-flux that can be tolerated in a short time, {tau}{sub m}, before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/{tau}{sub m}{sup 1/2} parameter of {approx} 40 MJ/m{sup 2}s{sup 1/2} [1]. Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent being the Snowflake divertor concept [2] and generating Resonant Magnetic Perturbations by the SOL currents [3]. However, the specific approaches discussed here are part of a wider class of innovative divertor ideas that have come from the community in the last several years, and we certainly advocate the need to consider a range of options. Indeed, the most effective solution to the heat-flux problem may well contain features of various ideas. For example, there are the X-divertor (Kotschenreuther et al. [4]) that expands the magnetic flux surface in the vicinity of the near-X-point divertor plate, and the super X-divertor (Valanju et al. [5]) that guides the near-separatrix SOL flux tubes to a larger major radius to increase the surface area available for power deposition. These approaches have the common feature of manipulation of the edge magnetic geometry. Another approach is the use of liquid divertor surfaces that can increase the heat-flux capability by flowing the heated material to a cooling region and eventually out of the machine, and/or by being able to withstand a higher peak heat flux [6]. All of these areas are only emerging concepts that require substantially more analysis and definitive experimental tests, and given the need for a large improvement in this area, we advocate a substantial program to systematically assess the approaches. Because of space limitation here, we present some details of one of the concepts, namely the Snowflake divertor configuration. The Snowflake (SF) divertor [2] exploits a tokamak geometry in which the poloidal magnetic field varies quadratically with distance from the X-point null, {Delta}r. The name stems from the characteristic hexagonal, snowflake-like, shape of the multi-branched separatrix for this exact second-order null. In contrast, the standard X-point configuration has a poloidal field varying linearly with ?r. The different variations mean that a flux expansion is much larger in the vicinity of a null of a snowflake divertor, and one can try to exploit this fact for reducing the divertor heat load. A uniqu

  20. Parametric representation of heat and moisture fluxes in cloud-topped mixed layers

    NASA Technical Reports Server (NTRS)

    Penc, Richard S.; Albrecht, Bruce A.

    1987-01-01

    The Betts (1973, 1978) parametrization of heat and moisture fluxes is tested using measurements made in thin, broken, and solid stratocumulus clouds by the NCAR Electra off the California coast in June 1976. The turbulence data are used to determine updraft-downdraft properties, heat and moisture fluxes, spectra, and cospectra. From the convective properties, vertical mass flux profiles are obtained and examined for consistency. A convective scaling which is appropriate for cloud-topped mixed layers is discussed. The results demonstrate the usefulness of a mass flux formulation in modeling applications for cloud conditions varying between solid and broken.

  1. Analysis of the transient calibration of heat flux sensors: One dimensional case

    NASA Technical Reports Server (NTRS)

    Dybbs, A.; Ling, J. X.

    1989-01-01

    The effect of transient heat flux on heat flux sensor response and calibration is analyzed. A one dimensional case was studied in order to elucidate the key parameters and trends for the problem. It has the added advantage that the solutions to the governing equations can be obtained by analytic means. The analytical results obtained to date indicate that the transient response of a heat flux sensor depends on the thermal boundary conditions, the geometry and the thermal properties of the sensor. In particular it was shown that if the thermal diffusivity of the sensor is small, then the transient behavior must be taken into account.

  2. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  3. The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling

    E-print Network

    Sugrue, Rosemary M

    2012-01-01

    The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

  4. An airborne study of boundary layer heat and moisture fluxes for project FIFE

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.

    1992-01-01

    A summary of work accomplished during the first International Satellite Cloud Climatology Project (ISLSCP) Field Experiment is presented. The Wyoming King Air participated in Intensive Field Campaigns (IFCs) 3 and 4 in 1987, which were committed to a combination of airborne sensible and latent heat flux measurements and soil moisture mappings, with the University of Kansas' X-band side-looking airborne radar (SLAR). A total of 9 flux missions were flown in 1987 using several different flight designs. A critical decision in the first round of aircraft flux analyses, agreed to by all the flux aircraft investigators, was to pass the aircraft data through a high-pass filter prior to the eddy-correlation flux calculations. Several conclusions were drawn from this study: (1) boundary layer (BL) profiles of heat fluxes were usually linear; (2) high-pass filtering applied to the aircraft data did not add to the disagreement between the profile; (3) undersampling at high frequencies could have accounted for as much as a 15 percent underestimate of surface fluxes; (4) disagreement between the aircraft and surface latent heat fluxes changed signs between summer and fall; (5) magnitude and sign of disagreement between aircraft and surface heat fluxes varied systematically with BL depth or height of aircraft profile; and (6) Bowen ratios from both detrended and filtered aircraft data agreed with surface values better for moist, summer cases than for dry cases.

  5. A Revised Estimate of Earth's Surface Heat Flux: 47TW ± 2TW

    NASA Astrophysics Data System (ADS)

    Davies, J.; Davies, R.

    2011-12-01

    Earth's surface heat flux provides a fundamental constraint on solid Earth dynamics. However, deriving an estimate of the total surface heat flux is complex, due to the inhomogeneous distribution of heat flow measurements and difficulties in measuring heat flux in young oceanic crust, arising due to hydrothermal circulation. We derive a revised estimate of Earth's surface heat flux using a database of 38347 measurements (provided by G. Laske and G. Masters), representing a 55% increase on the number of measurements used previously, and the methods of Geographical Information Science (GIS) (Davies & Davies, 2010). To account for hydrothermal circulation in young oceanic crust, we use a model estimate of the heat flux, following the work of Jaupart et al., 2007; while for the rest of the globe, in an attempt to overcome the inhomogeneous distribution of measurements, we develop an average for different geological units. Two digital geology data sets are used to define the global geology: (i) continental geology - Hearn et al., 2003; and (ii) the global data-set of CCGM - Commission de la Carte Géologique du Monde, 2000. This leads to > 93,000 polygons defining Earth's geology. To limit the influence of clustering, we intersect the geology polygons with a 1 by 1 degree (at the equator) equal area grid. For each geology class the average heat flow in the resulting polygons is evaluated. The contribution of that geology class to the global surface heat flow is derived by multiplying the estimated surface heat flux with the area of that geology class. The total surface heat flow contributions of all the geology classes are summed. For Antarctica we use an estimate based on depth to Curie temperature and include a 1TW contribution from hot-spots in young ocean age. Geology classes with less than 50 readings are excluded. The raw data suggests that this method of correlating heat flux with geology has some power. Our revised estimate for Earth's global surface heat flux is 47 ± 2 TW, which is similar but slightly higher than previous estimates (e.g. Pollack et al., 1993 - 45 ± 1 TW; and Jaupart et al., 2007, - 46 ± 3 TW). It is challenging to reconcile such a high heat flow with estimates of internal heat sources in a monotonically cooling mantle. We will discuss alternative explanations and also how this work can be extended to produce a best estimate of the local heat flux globally.

  6. Divertor Heat Flux Mitigation in High-Performance H-mode Discharges in the National Spherical Torus Experiment.

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J

    2008-12-31

    Experiments conducted in high-performance 1.0 MA and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub t} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the strongly-shaped lower single null configuration with elongation {kappa} = 2.2-2.4 and triangularity {delta} = 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using the inherently high magnetic flux expansion f{sub m} = 16-25 and the partial detachment of the outer strike point at several D{sub 2} injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z{sub eff} were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction of ion flux to the plate, and a large neutral compression ratio. Spectroscopic measurements indicated a formation of a high-density, low temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and CII, CIII emission rates was measured.

  7. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects

    E-print Network

    Bimonte, Giuseppe

    We present a detailed derivation of heat radiation, heat transfer, and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal nonequilibrium. The results can be expressed ...

  8. Influence of nucleation on the flow boiling heat transfer coefficient of a refrigerant mixture under varied heat flux conditions

    Microsoft Academic Search

    B. Raja; D. K. Kumar; D. M. Lal; R. Saravanan

    2009-01-01

    The influence of nucleation on the flow boiling heat transfer coefficient of R-134a\\/R-290\\/R-600a refrigerant mixture is experimentally\\u000a studied in a smooth horizontal tube of 12.7 mm diameter. The heat transfer coefficients are experimentally measured for stratified\\u000a flow patterns under a varied heat flux condition; a condition found in the evaporator of refrigerators and deep freezers.\\u000a The experiments are conducted in

  9. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface

    Microsoft Academic Search

    Ho Seon Ahn; Hyungdae Kim; HangJin Jo; SoonHo Kang; WonPyo Chang; Moo Hwan Kim

    2010-01-01

    Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well-known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. A rectangular flow channel with 10-mm width and 5-mm height was used. A 10mm-diameter disk-type copper surface, heated by

  10. An improved time-dependent nonlocal electron heat-flux model and its verification by laser-driven Al foil acceleration experiment

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaurasia, Shivanand; Mishra, Vinayak; Leshma, P.; Sakthivel, N.; Chaturvedi, Shashank; Sharma, S. M.; Basu, Sekhar

    2014-06-01

    In hydrodynamics simulation of laser driven systems, the time-dependent nonlocal electron heat-flux models predict the saturation (flux inhibition) and delocalization of the heat-flux automatically. Therefore it avoids commonly used time and space-independent ad hoc flux limiting. Previously proposed analytical nonlocal heat-flux model of Luciani et al. [Phys. Rev. Lett., 51, p-1664, (1983)] which fits the results of numerical Fokke-Planck calculations is simple and straight forward to implement in a fluid code. The proposed expression, however, is a convolution of Spitze-Harm heat-flux with a delocalization kernel which depends on classical electron collision mean free path. This is rigorously valid for high temperature non-degenerate plasmas. However, in laser driven systems, the energy transport due to electron thermal conduction is important in regions between the critical density and ablation surface where the plasma is mostly degenerate. We have improved this nonlocal heat-flux model by using a wide-range electron collision frequency model valid from warm-dense matter (degenerate plasmas) to fully ionized plasmas. The effect of this improved nonlocal heat-flux model on the free-surface velocity of laser-accelerated Al foils of thickness 2-10 ?m is studied by using a two-dimensional radiation hydrodynamics code. The simulated free surface velocities are compared with our experimental results for laser intensities in the range 4 × 1013-3 × 1014 W/cm2. Preliminary analysis shows that the simulation results obtained with improved nonlocal heat-flux model yields better agreement with our experimental values.

  11. Geometric Heat Flux for Classical Thermal Transport in Interacting Open Systems

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Liu, Sha; Li, Baowen

    2012-05-01

    We study classical heat conduction in a dissipative open system composed of interacting oscillators. By exactly solving a twisted Fokker-Planck equation which describes the full counting statistics of heat flux flowing through the system, we identify the geometric-phase-like effect and examine its impact on the classical heat transport. We find that the nonlinear interaction as well as the closely related temperature dependence of system parameters are crucial in manifesting the geometric-phase contribution of heat flux. Finally, we propose an electronic experiment based on RC circuits to verify our theoretical predictions.

  12. RF-sheath heat flux estimates on Tore Supra and JET ICRF antennae. Extrapolation to ITER

    SciTech Connect

    Colas, L.; Portafaix, C.; Goniche, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Jacquet, Ph. [EURATOM/UKAEA Fusion Association, Culham, OX14 3DB (United Kingdom); Agarici, G. [Fusion for Energy, C/Josep Pla 2, E-08019 Barcelona (Spain)

    2009-11-26

    RF-sheath induced heat loads are identified from infrared thermography measurements on Tore Supra ITER-like prototype and JET A2 antennae, and are quantified by fitting thermal calculations. Using a simple scaling law assessed experimentally, the estimated heat fluxes are then extrapolated to the ITER ICRF launcher delivering 20 MW RF power for several plasma scenarios. Parallel heat fluxes up to 6.7 MW/m{sup 2} are expected very locally on ITER antenna front face. The role of edge density on operation is stressed as a trade-off between easy RF coupling and reasonable heat loads. Sources of uncertainty on the results are identified.

  13. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    NASA Technical Reports Server (NTRS)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  14. Surface heat flux estimation with the ensemble Kalman smoother: Joint estimation of state and parameters

    E-print Network

    Bateni, S. M.

    [1] The estimation of surface heat fluxes based on the assimilation of land surface temperature (LST) has been achieved within a variational data assimilation (VDA) framework. Variational approaches require the development ...

  15. High heat flux components and plasma-surface interactions for next devices

    SciTech Connect

    Yamashina, T. (Hokkaido Univ., Sapporo (Japan)); Gauster, W.B. (Sandia National Labs., Albuquerque, NM (United States))

    1992-02-01

    This report contains viewgraphs on topics in the following areas: plasma facing components (PFC) operation in devices; disruption studies; laboratory PFM and high heat flux research; R D for future machines; and neutron effects on thermonuclear materials.

  16. High heat flux components and plasma-surface interactions for next devices

    SciTech Connect

    Yamashina, T. [Hokkaido Univ., Sapporo (Japan); Gauster, W.B. [Sandia National Labs., Albuquerque, NM (United States)

    1992-02-01

    This report contains viewgraphs on topics in the following areas: plasma facing components (PFC) operation in devices; disruption studies; laboratory PFM and high heat flux research; R&D for future machines; and neutron effects on thermonuclear materials.

  17. The Thermal Conductivity Measurements of Solid Samples by Heat Flux Differantial Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Kök, M.; Aydo?du, Y.

    2007-04-01

    The thermal conductivity of polyvinylchloride (PVC), polysytrene (PS) and polypropylene (PP) were measured by heat flux DSC. Our results are in good agreement with the results observed by different methods.

  18. High temperature thermocouple and heat flux gauge using a unique thin film-hardware hot juncture

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Holanda, R.; Hippensteele, S. A.; Andracchio, C. A.

    1984-01-01

    A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high temperature and high flux flat plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 of operation.

  19. A comparison of estimated and directly measured turbulent heat fluxes in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Heck, W.

    1977-01-01

    The contribution of small-scale motions to the vertical heat flux in the lower stratosphere is determined from wind and temperature fluctuation statistics obtained during the High Altitude Clear Air Turbulence investigation. Analysis of the cospectra suggests a horizontal wavelength of 3 km as the appropriate long-wave cutoff of small-scale motion. With this scale restriction, the measured vertical heat fluxes are in good agreement with the values of heat flux estimated by Lilly et al. (1974) from the kinetic energy dissipation rate. Hence, the hypothesis of Lilly et al. for estimating heat flux from the dissipation rate is considered to be reliable. It follows that, in the lower stratosphere, subsynoptic vertical transport is small compared to large-scale transport.

  20. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux

    E-print Network

    O'Hanley, Harry

    The separate effects of surface wettability, porosity, and roughness on the critical heat flux (CHF) of water were examined using engineered surfaces. Values explored were 0, 5, 10, and 15??m for Rz (roughness), <5°, ?75°, ...

  1. Improved estimation of sensible heat flux by a LAS using a Bowen ratio at urban residential area

    NASA Astrophysics Data System (ADS)

    Park, M. S.; Chae, J. H.

    2014-12-01

    A large aperture scintillometer (LAS) data sampled for the period from 1 February to 31 July 2014 at urban residential area in Seoul are modified using the variable Bowen ratio and a net radiation data to determine the space-averaged sensible heat flux (SHF). A LAS system is installed over the rooftop of two buildings with a distance between receiver and transmitter of 535 m, an effective height of 18.4 m, a wind speed sensor at 25.0 m high. The path-averaged building height, roughness length, and displacement length between the receiver and transmitter are 9.2 m, 0.4 m, and 7.1 m, respectively. The Bowen ratio computed at every 30 minute interval by the wind speed and air temperature at 10 and 18 m above the rooftop is found to be well correlated with meteorological variables such as net radiation and mixing ratio. Therefore, it is parameterized as a function of mixing ratio and net radiation. The resulting parameterization is applied to estimate the SHF by LAS. The Monin-Obukhov similarity universal function should be changed according to the atmospheric stability using the sign of net radiation sampled at the same time. It is found that the resulting sensible heat fluxes are available under all atmospheric stability and are much improved compared with those by eddy covariance method.

  2. Heat pipe technology development for high temperature space radiator applications

    Microsoft Academic Search

    M. A. Merrigan; E. S. Keddy; J. T. Sena; M. G. Elder

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg\\/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180° has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight

  3. Overview of the EU small scale mock-up tests for ITER high heat flux components

    Microsoft Academic Search

    G Vieider; V Barabash; A Cardella; P Chappuis; R Duwe; H Falter; M Febvre; L Giancarli; C Ibbott; D. M Jacobson; R Jakeman; G LeMarois; A Lind; M Merola; H. D Pacher; A Peacock; A Pizzuto; L Plöchl; B Riccardi; M Rödig; S. P. S Sangha; Y Severi; E Visca

    1998-01-01

    This task within the EU R&D for ITER was aimed at the development of basic manufacturing solutions for the high heat flux plasma facing components such as the divertor targets, the baffles and limiters. More than 50 representative small-scale mock-ups have been manufactured with beryllium, carbon and tungsten armour using various joining technologies. High heat flux testing of 20 of

  4. Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage

    Microsoft Academic Search

    Graham J. Walkden; Karen J. Heywood; David P. Stevens

    2008-01-01

    Determining meridional heat flux in the Southern Ocean is critical to the accurate understanding and model simulation of the global ocean. Mesoscale eddies provide a significant but poorly-defined contribution to this transport. An eighteen-month deep-water current meter array deployment in Shag Rocks Passage (53°S, 48°W) between May 2003 and November 2004 provides estimates of the eddy flux of heat across

  5. Heat flux due to poloidal electric field in the banana regime

    SciTech Connect

    Taguchi, M. (College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino-shi, Chiba-ken 275 (Japan))

    1992-02-01

    The heat flux due to poloidally varying electrostatic potential is calculated in the banana regime. This electrostatic potential determined self-consistently from charge neutrality is shown to increase the electron heat flux by a factor {radical}{ital m}{sub {ital i}}/{ital m}{sub {ital e}} compared with that when this potential is neglected, where {ital m}{sub {ital e}} and {ital m}{sub {ital i}} are the masses of electron and ion, respectively.

  6. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2015-03-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  7. Modeling thermal behavior and work flux in finite-rate systems with radiation

    Microsoft Academic Search

    Stanislaw Sieniutycz; Piotr Kuran

    2006-01-01

    We apply thermodynamic analysis in modeling, simulation and optimization of radiation engines as non-linear energy converters. We also perform critical analysis of available data for photon flux and photon density that leads to exact numerical value of photon flux constant. Basic thermodynamic principles lead to expressions for converter’s efficiency and generated work in terms of driving energy flux in the

  8. Double-cavity radiometer for high-flux density solar radiation measurements

    Microsoft Academic Search

    A. Parretta; A. Antonini; M. Armani; G. Nenna; G. Flaminio; M. Pellegrino

    2007-01-01

    A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by

  9. The turbulent heat flux in low Mach number flows with large density variations

    NASA Technical Reports Server (NTRS)

    Orourke, Peter J.; Collins, Lance R.

    1988-01-01

    A transport equation has been derived which is the difference between the volume- and mass-averaged velocities and is simply related to the turbulent heat flux phi sup h. Using this equation and an assumption analogous to the drift flux approximation of two-phase flow modeling, an algebraic closure relation for phi sup h that exibits fluxes due to directed transport proportional to -del anti p and due to gradient transport proportional to -del tau has been obtained.

  10. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  11. Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems

    E-print Network

    Chen, Jiquan

    Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems Changliang Shao a-covariance Grassland Inner Mongolia a b s t r a c t Closing the energy budget at flux measurement sites is problematic system within the footprints of three Eddy-covariance towers located in the steppe of Inner Mongolia

  12. Simulation of surface and top of atmosphere thermal fluxes and radiances from the radiative atmospheric divergence using the ARM Mobile Facility, GERB data, and AMMA Stations experiment

    NASA Astrophysics Data System (ADS)

    Bharmal, N. A.; Slingo, A.; Robinson, G. J.; Settle, J. J.

    2009-07-01

    Simultaneous observations of thermal radiative fluxes and radiances from the surface (Atmospheric Radiation Measurement Mobile Facility, Niamey) and top of atmosphere (Geostationary Earth Radiation Budget (GERB) instrument) during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data, and AMMA Stations experiment are compared with results from a radiative transfer model (Edwards-Slingo). Emphasis is placed on diagnosing the accuracy of the cloud-free radiation measurements using multiple instruments at the surface. The surface forcing from aerosol is found to regularly exceed 20 Wm-2, and reached ˜100 Wm-2 during the March 2006 dust storm. Equivalent comparisons are made with top of atmosphere (TOA) measurements but here radiance closure is not achieved. A disagreement is found between the angular anisotropy derived from GERB products and that from radiative transfer (RT) calculations. A hybrid TOA radiative flux time series is created using RT-calculated TOA anisotropy and GERB-observed TOA radiance. At 1100 UT (local noon), this hybrid flux differs from the Edition 1 GERB product by a positive difference in the range ˜0-10 Wm-2. Three collections of fluxes exist to calculate column-integrated atmospheric heating (divergence) from surface and TOA fluxes. The first two are fluxes from observations only or from RT calculations only. The third is a combination of RT calculation and observed fluxes that includes the hybrid flux. The resulting divergences are binned by sonde launch times and averaged over the year. The range of divergence during a day depends on the flux collection used (-200 to -111 Wm-2, -212 to -116 Wm-2, or -205 to -112 Wm-2) for observations only, for RT calculations only, or for observation-calculation fluxes. All estimates agree as to the interday variation being larger than that of intraday variability.

  13. Flux and brightness calculations for various synchrotron radiation sources

    SciTech Connect

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring.

  14. Thermal evaluation of uranium silicide miniplates irradiated at high heat flux

    SciTech Connect

    Donna P. Guillen

    2012-09-01

    The Gas Test Loop (GTL)-1 irradiation experiment was conducted in the Advanced Test Reactor (ATR) to assess corrosion performance of proposed booster fuel at heat flux levels ~30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density (4.8 g U/cm3) U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 to 593 W/cm2. No adverse impacts to the miniplates were observed at these high heat flux levels. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective ATR south lobe power of 25.4 MW(t). Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant–hydroxide interface temperatures were calculated using the average hydroxide thickness on each miniplate measured during post-irradiation examination. The purpose of this study was to obtain a best estimate of the as-run experiment temperatures to aid in establishing acceptable heat flux levels and designing fuel qualification experiments for this fuel type.

  15. Cylindrical electrostatic liquid film radiator for heat rejection in space

    Microsoft Academic Search

    H. Kim; S. G. Bankoff; M. J. Miksis

    1994-01-01

    A new space radiator concept has been proposed by H. Kim et al. in which a thin film of hot liquid, flowing along the inside of a closed membrane, rejects waste heat by radiation to the surroundings. In previous versions, the radiator rotates, supplying most of the driving force for the liquid flow. In the present design, the cylinder is

  16. Rarefied gas flow behavior in micro/nanochannels under specified wall heat flux

    NASA Astrophysics Data System (ADS)

    Balaj, Mojtaba; Akhlaghi, Hassan; Roohi, Ehsan

    2015-01-01

    In this paper, we investigate the effects of convective heat transfer on the argon gas flow through micro/nanochannels subject to uniform wall heat flux (UWH) boundary condition using the direct simulation Monte Carlo (DSMC) method. Both the hot wall (qwall > 0) and the cold wall (qwall < 0) cases are considered. We consider the effect of wall heat flux on the centerline pressure, velocity profile and mass flow rate through the channel in the slip regime. The effects of rarefaction, property variations and compressibility are considered. We show that UWH boundary condition leads to the thermal transpiration. Our investigations showed that this thermal transpiration enhances the heat transfer rate at the walls in the case of hot walls and decreases it where the walls are being cooled. We also show that the deviation of the centerline pressure distribution from the linear distribution depends on the direction of the wall heat flux.

  17. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    You, S. M.; Kim, J. H.; Kim, K. H.

    2003-10-01

    The present study is to enhance the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles). The test results show that the enhancement of CHF was drastic when nanofluid is used as a cooling liquid instead of pure water. The experiment was performed to measure and compare pool boiling curves of pure water and nanofluid at the pressure of 2.89 psia (Tsat=60 °C) using 1×1 cm2 polished copper surfaces as a boiling surface. The tested nanofluid contains alumina (Al2O3) nanoparticles dispersed in distilled and deionized water. Tested concentrations of nanoparticles range from 0 g/l to 0.05 g/l. The measured pool boiling curves of nanofluids saturated at 60 °C have demonstrated that the CHF increases dramatically (˜200% increase) compared to pure water case; however, the nucleate boiling heat transfer coefficients appear to be about the same.

  18. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.

  19. Two-Flux and Green's Function Method for Transient Radiative Transfer in a Semi-Transparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1995-01-01

    A method using a Green's function is developed for computing transient temperatures in a semitransparent layer by using the two-flux method coupled with the transient energy equation. Each boundary of the layer is exposed to a hot or cold radiative environment, and is heated or cooled by convection. The layer refractive index is larger than one, and the effect of internal reflections is included with the boundaries assumed diffuse. The analysis accounts for internal emission, absorption, heat conduction, and isotropic scattering. Spectrally dependent radiative properties are included, and transient results are given to illustrate two-band spectral behavior with optically thin and thick bands. Transient results using the present Green's function method are verified for a gray layer by comparison with a finite difference solution of the exact radiative transfer equations; excellent agreement is obtained. The present method requires only moderate computing times and incorporates isotropic scattering without additional complexity. Typical temperature distributions are given to illustrate application of the method by examining the effect of strong radiative heating on one side of a layer with convective cooling on the other side, and the interaction of strong convective heating with radiative cooling from the layer interior.

  20. Kilometric radiation power flux dependence on area of discrete aurora

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Burch, J. L.; Gurnett, D. A.; Anderson, R. R.; Sheehan, R. E.

    1989-01-01

    Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism.

  1. Synergistic Inactivation of Viruses by Heat and Ionizing Radiation

    PubMed Central

    Trujillo, R.; Dugan, V. L.

    1972-01-01

    Viral inactivation by heat and/or ionizing radiation is analyzed in terms of a kinetic model. The phenomenon of synergistic viral inactivation observed when viruses are exposed to the simultaneous application of heat and ionizing radiation is interpreted within the framework provided by this three-term model. Data on the inactivation of T4 bacteriophage by heat and/or ionizing radiation is presented, and the kinetic model is used to provide a description of observed dose rate and temperature dependences. Extension of the model to other viral systems inactivated by heat and ionizing radiation is considered, and the general applicability of these analyses suggests that the kinetic model may well serve as an extension of target theory in describing the radiobiological effects of ionizing radiation. PMID:5007243

  2. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  3. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil

    NASA Astrophysics Data System (ADS)

    Schulz, Jan-Peter; Vogel, Gerd; Becker, Claudia; Kothe, Steffen; Ahrens, Bodo

    2015-04-01

    Two parameterisations for the dependence of the soil thermal conductivity on the soil water content are compared, using the multi-layer land surface scheme TERRA of the Consortium for Small-scale Modeling (COSMO) atmospheric model. The simulations were carried out in offline mode with identical atmospheric forcing data from the Meteorological Observatory Lindenberg of the German Meteorological Service (Deutscher Wetterdienst). The results show that the ground heat flux computed by the reference version of TERRA is systematically overestimated under dry conditions. In this version, the thermal conductivity does not depend on the simulated water content of the soil. Since the ground heat flux is part of the surface energy balance it affects the other components such as turbulent heat fluxes and surface temperature. An overestimation of the ground heat flux during daytime leads to an underestimation of the other surface fluxes and to a reduced surface warming, during afternoon and night this behaviour is reversed. The two formulations for soil thermal conductivity, presented by O. Johansen on the one hand and M. C. McCumber and R. A. Pielke on the other hand, both reduce the ground heat flux in TERRA under dry conditions, the former yielding good results while the latter is even leading to underestimations. In addition to this, the former is also applied in coupled mode in the climate version of the COSMO model, the COSMO-CLM, for Africa, resulting in improved diurnal cycles of near-surface temperature in dry regions. Furthermore, it is shown with the Lindenberg measurements that the soil temperature and hence the ground heat flux are particularly influenced by the effects of shading of the incoming solar radiation due to the vegetation cover, leading to a significantly reduced solar radiation at the sub-canopy land surface, even under a layer of grass. For future improvements of TERRA these effects should be represented.

  4. IMPROVED ANALYSIS OF HEAT PULSE SIGNALS FOR SOIL WATER FLUX DETERMINATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flux (J) can be estimated by measuring the velocity (V) of a pulse of heat introduced into the soil. Here we consider a method in which V is measured with a three-probe sensor. The center probe is used to heat the soil, and the outer probes measure changes in temperature downstream (Td) a...

  5. Thermal Physics and Critical Heat Flux Characteristics of Al2O3-H2O Nanofluids

    Microsoft Academic Search

    Dongsheng Zhu; Shuying Wu; Nan Wang

    2010-01-01

    This study investigates the influence of the thermal physics of nanofluids on the critical heat flux (CHF) of nanofluids. Thermal physics tests of nanoparticle concentrations ranged from 0 to 1 g\\/L. Pool boiling experiments were performed using electrically heated NiCr metal wire under atmospheric pressure. The results show that there was no obvious change for viscosity and a maximum enhancement

  6. Energy balance at the Earth's surface: Heat flux history in Eastern Canada

    Microsoft Academic Search

    Hugo Beltrami; Jingfeng Wang; Rafael L. Bras

    2000-01-01

    The heat exchange at the air\\/ground interface is determined by many complex processes making the energy balance at the earth's surface extremely difficult to quantify and model. A new methodology allows heat flux at the Earth's surface to be estimated using ground surface temperature history reconstructed from geothermal data. We found that over a large region in eastern and central

  7. Enhancement of a two-phase thermosyphon for cooling high heat flux power devices

    Microsoft Academic Search

    Heikichi Kuwahara; Kenji Takahashi; Tadakatsu Nakajima; Toshio Takasaki; S. O. Suzuki

    1995-01-01

    The purpose of this study is the enhancement of cooling of high heat flux power devices such as a thyristor by a thermosyphon system. The thermosyphon uses boiling and condensation of an inert dielectric fluorocarbon (FC-72). Boiling occurs from a multiple chimney heat transfer structure. A boiling chamber is connected to the condenser by a double tube, with the inner

  8. Enhancement of two-phase thermosyphon for cooling high heat flux power devices

    Microsoft Academic Search

    Heikichi Kuwahara; Kenji Takahashi; Tadakatsu Nakajima; Osamu Suzuki; Toshio Takasaki

    1994-01-01

    The purpose of this study is the enhancement of cooling of high heat flux power devices such as a thyristor by a thermosyphon system. The thermosyphon used boiling and condensation of inert dielectric fluorocarbon (FC-72). Boiling occurred from a multiple chimney heat transfer structure. A boiling chamber is connected to the condenser by a double tube, with the inner tube

  9. Burning rate and flame heat flux for PMMA in a cone calorimeter

    Microsoft Academic Search

    Brian T. Rhodes; James G. Quintiere

    1996-01-01

    Ignition and burning rate data are developed for thick (25 mm) black Polycast PMMA in a cone calorimeter heating assembly. The objective is to establish a testing protocol that will lead to the prediction of ignition and burning rate from cone data. This is done for a thermoplastic like PMMA. The incident flame heat flux, for irradiation levels of 0–75

  10. The influence of contaminated mirror on the flux distributions of stray radiation of infrared telescope systems

    NASA Astrophysics Data System (ADS)

    He, Pan; Xiao, Jing; Zhang, Bin; Yao, Xiuwen

    2010-05-01

    The existence of contaminated mirror in infrared telescope system not only reduces the contrast between objects and background, but also leads to the nonuniformity of the flux distribution of stray radiation on detector, resulting in great difficulty in obtaining and analyzing the target signal. In this paper, taking Cassegrain telescope as a typical example and using the optical analysis software, i.e., ASAP, the three-dimensional simulation model has also been built up. The self-generated thermal radiation flux and the flux distributions of stray radiation on the image plane have been simulated when the primary mirror under two cases, i.e., clean and local area contaminated. The influence of the size and position of the contaminated area on the uniformity of the flux distributions of stray radiation has been focused on discussion. The radiation flux and the flux distributions of stray radiation have been employed to evaluate the stray radiation performance of the system. The results indicate that the local area contamination on mirrors could change the uniformity of the flux distributions on the image plane and also degrade the stray radiation performance of the system, resulting in the influence on the detection and identification of the target. Consequently, it is of critical importance to keep the surface of optical elements clean, especially to avoid local area contamination on optics.

  11. Development and extended operation of a high power radiation loaded heat pipe

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Runyan, J.R.; Martinez, H.E.

    1984-06-01

    A high temperature, high power molybdenum-lithium heat pipe has been fabricated and tested at 1500 K for 1700 hours with radiant heat rejection. Power throughput during the test was approximately 14 kW, corresponding to an axial flux density of 11 kW/cm/sup 2/ for the 1.59 cm diameter heat pipe. Radial flux density was 70 W/cm/sup 2/ over an evaporator length of 40.0 cm. Condenser length was approximately 150 cm with radiant heat rejection from the condenser to a coaxial water cooled radiation calorimeter. A plasma sprayed, high emissivity coating was used on the condenser surface to increase the radiant heat rejection during the tests. The heat pipe was operated for 514 hours at steady state conditions before being damaged during a planned shutdown for test equipment maintenance. The damage was repaired and the initial 1000 hour test period completed without further incident. After physical examination of the heat pipe at 1000 hours the test was resumed and the heat pipe operated at the same conditions for an additional 700 hours before conclusion of this test phase.

  12. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

  13. Viscous hydrodynamic instability theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.

    1972-01-01

    Liquid viscosity was included in the Bellman-Pennington theory of the Taylor wave in a liquid vapor interface. Predictions of the most susceptible wavelength, and of the wave frequency, were made as a function of a liquid viscosity parameter and the Bond number. The stability of a gas jet in a viscous liquid was studied and the result is used to predict the peak heat flux on large horizontal heaters. Experimental measurements of the dominant Taylor wave and its growth rate were made during the film boiling of cyclohexanol on cylindrical heaters. The results bear out the predictions quite well. The thickness of the vapor blanket surrounding a cylindrical heater was measured and a correlation suggested. The effect of large fluxes of vapor volume on the dominant wavelength was also noted. Theoretical results of the peak heat flux are compared with the experimental data, and the effect of finite geometry of flat plate heaters on the peak heat flux is also discussed.

  14. Effects of surface heat flux-induced sea surface temperature changes on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Shen, Weixing; Ginis, Isaac

    2003-09-01

    It is known that in deep and open oceans, the effect of sea surface sensible and evaporative heat fluxes on the tropical cyclone-induced sea surface cooling is small compared to that caused by turbulent mixing and cold water entrainment into the upper ocean mixed-layer. This study shows that tropical cyclone-induced surface heat fluxes dominate the surface cooling in near-coastal shallow ocean regions with limited or no underlying cold water. The thermal response of the ocean to the surface heat fluxes is nearly one dimensional through very quick vertical mixing in the ocean mixed layer. The flux-induced sea surface cooling may lead to appreciable reduction of storm intensity if the storm moves slowly. It is therefore important to account this negative feedback of ocean coupling in near-coastal regions for more skillful forecasting of landfalling tropical cyclones.

  15. Thermal properties of magnetic flux tubes. II. Storage of flux in the solar overshoot region

    Microsoft Academic Search

    M. Rempel

    2003-01-01

    We consider the consequences of radiative heating for the storage of magnetic flux in the overshoot region at the bottom of the solar convection zone. In the first part of the paper, we study the evolution of axisymmetric flux tubes (flux rings), which are initially in neutrally buoyant mechanical equilibrium. Radiative heating leads to a slow upward drift of the

  16. Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis

    NASA Technical Reports Server (NTRS)

    Stampfl, E.; Landsbaum, E. M.

    1973-01-01

    The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.

  17. Converting the patterns of local heat flux via thermal illusion device

    NASA Astrophysics Data System (ADS)

    Zhu, N. Q.; Shen, X. Y.; Huang, J. P.

    2015-05-01

    Since the thermal conduction equation has form invariance under coordinate transformation, one can design thermal metamaterials with novel functions by tailoring materials' thermal conductivities. In this work, we establish a different transformation theory, and propose a layered device with anisotropic thermal conductivities. The device is able to convert heat flux from parallel patterns into non-parallel patterns and vice versa. In the mean time, the heat flux pattern outside the device keeps undisturbed as if this device is absent. We perform finite-element simulations to confirm the converting behavior. This work paves a different way to manipulate the flow of heat at will.

  18. Consistent calculation of heat fluxes through solid boundaries applied to natural convection problems

    NASA Astrophysics Data System (ADS)

    Cordaro, T.; Degrez, G.

    2012-11-01

    Calculations of heat fluxes through cooled/heated walls from CFD results have become of great importance in many industrial applications. The objective of this work is to present a consistent numerical technique to compute heat fluxes through isothermal boundaries. In the present paper, we consider a stabilized PSPG/SUPG finite element scheme for the steady Navier-Stokes equations for variable density flows. Three variants are considered which differ by the treatment of the convective terms in the momentum and energy equations, i.e. a convective formulation, a corrected convective formulation and a conservative formulation. A pseudo Newton method is employed as non linear solver. A numerical technique to compute the boundary heat fluxes consistent with the finite element formulation is then presented, as well as the expression obtained using the gradient of the finite element approximation Th To illustrate the effect of the formulation, numerical simulations of natural convection of air in 2D and 3D cubic cavities with large temperature differences between opposite walls are carried out. The effects of the finite element formulation, of the expression for the calculation of the heat flux and of mesh refinement are presented. The results demonstrate the superior accuracy and convergence of the proposed numerical technique for the heat flux computation.

  19. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    NASA Astrophysics Data System (ADS)

    Baillis, D.; Coquard, R.; Randrianalisoa, J.

    2012-06-01

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  20. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C. [Dept. of Energy Systems Engineering, Seoul National Univ., 599 Gwanak-Ro, Gwanak-Gu, Seoul, 151-744 (Korea, Republic of)

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  1. Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment

    Microsoft Academic Search

    G. M. Zharkova; V. N. Kovrizhina

    2010-01-01

    The principles of visualization and measurement of surface temperatures and heat fluxes by the method of liquid-crystal tomography\\u000a in an aerophysical experiment are described. The properties of polymeric liquid-crystal, heat-sensitive coatings and application\\u000a of them in subsonic and hypersonic facilities for investigating the structure of a near-wall flow and aerodynamic heating\\u000a are considered.

  2. Burnout in a high heat-flux boiling system with an impinging jet

    Microsoft Academic Search

    M. Monde; Y. Katto

    1978-01-01

    An experimental study has been made on the fully-developed nucleate boiling at atmospheric pressure in a simple forced-convection boiling system, which consists of a heated flat surface and a small, high-speed jet of water or of Freon-113 impinging on the heated surface. A generalized correlation for burnout heat flux data, that is applied to either of water and Freon-113, is

  3. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat

    Microsoft Academic Search

    Rebecca A. Woodgate; Tom Weingartner; Ron Lindsay

    2010-01-01

    To illuminate the role of Pacific Waters in the 2007 Arctic sea-ice retreat, we use observational data to estimate Bering Strait volume and heat transports from 1991 to 2007. In 2007, both annual mean transport and temperatures are at record-length highs. Heat fluxes increase from 2001 to a 2007 maximum, 5-6 × 1020 J\\/yr. This is twice the 2001 heat

  4. Transient Pool Boiling Critical Heat Flux of FC72 Under Saturated Conditions

    Microsoft Academic Search

    Sutopo P. Fitri; Katsuya Fukuda; Qiusheng Liu

    2007-01-01

    In this study, the steady-state and transient critical heat fluxes (CHFs) were measured on 1.0 mm diameter horizontal cylinders of gold and platinum heaters under saturated conditions due to transient heat inputs, Q0exp(t\\/tau), in a pool of Fluorinert FC-72. Heaters were heated by electric current with the periods, tau, were ranged from 10 ms to 20 s, and the pressures

  5. Transient Pool Boiling Critical Heat Flux of FC72 Under Saturated Conditions

    Microsoft Academic Search

    Sutopo P. Fitri; Katsuya Fukuda; Qiusheng Liu

    2006-01-01

    In this study, the steady-state and transient critical heat fluxes (CHFs) in pool boiling were measured on 1.0 mm diameter horizontal cylinders of gold and platinum heaters under saturated conditions due to transient heat inputs, Qexp(t\\/t), in a pool of Fluorinert FC-72. Heaters were heated by electric current with the periods, t, ranged from 10 ms to 20 s, and

  6. Effects of Crack on Heat Flux in Hypersonic Shock/Boundary-Layer Interaction

    NASA Astrophysics Data System (ADS)

    Ozawa, Hiroshi; Hanai, Katsuhisa; Kitamura, Keiichi; Mori, Koichi; Nakamura, Yoshiaki

    A small crack on body surface led to a tragic accident in 2003, which is the Columbia accident. During the shuttle's re-entry, high temperature gas penetrated crack on leading-edge of the left wing and melted the aluminum structure, finally the Columbia blew up. Since early times, there are many fundamental studies about simple cavity-flow formed on body surface in hypersonic speeds. However, an investigation of Shock/Boundary-Layer Interaction (SBLI) on crack has not been researched. For multistage space transportation vehicle such as TSTO, SBLI is an inevitable problem, and then SBLI on crack becomes a critical issue for TSTO development. In this study, the effects of crack, where SBLI occurs, were investigated for TSTO hypersonic speed (M? = 8.1). A square crack locates at SBLI point on the TSTO booster. Results show that a crack and its depth strongly effect on peak heat flux and aerodynamic interaction flow-field. In the cases of shallow crack (d/C ? 0.10), there exist two high heat flux regions on crack floor, which locates at a flow reattachment region and a back end wall of crack. In this case, a peak heat flux at flow reattachment region becomes about 2 times as large as the stagnation point heat flux, which value becomes larger compared with a peak heat flux in the case of No-Crack TSTO. While in the case of deep crack (d/C = 0.20), overall heat flux on crack floor decreases to below the stagnation point heat flux. These results provide useful data for a development of TSTO thermal protection system (TPS) such as thermal protection tile.

  7. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature.

    PubMed

    Li, Long; Wang, Jing; Fan, Xuejun

    2012-07-01

    In this paper, an integrated water-cooled sensor has been developed to simultaneously measure the heat flux and temperature at the wall of a scramjet combustor. The upgrade sensor was designed based on the principle of Gardon heat-flux gauge with many improvements. The sensor was well calibrated by both conductive heating sources and blackbody cavity device. The effects of structural material and dimensions on the sensor's responses were examined. Both the experimental measurements and numerical simulation were conducted and showed that the new sensor has the maximum measure ability of heat flux of 400 W/cm(2) and stagnation temperatures up to 1920 K along with satisfactory response time. PMID:22852712

  8. High Temperature Titanium-Water Heat Pipe Radiator

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Bonner, Richard; Hartenstine, John; Barth, Jim

    2006-01-01

    Space nuclear systems require large area radiators to reject the unconverted heat to space. System optimizations with Brayton cycles lead to radiators with radiator temperatures in the 400 to 550 K range. To date, nearly all space radiator systems have used aluminum/ammonia heat pipes but these components cannot function at the required temperatures. A Graphite Fiber Reinforced Composites (GFRC) radiator with high temperature water heat pipes is currently under development. High temperature GFRC materials have been selected, and will be tested for thermal conductivity and structural properties. Titanium/water and Titanium/Monel heat pipes have been successfully operated at temperatures up to 550 K. Titanium was selected as the baseline envelope material, due to its lower mass and previous experience with bonding titanium into honeycomb panels. Heat pipes were fabricated with a number of different wick designs, including slab and grooved wicks. Since titanium cannot be extruded, the grooves are being fabricated in sintered titanium powder. The paper reports on the radiator design, materials selection, heat pipe to fin bonding, heat pipe design, and experimental results.

  9. Systematic errors in ground heat flux estimation and their correction

    E-print Network

    Gentine, P.

    Incoming radiation forcing at the land surface is partitioned among the components of the surface energy balance in varying proportions depending on the time scale of the forcing. Based on a land-atmosphere analytic continuum ...

  10. Liquid-metal micro heat pipes incorporated in waste-heat radiator panels

    Microsoft Academic Search

    Padmaja Ramadas; H. Thurman Henderson; Bassam Badran; Frank. M. Gerner

    1993-01-01

    The purpose of this paper is to describe a developing and potentially revolutionary technology for micromachining arrays of micro heat pipes in single crystalline semiconductor silicon in order to fabricate light weight waste-heat radiator panels. This approach results in excellent thermal conductivity to weight ratios using silicon as a base material. Micro heat pipes have been built using water as

  11. Combined analysis of energy and water balances to estimate latent heat flux of a sudanian small catchment

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Cohard, Jean-Martial; Anquetin, Sandrine; Galle, Sylvie; Lloyd, Colin R.

    2009-08-01

    SummaryActual evapotranspiration is one of the major components of both energy and water budgets, but is often difficult to monitor over long period with sufficient accuracy. Within the framework of the "AMMA-CATCH" program, a project dedicated to the study of the West African Monsoon, a large aperture scintillometer has been installed in a small catchment (12 km 2), located in the North of Benin, a region exposed to sudanian climate. The present study is an attempt to estimate the latent heat flux over this small but heterogeneous catchment based on scintillation and ground observations. The analysis covers the end of the dry season (lasting from February to April 2006). During this period two isolated rainfall events occurred, giving a unique opportunity to study energy and water budgets simultaneously. The comparison between the average sensible heat flux derived from scintillometer observations and the one obtained with conventional eddy correlation shows a relatively good agreement, where the scattering is mainly explained by differences in footprint associated with both instruments. A relevant hourly residual latent heat flux is then obtained through the energy balance equation, with careful attention brought to the net radiation, and the ground heat fluxes. The residual of the energy budget equation is compared to soil water losses from vadose zone and water table, in order to evaluate whether this estimation is consistent with the water budget of the ground. Daily soil water depletion within the first meter of the surface shows a similar dynamic as the one calculated from the energy balance equation, but exhibits a constant 1 mm/day lag. The excess of actual evapotranspiration is supposed to be explained by water table losses and root extraction by trees. Finally, this study shows how combined energy and water budget analysis can help to better understand water transfers at the watershed scale.

  12. The sensivity of geomagnetic reversal frequency to core-mantle boundary heat flux magnitude and heterogeneity.

    NASA Astrophysics Data System (ADS)

    Metman, Maurits; de Groot, Lennart; Thieulot, Cedric; Biggin, Andrew; Spakman, Wim

    2015-04-01

    For a number of decades the core-mantle boundary (CMB) heat flux has been thought to be a key parameter controlling the geomagnetic field. A CMB heat flow increase is assumed to destabilize the geodynamo, increasing and decreasing the reversal frequency and dipole moment, respectively. The opposite case where a CMB flux decrease induces a relatively high dipole moment, as well as a low reversal frequency, would correspond to the characteristics of a superchron (Biggin et al., 2012). So far, only the magnitude of the CMB heat flux has been subject of research. However, the temporal and spatial heat flux distribution across the CMB also appears to have an influence on the geomagnetic reversal frequency. For example, the amount of heat flux heterogeneity may also be associated with a destabilization of the dynamo, increasing the reversal frequency (Olson et al., 2010). In this work we set out to assess: - (1) How the geomagnetic field intensity and reversals are predominantly sensitive to CMB heat flux magnitude or heterogeneity; - (2) what combination of magnitude and heterogeneity best reproduces the geomagnetic record on the 10 Myr timescale. To this end we use the PARODY software and test for a number of CMB heat flow modes (spherical harmonics of increasing degree and order, with an amplitude of 10 mW/m^2) and magnitudes (ranging from 20 to 100 mW/m^2). We will show our modeling results of how CMB heat flow magnitude and heterogeneity control the paleomagnetic record in terms of reversal frequency and dipole moment. Also relevant snapshots in time of outer core convection and thermal/magnetic structure will be shown. References Biggin et al. (2012). Nature Geoscience, 5(8):526-533. Olson et al. (2010). PEPI, 180(1-2):66 - 79.

  13. Numerical investigation of the thermal stratification in cryogenic tanks subjected to wall heat flux

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad H.

    1990-01-01

    The flow pattern and thermal stratification of a cryogenic cylindrical tank are numerically studied. The tank sidewall is subjected to either a uniform heat-flux or two discrete levels of uniform heat-flux at the upper and lower halves of the tank wall. The tank bottom is kept at a constant temperature controlled by the heat exchanger of a thermodynamic vent system. The tank pressure is also assumed constant resulting in a constant saturation temperature at the interface which is higher than the tank bottom temperature. The effects of vapor motion and vapor superheat on the mass and heat transfer processes at the interface are assumed negligible such that the calculations of liquid region can be decoupled from the vapor region. Dimensionless steady-state conservation equations are solved by a finite-difference method. The effects of modified Rayleigh number, Prandtl number, tank aspect ratio, wall heat-flux parameter, and wall heat-flux distribution on the liquid velocity and temperature fields are investigated. Also, their effects on the rate of heat transfer through the interface and the tank bottom are examined.

  14. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei

    1995-01-01

    Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.

  15. Binary diffusion and heat transfer in laminar mixed convection channel flows with uniform wall heat flux: extremely thin film thickness

    Microsoft Academic Search

    H. C. Tsay; W. M. Yan

    1991-01-01

    A detailed numerical study has been performed to investigate the combined heat and mass transfer in laminar mixed convection channel flows with uniform wall heat flux. In an initial effort the liquid film on the channel wall is assumed to be extremely thin in thickness. Major dimensionless groups governing the present problem areGrT,GrMx,Pr,Sc, f andRe. Results are specifically presented for

  16. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun

    2014-01-01

    The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.

  17. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  18. Scaling analysis: Equivalence of convective and radiative heating of levitated droplet

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-05-01

    This letter develops theoretical relationships for equilibrium timescale and temperature scale of a vaporizing droplet in a convective and a radiative environment. The transient temperature normalized by the respective scales exhibits a unified profile for both modes of heating. The analysis allows for the prediction of the required laser flux to show its equivalence in a corresponding heated gas stream. The theoretical equivalence shows good agreement with experiments across a range of droplet sizes. Simple experiments can be conducted in a levitator to extrapolate information in realistic convective environments like combustion and spray drying.

  19. Control of the energetic proton flux in the inner radiation belt by artificial means

    Microsoft Academic Search

    X. Shao; K. Papadopoulos; A. S. Sharma

    2009-01-01

    Earth's inner radiation belt located inside L = 2 is dominated by a relatively stable flux of trapped protons with energy from a few to over 100 MeV. Radiation effects in spacecraft electronics caused by the inner radiation belt protons are the major cause of performance anomalies and lifetime of Low Earth Orbit satellites. For electronic components with large feature

  20. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 gm, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  1. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 microns, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  2. A novel thin-film temperature and heat-flux microsensor for heat transfer measurements in microchannels.

    PubMed

    Hamadi, David; Garnier, Bertrand; Willaime, Herve; Monti, Fabrice; Peerhossaini, Hassan

    2012-02-01

    Temperature and heat-flux measurement at the microscale for convective heat-transfer studies requires highly precise, minimally intrusive sensors. For this purpose, a new generic temperature and heat-flux sensor was designed, calibrated and tested. The sensor allows measurement of temperature and heat flux distributions along the direction of flow. It is composed of forty gold thermoresistances, 85 nm thick, deposited on both sides of a borosilicate substrate. Their sensitivities are about 37.8 ?V K(-1), close to those of a K-type wire thermocouple. Using a thermoelectrical model, temperature biases due to the Joule effect were calculated using the current crossing each thermoresistance and the heat-transfer coefficient. Finally, heat-transfer measurements were performed with deionized water flowing in a straight PDMS microchannel for various Reynolds numbers. The Nusselt number was obtained for microchannels of 50 to 10 ?m span. The results were found to be in good agreement with classical Nu-Re macroscopic correlations. PMID:22179553

  3. An Optimal Inverse Method Using Doppler Lidar Measurements to Estimate the Surface Sensible Heat Flux

    NASA Astrophysics Data System (ADS)

    Dunbar, T. M.; Barlow, J. F.; Belcher, S. E.

    2014-01-01

    Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.

  4. Interannual and Decadal Variability of Ocean Surface Latent Heat Flux as Seen from Passive Microwave Satellite Algorithms

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Jackson, Darren L.; Wick, Gary A.; Roberts, Brent; Miller, Tim L.

    2007-01-01

    Ocean surface turbulent fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Deriving physically-based latent and sensible heat fluxes from satellite is dependent on inferences of near surface moisture and temperature from coarser layer retrievals or satellite radiances. Uncertainties in these "retrievals" propagate through bulk aerodynamic algorithms, interacting as well with error properties of surface wind speed, also provided by satellite. By systematically evaluating an array of passive microwave satellite algorithms, the SEAFLUX project is providing improved understanding of these errors and finding pathways for reducing or eliminating them. In this study we focus on evaluating the interannual variability of several passive microwave-based estimates of latent heat flux starting from monthly mean gridded data. The algorithms considered range from those based essentially on SSM/I (e.g. HOAPS) to newer approaches that consider additional moisture information from SSM/T-2 or AMSU-B and lower tropospheric temperature data from AMSU-A. On interannual scales, variability arising from ENSO events and time-lagged responses of ocean turbulent and radiative fluxes in other ocean basins (as well as the extratropical Pacific) is widely recognized, but still not well quantified. Locally, these flux anomalies are of order 10-20 W/sq m and present a relevant "target" with which to verify algorithm performance in a climate context. On decadal time scales there is some evidence from reanalyses and remotely-sensed fluxes alike that tropical ocean-averaged latent heat fluxes have increased 5-10 W/sq m since the early 1990s. However, significant uncertainty surrounds this estimate. Our work addresses the origin of these uncertainties and provides statistics on time series of tropical ocean averages, regional space / time correlation analysis, and separation of contributions by variations in wind and near surface humidity deficit. Comparison to variations in reanalysis data sets is also provided for reference.

  5. Limitations of Using Uniform Heat Flux Assumptions in Sizing Vertical Borehole Heat Exchanger Fields

    E-print Network

    of ground heat exchangers (GHE) used with ground source heat pump (GSHP) systems. These models can account approach with a parametric study. Keywords - Ground Source Heat Pumps; Borehole Heat Exchangers; Finite Line Source Theory; g-functions 1. Introduction Ground source heat pump (GSHP) systems are a widely

  6. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  7. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  8. Thin film transducers for temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Godefroy, J.-C.

    It is noted that the search for new means for assessing heat exchanges in turbomachines has led to the study of surface thermometers and fluxmeters in the form of thin (thin enough not to perturb the flow) films that can be installed without requiring any machining. Attention is given to thermocouple transducers made of thin layers deposited on a flexible substrate. It is noted that technological considerations limit their use to temperatures below 200 C. The same substrate is able to receive several of these transducers and thus permit the spatial analysis of the heat exchanges. The investigation is oriented toward transducers for use at higher temperatures.

  9. Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.

    NASA Astrophysics Data System (ADS)

    Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas

    2015-04-01

    Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.

  10. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    NASA Astrophysics Data System (ADS)

    Roxy, M. S.; Sumithranand, V. B.; Renuka, G.

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0-0.05 m is calculated and the ground heat flux G ? is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen's ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  11. Effect of heat flux on Alfvén ballooning modes in isotropic Hall-MHD plasmas

    NASA Astrophysics Data System (ADS)

    Ma, John Z. G.; Hirose, Akira; Liu, William W.

    2014-12-01

    The magnetosphere undergoes a transition from a dipole-like to taillike structure in the antisunward direction. In this region, Alfvén ballooning instability has been considered as a leading candidate to be responsible for the onset and expansion phase of observed impulsive substorms. We apply the generalized Ohm's law in isotropic Hall-MHD equations and study the effect of heat flux on the ballooning modes under substorm circumstances. The set of partial differential equations is obtained for a general ballooning dispersion relation from which all classical Alfvén waves and fundamental ballooning modes are recovered, e.g., the decoupled shear Alfvén and magnetosonic modes, the classical ballooning instability in incompressible plasmas. In the absence of the heat flux, the ballooning mode is featured by the coupling of the two modes by the superposition of the independent Hall effect and the independent plasma inhomogeneity effect. By contrast, heat flux exerts its influence on the ballooning mode by updating the coefficients of the terms in the dispersion relation. The results expose that the growth rate (?BM) has two branches. If kp is ? free, one branch shifts versus ?, while the other branch is damped substantially by the heat flux, leading to a more stable ballooning mode; if kc is ? free, one branch shifts little versus ?, but the other one has higher ?BM driven by the heat flux, leading to a more unstable ballooning mode.

  12. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  13. Degradation of elastomer by heat and/or radiation

    NASA Astrophysics Data System (ADS)

    Ito, Masayuki

    2007-12-01

    This article studied various problems on the degradation of elastomers by heat and/or radiation. Three kinds of elastomers were irradiated and evaluated by the radiation resistant property using the measurement of tensile test. The fluorine containing elastomer, which has excellent heat resistant properties, was found to be less durable for irradiation than ethylene-propylene-diene (EPDM) elastomer. Ten kinds of different compounding formulas of EPDM were prepared to investigate whether the compounding for heat resistant has durability for irradiation. The thermal exposure was performed in an air oven. The duration of thermal exposure at 140 °C was 384 h. The irradiation condition was 5.0 kGy/h at 70 °C, and the total dose was 0.9 MGy. Elongation retained was taken for the evaluation of the stability. It was found that the formulas for improving the thermal stability did not bring radiation resistant of samples in the experiment. The rate constant of the increase in C dbnd O concentration by heat and radiation was measured and defined as kc( h) and kc( r), respectively. The rate constant of that under the combined addition of the heat and the radiation is expressed as kc( h + r). Eq. (1) was obtained by the experiment and it was found that there is a synergistic relationship between heat and radiation on the increase in C dbnd O concentration kc(h+r)>kc(h)+k(r). Similar relationship was observed on the rate of decrease in ultimate elongation of a certain EPDM.

  14. Heat and mass flux measurement from thermal infrared imagery: Example of the Soufrière Volcano (Guadeloupe)

    NASA Astrophysics Data System (ADS)

    Gaudin, D.; Beauducel, F.; Finizola, A.; Allemand, P.; Delacourt, C.; Richon, P.; Coutant, O.; de Chabalier, J.

    2012-12-01

    The estimation of mass and heat emissions is crucial for volcano monitoring. These fluxes may be diffuse or concentrated on precise zones of the volcano : gas fumaroles, thermal anomalies, hot springs. The total flux evolution is good indicator of the volcanic activity global behavior, while local flux at focused zones may help to characterize the hydrothermal system. However, large-scale surveys using classical methods are difficult to carry on, since field conditions may prevent permanent instrument installation. Thermal infrared pictures (7.5 - 14 ?m) can be used to map temperatures of surfaces and gases. In this study, we investigated relationships between temperature anomalies and heat flux, in order to evaluate the potential of thermal imagery for volcano monitoring. Two surveys have been achieved in 2010 and 2012 on la Soufrière Volcano (Guadeloupe, Lesser Antilles), both by airborne and handled thermal cameras. We first calibrate the uncooled microbolometers cameras, then we correct images from atmospheric absorption according to sensor elevation and atmospheric humidity, pressure and temperature. To correct effects of surface reflexion, we estimate surface emissivity and incoming flux at surface. Finally, the absolute precision of measurements is 2 K while the relative sensitivity is about 0.2 K. In order to estimate the total heat flux, we map thermal anomalies on the volcano edifice by overlapping infrared airborne images on visible orthorectified images. Active zones are clearly identified at the top (actives and potential fumaroles) and on the slopes (former active fumaroles and hot springs). At the summit active fumaroles, we estimate the mass flux of gas by measuring the panache dilution into the atmosphere. Indeed, it is shown that temperature profile along the plume is a function of the wind velocity, distance and mass flux at the source vent. Measured fluxes of 30 m3/s for the South Crater and 5 m3/s for the Tarissan Pit are estimated, and compared to other methods results. At the Ty Fault thermal anomaly (low flux fumarolian zone), we conducted an experiment to estimate the heat flux from thermal gradient anomaly at surface. This implies the measurement of external parameters describing the atmosphere dynamics (surface roughness, wind velocity, rainfall, etc.). We validate our interpretative model of surface flux with in situ vertical temperature gradient measurements. The surface flux is integrated over all spatial areas to provide the total flux of the zone. Our measurements on La Soufrière Volcano show that the fluxes emitted in hot springs and in sub-fumarolian zones (1.5 MW for the Ty Fault zone) represents a few percents of the total budget of heat (50 MW). However, the evolution of the localization and of the power of different heat sources shows a clear evolution from 2010 to 2012, with an increase of the summit activity and a decrease of the peripheral sub-fumarolian heat flux. These observations are in good agreement with the seismic, tectonic and geochemical observations, showing a pressurization of the volcano since 1997. Finally, thermal infrared imaging enables a precise mapping of mass and heat fluxes. It has a great potential in volcano monitoring, because of its ease of use, and the large variety of measurements which can be achieved from a single image.

  15. Energy exchanges in a Central Business District - Interpretation of Eddy Covariance and radiation flux measurements (London UK)

    NASA Astrophysics Data System (ADS)

    Kotthaus, S.; Grimmond, S.

    2013-12-01

    Global urbanisation brings increasingly dense and complex urban structures. To manage cities sustainably and smartly, currently and into the future under changing climates, urban climate research needs to advance in areas such as Central Business Districts (CBD) where human interactions with the environment are particularly concentrated. Measurement and modelling approaches may be pushed to their limits in dense urban settings, but if urban climate research is to contribute to the challenges of real cities those limits have to be addressed. The climate of cities is strongly governed by surface-atmosphere exchanges of energy, moisture and momentum. Observations of the relevant fluxes provide important information for improvement and evaluation of modelling approaches. Due to the CBD's heterogeneity, a very careful analysis of observations is required to understand the relevant processes. Current approaches used to interpret observations and set them in a wider context may need to be adapted for use in these more complex areas. Here, we present long-term observations of the radiation balance components and turbulent fluxes of latent heat, sensible heat and momentum in the city centre of London. This is one of the first measurement studies in a CBD covering multiple years with analysis at temporal scales from days to seasons. Data gathered at two sites in close vicinity, but with different measurement heights, are analysed to investigate the influence of source area characteristics on long-term radiation and turbulent fluxes. Challenges of source area modelling and the critical aspect of siting in such a complex environment are considered. Outgoing long- and short-wave radiation are impacted by the anisotropic nature of the urban surface and the high reflectance materials increasingly being used as building materials. Results highlight the need to consider the source area of radiometers in terms of diffuse and direct irradiance. Sensible heat fluxes (QH) are positive all year round, even at night. QH systematically exceeds input from net all-wave radiation (Q*), probably sustained by a both storage and anthropogenic heat fluxes (QF). Model estimates suggest QF can exceed the Q* nearly all year round. The positive QH inhibits stable conditions, but the stability classification is determined predominantly by the pattern of friction velocity over the rough urban surface. Turbulent latent heat flux variations are controlled (beyond the available energy) by rainfall due to the small vegetation cover. The Bowen ratio is mostly larger than one. Analysis of the eddy covariance footprint surface controls for the different land cover types by flow patterns for measurements at the two heights suggests the spatial variations of the sensible heat flux observed are partly related to changes in surface roughness, even at the local scale. Where the source areas are most homogeneous, flow conditions are vertically consistent - even if initial morphometric parameters suggested the measurements may be below the blending height. Turbulence statistics and momentum flux patterns prove useful for the interpretation of turbulent heat exchanges observed.

  16. An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2

    E-print Network

    Paris-Sud XI, Université de

    of cooling dense urban areas and reducing the urban heat11 island effect has been studied since the 1990's; pavement heat flux; pavement-watering; urban heat island; climate change25 adaptation; heat wave26 1 [3], this technique is viewed as an efficient means of reducing urban31 heat island (UHI) intensity

  17. Finger heat flux/temperature as an indicator of thermal imbalance with application for extravehicular activity

    NASA Astrophysics Data System (ADS)

    Koscheyev, Victor S.; Leon, Gloria R.; Coca, Aitor

    2005-11-01

    The designation of a simple, non-invasive, and highly precise method to monitor the thermal status of astronauts is important to enhance safety during extravehicular activities (EVA) and onboard emergencies. Finger temperature ( Tfing), finger heat flux, and indices of core temperature ( Tc) [rectal ( Tre), ear canal ( Tec)] were assessed in 3 studies involving different patterns of heat removal/insertion from/to the body by a multi-compartment liquid cooling/warming garment (LCWG). Under both uniform and nonuniform temperature conditions on the body surface, Tfing and finger heat flux were highly correlated with garment heat flux, and also highly correlated with each other. Tc responses did not adequately reflect changes in thermal balance during the ongoing process of heat insertion/removal from the body. Overall, Tfing/finger heat flux adequately reflected the initial destabilization of thermal balance, and therefore appears to have significant potential as a useful index for monitoring and maintaining thermal balance and comfort in extreme conditions in space as well as on Earth.

  18. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    SciTech Connect

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  19. An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux

    E-print Network

    Andrés Santos; Vicente Garzó; Francisco Vega Reyes

    2010-05-31

    In the steady Couette flow of a granular gas the sign of the heat flux gradient is governed by the competition between viscous heating and inelastic cooling. We show from the Boltzmann equation for inelastic Maxwell particles that a special class of states exists where the viscous heating and the inelastic cooling exactly compensate each other at every point, resulting in a uniform heat flux. In this state the (reduced) shear rate is enslaved to the coefficient of restitution $\\alpha$, so that the only free parameter is the (reduced) thermal gradient $\\epsilon$. It turns out that the reduced moments of order $k$ are polynomials of degree $k-2$ in $\\epsilon$, with coefficients that are nonlinear functions of $\\alpha$. In particular, the rheological properties ($k=2$) are independent of $\\epsilon$ and coincide exactly with those of the simple shear flow. The heat flux ($k=3$) is linear in the thermal gradient (generalized Fourier's law), but with an effective thermal conductivity differing from the Navier--Stokes one. In addition, a heat flux component parallel to the flow velocity and normal to the thermal gradient exists. The theoretical predictions are validated by comparison with direct Monte Carlo simulations for the same model.

  20. Thermal vacuum tests of Olympus heat pipe radiators

    Microsoft Academic Search

    D. Boggiatto; E. Colizzi; V. Perotto; S. Tavera

    1985-01-01

    The results of the thermal tests performed on the Olympus Large Telecommunication Satellite Heat Pipe Radiators are presented. The test set-up maintained the Heat Pipes horizontal, the dissipation and thermal characteristics of electronic units being simulated by thermal dummies. The tests were divided in three phases with different temperatures of the chamber cryogenic shrouds to simulate the worst steady (equinox)

  1. Interannual variability of surface heat fluxes in the Adriatic Sea in the period 1998-2001 and comparison with observations.

    PubMed

    Chiggiato, Jacopo; Zavatarelli, Marco; Castellari, Sergio; Deserti, Marco

    2005-12-15

    Surface heat fluxes of the Adriatic Sea are estimated for the period 1998-2001 through bulk formulae with the goal to assess the uncertainties related to their estimations and to describe their interannual variability. In addition a comparison to observations is conducted. We computed the components of the sea surface heat budget by using two different operational meteorological data sets as inputs: the ECMWF operational analysis and the regional limited area model LAMBO operational forecast. Both results are consistent with previous long-term climatology and short-term analyses present in the literature. In both cases we obtained that the Adriatic Sea loses 26 W/m2 on average, that is consistent with the assessments found in the literature. Then we conducted a comparison with observations of the radiative components of the heat budget collected on offshore platforms and one coastal station. In the case of shortwave radiation, results show a little overestimation on the annual basis. Values obtained in this case are 172 W/m2 when using ECMWF data and 169 W/m2 when using LAMBO data. The use of either Schiano's or Gilman's and Garrett's corrections help to get even closer values. More difficult is to assess the comparison in the case of longwave radiation, with relative errors of an order of 10-20%. PMID:16318867

  2. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat fluxes produced by MERRA compare favorably to observationally based estimates. However, MERRA is distinct in terms of amplitude. These results suggest that MERRA is likely to be a valuable resource for a number of research applications though, as with all turbulent flux estimates, systematic issues should be taken into account.

  3. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat fluxes produced by MERRA compare favorably to observationally based estimates. However, MERRA is distinct in terms of amplitude. These results suggest that MERRA is likely to be a valuable resource for a number of research applications though, as with all turbulent flux estimates, systematic issues should be taken into account

  4. The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity

    NASA Technical Reports Server (NTRS)

    Smith, Marc K.; Glezer, Ari

    1996-01-01

    In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.

  5. Ground heat flux and power sources of low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  6. Stagnation Point Radiative Heating Relations for Venus Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Palmer, Grant E.; Prabhu, Dinesh K.

    2012-01-01

    Improved analytic expressions for calculating the stagnation point radiative heating during entry into the atmosphere of Venus have been developed. These analytic expressions can be incorporated into entry trajectory simulation codes. Together with analytical expressions for convective heating at the stagnation point, the time-integrated total heat load at the stagnation point is used in determining the thickness of protective material required, and hence the mass of the fore body heatshield of uniform thickness.

  7. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  8. Satellite-derived surface latent heat fluxes in a rapidly intensifying marine cyclone

    NASA Technical Reports Server (NTRS)

    Miller, Douglas K.; Katsaros, Kristina B.

    1992-01-01

    Surface latent heat fluxes are estimated in the vicinity of a rapidly deepening cyclone before and during its period of most rapid intensification. This was done with a bulk parameterization scheme and remotely sensed input data. A method is studied for estimating the difference in specific humidity between the surface and a ten meter height using the Special Sensor Microwave/Imager (SSM/I) observed integrated water vapor field and a sea surface temperature analysis. The surface latent heat flux fields generally have estimated errors below 40 pct. south of 40 deg. N and outside the region of high integrated water vapor values associated with frontal bands. The method of estimating surface latent heat fluxes for the case study was found to be usable in most regions of the Northwest Atlantic Ocean except for those locations directly adjacent to coastlines in instances of offshore flow and in the vicinity of surface fronts.

  9. Satellite-derived surface latent heat fluxes in a rapidly intensifying marine cyclone

    NASA Technical Reports Server (NTRS)

    Miller, Douglas K.; Katsaros, Kristina B.

    1992-01-01

    The aim of this article is to estimate surface latent heat fluxes in the vicinity of a rapidly deepening cyclone before and during its period of most rapid intensification. This is done with a bulk parameterization scheme and remotely sensed input data. A method for estimating the difference in specific humidity between the surface and a 10-m height is investigated using the Special Sensor Microwave/Imager-observed integrated water vapor field and a sea surface temperature analysis. The surface latent heat flux fields generally have estimated errors below 40 percent south of 40 deg N and outside the region of high integrated water vapor values associated with frontal bands. The method of estimating surface latent heat fluxes for the case study was found to be usable in most regions of the northwest Atlantic Ocean except for those locations directly adjacent to coastlines in instances of offshore flow and in the vicinity of surface fronts.

  10. Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1988-01-01

    This paper describes a method of determining latent heat flux and the ocean-atmosphere moisture from sea surface temperature, precipitable water, and surface wind speed data derived from 1980-1983 observations of SMMR aboard Nimbus 7 above tropical Pacific. The observation period included a very intense El Nino-Southern Oscillation (ENSO) episode. It was found that, during the early phase of the 1982-1983 ENSO, a surface convergence center moved east leading the anomalous equatorial westerlies. At this center, the low wind and high humidity caused negative (low) latent heat flux anomalies, despite anomalously high sea surface temperatures. Latent heat flux was found to play an important role in the seasonal cooling of the upper ocean, except in areas covered by major surface convergence zones and in areas of ocean upwelling.

  11. Modeling and analysis of low heat flux natural convection sodium boiling in LMFBRs

    SciTech Connect

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1982-09-01

    Flow excursion induced dryout at low heat flux natural convection boiling, typical of liquid metal fast breeder reactor, is addressed. Steady state calculations indicate that low quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high heat flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 31 refs., 25 figs., 6 tabs.

  12. Flow excursion-induced dryout at low heat flux natural convection boiling

    SciTech Connect

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1986-05-01

    Flow excursion-induced dryout at low heat flux natural convection boiling, typical of liquid metal fast breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of the Ledinegg instability, leading to flow excursion and subsequent dryout in agreement with experimental data. A flow regime -dependent critical heat flux relationship based upon a saturated boiling criterion is also presented. Transient analyses indicate that premature flow excursion cannot be ruled out and the boiling process is transient dependent. Analysis of a loss-of-flow transient at high heat flux forced convection shows a significantly faster flow excursion leading to dryout, which is in excellent agreement with the results of the two-dimensional THORAX code.

  13. Axial evolution of radial heat flux profiles transmitted by atmospheric pressure nitrogen and argon arcs

    NASA Astrophysics Data System (ADS)

    Meher, K. C.; Tiwari, N.; Ghorui, S.; Sahasrabudhe, S. N.; Das, A. K.

    2014-12-01

    Axial evolutions of radial heat flux profiles in argon and nitrogen plasma jets from an atmospheric pressure dc non-transferred arc plasma torch are determined using a double calorimetric technique. Results are presented for power levels suitable for the processing of high temperature ceramic oxides, where the heat flux data reported in the literature is rare. Variations of the profile widths and profile maxima are presented as a function of axial distance as well as power. Relatively uniform profile width over prolonged axial distance for nitrogen plasma compared to argon is an important observation which has the potential to offer a much longer dwell time of the injected particles inside the plasma, avoiding the problem of unmelts, especially for ceramics. A comparative study of the heat flux profiles for argon and nitrogen plasma is presented. The obtained results are compared with the data reported in literature.

  14. Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects

    NASA Astrophysics Data System (ADS)

    Dede, Ercan M.; Nomura, Tsuyoshi; Schmalenberg, Paul; Seung Lee, Jae

    2013-08-01

    Experimental results are presented for heat flux cloaking, focusing, and reversal in ultra-thin anisotropic composites. A two-material system is utilized in the device design, which features an annular region for heat flow control. The effective thermal conductivity layout of the composite is specified through logical combination of the base material constituents. Heat transfer considering conduction-convection is numerically predicted and experimentally verified via infrared thermography. A Biot number analysis reveals the significance of high rates of convection for large-area planar devices, while the experimental results indicate the feasibility of such heat flow control techniques for advanced electronics applications involving natural convection.

  15. Progress Report Development of a High Heat Flux

    E-print Network

    Yuen, Walter W.

    connection as shown in Figure 4a. This leads to additional thermal insulation and a slight increase, the dimension of the heating area is small (5.8 mm by 0.5 mm). The active material (InGaAsP and InP) is soldered to an AlN substrate which acts as a thermal spreader. The package is then soldered to kovar which

  16. Toward an estimation of global land surface heat fluxes from multisatellite observations

    Microsoft Academic Search

    Carlos Jiménez; Catherine Prigent; Filipe Aires

    2009-01-01

    The sensitivity of a suite of satellite observations to land surface heat fluxes and the estimation of satellite-derived fluxes using a statistical model are investigated. The satellite data include visible and near-infrared reflectances (Advanced Very High Resolution Radiometer [AVHRR]), thermal infrared surface skin temperature and its diurnal cycle (International Satellite Cloud Climatology Project [ISCCP]), active microwave backscatter (European Remote-sensing Satellite

  17. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

  18. The first geothermal heat flux measurement below the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Mankoff, K. D.; Tulaczyk, S. M.; Foley, N.; Hossainzadeh, S.

    2014-12-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow and mass balance of outlet glaciers and ice sheets. We measured directly the geothermal heat flux below the West Antarctic Ice Sheet (WAIS), under Subglacial Lake Whillans (SLW), as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. The one-dimensional, conductive heat flux is the product of thermal gradient and thermal conductivity. We developed and fielded a tool to determine the thermal gradient in lake sediments, after penetrating ~800 m of ice using a hot water drilling system. We used the needle-probe method to measure the thermal conductivity of sediments recovered from the bottom of the lake with a gravity-driven multi-corer. The thermal gradient was determined during two separate deployments of the geothermal tool, which penetrated ~1.1 m into the till below SLW, yielding essentially identical results: 0.21±0.07 °C/m. Fifteen sediment thermal conductivity measurements yield an average value of 1.36±0.12 W/m-K. The heat flux determined from these measurements is 285±85 W/m2. This value is somewhat higher than that estimated from the WAIS-Divide ice core site, 230 mW/m2, ~800 km away, and much higher than regional estimates based on magnetics and a global seismic model, generally ?100 mW/m2. Elevated heat flux in this area could result from thermal perturbations associated with rifting, crustal thinning, or volcanic activity. Heat flux of this magnitude is likely to cause basal melt rate of a few cm/year. If this value is representative of conditions below this part of the WAIS, it might help to explain the occurrence of active subglacial lakes and fast-moving ice streams and the ice dynamics of WAIS more broadly.

  19. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE PAGESBeta

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  20. Selective radiative heating of nanostructures using hyperbolic metamaterials.

    PubMed

    Ding, Ding; Minnich, Austin J

    2015-04-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management. PMID:25968795